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On the Square of the First Zero of the Bessel
Function Jν(z)

Árpád Elbert and Panayiotis D. Siafarikas

Abstract. Let jν,1 be the smallest (first) positive zero of the Bessel function Jν(z), ν > −1, which becomes
zero when ν approaches −1. Then j2

ν,1 can be continued analytically to −2 < ν < −1, where it takes on

negative values. We show that j2
ν,1 is a convex function of ν in the interval −2 < ν ≤ 0, as an addition to

an old result [Á. Elbert and A. Laforgia, SIAM J. Math. Anal. 15(1984), 206–212], stating this convexity for

ν > 0. Also the monotonicity properties of the functions
j2
ν,1

4(ν+1) ,
j2
ν,1

4(ν+1)
√
ν+2

are determined. Our approach

is based on the series expansion of Bessel function Jν (z) and it turned out to be effective, especially when
−2 < ν < −1.

1 Introduction and Results

The Bessel function Jν(z) of first kind has the representation

Jν(z) =
∞∑

n=0

(−1)n

n!

( z
2 )2n+ν

Γ(n + ν + 1)
, z > 0

and has infinitely many positive zeros jν,k, k = 1, 2, . . . , 0 < jν,1 < jν,2 < · · · , tend-
ing to infinity as ν → ∞ [10, p. 478]. For ν > −1 all zeros of Jν(z) are positive. The
first zero jν,1 can be continued analytically to ν = −1 where it vanishes. Continuing jν,1
analytically to the interval (−2,−1) we find, according to a theorem of Hurwitz [3], [10,
p. 483] that jν,1 becomes purely imaginary. At the point ν = −2 the function jν,1 is van-
ishing again. Concerning the local behavior of jν,1, R. Piessens [9] has found the following
representation

jν,1 = 2(ν + 1)1/2

[
1 +
ν + 1

4
−

7

96
(ν + 1)2 + · · ·

]

in the neighborhood of ν = −1. We shall investigate the function j2
ν,1 for ν > −2 where it

is real. Clearly the function

`(ν) =
j2
ν,1

4(ν + 1)
(1.1)

has the local representation

`(ν) = 1 +
ν + 1

2
−

1

12
(ν + 1)2 + · · ·(1.2)
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On the Square of the First Zero of the Bessel Function Jν(z) 57

which implies

lim
ν→−1

`(ν) = 1, lim
ν→−2

`(ν) = 0, and `(1) =
j2
1,1

8
= 1.83525 · · · .(1.3)

Recalling the inequalities [6,(5.11)], [6,(5.12)]

j2
ν,1 < 2(ν + 1)(ν + 3), ν > −1

j2
ν,1 > 2(ν + 1)(ν + 3), −2 < ν < −1,

we have

`(ν) < 1 +
1

2
(ν + 1) =

ν + 3

2
for ν > −2, ν 6= −1.(1.4)

In [6], [7] one can find the graph of the function j2
ν,1 in the interval (−2, 0), indicat-

ing the property that j2
ν,1 is a convex function of ν in that interval. This property was

proved for 3 ≤ ν < +∞ by J. T. Lewis and M. E. Muldoon [8]. Á. Elbert and A. Lafor-
gia [2] proved this property for j2

ν,k, k = 1, 2, . . . , ν ≥ 0. Also, they indicated that the

function j2
ν,k can not be convex on the whole interval (−k,∞) for k = 2, 3, . . . , and con-

jectured that the function j2
ν,1 is convex for −1 < ν < 0. In [7] it was proved that j2

ν,1

decreases to a minimum and then increases again to 0 as ν increases from −2 to −1. In
this paper we shall prove the convexity of j2

ν,1 in (−2, 0]. Consequently, by [2] the function
j2
ν,1 is convex on (−2,∞), too, because d jν,1/dν is continuous function of the variable ν

(see [10, Ch. 15.6]). Concerning the function `(ν), two observations were formulated in
[6, p. 9]:

(i) the function `(ν) is increasing for ν > −2 (for ν > −1 this fact is already known, see
[5, Thm. 2]),

(ii) the function `(ν)√
ν+2

decreases in the interval (−2,−1) and increases for ν > −1.

All these observations turned out to be correct and we are going to prove them.
The main tool is the implicit relation between ` = `(ν) and ν

H(`, ν) = 1−
`

1!
+
`2

2!

ν + 1

ν + 2
−
`3

3!

(ν + 1)2

(ν + 2)(ν + 3)
+ · · ·

+
(−1)k`k

k!

(ν + 1)k−1

(ν + 2) · · · (ν + k + 1)
+ · · · = 0

(1.5)

which comes from the series expansion of Bessel function Jν(z). Introducing the notations

e0(ν) = 1, ek(ν) =
(ν + 1)k

(ν + 2) · · · (ν + k + 1)
, k = 1, 2, . . . ,(1.6)

the relation (1.5) is written as follows

H(`, ν) = 1−
`

1!
+
`2

2!
e1(ν)−

`3

3!
e2(ν) + · · · +

(−1)k`k

k!
ek−1(ν) + · · · = 0.(1.7)

Our statements on the function H(`, ν) are formulated in two lemmas:

Lemma 1 The partial derivative ∂H(`,ν)
∂`
≡ H` is negative for−2 < ν ≤ 1 and 0 < ` < 2.
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58 Árpád Elbert and Panayiotis D. Siafarikas

Lemma 2 The partial derivative ∂H(`,ν)
∂ν
≡ Hν is positive for−2 < ν ≤ 1 and 0 < ` < 2.

These two lemmas yield the following

Theorem 1 The function `(ν) in (1.1) increases for −2 < ν ≤ 1.

Concerning the derivative ` ′(ν) of the function `(ν) with respect to ν the next lemma
holds.

Lemma 3 The function ` ′(ν) satisfies the inequalities

(i) ` ′(ν) < `(ν)
2(ν+2) for−2 < ν < −1;

(ii) ` ′(ν) > `(ν)
2(ν+2) for−1 < ν ≤ 1.

Using this lemma and also the inequalities from [4]

1

jν,1

d jν,1
dν
>

1

j2
ν,1

[
1 + (1 + j2

ν,1)1/2
]

for ν > −1(1.8)

and from [5, (6.10)]

j2
ν,1 <

2(ν + 1)(ν + 5)(5ν + 11)

7ν + 19
, ν > −1,(1.9)

we are going to prove

Theorem 2 The function
j2
ν,1

4(ν+1)
√
ν+2

decreases from
√

2 to 1 for −2 < ν < −1 and increases

for ν > −1.

From Theorem 2 we obtain the inequalities

4
√

2(ν + 1)
√
ν + 2 < j2

ν,1 < 4(ν + 1)
√
ν + 2, −2 < ν < −1.

The right hand side is already known [6, (5.8)]. The lower bound is new and it is sharp
when ν approaches−2.

Finally, we formulate our main result.

Theorem 3 The function j2
ν,1 is convex for −2 < ν ≤ 0.

Using the convexity of j2
ν,1, we can obtain new inequalities in the interval (−2, 0). For

example, jν,1 < j0,1

√
ν + 1 provided−1 < ν < 0.

We conjecture that `(ν) =
j2
ν,1

4(ν+1) is a concave function for ν > −2.

The question of convexity of j2
ν,1 is connected with the Putterman-Kac-Uhlenbeck con-

jecture [1] about a quantum mechanics problem which states that the sequence of the dif-
ferences j2

n,1− j2
n−1,1 is increasing as n increases where jn,1 denotes the first positive zero of

Bessel function Jn(x), n = 1, 2, . . . .
In the next section we give the proofs of the above results. Also the inequality (1.4) could

be proved by our approach at least for −2 < ν ≤ 1, but we shall not address ourselves to
this problem here.
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2 Proofs

During the proofs of the above statements we shall use the following relations. By (1.6) we
obtain

e ′k(ν) =
ek(ν)

ν + 1
αk(ν), k = 1, 2, . . .(2.1)

where

αk(ν) =
1

ν + 2
+

2

ν + 3
+ · · · +

k

ν + k + 1
= k− (ν + 1)ck(ν),

ck(ν) =
1

ν + 2
+

1

ν + 3
+ · · · +

1

ν + k + 1
,

(2.2)

moreover

c̄k(ν) =
1

(ν + 2)2
+

1

(ν + 3)2
+ · · · +

1

(ν + k + 1)2
,

e ′ ′k (ν) =
ek(ν)

ν + 1

[
α2

k(ν)− αk(ν)

ν + 1
+ α ′k(ν)

]
,

α ′k(ν) = −ck(ν)− (ν + 1)c ′k(ν) = −ck(ν) + (ν + 1)c̄k(ν).

(2.3)

For αk(ν) and c̄k(ν) we have the inequalities

1

2
k < αk(ν) < k for − 1 < ν ≤ 0

c̄k(ν) <
1

12
+

1

22
+ · · · +

1

k2
<

∞∑
j=1

1

j2
=
π2

6
for ν > −1.

(2.4)

Proof of Lemma 1 Partial differentiation of H(`, ν) in (1.5) with respect to the variable `
gives

∂H(`, ν)

∂`
≡ H` = −1 +

1

1!
e1(ν)`−

1

2!
e2(ν)`2 + · · · +

(−1)k

(k− 1)!
ek−1(ν)`k−1 + · · · .(2.5)

Hence by (1.5)
∂H(`, ν)

∂`
=
∂H(`, ν)

∂`
+ H(`, ν) = −`G(`, ν)

where

G(`, ν) =
1

ν + 2
−
`

1!

1

ν + 3
e1(ν) + · · · +

(−1)k`k

k!

1

ν + k + 2
ek(ν) + · · · .(2.6)

We observe first that for −2 < ν < −1 the function G(`, ν) is a sum of positive terms
hence G(`, ν) > 0 and H` < 0.

For ν = −1 we have `(−1) = 1 and G(`,−1) = 1 > 0.
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For−1 < ν ≤ 1 we observe that G(`, ν) is a sum of terms with alternating sign and the
first term is positive. We are going to show that the terms of G(`, ν) form a Leibniz type
series (i.e., it is a series of the type

∑∞
n=1(−1)n−1an where an ≥ 0 such that (i) a1 ≥ a2 ≥

· · · ≥ an ≥ · · · and (ii) lim
n→∞

an = 0. Then this sum is convergent: s =
∑

(−1)n−1an, and

sa1 ≥ 0. Since

`k

k!

ek(ν)

ν + k + 2
−
`k+1

(k + 1)!

ek+1(ν)

ν + k + 3
=
`k

k!

ek(ν)

ν + k + 2

[
1−

`

k + 1

ν + 1

ν + k + 3

]

and
ν + 1

ν + k + 3
≤

2

k + 4
for − 1 < ν ≤ 1

we have (k + 1)(k + 4) ≥ 4 ≥ 2`. Consequently, we have a Leibniz type series in G(`, ν)
which was to be proved.

Proof of Lemma 2 Partial differentiation of H(`, ν) in (1.5) with respect to the variable ν
gives

∂H(`, ν)

∂ν
≡ Hν =

1

2!
e ′1(ν)`2 −

1

3!
e ′2(ν)`3 + · · · +

(−1)k

k!
e ′k−1(ν)`k + · · · .(2.7)

By (2.1)

sign e ′k(ν) =

{
1 ν > −1

(−1)k−1 −2 < ν < −1,

hence it follows from (2.7) that Hν > 0 for−2 < ν < −1.
Now we prove that Hν > 0 also for−1 < ν < 1. In this case we observe that `

2

2! e ′1(ν) > 0
and that the signs of the consecutive terms of series (2.7) are alternating. So, we are going
to show that the series (2.7) is of Leibniz type:

`k

k!
e ′k−1(ν) >

`k+1

(k + 1)!
e ′k(ν), k = 2, 3, . . .

or by (2.2)
ek−1(ν)

ν + 1
αk−1 >

`

k + 1

ek(ν)

ν + 1
αk,

hence by ek(ν) = ek−1(ν) ν+1
ν+k+1[

1

ν + 2
+

2

ν + 3
+ · · · +

k− 1

ν + k

] [
1−

`

k + 1

ν + 1

ν + k + 1

]
>

k

(ν + k + 1)2

`(ν + 1)

k + 1
.(2.8)

First we examine the case k = 2. We have from (2.8)

1

ν + 2

[
1−
`

3

ν + 1

ν + 3

]
>

2

(ν + 3)2

`(ν + 1)

4
,
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or after some simplifications

1 >
`(ν + 1)(3ν + 7)

3(ν + 3)2
.

Since (ν+1)(3ν+7)
(ν+3)2 < 5

4 for −1 < ν < 1, we have from the above inequality that 1 > `
3

5
4 or

` < 12
5 which is true.

Next we examine the case k ≥ 3. We observe that the left hand side of (2.8) is a decreas-
ing function of ν and for the right hand side we have

(ν + 1)

(ν + k + 1)2
<

2

(k + 2)2
in − 1 < ν < 1.

So it is sufficient to show that[
1

3
+ · · · +

k− 1

k + 1

] [
1−

2`

(k + 1)(k + 2)

]
>

2`k

(k + 1)(k + 2)2
.(2.9)

For k ≥ 3 the left hand side of (2.9) is an increasing function of k and the right hand side is
a decreasing one. In particular, for k = 3 the inequality in (2.9) is reduced to

[
1

3
+

2

4

] [
1−

2`

4 · 5

]
>

2 · 3`

4 · 52

or to ` < 250
43 which is true and the proof of Lemma 2 is complete.

Proof of Theorem 1 Differentiation of H
(
`(ν), ν

)
= 0 with respect to ν gives

H`
d`(ν)

dν
+ Hν = 0

hence

d`(ν)

dν
=

Hν
−H`
.(2.10)

According to Lemma 1 and Lemma 2, the relations Hν > 0, H` < 0 hold provided −2 <

ν ≤ 1, 0 < ` < 2, we find d`(ν)
dν > 0. Since `(1) =

j2
1,1

8 = 1.83525 · · · < 2 therefore
d`(ν)

dν > 0 for−2 < ν ≤ 1.

Proof of Lemma 3 Since ` ′(ν) = Hν
−H`

, by Lemma 1 it is sufficient to prove that

2(ν + 2)Hν + `H` < 0 for − 2 < ν < −1(2.11)

and

2(ν + 2)Hν + `H` > 0 for − 1 < ν < 1.(2.12)
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By (2.5), (2.7) we have

2(ν + 2)

`
Hν + H` = −1 + `

[
(ν + 2)e ′1(ν) + e1(ν)

]
+ · · ·

+
(−1)k+1

(k + 1)!
`k
[
2(ν + 2)e ′k(ν) + ek(ν)

]
+ · · · .

(2.13)

Since (ν+2)e ′1(ν)+e1(ν) = 1 and H
(
`(ν), ν

)
= 1− `1! + `

2

2! e1(ν)+· · · = 0, the relation (2.13)
is rewritten as

2(ν + 2)

`
Hν + H` + H =

∞∑
k=2

(−1)k

(k + 1)!
`k

ek−1(ν)

ν + k + 1
Ak(ν)(2.14)

where

Ak(ν) = −2(ν + 2)

[
1

ν + 2
+

2

ν + 3
+ · · · +

k

ν + k + 1

]
+ k2 + k.(2.15)

Now we are going to prove the relations

0 < A2(ν) < A3(ν) < · · · < Ak−1(ν) < Ak(ν) < · · · , k = 2, 3, . . . .(2.16)

The first elements of the sequence {Ak(ν)}∞k=2 are

A2(ν) =
4

ν + 3

A3(ν) =
4(4ν + 13)

(ν + 3)(ν + 4)

A4(ν) =
4(10ν2 + 75ν + 137)

(ν + 3)(ν + 4)(ν + 5)
.

(2.17)

By (2.15) we find

Ak(ν)− Ak−1(ν) =
2k(k− 1)

ν + k + 1
(2.18)

which is positive. Thus the relation (2.16) is true. Since sign(−1)kek−1(ν) < 0 for −2 <
ν < −1 and Ak(ν) > 0, k = 2, 3, . . . , it follows from (2.14) that inequality (2.11) holds.

Now let −1 < ν < 1. Then the terms have alternating signs in (2.14). For k = 2 the
first term of the infinite sum is positive. We are going to show that

1

(k + 1)!
`k

ek−1(ν)

ν + k + 1
Ak(ν) >

1

(k + 2)!
`k+1 ek(ν)

ν + k + 2
Ak+1(ν)

or equivalently by (1.6)

Ak(ν) >
1

k + 2
`
ν + 1

ν + k + 2
Ak+1(ν), k = 2, 3, . . . , −1 < ν ≤ 1.(2.19)
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Let k = 2. Then by (2.17) we have the restriction on `

4(ν + 4)2

(ν + 1)(4ν + 13)
> ` for − 1 < ν ≤ 1.

The function on the left hand side is decreasing on (−1, 1], its minimum on (−1, 1] is 50
17 ,

which is clearly greater than ` = `(ν), since `(ν) < 2.
Similarly we get for k = 3 the upper bound

5(ν + 5)2(4ν + 13)

(ν + 1)(10ν2 + 75ν + 137)
> ` for − 1 < ν ≤ 1.(2.20)

The left hand side of (2.20) is again a decreasing function of ν, with the minimum 5·62·17
2·222 =

765
111 > 2 > `.

When k > 3, we rewrite the inequality (2.19) by using (2.18) in the following form

Ak(ν)

[
1−

`(ν + 1)

(k + 2)(ν + k + 2)

]
>

2`(ν + 1)k(k + 1)

(k + 2)(ν + k + 2)2
.(2.21)

By (2.16) the left hand side decreases if we replace k by 3, while the right hand side increases.
However, for k = 3 inequality (2.21) reduces to the case k = 3 in (2.19) which was treated
before. Hence the inequality (2.12) is proved completing the proof of Lemma 3.

Proof of Theorem 2 Since

d

dν

[
`2(ν)

ν + 2

]
=
`(ν)

(ν + 2)2

[
2` ′(ν)(ν + 2)− `(ν)

]
(2.22)

and `(ν) > 0, Lemma 3 yields

d

dν

[
`2(ν)

ν + 2

]
< 0 for − 2 < ν < −1,

which proves that the function `(ν)√
ν+2
=

j2
ν,1

4(ν+1)
√
ν+2

decreases as ν increases in the interval

(−2,−1).
On the other hand, we have by (1.5)

1− `(ν) +
`2(ν)

2(ν + 2)

[
ν + 1−

`(ν)

3

ν + 1

ν + 3
+
`2(ν)

3 · 4

(ν + 1)2

(ν + 3)(ν + 4)
+ · · ·

]
= 0

and since lim
ν→−2

`(ν) = 0, we obtain

lim
ν→−2

`2(ν)

2(ν + 2)
= 1

or

lim
ν→−2

`(ν)
√
ν + 2

=
√

2,
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which completes the proof of the first part of Theorem 2.
Also, from (2.22) and Lemma 2, we obtain

d

dν

[
`2(ν)

ν + 2

]
> 0 for − 1 < ν ≤ 1,

which implies that the function `(ν)√
ν+2
=

j2
ν,1

4(ν+1)
√
ν+2

increases as ν increases in the interval

(−1, 1].
Next we are going to prove that

d

dν

[
j2
ν,1

4(ν + 1)
√
ν + 2

]
> 0 for ν > 1

or equivalently

1

jν,1

jν,1
dν
>

3ν + 5

4(ν + 1)(ν + 2)
=

1

P(ν)
for ν > 1.(2.23)

In (1.8) we have a lower bound for the devivative of jν,1 in terms of jν,1. The right hand
side of (1.8) will be greater than 1

P(ν) of (2.23) if

j2
ν,1 < P2(ν) + 2P(ν).

To check the validity of this inequality we make use of the upper bound for j2
ν,1 in (1.9):

P2(ν) + 2P(ν)− j2
ν,1 > P2(ν) + 2P(ν)−

2(ν + 1)(ν + 5)(5ν + 11)

7ν + 19

=
2(ν + 1)3(11ν2 + 20ν − 7)

(5 + 3ν)2(7ν + 19)

which is clearly positive for ν > 1. This proves the inequality (2.23). So the function
j2
ν,1

4(ν+1)
√
ν+2

increases as ν increases for ν > 1 which completes the proof of Theorem 2.

Proof of Theorem 3 Since 1
4 j2
ν,1 = `(ν)(ν + 1), we have to prove that

d2

dν2

[
`(ν)(ν + 1)

]
=

d2`(ν)

dν2
(ν + 1) + 2

d`(ν)

dν
= ` ′′(ν)(ν + 1) + 2` ′(ν) > 0.

From (2.3) and Lemma 1, we can rewrite this inequality into the following

−H`
[
` ′ ′(ν)(ν + 1) + 2` ′(ν)

]
=

∞∑
k=0

(−1)k

(k + 2)!
`k

ek(ν)

ν + k + 2
Bk(ν) > 0(2.24)
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where

B0(ν) =
2

(ν + 2)2

[
(ν + 1)(ν + 2)` ′ + `

]2

Bk(ν) = (k + 1)(k + 2)

[
(ν + 1)` ′ +

αk+1(ν)

k + 1
`

]2

+ (ν + 1)2`2
[

c̄k+1 −
1

k + 1
c2

k+1(ν)

]
for k = 1, 2, . . .

(2.25)

and αk(ν), ck(ν), c̄k(ν) are defined in (2.3).
By the well-known inequality between the quadratic and arithmetic means we have for

k = 2, 3, . . .

1

k
c̄k =

1
(ν+2)2 + · · · + 1

(ν+k+1)2

k
>

(
1
ν+2 + · · · + 1

ν+k+1

k

)2

=

(
ck(ν)

k

)2

.

Using this inequality, we conclude from (2.25) that Bk(ν) > 0 for k = 1, 2, . . . . Concern-
ing the relation B0(ν) > 0 it is clear that it holds for ν ≥ −1 and also for −2 < ν < −1
using inequality (1.8) of Lemma 3. Consequently, we have

Bk(ν) > 0 for k = 0, 1, 2, . . . .(2.26)

Consider the interval (−2,−1] in (2.24). Since sign
(

(−1)kek(ν)
)
> 0, every term of the

infinite sum is positive which implies that j2
ν,1 is convex on (−2,−1].

In the case−1 < ν ≤ 0 the signs of the terms of the infinite series in (2.24) are alternat-
ing. Therefore we are going to show that the series is of Leibniz type, i.e., the inequality

1

(k + 2)!
`k

ek(ν)

ν + k + 2
Bk >

1

(k + 3)!
`k

ek+1(ν)

ν + k + 3
Bk+1, k = 0, 1, 2, . . .

or

(k + 3)(ν + k + 3)Bk > `(ν + 1)Bk+1, k = 0, 1, 2, . . .(2.27)

holds.
Let k = 0. Then

3(ν + 3)B0 − `(ν + 1)B1 = U0(` ′)2 + 2V0``
′ + W0`

2(2.28)

where

U0 = 6(ν + 1)2
[
(ν + 3)− (ν + 1)`

]
V0 = 3

ν + 1

ν + 2

[
2(ν + 3)− `

(ν + 1)(3ν + 7)

ν + 3

]

W0 = 6
ν + 1

(ν + 2)2
−

3

2
`

(ν + 1)(3ν + 7)2

(ν + 3)2(ν + 2)2
+ `

(ν + 1)3

2(ν + 2)2(ν + 3)2
.
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Recalling the inequality (1.4), we get U0 > 0, V0 > 0 for ν ≥ −1, and also

W0 =
1

(ν + 2)2

{
6(ν + 3)− `

(ν + 1)

(ν + 3)2
(13ν2 + 62ν + 73)

}

>
1

(ν + 2)2

{
6(ν + 3)−

(ν + 1)

2(ν + 3)
(13ν2 + 62ν + 73)

}

=
−13ν3 − 63ν2 − 63ν + 35

(ν + 2)2(ν + 3)
> 0,

for−1 < ν ≤ 0. Hence by (2.28) the inequality (2.27) is justified for k = 0.

Let k ≥ 1. Using relation (2.25) in (2.27) we obtain

(k + 3)(ν + k + 3)Bk − `(ν + 1)Bk+1 = Uk(` ′)2 + 2Vk``
′ + Wk`

2(2.29)

where

Uk = (k + 2)(k + 3)(ν + 1)2
[
(k + 1)(ν + k + 3)− (ν + 1)`

]
Vk = (k + 3)(ν + 1)Zk+1

and

Zk = (k + 1)(ν + k + 2)αk − `(ν + 1)αk+1

Wk = (k + 3)(ν + k + 3)

[
(k + 2)

α2
k+1

k + 1
+ (ν + 1)2

(
c̄k+1 −

1

k + 1
c2

k+1

)]

− `(ν + 1)

[
(k + 3)

α2
k+2

k + 2
+ (ν + 1)2

(
c̄k+2 −

1

k + 2
c2

k+2

)]
.

It is clear that Uk > U0 > 0 for −1 < ν ≤ 0, k = 1, 2, . . . . Using the relation
αk+1 = αk + k+1

ν+k+2 , we have

Zk =
[
(k + 1)(ν + k + 2)− `(ν + 1)

]
αk −

`(ν + 1)(k + 1)

ν + k + 2

>

[
(k + 1)(ν + k + 2)−

(ν + 1)(ν + 3)

2

]
1

ν + 2
−

(ν + 1)(ν + 3)

2

=
2(k− 1)2 + (k− 1)(10 + 2ν) + (3 + ν)(1− 4ν − ν2)

2(ν + 2)
> 0

hence Vk > 0 for−1 < ν ≤ 0, k = 1, 2, . . . .
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Finally, using the inequalities (2.4), we get

Wk > (k + 3)(ν + k + 3)

[
(k + 2)

α2
k+1

k + 1

]
− `(ν + 1)

[
(k + 3)

α2
k+2

k + 2
+ (ν + 1)2c̄k+2

]

> (k + 3)(ν + k + 3)(k + 2)
k + 1

4
− `(ν + 1)

[
(k + 3)(k + 2)2 + (ν + 1)2 π

2

6

]

> (k + 3)(k + 2)

[
(k + 1)(ν + k + 3)

4
−

(ν + 1)(ν + 3)

2

]
−

(ν + 3)(ν + 1)3

2

π2

6
]

≥ 6
[
ν + 4− (ν + 1)(ν + 3)

]
−
π2

4
(ν + 1)3 = 6[−ν2 − 3ν + 1]−

π2

4
(ν + 1)3

> 6−
π2

4
> 0

for−1 < ν ≤ 0.
On the right hand side in (2.29) every term is positive hence by (2.27) the terms in the

infinite series (2.24) are of Leibniz type and consequently, the j2
ν,1 is convex on (−1, 0].
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