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ABSTRACT. G. Böðvarsson’s 1955 plug-flow solution for an Icelandic glacier problem is shown to be an
exact solution to the steady form of the simultaneous stress-balance and mass-continuity equations
widely used in numerical models of marine ice sheets. The solution, which has parabolic ice thickness
and constant vertically integrated longitudinal stress, solves the steady shallow-shelf approximation
with linear sliding on a flat bed. It has an elevation-dependent surface mass-balance rate and, in the
interpretation given here, a contrived location-dependent ice hardness distribution. By connecting
Böðvarsson’s solution to the Van der Veen (1983) solution for floating ice, we construct an exact
solution to the ‘rapid-sliding’ marine ice-sheet problem, continuously across the grounding line. We
exploit this exact solution to examine the accuracy of two numerical methods, one grid-free and the
other based on a fixed, equally spaced grid.
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INTRODUCTION
Early theoretical glaciology created two fundamentally
different parabolic profiles as the shapes of steady flowline
ice sheets lying on flat beds (Fig. 1). One was the profile of
an ice sheet with perfect plasticity (E. Orowan comment in
BGS, 1949; Nye, 1952) and the other the profile for a sliding
‘plug’ flow (Böðvarsson, 1955). These global views of free
surface flows in glaciology focus on different aspects of the
problem and they come to rather different conclusions. Up
to scaling, one is of the form x ¼ 1 � z2 (Orowan–Nye) and
the other is of the form z ¼ 1 � x2 (Böðvarsson). The former
perfect-plasticity solution has a central peak at the highest
point of the ice sheet, and a margin with unbounded surface
gradient. The latter plug-flow solution has a smooth dome
and a finite-slope, wedge-shaped margin.

This paper shows how to combine Böðvarsson’s solution
with a well-known exact solution for an ice shelf (Van der
Veen, 1983, 2013) to generate an exact solution for a
flowline, steady marine ice sheet. It is shown in Figure 2.
This exact solution simultaneously solves the steady mass-
continuity equation and the so-called shallow-shelf approx-
imation (SSA; Weis and others, 1999) stress balance. It is an
exact solution in the rapidly sliding marine ice-sheet case
(Schoof, 2007), the model addressed by the MISMIP (Marine
Ice-Sheet Model Intercomparison Project) intercomparison
(Pattyn and others, 2012). After presenting the model
equations and constructing the exact solution in the next
two sections, we examine the errors from two different
numerical methods. We observe, through linearization of
the equations around the exact solution, that the grounding
line generates a strong ‘stiffness’ contrast, in the sense of
numerical analysis.

CONTINUUM MODEL
Model equations
Our model equations describe the steady-state, flat-bed case
of the rapid-sliding model of Schoof (2007, eqns (2.1–2.5)),
but we restrict our consideration to the linear-sliding case.
The primary unknowns in these equations are the ice
thickness, HðxÞ, velocity, uðxÞ, and vertically integrated

longitudinal stress, TðxÞ (Schoof, 2006), where x is the
flowline distance. Using the notation of Table 1, the
equations are

uHð Þx� M ¼ 0, ð1Þ

Tx � �u � �gHhx ¼ 0, ð2Þ

T ¼ 2BHjuxj
1
n � 1ux: ð3Þ

Here the subscript x denotes the derivative. Equations (1)
and (2) are the mass-continuity and SSA stress-balance
equations, respectively, while Eqn (3) defines T. In Eqn (1)
the climatic-basal mass-balance rate, MðxÞ (Cogley and
others, 2011), also called the accumulation/ablation rate
function, combines the surface mass-balance rate and the
rate of basal melt/refreeze. In grounded ice the basal shear
stress is linear, so �b ¼ � �u (MacAyeal, 1989) appears in
Eqn (2), with � ¼ 0 in floating ice, so the same linear form
holds throughout. The coefficient BðxÞ in Eqn (3) is called
the ice ‘hardness’.

Let ! ¼ 1 � �=�w be the ‘Archimedean factor’, which
relates ice surface elevation to thickness in floating ice. Let
zo be the elevation of the ocean surface. The grounded ice
rests on bedrock at elevation b, which is a constant in this
paper. By the flotation criterion,

h ¼ Hþ b, �H � �wðzo � bÞ
!Hþ zo, �H < �wðzo � bÞ

�

ð4Þ

defines the ice surface elevation in grounded and floating
cases, respectively. Using the same flotation criterion we
can clarify the basal shear stress,

� ¼
k�gH, �H � �wðzo � bÞ
0, �H < �wðzo � bÞ

�

, ð5Þ

where we have scaled � ¼ k�gH with the ice overburden
pressure, �gH, following Böðvarsson (1955).

Equations (1–5) apply on an interval 0 < x < xc, where xc
is the floating calving front. We must solve for the location,
x ¼ xg, of the grounding line, at which we know
�HðxgÞ ¼ �wðzo � bÞ.
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For the exact and numerical solutions in this paper,
Eqns (1–5) are augmented by boundary conditions:

uð0Þ ¼ ua > 0, Hð0Þ ¼ Ha > 0, ð6Þ

TðxcÞ ¼
1
2
!�gHðxcÞ

2, ð7Þ

H, u, T continuous at x ¼ xg, ð8Þ

where ua and Ha simply denote Dirichlet boundary values
for velocity and thickness respectively. Here x ¼ 0 is an
upstream location where Dirichlet boundary conditions are
applied (Eqn (6)), while at the calving front, x ¼ xc, we have
the standard hydrostatic pressure imbalance condition,
Eqn (7) (Schoof, 2007).

On well-posedness and the grounding line
Given data BðxÞ, b, k > 0, MðxÞ, xc > 0, zo, along with
physical constants g, n, �, �w, we expect the problem
consisting of Eqns (1–8) to be well-posed. To our knowledge
this has not been proved, nor do we attempt to prove it. It is,

however, now worth considering the smoothness of the
solution to Eqns (1–7), including what hypotheses would
lead to satisfying Eqn (8) at the free (i.e. unknown) location
xg in the interior of the domain.

Suppose that, for physical reasons, the climatic-basal
mass-balance rate, MðxÞ, and ice hardness, BðxÞ, are
bounded, and further that BðxÞ is bounded below by a
positive constant. On integrating M, Eqn (1) implies that the
flux, q ¼ uH, is absolutely continuous and bounded. If there
is a positive lower bound on thickness, H, then we can
conclude that the magnitude of u is bounded because
u ¼ q=H. If the magnitude of the driving stress, � �gHhx, is
bounded then Eqn (2) implies T is absolutely continuous. By
Eqn (3) this implies u has a bounded and integrable
derivative, and, thus, that u is also absolutely continuous.
From these facts we could then return to the flux and write
H ¼ q=u, which shows H is absolutely continuous away
from locations where u ¼ 0 (e.g. divides). In summary,
assuming (i) that an integrable solution ðH, u, TÞ to Eqns (1–
7) exists, (ii) that the functions M, B are bounded and
integrable, (iii) that B is bounded below by a positive
constant, (iv) that a positive lower bound on thickness exists
and (v) that an upper bound on the magnitude of the driving
stress exists, then we can regard the conditions of Eqn (8),
giving continuity at the grounding line, as properties of the
solution instead of as part of the ‘imposed’ problem
statement. Thus, from now on we speak of solving the
problem consisting of Eqns (1–7), with the location of the
grounding line, xg, unknown, and with Eqn (8) describing
proportion of the solution.

EXACT SOLUTION
Böðvarsson’s parabola
Böðvarsson (1955) built, based on minimal existing litera-
ture, a rigorous theory of the flow of glaciers and ice sheets.
His test case was Brúarjökull, a glacier on the northern
margin of Vatnajökull, Iceland. It flows over a smooth bed
for 20 km, from a location where its thickness is 600 m, to a
zero thickness margin. This glacier is entirely grounded. He
showed that a good fit to measured surface elevations can
be made using his model.

He initially states an equation for the ice-sheet surface ele-
vation which has both vertical-plane shear and longitudinal

Fig. 2. The geometry (solid curve) and velocity (dashed curve) of an
exact solution of the simultaneous steady mass-continuity and SSA
stress-balance equations for a marine ice sheet. The solution is
Böðvarsson’s (1955) when grounded and Van der Veen’s (1983,
2013) when floating.

Table 1.Notation and SI units or values. Values of physical constants

Symbol Description Unit or value

B Ice hardness (¼ A� 1=n) Pa s1=3

b Bedrock elevation m

� Sliding coefficient Pa s m� 1

g Acceleration of gravity 9.81 m s� 2

H Ice thickness m

h Ice surface elevation m

k Pressure-scaled sliding coefficient s m� 1

M Climatic-basal mass-balance rate m s� 1

n Glen exponent in ice-flow law 3

� Density of ice 910 kg m� 3

�w Density of sea water 1028 kg m� 3

T z-integrated longitudinal stress Pa m

�b Basal shear stress applied to ice Pa

u Horizontal velocity m s� 1

ðx; zÞ Flowline Cartesian coordinates m

xg Grounding line m

xc Calving front m

zo Ocean surface elevation m

! Archimedean factor (¼ 1 � �=�w) 0.115

Fig. 1. The parabolas by Orowan (comment in BGS, 1949) and Nye
(1952) (dotted curve) and by Böðvarsson (1955; solid curve) for
steady, flowline ice sheets on flat beds. A dome thickness of
H0 ¼ 3000 m and a length of L0 ¼ 500 km are chosen for
concreteness.
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stresses within the ice. However, he says this equation ‘is
quite tedious and very difficult to handle especially because
of the [shear term]. It is therefore fortunate that [the shear]
term appears to be small compared to the [basal sliding]
term.’ Then he drops the shear term and writes an equation in
which driving stress is balanced by sliding resistance. He
solves and analyzes this plug-flow model, for which we now
state his equations in detail.

As is perhaps best known about Böðvarsson’s work, he
chooses the surface mass-balance rate to be

M ¼ a H � Helað Þ, ð9Þ

for a mass-balance gradient a > 0 and equilibrium-line
altitude Hela. Böðvarsson’s basal resistance formula scales
with the overburden pressure, so that the basal shear stress is

�b ¼ � �u ¼ � k�gHu: ð10Þ

He then writes the ice flux as uH ¼ � ðH=kÞHx, or
equivalently the ice velocity as

u ¼ �
1
k

Hx: ð11Þ

(We return to Eqn (11) below, explaining it in modern
language.) Combining Eqns (9) and (11) with mass continuity
(Eqn (1)) yields eqn (17) of Böðvarsson (1955), namely

a H � Helað Þ þ k� 1HHx
� �

x¼ 0: ð12Þ

His thickness solution to this equation is (Böðvarsson, 1955,
eqns (18) and (23))

HðxÞ ¼ H0 1 � x=L0ð Þ
2

h i
, ð13Þ

where H0 ¼ 1:5Hela and akL2
0 ¼ 9Hela (Böðvarsson, 1955,

eqn (24)).
Despite its simplicity, Eqn (13) is an exact solution to

Eqn (12), with boundary condition Hð0Þ ¼ H0, as the reader
may verify. The formula of Eqn (13) defines the solid
parabola shown in Figure 1. Böðvarsson does not offer a
reason why there should be such a simple quadratic solution
to Eqn (12). His solution seems to be a new result for a
narrow class of nonlinear second-order ordinary differential
equations (ODEs) like Eqn (12) (Appendix A). Seeking a
polynomial solution to Eqn (12) with the single boundary
condition Hð0Þ ¼ H0, as in Appendix A, generates a
location, x ¼ L0, where both the flux and the thickness are
zero. Böðvarsson explicitly considers the solution, Eqn (13),
as solving a free-boundary problem in this sense.

Böðvarsson had a particular ‘sliding law’ in mind, namely
Eqn (10), in which the sliding coefficient scales with
overburden pressure. The modern reader may protest that
� should instead be a function of (e.g. proportional to)
effective pressure, N ¼ �gH � P, where P is the subglacial
water pressure. However, it is not unreasonable to suppose
that P also scales with (is roughly a fixed fraction, �, of)
overburden pressure. In that case we have equations � ¼ cN,
N ¼ �gH � P and P ¼ ��gH, which combine to give
� ¼ cð1 � �Þ�gH. Thus, if the reader so wishes, in Böðvars-
son’s model we can write � ¼ k�gH with k ¼ cð1 � �Þ.

Böðvarsson’s 1955 paper was apparently first cited by
Weertman (1961), who decided that his sliding, plug-flow
physics should be replaced by a shear deformation model
more like the shallow-ice approximation. This replacement
seems to have influenced readers from then on. The surface
balance parameterization, Eqn (9), also reappears in Weert-
man (1961), among other places. It parameterizes a
potential climatic instability, which was Böðvarsson’s,

Weertman’s and most readers’, major interest. We are,
however, interested now in Böðvarsson’s solution to the ice-
flow equations themselves.

An SSA re-interpretation
We have claimed that Eqn (13) exactly solves a combination
of the steady flowline mass-continuity equation (Eqn (1)) and
the SSA stress-balance equation (Eqn (2)), but the source of
Eqn (11) may be less clear. However, suppose we look for
solutions of Eqns (1) and (2), with constant vertically
integrated longitudinal stress, Tx ¼ 0. In that case Eqn (2)
and the scaling, Eqn (10), implies Böðvarsson’s formula for
the velocity, namely Eqn (11). Furthermore, Eqns (1) and (9)
then give Böðvarsson’s main equation, Eqn (12). That is, if
(i) Tx ¼ 0, (ii) sliding resistance is linear and scales with
overburden pressure and (iii) climatic-basal mass-balance
rate is proportional to elevation above the equilibrium line,
then we can recover a simple parabolic profile for HðxÞ,
namely Eqn (13), which is a solution to Eqn (12).

But what does the condition Tx ¼ 0 imply as a relation
among the modeled quantities? Given a thickness profile
HðxÞ and a strain-rate profile uxðxÞ, we may interpret Tx ¼ 0
as a statement of variable ice hardness, BðxÞ. Generally,
variation in hardness can be physically explained (e.g. in
numerical models that use the SSA in a temperature-
dependent way (Bueler and Brown, 2009)), so assuming that
hardness is x-dependent requires no conceptual extensions
in the marine ice-sheet modeling context. Numerical models
can therefore use the exact solution we are building for
verification without requiring unusual modifications.

Thus the variable hardness, BðxÞ, used here allows us to
‘manufacture’ an exact solution (Bueler and others, 2005).
Specifically, the assumption T ¼ T0 in Eqn (3) yields a
formula for ice hardness in grounded ice:

BðxÞ ¼
T0

2Hjuxj
ð1=nÞ� 1ux

: ð14Þ

The value T0 in Eqn (14) will be set by a downstream stress
condition, just as it is in many models for flowline ice
shelves (e.g. Schoof, 2007; Pattyn and others, 2012).

Extending the exact solution to floating ice
Two well-known observations are relevant to the argument
in the next paragraphs: (i) For floating ice with � ¼ 0,
Eqns (1–7) also have a known exact solution, specifically in
the case where the climatic-basal mass-balance rate, M, and
the ice hardness, B, are constant (Van der Veen, 1983,
2013); (ii) The vertically integrated longitudinal stress, T, in
a flowline ice shelf (i.e. one without lateral stresses) satisfies
Eqn (7) at each location, x, in the shelf, i.e. TðxÞ ¼
1
2 !�gHðxÞ2, because this is a first integral of Eqn (2) if � ¼ 0.

Based on these observations we can construct a marine
ice-sheet exact solution by connecting Böðvarsson’s
grounded solution to floating ice. Note the grounding-line
thickness is HðxgÞ ¼ ð�w=�Þzo if we take b ¼ 0. Then from
Böðvarsson’s thickness solution (Eqn (13)) we can determine
xg. At xg, from Eqns (11) and (13), we also know uðxgÞ. For
xg � x � xc, the floating ice shelf, we then set MðxÞ ¼ MðxgÞ

as constant from Eqn (9), thus making MðxÞ continuous
across the grounding line, while at the same time
allowing us to use Van der Veen’s construction, which is
based on a constant climatic-basal mass-balance rate. The
equation TðxÞ ¼ 1

2 !�gHðxÞ2 determines T0 ¼ TðxgÞ for use
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in Eqn (14), which determines BðxgÞ in particular, and so we
then set BðxÞ ¼ BðxgÞ for xg � x � xc, a constant, also
needed in Van der Veen’s construction.

The results of the above choices are the following
formulas for an exact marine ice sheet satisfying our steady
model equations (Eqns (1–8)). The velocity combines the
Böðvarsson (1955) and Van der Veen (1983) results,

uðxÞ ¼
2H0
kL2

0
ðxþ xaÞ, 0 � x � xg,

usðxÞ, xg � x � xc,

(

ð15Þ

where the shelf velocity usðxÞ is defined by

usðxÞ
nþ1
¼ uðxgÞ

nþ1
þ

Cs

MðxgÞ
QsðxÞ

nþ1
� Qnþ1

g

� �
, ð16Þ

Cs = �g!=ð4BðxgÞÞ
� �n, Qg = uðxgÞHðxgÞ and QsðxÞ= Qgþ

MðxgÞðx � xgÞ. Similarly the thickness is

HðxÞ ¼ H0 1 � ð xþxa
L0
Þ
2

h i
, 0 � x � xg,

QsðxÞ=usðxÞ, xg � x � xc.

(

ð17Þ

Equations (15) and (17) define the continuous functions
shown in Figure 2, using the specific values given in Table 2.

As described above, from the thickness, HðxÞ, and the
velocity, uðxÞ, we can find continuous functions, MðxÞ and
BðxÞ, for the full flowline, using Eqns (9) and (14). These

functions are shown in Figure 3. Then we can use Eqn (3) to
find TðxÞ; this is shown in Figure 4. In Figure 4 we also show
the sliding coefficient, �ðxÞ, which drops to zero discon-
tinuously at xg. Finally Figure 5 shows a detail of the
grounding line and floating ice in the exact solution.

The floating ice shelf is a relatively short 40 km (Figs 2
and 5). To explain, note that the equilibrium-line altitude,
Hela, in Böðvarsson’s (1955) solution is high on the ice sheet
because of its relation to the upstream ice thickness in the
construction of the exact solution (i.e. Hela ¼ ð2=3ÞH0).
This, in turn, implies MðxgÞ is quite negative (Eqn (9); Fig. 3).
Because Van der Veen’s (1983) solution uses a constant
climatic-basal mass-balance rate, and because we want
continuity for MðxÞ, we therefore have an ice shelf
experiencing rapid melting. The location of the calving
front, xc, must, of course, be put upstream of the location
where the ice has melted away. As a result of these same
factors we also see a rapid decline in the stress, TðxÞ, from its

Table 2. Specific values used in (above divider) or determined by
(below divider) the equations that define the exact solution shown
in Figures 2–5. Note ‘g.l.’ = grounding line and ‘c.f.’ = calving front

Symbol Description Value

a Surface mass-balance gradient 0.003 a� 1

b Bedrock elevation 0 m

H0 Thickness used in Eqn (13) 3000 m

Hela Equilibrium-line altitude 2000 m

k Scaled sliding coefficient 757.366 s m� 1

L0 Length used in Eqn (13) 500 km

xa Offset 100 km

zo Ocean surface elevation 504.572 m

Hð0Þ Thickness at x ¼ 0 2880 m

uð0Þ Ice velocity at x ¼ 0 100 m a� 1

xg Location of g.l. 350 km

BðxgÞ Ice hardness at g.l. 4:614� 108 Pa s1=3

HðxgÞ Thickness at g.l. 570 m

MðxgÞ Mass-balance rate at g.l. � 4:290 m a� 1

TðxgÞ Stress at g.l. 1:665� 108 Pa m

uðxgÞ Ice velocity at g.l. 450 m a� 1

xc Location of c.f. 390 km

HðxcÞ Thickness at c.f. 182.938 m

TðxcÞ Stress at c.f. 0:171� 108 Pa m

uðxcÞ Ice velocity at c.f. 464.092 m a� 1

Fig. 3. The climatic-basal mass-balance rate, MðxÞ (solid curve),
and ice hardness, BðxÞ (dashed curve), for the exact solution.

Fig. 5. Detail of Figure 2, showing the floating ice-shelf geometry
and velocity.

Fig. 4. The sliding coefficient, �ðxÞ (solid curve), and the vertically
integrated longitudinal stress, TðxÞ (dashed curve), for the exact
solution. The solid curve shows � ¼ k�gH on both sides of the
grounding line. The actual basal resistance experienced by the shelf
drops to zero at the grounding line (dotted line).
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constant grounded value to its small value at xc (Fig. 4;
Table 2). Though the ice shelf shown here is very wedge-
like, the thickness, HðxÞ, for floating ice comes from
Eqn (17), and it is not a linear function because usðxÞ is
not constant on the shelf.

NUMERICAL RESULTS
Verification of a grid-free ‘shooting’ numerical
method
In our steady flowline case the model equations form a two-
point boundary-value problem (BVP) for ODEs. Specifically,
the three first-order ODEs, Eqns (1–3), are subject to two
boundary conditions: Eqn (6) at x ¼ 0 and the calving-front
stress condition, Eqn (7), at x ¼ xc.

A nonlinear ‘shooting’ method (Press and others, 1992,
section 17.1) applies to this problem. We use the correct
values for uð0Þ and Hð0Þ from Eqn (6) and guess an
additional value, T0, for Tð0Þ. Then we use a numerical
ODE initial-value problem (IVP) solver to compute a
solution, ðeuðxÞ, eHðxÞ, eTðxÞÞ, from x ¼ 0 to x ¼ xc. The failure
of this ODE IVP solution to satisfy boundary condition
Eqn (7) is a measure of the wrongness of T0. In fact, based on
Eqn (7) we define the function

FðT0Þ ¼ eTðxcÞ �
1
2
!�geHðxcÞ

2, ð18Þ

and then we can apply a numerical method to find the
solution (root), bT0, to the problem FðT0Þ ¼ 0. This root gives
us complete initial conditions, so that the ODE IVP solution
also solves the two-point BVP, Eqns (1–7).

A robust root-finding method is bisection (Press and
others, 1992, section 9.1). It is guaranteed to converge if F is
continuous and if an initial bracket is given, which is easy to
find in this case. Regarding faster root-finding methods than
bisection, such as Newton’s method, we observe that F0 may
not exist because of the low regularity of the solution at the

interior point, x ¼ xg. However, by using our exact solution
we will see clear evidence that the bisection iteration
succeeds in finding the root, bT0, to many digits, despite the
uncertain smoothness of F.

This ‘shooting’ method has the advantage that the
advanced step-size control mechanism of an ODE IVP
solver determines the spatial gridpoints, so as to solve the
ODEs to a desired tolerance. Thereby we avoid an a priori
choice of the grid, and in this sense the method is grid-free.
In this case we use LSODA from the ODEPACK collection
(Hindmarsh, 1983), because it both automatically adjusts
step-size to achieve desired tolerance and automatically
switches method when stiffness (Press and others, 1992,
section 16.6) is detected.

We now apply this grid-free procedure to the same
problem for which we have the exact solution (given in
Eqns (15–17)). Using relative tolerance 10� 12 and absolute
tolerance 10� 14 for LSODA we get the numerical error
shown in Figure 6. We have shown the error in two runs,
one in which we have used the exactly correct initial value,
T0, (‘cheating’) and one in which we start with a large initial
bracket on T0 and converge on the correct calving-front
boundary condition through shooting and bisection (‘real-
istic’). In the ‘cheating’ runs we see that the numerical error
just from solving the ODE, i.e. independent of errors in
boundary conditions, is quite small, in the 10th or 11th digit
for H and u. The much larger error seen in the ‘realistic’ case
suggests, however, that F in Eqn (18) is significantly
irregular. Apparently, matching the calving-front boundary
condition by numerical shooting from upstream causes the
loss of 4 or 5 digits of accuracy. Nonetheless, even in this
‘realistic’ case our numerical method achieves 6- or 7-digit
accuracy over the whole domain, including in the im-
mediate vicinity of the grounding line. Note that though the
peak thickness error is near the grounding line, it is only
modestly larger than errors elsewhere.

The ODE solver also detects the grounding line as a point
of transition to shorter (spatial) steps, as seen in Figure 7.
More significantly, however, the grounded ice requires a
stiff method while the floating ice allows a non-stiff one,
according to the automatic switch mechanism in LSODA.
Note that high accuracy (e.g. 6 or 7 digits) is achieved in the

Fig. 7. The adaptive numerical ODE scheme in the ‘realistic’ case
makes steps of 1–10 km in grounded ice, but at the grounding line,
xg ¼ 350 km, the step size is reduced to a few hundred meters. The
adaptive mechanism automatically switches from a stiff method
where grounded (circles), to a non-stiff method where floating (stars).

Fig. 6. Pointwise error in thickness (upper panel) and in velocity
(lower panel) from an adaptive numerical ODE scheme. Both the
‘cheating’ case (solid curve), where we use the exactly correct
initial value for T, and the ‘realistic’ case (dashed curve), where the
shooting method converges on the correct initial value for T by the
bisection method, are shown.
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‘realistic’ case, despite rather large grid spacing in the
grounded ice, with large portions at 5–10 km spacing. The
spacing drops to a minimum of 100 m just downstream of
the grounding line at xg ¼ 350 km.

In all numerical tests we have treated MðxÞ as a
predetermined field (i.e. the one shown in Fig. 3). This
removes the climatically important elevation–accumulation
feedback, and the associated instability, of interest to
Böðvarsson (1955) and others. This feedback can, however,
be restored by using Eqn (9) to determine M from H.

Linearization around the exact solution
The above numerical evidence shows that a distinct change
in stiffness occurs at the grounding line. To analyze this we
linearize the model equations around the exact solution.
Denote the exact solution ðbu0, bH0, bT0Þ and consider a small
perturbation u ¼ buþ �eu, H ¼ bHþ �eH and T ¼ bT þ �eT.
Denote the column vector of perturbations by
w ¼ ½eu, eH, eT�T. Assuming bux > 0, Eqns (1–3) imply that, to
first order in �, the perturbation solves this linear ODE
system in grounded ice:

2
n BbHðbuxÞ

p 0 0
bH bu 0
0 � �gbH 1

2

6
4

3

7
5wx

¼

0 � 2BðbuxÞ
1=n 1

� bHx � bux 0
� k�gbH � k�gbuþ �gbHx 0

2

6
4

3

7
5w,

ð19Þ

where p ¼ 1
n � 1. In floating ice, only the last rows differ

from Eqn (19):

� � �

0 � !�gbH 1

� �

wx ¼
� � �

0 !�gbHx 0

� �

w: ð20Þ

If we define LðxÞ and RðxÞ to be the left- and right-side
matrices in Eqns (19) and (20) then w solves

wx ¼ AðxÞw ð21Þ

along its whole length, where AðxÞ ¼ LðxÞ� 1RðxÞ.
Linear ODE system Eqn (21) is stiff if there is a large ratio

of magnitudes in the eigenvalues of AðxÞ (Press and others,
1992). Because the entries and eigenvalues of AðxÞ are
exactly computable using the exact solution values,

ðbuðxÞ, bHðxÞ, bTðxÞÞ, we can plot (Fig. 8) the x-dependent
‘stiffness ratio’ for AðxÞ, namely the ratio of absolute values
of the real parts of the largest and smallest eigenvalues of
AðxÞ, along the whole length of the flowline. Note this ratio
is small in the non-stiff floating ice. This ratio is independent
of the direction of integration (i.e. upstream versus down-
stream). The stiffness ratio is by no means the last word on
quantifying stiffness, which turns out to be difficult generally
(e.g. Higham and Trefethen, 1993).

We believe that the strong stiffness contrast at the
grounding line is significant in explaining large near-
grounding-line errors made by gridded numerical methods
(Gladstone and others, 2010; Pattyn and others, 2012). The
stiffness ratio drops by a factor of almost ten at the grounding
line, though it is largest in the interior part of the grounded
ice. It is possible that models of modified effective pressure
near the grounding line (Leguy and others, 2014), in sliding
laws that are parameterized by effective pressure (Schoof,
2005), can smooth this stiffness contrast.

Verification of a fixed-grid finite-difference numerical
method
We also implemented an equally spaced, second-order,
finite-difference scheme using Newton iteration (Appendix
B). Our exact solution allows us to measure, for the first time
in a rapidly sliding marine ice-sheet context, the errors from
such a numerical scheme of the common type implemented
in practical marine ice-sheet models (e.g. Pollard and
DeConto, 2009; Winkelmann and others, 2011).

Figure 9 shows that the maximum numerical thickness
and velocity errors are observed to converge at a rate much
slower than the optimal Oð�x2Þ rate under grid refinement
(Morton and Mayers, 2005). This is essentially because of
the loss of smoothness in the exact solution at the grounding
line. By contrast, use of the grounded-only Böðvarsson
(1955) exact solution, without a grounding line, confirms

Fig. 9. Maximum errors in ice thickness (upper panel) and velocity
(lower panel) on grids with spacing from 20 km to 5 m. When
initialized with the exact solution, the numerical scheme converges
at a rate �x1:08 for both thickness and velocity (large dots plus
dotted line). For a more realistic initial iterate the convergence rate
is initially good, but at resolutions <1 km the Newton iteration fails
to converge (stars).

Fig. 8. Stiffness ratio jReð�1Þj=jReð�3Þj for the linearized problem,
Eqn (21), where �i are the eigenvalues of AðxÞ in Eqn (21).
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that the same finite-difference method gives optimal Oð�x2Þ

convergence (not shown).
It is important to distinguish the errors attributable to the

finite-difference discretization itself from errors attributable
to imperfect convergence of the nonlinear iterative solver that
is applied to solve the discretized equations. To evaluate the
former type of errors we initialized the nonlinear solver with
the exact solution values. These are not the exact solutions of
the discretized equations but they are (obviously) close. We
see converged solutions to the discretized equations down to
5 m grids. The resulting thickness and velocity errors, at the
mm and mm a–1 level, respectively (Fig. 9), are larger than
from the adaptive (grid-free) higher-order ODE method
above (cf. Fig. 6). Nonetheless errors at this level are certainly
acceptable, if they were to represent the realistic case.

However, if we use a simple ‘wedge’ initial iterate, which
has a linear thickness profile from the upstream initial
condition, Hð0Þ, down to 300 m at the calving front, and a
similar linear velocity profile increasing from uð0Þ to
300 m a� 1 at the calving front, then we see more realistic
results, that reflect the experience of ice-sheet modelers
addressing these equations. Here the initial iterate is
relatively far from the exact solution. Difficulties arise in
the global convergence behavior of the Newton solver, even
though standard line-search techniques are used in these
computations (Kelley, 1987). For grids finer than 1 km the
iteration for this scheme does not converge, apparently
because the Jacobian matrix is not providing useful
directional information as to the location of the solution of
the discretized equations.

Our results suggest a lack of nonlinear solver robustness
that we attribute to the non-smooth, stiffness-contrasting
properties of the problem near the grounding line. Ground-
ing-line parameterizations (e.g. Gladstone and others, 2010;
Feldmann and others, 2014) may act like homotopy con-
tinuation methods (Kelley, 1987) to improve global solver
behavior in this case, but such considerations go beyond the
scope of this paper. No regularization of grounding-line
discontinuities and slope discontinuities in the formulas for
�ðxÞ and hðxÞ (respectively) were applied in this paper.

CONCLUSION
As noted by Bueler and others (2005), Wesseling (2001) and
many others, verification of numerical methods is a valuable
first step in effective numerical modeling of realistic flows.
This is especially so in geophysical flows, where validation
by comparison with controlled laboratory experiments is
difficult. Thus, the rediscovery of an exact solution to a
marine ice-sheet problem is a welcome development. Even
though this solution is for a steady-state and flat-bed case, it
provides a partial alternative to using hard-to-interpret inter-
comparison results (Pattyn and others, 2012).

Because this solution is found in some of the first work in
theoretical glaciology (Böðvarsson, 1955), we have recov-
ered an early approach to sliding dynamics. The rapid-sliding
case turns out to be one of the first dynamical situations
examined, even though other early efforts at global views of
ice dynamics tended toward the plastic-ice (Orowan com-
ment in BGS, 1949; Nye, 1952), frozen-bed (Vialov, 1958)
and vertical-shear dominated (Weertman, 1961) models, and
these came to dominate the field until recent decades.

Citations of Böðvarsson (1955) usually relate to its theory
of climatic instability for glaciers and ice sheets, in which

surface mass-balance rate depends on elevation. The only
citation exception to this pattern known to the current
author is that Fowler (1992) refers to the basal-shear-
dominated dynamics of Böðvarsson (1955) as ‘approximate
results’. We hope that the current work revives interest in
Böðvarsson’s ice-dynamical solution and corrects the
misreading of his results as approximate.

Application of the new exact solution here, which
includes a floating extension, also reveals one feature of
the marine ice-sheet problem that we feel has been
overlooked, namely that there is a strong stiffness contrast
at the grounding line, in the sense of differential equations.
This is, conceptually, in addition to the loss of smoothness
seen at the grounding line. Both smoothness and stiffness
must be addressed by numerical methods. Modelers should
have more than grid refinement in mind as they attempt to
model grounding lines correctly.
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APPENDIX A: BÖÐVARSSON’S LITTLE THEOREM
Böðvarsson (1955) does not identify a source for the exact
parabolic thickness solution to his flow equations, and we
have not been able to attribute it to earlier work. We
summarize his result as the theorem that there is a unique
polynomial solution, yðxÞ, to the nonlinear second-order
differential equation

ðyy0Þ0 ¼ c1yþ c0, ðA1Þ

satisfying the single boundary condition, yð0Þ ¼ y0 > 0,

subject to both an initial downslope assumption (y0ð0Þ � 0)
and to the technical inequality 2c1y0 þ 3c0 � 0.

Equation (A1) is eqn (17) of Böðvarsson (1955). The
additional assumptions (i.e. initial downslope plus the
technical inequality) are unstated, though he comments
that there is ‘one and only one solution which is admittable
from the physical point of view’.

Here we justify this little theorem and, generally
following Böðvarsson (1955), derive relations among par-
ameters which allow a solution. The unique polynomial
solution may be interpreted as solving a free-boundary
problem for the first positive zero x0 > 0 of yðxÞ. In
Böðvarsson’s context x0 ¼ L0 is the length of the glacier,
the location of the margin in the everywhere-grounded case.

It is easy to see by substitution into Eqn (A1) that
nontrivial solutions of degree d, i.e. of the form
yðxÞ ¼ Cxd þ ðlower degreeÞ with C 6¼ 0, exist only if
d ¼ 2. In that case we seek solutions that satisfy the
boundary conditions yð0Þ ¼ y0 and y0ð0Þ � 0, so

yðxÞ ¼ y0 1 � �xþ �x2� �
ðA2Þ

for some � � 0 and �, which are to be determined (this is
eqn (18) of Böðvarsson, 1955). Substitution of Eqn (A2) into
Eqn (A1) gives the two equations

3y2
0�

2 ¼ 2c1y0 þ 3c0 and 6y0� ¼ c1: ðA3Þ

These two relations determine � and � from c0 and c1. The
first relation explains the technical inequality, noting
3y2

0�
2 � 0, of course.

In his main text, Böðvarsson (1955) relates four numbers
to the unknown glacier thickness, which is yðxÞ in the above
formulas: the initial (upstream) ice thickness, H0, an ablation
gradient, a > 0, the equilibrium-line altitude, Hela, and a
scaled sliding coefficient, k > 0. He has c0 ¼ kaHela and
c1 ¼ � ka in Eqn (A1), so the technical inequality says
3Hela � 2H0 after simplification. This causes the equilib-
rium-line altitude to be relatively high on the glacier.

APPENDIX B: A FINITE-DIFFERENCE SCHEME
The steady-state equations for mass continuity (Eqn (1)) and
stress balance (Eqn (2)) form a coupled system that can be
approximately solved by the centered, second-order finite-
difference scheme described here. There is no claim that this
scheme is optimal, but merely that it is a reasonable fixed-
grid method for initial evaluation. Because we use it to solve
a steady-state problem, it generalizes to the time-dependent
case as an implicit method.

We define an equally spaced grid on the domain ½0, xc�.
Because the boundary condition at the calving front
evaluates the stress, T, we put the right endpoint, xc, at a
‘staggered’ location halfway between gridpoints. Thus if N is
the number of spaces we define �x ¼ xc=ðNþ 1=2Þ and
xj ¼ j�x for j ¼ 0, � � � , Nþ 1. Denote the numerical approx-
imations Hi � HðxiÞ and ui � uðxiÞ. Let x�j ¼ xj þ�x=2 be the
staggered location for j ¼ 0, � � � , N. Note xc ¼ x�N < xNþ1.
Denote B�j ¼ Bðx�j Þ and M�j ¼ Mðx�j Þ.

The mass-continuity equation (Eqn (1)) is approximated by
a second-order difference centered at the staggered location.
For j ¼ 0, � � � , N,

ujþ1Hjþ1 � ujHj

�x
� M�j ¼ 0: ðB1Þ

In Eqn (2) we avoid infinite viscosity by using a regularization
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(Schoof, 2006). Let � ¼ 1=xc per year, i.e. a strain rate
corresponding to 1 m a� 1 velocity change over the whole
domain. Define

Fðul, urÞ ¼
ur � ul

�x

� �2
þ�2

� �ð1� nÞ=2n ur � ul

�x
, ðB2Þ

where ul and ur are velocity values to the left and right of a
staggered gridpoint, respectively. Then we approximate the
stress, T, at staggered points,

T�j ¼ B�j Hj þHjþ1
� �

Fðuj, ujþ1Þ, ðB3Þ

for j ¼ 0, � � � , N. Equation (2) is approximated by
T�j � T�j� 1

�x
� �juj � �gHj

hjþ1 � hj� 1

2�x
¼ 0 ðB4Þ

for j ¼ 1, � � � , N, where �j ¼ k�gHj if the ice is grounded at xj

(i.e. if �Hj � �wðzo � bÞ) and �j ¼ 0 if the ice is floating, and
where hj ¼ Hj þ b if the ice is grounded and hj ¼ !Hj þ zo if
the ice is floating. Thus Eqn (B4) applies, as stated, both for
grounded and floating ice.

At this point we have 2Nþ 4 scalar unknowns, namely uj

and Hj for j ¼ 0, � � � , Nþ 1. There are 2Nþ 1 nonlinear
equations in Eqns (B1) and (B4). The two upstream Dirichlet

equations (Eqn (6)), namely u0 ¼ uð0Þ and H0 ¼ Hð0Þ, bring
the number of equations to 2Nþ 3. The following approx-
imation of the calving-front condition (Eqn (7)), completes
the system:

1
2
!�g

HN þHNþ1

2

� �2

¼ T�N, ðB5Þ

where T�N is the approximation given in Eqn (B3).
Thus we have a system of 2Nþ 4 nonlinear equations in

the same number of unknowns. One can write this system
abstractly as FðvÞ ¼ 0. These equations are solved by
Newton’s method (Kelley, 1987), as implemented in the
PETSc library (Balay and others, 2014). A residual evalu-
ation function computes F(v) given v. A finite-difference
Jacobian matrix, J ¼ F0, can then be computed by PETSc,
and this allows us to solve systems up to size N � 103. We
also implemented an exact Jacobian using by-hand differen-
tiation of the above formulas. For initial guesses sufficiently
near the exact solution, this exact Jacobian permits solutions
of the system for up to N ¼ 105. A full analysis of the
robustness and convergence rate of this Newton solver is
beyond the scope of the current paper.
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