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Multiple Solutions for a Class of Neumann
Elliptic Problems on Compact Riemannian
Manifolds with Boundary

Alexandru Kristély, Nikolaos S. Papageorgiou, and Csaba Varga

Abstract. 'We study a semilinear elliptic problem on a compact Riemannian manifold with boundary,
subject to an inhomogeneous Neumann boundary condition. Under various hypotheses on the non-
linear terms, depending on their behaviour in the origin and infinity, we prove multiplicity of solutions
by using variational arguments.

1 Introduction

Let (M, g) be a smooth, connected, compact Riemannian manifold of dimension
n > 3 with boundary OM. For A > 0 and p > 0, we consider the following inhomo-
geneous Neumann boundary value problem

—Au+ k(x)u = AK(x) f(u(x)) forx € M,
(Pry) % — uD()h(u(x)) for x € OM,
where k, K: M — R, D: M — R are positive continuous functions, A denotes the
Laplace-Beltrami operator in the metric g, 0% is the normal derivative with respect to
the outward normal n on OM in the metric g.

Problems like (Py ) arise in various contexts, motivated by certain physical phe-
nomena; see for example [1, 6] and references therein. On the other hand, when
f(s)=1s 775 and gls) =|s 75, the problem of the existence of a positive solution
for (P» ) is equivalent to the classical problem of finding a conformal metric g’ on
M with the prescribed scalar curvature K on M and the mean curvature D on 0M,
see [3-5]. For the quasilinear extension, we refer the reader to [2].

The purpose of this paper is to provide multiple solutions for problem (Py ,,) when
the nonlinearities f and h have various growth conditions. Note that if K(x)/k(x) =
Ao =constant on M and Fix(A\, f)Nh~1(0) # @, then (Py,p.) has at least one solution
for every 1 > 0, where Fix(A) f) is the fixed point set of the function s — Ao f(s).
Indeed, the constant function u(x) = ¢ €Fix(A\ f) N h~1(0) verifies both equations
in (P ). Clearly, we are interested not only in this particular case when K /k is con-
stant on M. Due to this fact, we assume that the continuous function f: R — R
verifies the following:
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(f) limeg £ = 05

(£) limyg i B2 = 05
(f3) there exists sy € R such that F(sy) > 0, where F(s) = [; f(t)dt.

Let h: R — R be a continuous function. For every g € [1
assumption

n

, 725 ), we introduce the

LIO]
(hq) supscp T < 00

Theorem 1.1 Let f: R — R be a continuous function that fulfills the assumptions
(fi)—(f3). Then, there exist a number o and a non-degenerate compact interval A C
[0, +00) such that for every X € A and every continuous function h: R — R fulfilling
(hy) for some q € [1, %), there exists dyj, > O with the property that for each ji €
(0,05 1), the problem (Py ) has at least three weak solutions which are in norm less
than o.

We return to the case where K/k is constant on M in order to state our second
result. For a fixed A > 0, we assume the following.

(fr) % = )¢ for every x € M, and the set of all global minima of t — Fy(t) :=

%tz — AN\F(t) has at least m > 2 connected components.
In particular, ( f)) implies that the function t ~— F,(¢) has at least m— 1 local maxima.
Thus, Card(Fix(AA f))> 2m — 1. Therefore, if an element from Fix(A\, f) belongs
to h~'(0), it may be considered as a constant solution for problem (P, ,) for every
u>0.

Theorem 1.2 Let f,h: R — R be two continuous functions that fulfill the assump-
tions (f2), (fy) for some A > 0 fixed, and (hy), respectively. Then there exists a number
dx > 0 such that for every u € (0, 6), problem (P ) has at least m + 1 distinct weak
solutions.

The proof of Theorems[[.Tland[T.2]are based on two recent results of Ricceri [7,8].
In the next section, we recall some notions and results that we will use in the sequel.
In Sections[Bland [ our main results are proved.

2 Preliminaries

We denote by 2* = 2n/(n — 2) and 2" = (@2n— 2)/(n — 2) the critical Sobolev ex-
ponents for the embedding W2(M) < L?" (M) and the trace-embedding W?(M) —
2 (OM), respectively. Here, and in the sequel, (M, g) is a compact Riemannian man-
ifold with boundary and W(M) is the standard Sobolev space equipped with the
norm

ul| = (/ |Vu|2dug+/ uzdug> .
M M

In the sequel we use the notations:

kn = mink, ky = maxk; Dgy = maxD, Ky = maxK.
M M oM M
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It is easy to see that the norm

e = [ 19+ | s )
M M

is equivalent to the norm || - || defined above, i.e., arlju|| < ||ullx < by|lu||, where
ar = min{1, vk, } and by = max{1, Vky}.

It is well known that the embedding W (M) < L"(M) is compact for r € [1,2*)
and the trace-embedding W#(M) < L (OM) for s € [1,7), respectively. We denote
by Cp,, the Sobolev embedding constant of W#(M) < L'(M) and by Cyu s the
embedding WZ(M) — L*(OM).

Let f,h: R — R be two continuous functions, and let

(2.1) F(s) = /S f(t)dt, H(s) = /S h(t)dt.
0 0

We introduce the energy functional £ ,: Wi (M) — R given by

Enpu(u) = A(u) = AF () + pH(u),

where
AGw) = Ylulf, T = / KGO F(u(x)) s,
M
and
(2.2) H(u) = —/ D(x)H (u(x))dv,.
oM

Under the hypotheses of our main theorems, a standard argument shows that the
functional €, ,: W#(M) — R is of class C' and that its critical points are exactly the
weak solutions of (P, ;). Therefore, it is enough to show the existence of multiple
critical points of €, , for the parameters A, ;1 specified in our results. Before con-
cluding this section, we recall two recent critical point results which are used in order
to prove Theorems[[.land [[.2] respectively.

Theorem 2.1 ([7, Theorem 1]) Let X be a reflexive real Banach space, I C R an
interval, and ®: X — R a sequentially weakly lower semicontinuous C' functional
whose derivative admits a continuous inverse on X*. Assume ® is bounded on each
bounded subset of X, and J: X — Ris a C! functional with compact derivative. Assume
that

lim (®(x)+ AJ(x)) = +o0

llx[| =00

for all X € | and that there exists p € R such that

(2.3) sup inf(®(x) + A(J(x) + p)) < inf sup(P(x) + A(J(x) + p)).
el xeX xeX el
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Then there exists a nonempty open set A C I and a real number o > 0 such that, for
each \ € A and every C! functional ¥: X — R with compact derivative, there exists
0 > 0 such that for each p € [0, 6], the equation

O (x)+ N (x) +p¥'(x) =0

has at least three solutions in X whose norms are less than o.

Theorem 2.2 ([8, Theorem 5]) Let X be a separable and reflexive real Banach space,
and let N, J: X — R be two sequentially weakly lower semicontinuous and continu-
ously Gateaux differentiable functionals, with N coercive. Assume that the functional
N + pJ{ satisfies the (PS)-condition for every pn > 0 small enough and that the set of
all global minima of N has at least m connected components in the weak topology, with
m > 2.

Then, there exists [t > 0 such that for every . € (0,11), the functional N + pJ{ has
at least m + 1 critical points.

3 Proof of Theorem [1.1]
Throughout this section we suppose that the hypotheses of Theorem[TT]are fulfilled.

Lemma 3.1 lim,_ o sup{F(u) : A(u) < t}/t = 0.

Proof Due to (f1), for an arbitrarily small € > 0, there exists § = d(g) > 0 such that
€
lf(s)] < E|5| forall |s| <.
Using the above inequality and ( f,), we obtain
(3.1) |F(s)| < es®* +K(0)|s|” forall s€R,

where r € (2,2%) is fixed and K(§) > 0 does not depend ons. Fort > 0and o = a;27
define the sets

St ={ueWiM): Au) <t}, S}={ucWiM):|ul*<2at}.

It is easy to see that S! C S?. Relation (B.) yields that

(3.2) F(u) < eKygl|ul* + K(O)KuCy Null” forall ue WEHM).

Using (B2)), we obtain

su  F(u su > F(u
0< puES, ( ) < puGSt ( )

< ; < 2aKye + (2a)2K(8)KyChy 2.

Since € > 0 is arbitrary and t — 0%, we get the desired limit. ]
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Let us define the function 8(t) = sup{F(u) : A(u) < t}. Fort > 0, we have that
B(t) > 0, and Lemma[Bdlyields

(3.3) lim @ =

t—0t f

0.

We consider the constant function ug(x) = sp for every x € M, sp being from ( f3).
Note that sy # 0 (since F(0) = 0). Moreover, F(uy) > 0 and A(uy) > 0. Therefore,
it is possible to choose a number 1 > 0 such that

0 <n < Flup)[Aup)] ™"
By (B.3) we get the existence of a number #, € (0, A(u)) such that 8(#) < nty. Thus
(3.4) Bto) < [Aluo)] ™ F(uo)to.

Due to the choice of #y and using (3.4)), we conclude that there exists py > 0 such that

(3.5) Blte) < po < F(ug)[A(uo)] ™ o < Fluo).

Now define the function G: WZ(M) x I — R by G(u, \) = A(u) — A\F(u) + Apo,
where I = [0, +00).

Lemma 3.2 sup,yinf,cy2p) (4, A) <inf ey supye G(u, A).

Proof The function

I3A— inf [A(u)+ A(py — F(u))]
u€EW?(M)

is obviously upper semicontinuous on IL. It follows from (3.5) that

lim  inf S(w,\) < lim [A(uo) + Ay — F(ug))] = —o0.
A—+00 uEWlZ(M) A—+00

Thus we find an element X € I such that

(3.6) sup inf G(u,A\) = inf [A(u) + Xpo — F(w))].
AEl HEWT (M) uEW?(M)

Since 3(ty) < po, it follows from the definition of 3 that for all u € W2(M) with
A(u) < ty, we have F(u) < po. Hence,

(3.7) to < inf{A(u) : F(u) > po}.

On the other hand,

inf supS(u,\) = inf [A(u) + sup(A(po — Sr(u)))}
ueW (M) el ueW(M) el

= inf {Au):TF(u) > po}.

ueWi(M)
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Thus, inequality (3.7)) is equivalent to

(3.8) to < inf  sup G(u, A).
uEWZ(M) A€l

We consider the following two cases:
D IHfo< A< ;—‘(’], then we have

inf  [A(u) + Mpo — F(u))] < G(0,1) = Apy < to.
uEW2(M)

Combining this inequality with and (3.8)) we obtain the desired inequality.
(I If % < ), then from (34) and (323)), it follows that

inf [Au) + Apo — F(w)] < A(uo) + Mpo — Fluo))

ueW(M)

< Aluo) + 2 (00 — Fuo)) < to.
Po

Now, we apply (B.8]) again. [ |

Proof of Theorem[I.1] Let us choose X = W{(M), I = [0,+c0), ® = A and
J = —% in Theorem 21l Since the embedding Wi (M) — L?(M) is compact, the
compactness of J' = —3F trivially holds. Because of Lemma[3.2] the minimax in-
equality (23) holds too, by choosing p = py.

It remains to prove the coercivity of ® + A\J = A — AF forevery A € . Fix A € |
arbitrarily. By (f2), there exists § = §(\) > 0 such that

(3.9) If(s)] < aKy'(1+N)7Ys| forall |s| > 6,

where ¢, = aj = min{1, k,, }. Integrating the above inequality we get that
|F(s)] < %ckKA;l(l +A) 7+ ﬁlg}g |f(2)||s] forall seR.

Thus, for every u € Wf(M ), we have

(310)  [FG] < Ja(+ )l + Ky foly M) max /(1)

where vol,(M) denotes the Riemann-Lebesgue volume of M in the metric g. Using

(B.10)), we obtain

A(u) — AF(u) > Au) — N[ F(u)]

Ck

>
— 214+ A

2_
[ = XKury vl (1) ] max £ ).

| =
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Therefore, when ||u|| — oo, then A(u) — AF(u) — +oo aswell, ie, P+A] = A—\F
is coercive.

Now, fix a continuous function h: R — R fulfilling (h,) for some q € [1, ;%5),
and use the notations from (Z.I) and (Z.2)). We clearly have that ¥ = X has a com-
pact derivative, due to the compact embedding W#(M) < L1 (OM).

Consequently, Theorem [2.T] assures the existence of a nonempty open set A C
[0, 4+00) and a number o > 0 such that for every A € A, there exists J, ;, > 0 with the
property that for each 1 € (0,0, ), the equation A’ (1) — AF' (1) + pH'(u) = 0 has
at least three solutions which are in norm less than . This completes the proof. W

4 Proof of Theorem

We assume the hypotheses of Theorem[T.2]are fulfilled. Using the notation from the
previous sections, we define the functional N)y: WZ(M) — R by

Na(u) = Au) — AF(u) = A1) — Mo / K)F(u(x)dpg,  u € WEHM),
M

where ) and ) are from hypothesis ( fy).

Lemma 4.1 The set of all global minima of the functional N has at least m connected
components in the weak topology on W#(M).

Proof First, for every u € W#(M) we have
1
Ny = 2l — Mg / Ko ()
M

_ ! / VulPdpg + / k() P (1u(x) )
2 M M

[1&[|2 Inf F\(1).

Y

Moreover, if we consider u(x) = u;(x) = 7 for almost every x € M, where 7 € R is
a minimum point of the function ¢ +— F,(t), then we have equality in the previous
estimation. Thus,
inf  Ny(u) = ||k||; inf F)(¢).
EWZ(M) teR

Moreover, if u € W} (M) is not a constant function, then |Vu|* = g"/d;ud;u > 0 on
a set of positive measure of the manifold M. In this case, we have

1 - s
Ny(u) = 5/ \Vul*dpg +/ k(x)Fx(u(x))dpg > [[k[|1 inf Fx(t).
M v tER

Thus, there is a one-to-one correspondence between the sets

Min(Ny) = {u € Wi(M): N\(u) = inf Ny(u)}
uEWX(M)
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and
Min(Fy) = {t € R: F\(t) = ing{FA(t)}
t

Indeed, let 6 be the function that associates with every number t € R the equivalence
class of those functions that are almost everywhere equal to ¢ in the whole manifold
M. Then #: Min(F,) — Min(N,) is actually a homeomorphism between Min(F))
and Min(N ), where the set Min(Ny ) is considered with the relativization of the weak
topology on WZ(M). Because of the hypothesis ( f)), the set Min(F)) contains at least
m > 2 connected components. Therefore, the same is true for the set Min(N)),
which completes the proof. ]

Lemma 4.2 For arbitrarily A > 0 and p > 0 small enough, the functional £, ,, =
Ny + pI satisfies the (PS)-condition.

Proof Hypothesis (h;) implies that

(4.1) |H(s)| < Cz—hs2 +cpls| forall seR.
Inequality (&1 yields

¢
(4.2) 9G] < 5 DonChus |l + erDoriConr.y /areag(OM)

where area,(OM) denotes the area of OM in the metric g.
2
Fix A > 0 and define 67 = ﬁ(ChDOM)_lcgz\i,z- Fix also 1 € (0,67%). Using
(3.10D), (£.2), we get that

2

1 a
> 2 ko 2 2
Exn(w) > 3| sy — HerDowCha ] 1l

— MK/ voly (M) mgﬁ(t)\“u” — perDapCom 24/ areag(OM)||ul|,

where 6 > 0 appears at (3.9). Consequently, the functional £, , is coercive.

We prove now that €, , satisfies the (PS)-condition for A, p specified before. For
this, let {u,} C WE(M) be a (PS)-sequence for the function &, ,,, i.e, {€),(u,)} is
bounded, and ELL(un) — 0asn — oo. Since &) , is coercive, the sequence {u,} is
bounded. By passing, if necessary, to a subsequence, we may suppose that u, — u
weakly in WZ(M), u, — u strongly in L*(M),and u, — u strongly in L>(OM). We
have that

(83#(14,1), Uy — u) + <8gﬂu(u), U—u,) = / |Vu, — Vu|2d,ug
M
+/ k(x)(u, — u)zdug
M
i\ / KGOLUf (i) — £ (aty — )l
M

- u/ D(x)[h(un) — h(u) ) (1 — u)dvyg.
oM
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Consequently,

(€8, (), g — u) + (€} (), 1 — 1) + )\KM/ |f(un) — f()] |y — u|dpg
M
+ MDaM/ |h(uy) — h(u)||uy — uldv, > |lu, — ullz.
OM

Because {u,} is a (PS)-sequence and u, — u weakly in W2(M), it follows that
(€1, (), ty — u) — 0and (€] (1), u — u,) — 0, respectively.
On the other hand, we have that

/M |f(un) = fQ)l[un — uldpg < cp[24/volg(M) + [[un[l2 + [full2][[etn — ull2.

Since u,, — u strongly in L?(M), it follows that
lim / | f(un) — f()|uy — u|dpg = 0.
n—o0 M

In the same way, since u,, — u strongly in L>(OM), we may prove that

lim |h(u,) — h(u)||u, — uldv, = 0.
n—oo (9M

Hence, u, — u strongly in W{(M), i.e., the functional &, , satisfies the (PS)-condi-
tion. [ ]

Proof of Theorem[[.Z] Taking into account that the embedding WZ(M) — L*(M)
and the trace-embedding W} (M) < L1*'(OM) are compact, standard arguments
show the sequentially weakly lower semicontinuouity of Ny and J. The coercivity of
N holds also true. Thus, because of Lemmas[.Iland[4.2] we may apply Theorem[2.2]
concluding the proof of Theorem ]

References

[1]  H.S. Carslaw and J. C. Jaeger, Conduction of heat in solids. 2nd edition, Oxford Press, 1959,
pp. 17-23.

[2] ). L Diaz, Nonlinear partial differential equation and free boundaries. I. Elliptic equations. Research
Notes in Mathematics, 106, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[3] . E Escobar, The Yamabe problem on manifolds with boundary. J. Differential Geom. 35(1992),
no. 1, 21-84.

[4] , Conformal deformation of Riemannian metric to a scalar flat metric with constant mean
curvature on the boundary. Ann. of Math. 136(1992), no. 1, 1-50. doi:10.2307/2946545
[5] , Conformal metrics with prescribed mean curvature on the boundary. Calc. Var. Partial

Differential Equations 4(1996), no. 6, 559-592. doi:10.1007/BF01261763

[6]  R.Michalek, Existence of positive solution of a general quasilinear elliptic equation with a nonlinear
boundary condition of mixed type. Nonlinear Anal. 15(1990), no. 9, 871-882.
doi:10.1016/0362-546X(90)90098-2

https://doi.org/10.4153/CMB-2010-073-x Published online by Cambridge University Press


http://dx.doi.org/10.2307/2946545
http://dx.doi.org/10.1007/BF01261763
http://dx.doi.org/10.1016/0362-546X(90)90098-2
https://doi.org/10.4153/CMB-2010-073-x

Multiple Solutions for a Class of Neumann Elliptic Problems 683

[7]  B. Ricceri, A three critical points theorem revisited. Nonlinear Anal. 70(2009), no. 9, 3084-3089.
doi:10.1016/j.na.2008.04.010

, Sublevel sets and global minima of coercive functionals and local minima of their

perturbations. J. Nonlinear Convex Anal. 5(2004), no. 2, 157-168.

(8]

Babes-Bolyai University, Department of Economics, 400591 Cluj-Napoca, Romania
e-mail: alexandrukristaly@yahoo.com

National Technical University, Department of Mathematics, Zografou Campus, Athens, 15780, Greece
e-mail: npapg@math.ntua.gr

Babes-Bolyai University, Faculty of Mathematics and Computer Science, 400084 Cluj-Napoca, Romania
e-mail: csvarga@cs.ubbcluj.ro

https://doi.org/10.4153/CMB-2010-073-x Published online by Cambridge University Press


http://dx.doi.org/10.1016/j.na.2008.04.010
https://doi.org/10.4153/CMB-2010-073-x

