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Abstract. Let Rk�n� denote the number of representations of a natural number n as the sum of
three cubes and a kth power. In this paper, we show that R3�n� � n5=9�e, and that
R4�n� � n47=90�e, where e > 0 is arbitrary.This extends work of Hooley concerning sums of four
cubes, to the case of sums of mixed powers. To achieve these bounds, we use a variant of the
Selberg sieve method introduced by Hooley to study sums of two kth powers, and we also
use various exponential sum estimates.
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1. Introduction

In [5], Hooley showed that the number of representations of a natural number n as
the sum of four cubes is O�n�11=18��e�, where e > 0 is arbitrary. In forthcoming papers
[12, 13], the author extends this to show that if kX 3 is an odd integer, then the
number of representations of n as the sum of four kth powers is O�n11=�6k��e�. In
this paper, we show that similar results can be obtained for sums of mixed powers,
as stated in the following theorem.

THEOREM 1.1. Let Rk�n� denote the number of solutions to

X3 � Y 3 � Z3 �Wk � n; �1:1�
where X, Y, Z, W are nonnegative integers. Then R4�n� � n�5=9��e, and R5�n� �
n�47=90��e.

By a counting argument, we note that the expected order of magnitude of Rk�n� is
n1=k, and that up to a constant, Rk�n� achieves this size in¢nitely often. To consider
the strength of Theorem 1.1, one can obtain R�n� � n�1=3���1=k��e by using standard
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estimates for the divisor function. Thus, we have achieved a savings over the trivial
estimate of 1=36 in the exponent when k � 4, and of 1=90 when k � 5. Our methods
do not surpass the trivial estimate when kX 6, because the trivial estimate is
not enough larger than 1=3 in these cases.

It is known from Bru« dern [1] that almost all positive integers can be written as a
sum of three cubes and a fourth power, where these represented numbers n satisfy
R4�n� � n17=144. Also, Ming-Gao Lu [9] has shown that almost all positive integers
can be written as a sum of three cubes and a ¢fth power, where these represented
numbers satisfy R5�n� � n�43=515�ÿe. In [2], Bru« dern shows that if ~Rk�n� is the number
of representations of n as the sum of six cubes and two fourth powers, then
~Rk�n� � n3=2 for all large n, which is the expected order of magnitude. It might
be expected that more recent developments in the circle method due to Vaughan
and Wooley would enable us to achieve the correct lower bound for Rk�n� when
k � 4, 5, or possibly even 6.

The methods used to prove Theorem 1.1 are based on those developed by Hooley
in [5]. The central idea is that since X 3 � Y 3 has a linear factor, we can transform
(1.1) into

2r�r2 � 3s2� � nÿ Z3 ÿWk; �1:2�

and then apply the Selberg sieve method to exploit the term 3s2 which arises. The
error terms which arise can be treated by exponential sums. These sums are more
dif¢cult to treat than those appearing in [5], because of the inhomogeneity of
the equations under consideration. To bound the sums, we use methods developed
by Hooley [6, 7] which are based upon Deligne's resolution of the Riemann hypoth-
esis for L-functions of algebraic varieties over ¢nite ¢elds.

We note at this point that our methods allow us to achieveR2�n� � n3=4�e, which is
better than the previously mentioned trivial estimate of n5=6. However, if we trans-
form (1.1) into (1.2), where k � 2, and now ¢x r and Z, this gives us n2=3 choices
for r and Z. When r and Z are ¢xed, then (1.2) is a binary quadratic form in
W and s, so that there are at most ne solutions for W and s, which shows that
R2�n� � n2=3�e, which is better than the bound our methods achieve.

For convenient reference, we will make a few comments about the notation used in
this paper. We note that e denotes a suf¢ciently small positive real number, where the
value of e is free to change as needed throughout. We use � and � to denote
Vinogradov's familiar notation, where the constants depend at most on e. As usual,
the greatest common divisor of u1; . . . ; uj is denoted by �u1; . . . ; uj�; pakx means that
pa j x but pa�1 x; the divisor function of n will be denoted by t�n�; o�u� denotes
the number of prime factors of u; sj�u� denotes the sum of the jth powers of the
divisors of u; kBk denotes the distance of B from the nearest integer; �x� denotes
the greatest integer not exceeding x; dxe denotes the smallest integer greater than
or equal to x; Fq denotes the ¢nite ¢eld with q elements; we denote e�x� � e2pix.
The Legendre symbol will be written as �ajp� or �a=p�.

j
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2. Initial Transformations and Introduction of the Sieve

We now begin the proof of Theorem 1.1 by ¢rst transforming (1.1) into a form suit-
able for application of a sieve method. We will assume throughout that k � 4
or 5. Let R0k�n� denote the number of solutions to (1.1) for which at least two of
the variables X , Y , Z are nonzero. Then

Rk�n� � R0k�n� � n1=3: �2:1�

For any representation of n arising in R0k�n�, we can choose two of the variablesX ,Y ,
Z to have the same parity, and such that at least one of them is nonzero. Therefore

R0k�n� �
X

X3�Y3�Z3�Wk�n
X>0;X XY ;X�Y �mod 2�

1: �2:2�

By substituting

X � r� s; Y � rÿ s; �2:3�

where r is a positive integer and s is a nonnegative integer, we see that

R0k�n� � n�n; k�; �2:4�

where n�n; k� is the number of solutions in r, s, Z ,W of

2r�r2 � 3s2� � nÿ Z3 ÿWk �2:5�

such that r is a positive integer, and s, Z, W are nonnegative integers.
Let X�n; k; r� denote the number of solutions to (2.5) in s, Z,W for a ¢xed value of

r. Then

n�n; k� �
X
rWN

X�n; k; r�; �2:6�

where

N � N�n� � �n=2�1=3 < n1=3: �2:7�

We can now introduce a sieve to take advantage of the term 3s2 which appears in
(2.5). To do this, we will replace that term by a member of a larger set which includes
all numbers of the form 3s2, and which will be a set surviving a sieving process.
Namely, let S � S�n; r� be the set of all integers (positive or negative) that are
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not quadratic non-residues, modulo p, for all primes p such that

p r; �2:8�

p n;
3
p

� �
� 1; p > D1; �2:9�

where D1 is a suitable suf¢ciently large absolute constant exceeding 5.
We can now use Selberg's upper bound sieve method as described in Chapter One

of [4] to obtain an upper bound for the characteristic function of S. Let d denote a
square-free number (possibly 1) consisting entirely of prime factors p satisfying (2.8)
and (2.9), and let H�d� denote the set of all integers (possibly negative) that are
quadratic non-residues modulo each prime divisor of d (where H�1� is the set of
all integers). We now introduce real numbers ld � ld;n;k;r which satisfy the con-
ditions that l1 � 1 and ld � 0 for d > x � nb, where b will be determined later
to satisfy 0 < b < 1=3, and where it is understood that x and b will depend on
k. Then considering X

d
u2H�d�

ld

!2
�
X

d
u2H�d�

rd �2:10�

as a function of u, we see that this function is non-negative and is equal to 1 when u is
three times a square, and that this will be an upper bound for the characteristic
function of S. It is convenient to note that we can express rd as

rd �
X
�d1;d2��d

ld1ld2 ; �2:11�

so that rd � 0 for d > x2 � n2b.
Combining this upper bound for S with the de¢nition of X�n; k; r�, we obtain

X�n; k; r�W
X
Z;W ;l

X
d

L2H�d�

rd ; �2:12�

where the ¢rst summation is over 0WZW n1=3, 0WW W n1=k, and over l satisfying
2r�r2 � l� � mÿ Z3 ÿWk. Let F�n; k; r; d� denote the number of solutions in Ld ,
Z, W of the conditions

2r�r2 � Ld� � nÿ Z3 ÿWk; ZW n1=3; W W n1=k; Ld 2 H�d�; �2:13�

and let

Y�n; k; r� �
X
dW x2

rdF�n; k; r; d�: �2:14�

j

j
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Then

X�n; k; r�WY�n; k; r�; �2:15�

and by (2.6), we see that

n�n; k�W
X
rWN

Y�n; k; r�: �2:16�

In order to estimateY�n; k; r�, we need to transformF�n; k; r; d�. Let ld throughout
refer to an integer belonging to any given complete set of incongruent representatives
of H�d�, modulo d. Then the number of solutions to �2:13� is the same as the number
of solutions in ld , Z, W of

2r�r2 � ld� � nÿ Z3 ÿWk �mod 2rd�; �2:17�
such that ZW n1=3 and W W n1=k. Let U�n; k; r; d� denote the number of solutions in
ld , Z, W of (2.17) with Z;W < 2rd. Then we can rewrite F�n; k; r; d� as

F�n; k; r; d� � ��n
1=3� � 1���n1=k� � 1�

4r2d2 U�n; k; r; d� � F2�n; k; r; d�; �2:18�

where F2�n; k; r; d� is de¢ned by this relation. Since �r; d� � 1, then U�n; k; r; d� is the
number of simultaneous solutions of the congruences

nÿ Z3 ÿWk � 0 �mod 2r�; �2:19�

nÿ Z3 ÿWk � 2r�r2 � ld � �mod d�; �2:20�
for which Z;W < 2rd. Therefore we can write

U�n; k; r; d� � c�n; k; r�g�n; k; r; d�; �2:21�
where c�n; k; r� is the number of incongruent solutions in Z and W , modulo 2r, of
(2.19), and where g�n; k; r; d� is the number of incongruent solutions in Z, W , ld ,
modulo d, of (2.20). If we de¢ne

F1�n; k; r; d� � g�n; k; r; d�
d2 ; �2:22�

then (2.18) can be written as

F�n; k; r; d� � ��n
1=3� � 1���n1=k� � 1�c�n; k; r�

4r2
F1�n; k; r; d� � F2�n; k; r; d�:

�2:23�
Thus, if we let

Yi�n; k; r� �
X
dW x2

rdFi�n; k; r; d� �2:24�
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for i � 1; 2, then (2.14) yields

Y�n; k; r� � ��n
1=3� � 1���n1=k� � 1�c�n; k; r�

4r2
Y1�n; k; r� �Y2�n; k; r�: �2:25�

To conclude our preliminary work, let

n1�n; k� � ��n
1=3� � 1���n1=k� � 1�

4

X
rWN

c�n; k; r�Y1�n; k; r�
r2

; �2:26�

and let

n2�n; k� �
X
rWN

Y2�n; k; r�; �2:27�

so that by (2.16) and (2.25), we obtain

n�n; k�W n1�n; k� � n2�n; k�: �2:28�

3. Lemmata on Congruences

We next develop some lemmata which will be useful in estimating n1�n; k� and
n2�n; k�, and which are the analogues of Lemmata 1 and 2 from Hooley's work [5].

LEMMA 3.1. Let g�u; v� be the multiplicative function of u de¢ned on prime powers by

g�pa; v� � paÿ2;
1;

if aX 3; and p3 j v;
otherwise:

(
�3:1�

Then we have

c�n; k; r� � �2k� 1��r�r g�r; n�:

Proof. If pa is any prime power, let c1�n; k; pa� denote the number of solutions in Z
and W , modulo pa, of

nÿ Z3 ÿWk � 0 �mod pa�: �3:2�
On noting that

c�n; k; r�W 4
Y
pakr

c1�n; k; pa�; �3:3�

it suf¢ces to show that for any prime power pa, we have

c1�n; k; pa�W �2k� 1� g�pa; n�: �3:4�
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We let pa be any prime power, and examine the possible values of a. If a � 1, then
for each given value of W , there are at most three values of Z, modulo p, satisfying
(3.2), so that

c1�n; k; pa�W 3p: �3:5�

When aX 2, we ¢rst examine solutions of (3.2) which do not satisfy the condition

Z �W � 0 �mod p�: �3:6�

These solutions satisfy either nÿ Z3 6� 0, mod p, or mÿWk 6� 0, mod p. In the ¢rst
case, for each such Z, there are at most k values of W satisfying (3.2), and in
the second case, for each appropriate W , there are at most three values of Z
satisfying (3.2). Consequently there are at most 2kpa solutions of (3.2) which do
not satisfy (3.6).

It remains to consider the solutions of (3.2) satisfying (3.6) when aX 2. When
a � 2, there are at most p2 such solutions, modulo pa. When aX 3, there will only
be solutions satisfying (3.2) and (3.6) if p3 j n, in which case there will be at most
p2aÿ2 such solutions modulo pa.

So combining the conclusions of the previous two paragraphs, we see that if a � 2,
we have

c1�n; k; pa�W �2k� 1�pa; �3:7�

and if aX 3, then

c1�n; k; pa�W
2kpa;
�2k� 1�p2aÿ2

if p3 n
if p3 j n:

(
�3:8�

Upon combining (3.5), (3.7), and (3.8), we see that (3.4) holds, which proves the
lemma. &

Another result we will require in our analysis of n1�n; k; r� is expressed in the
following lemma.

LEMMA 3.2. Let T �n; k; r; p� denote the number of solutions in a, Z, W modulo p, of
the congruence

2r�r2 � a2� � nÿ Z3 ÿWk �mod p�: �3:9�

If p 2r, then we have

T �n; k; r; p� � p2 �O�p3=2�:

j

j
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Proof. Let

bj�u� �
Xp
x�1

e�uxj=p�; c�u� �
Xp
x�1

e�uq�x�=p�; �3:10�

where q�x� � 2r�r2 � x2�. It is known that if �u; p� � 1, then jbj�u�jW �j ÿ 1�p1=2; see,
for instance, Lemma 4.3 in [11]. Then we have

T �n; k; r; p� � 1
p

Xp
u�1

b3�u�bk�u�c�u�e�ÿun=p�: �3:11�

By applying the triangle and Cauchy-Schwarz inequalities, we obtain

jT �n; k; r; p� ÿ p2jW max
1W vW pÿ1

jb3�v�j
 !

1
p

Xpÿ1
u�1
jbk�u�c�u�j �3:12�

W 2p1=2
�
1
p

Xp
u�1
jbk�u�j2

�1=2�1
p

Xp
u�1
jc�u�j2

�1=2

: �3:13�

By considering the number of solutions to the underlying congruences
uk � vk �mod p� and q�u� � q�v� �mod p� of the sums in (3.12), it follows from
orthogonality that

jT �n; k; r; p� ÿ p2jW �2p1=2��kp�1=2�2p�1=2;

which gives the desired result. &

4. Estimation of m1�n; k� by the Selberg Sieve

In order to achieve a bound for n1�n; k�, we will employ Selberg's sieve method to
bound Y1�n; k; r�, where the condition for each prime p which we are sieving out
is the property of being a quadratic non-residue, modulo p.

Let p denote a prime satisfying (2.8) and (2.9). Recalling (2.20) and that if d � p,
then lp must lie in H�p�, we see that

g�n; k; r; p� � p2 ÿ 1
2
T �n; k; r; p� ÿ 1

2
c1�nÿ 2r3; k; p�;

because each of the p2 choices of Z andW allows only one possible value, modulo p,
for lp, so the latter two terms will subtract off those values for which lp is not in H�p�.
(Here, T �n; k; r; p� is de¢ned as in Lemma 3.2, and c1�nÿ 2r3; k; p� as de¢ned in
Lemma 3.1 compensates for the solutions of (3.9) for which p j a.) Combining this
result with (3.5) and Lemma 3.2 gives

g�n; k; r; p� � 1
2
p2 �O�p3=2�; �4:1�

62 JOEL M.WISDOM

https://doi.org/10.1023/A:1001786801173 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001786801173


and from (2.22), this gives

F1�n; k; r; p� � 1
2
�O�pÿ1=2�: �4:2�

Since by (2.9), one has p > D1, then if D1 is chosen suf¢ciently large, we have

0 < F1�n; k; r; p� < 1: �4:3�

In order to utilize Selberg's sieve method, let

f �d� � f �n; k; r; d� � 1
F1�n; k; r; d� ; �4:4�

and following Hooley's treatment in [4], let

f1�d� �
X
kjd

m�k�f �d=k� �
Y
pjd

ÿ
f �p� ÿ 1

�
; �4:5�

where we recall that d is square-free. Note that by (2.22), f �d� is multiplicative, and
that since f �p� > 1, then f1�d� > 0. From (2.24), (2.11), and (4.4), we see that

Y1�n; k; r� �
X

d1;d2 W x

ld1ld2
f ��d1; d2�� : �4:6�

Since the sum on the right hand side of (4.6) is the sum which appears in the main
term of Selberg's method, then from [4], we have that Y1�n; k; r� has a minimum
value of 1=V �x� subject to the constraints on ld , where

V �x� � Vn;k;r�x� �
X
dW x

m2�d�
f1�d� ; �4:7�

and where the ld which give this minimum are given by

ld � m�d�
V �x�

X
d3jd

m2�d3�
f1�d3�

X
d4 W x=d
�d4;d��1

m2�d4�
f1�d4� : �4:8�

When D1 is suf¢ciently large, it follows from (4.2), (4.4), and (4.5) that when
p > D1,

f1�p� � 1�O�pÿ1=2� < 2 and f1�p� > 1=2: �4:9�
Then by (4.7) and recalling that primes dividing d must satisfy (2.8) and (2.9), we
obtain

V �x�X 1� 1
2

X
D1<pW x

1; �4:10�
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where the summation is over primes p satisfying p rn and �3jp� � 1. Therefore,

V �x� > D2x
log x

; �4:11�

for some constant D2, since rWN < n by (2.7), and since x � nb, where 0 < b < 1=3.
This gives

Y1�n; k; r� � nÿb�e: �4:12�
So along with (2.26), this gives

n1�n; k� � n�1=3���1=k�ÿb�e
X
rWN

c�n; k; r�
r2

: �4:13�

To estimate the sum in (4.13), we see from Lemma 3.1 thatX
rWN

c�n; k; r�
r2

�
X
rWN

rÿ1�eg�r; n�: �4:14�

When p j n,

X�log n�

j�0

g�pj; n�
pj

W 1� 1
p
� log n

p2
;

so that since g�u; n� is multiplicative in u, we obtain

X
rWN

rÿ1�eg�r; n�W
Y
pW n
p j= n

1ÿ 1
p

� �ÿ1Y
pjn

1� 1
p
� log n

p2

� �
: �4:15�

The ¢nal product in (4.15) satis¢es

Y
pjn

1� 1
p
� log n

p2

� �
� 2o�n��log n��log n�1=2 Y

p>�log n�1=2
pjn

1ÿ 1
p

� �ÿ1
: �4:16�

From (4.14), (4.15), and (4.16), we have

X
rW n

c�n; k; r�
r2

� ne
Y
pW n

1ÿ 1
p

� �ÿ1
� ne: �4:17�

Finally, by using this estimate for the sum in (4.13), we see that

n1�n; k� � n�1=3���1=k�ÿb�e: �4:18�

j

64 JOEL M.WISDOM

https://doi.org/10.1023/A:1001786801173 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001786801173


5. Expression for m2�n; k� in Terms of Exponential Sums

We now need to estimate n2�n; k�. To do this, we will express F�n; k; r; d� using
exponential sums, and then appeal to (2.18) to obtain an expression for
F2�n; k; r; d�. Let

N�n; k; r; d; b; c� �
X

0WZW n1=3

0WW W n1=k

Z�b;W�c �mod 2rd�

1:

Then from (2.13) and (2.17), we have

F�n; k; r; d� �
X
ld

X
0W b;c<2rd

N�n; k; r; d; b; c�; �5:1�

where the inner sum is over b and c such that

2r�r2 � ld� � nÿ b3 ÿ ck �mod 2rd�: �5:2�

By orthogonality, one has

4r2d2N�n; k; r; d; b; c� �
X

0WZW n1=3

0WW W n1=k

X
0W u;v<2rd

e��u�bÿ Z� � v�cÿW ��=2rd�

� ~n3 ~nk � ~nk
X

0<u<2rd

yu;3e�ub=2rd� � ~n3
X

0<v<2rd

yv;ke�vc=2rd��

�
X

0<u;v<2rd

yu;3yv;ke��ub� vc�=2rd�; �5:3�

where ~nj � �n1=j� � 1, and

yw;j � yw;j;2rd;n �
X

0WV W n1=j
e�ÿwV=2rd� � 1

kw=2rdk : �5:4�

Therefore, by substituting (5.3) back into (5.1), and comparing this with (2.18), we
see that

F2�n; k; r; d� � �n
1=k� � 1
4r2d2

X
0<u<2rd

yu;3S�n; k; r; d; u; 0��

� �n
1=3� � 1
4r2d2

X
0<v<2rd

yv;kS�n; k; r; d; 0; v��

� 1
4r2d2

X
0<u;v<2rd

yu;3yv;kS�n; k; r; d; u; v�; �5:5�
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where

S�n; k; r; d; u; v� �
X
ld

X
0W b;c<2rd

e��ub� vc�=2rd�; �5:6�

with the inner sum of (5.6) being over b and c satisfying (5.2).
Let S��n; k; r; d; u; v; ld � be the inner sum of (5.6), so that

S�n; k; r; d; u; v� �
X
ld

S��n; k; r; d; u; v; ld�: �5:7�

On noting from (2.7), (2.24), and (2.27) that

rdWNx2 < n�1=3��2b W n;

then it follows from (5.4) and (5.5) that

F2�n; k; r; d� � n1=k

rd

X
0<juj<n

jS�n; k; r; d; u; 0�j
juj �

� n1=3

rd

X
0<jvj<n

jS�n; k; r; d; 0; v�j
jvj �

�
X

0<juj;jvj<n

jS�n; k; r; d; u; v�j
jujjvj : �5:8�

Next, from (2.27), (2.24), and (5.8), we obtain

n2�n; k� � n1=k
X

0<juj<n

1
juj

X
rWN

1
r

X
dW x2

jrd;rjjS�n; k; r; d; u; 0�j
d

�

� n1=3
X

0<jvj<n

1
jvj
X
rWN

1
r

X
dW x2

jrd;rjjS�n; k; r; d; 0; v�j
d

�

�
X

0<juj;jvj<n

1
jujjvj

X
rWN

X
dW x2
jrd;rjjS�n; k; r; d; u; v�j: �5:9�

We now need to bound the size of rd which occurs in our expression for n2�n; k�, so
we now consider (4.8), which gave the optimal values for the ld . In examining the
sums given in (4.8), if we recall (4.9) and note that d3 and d4 are square-free, we
see that

X
d3jd

m2�d3�
f1�d3� W t�d�2o�d� � de � �x2�e � ne; �5:10�
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and that

X
d4 W x=d
�d4 ;d��1

m2�d4�
f1�d4� W

X
d4 W x=d

m2�d4�
f1�d4� �

X
d4 W x=d

2o�d4� � nex
d
: �5:11�

By using (4.11) and the latter two estimates in (4.8), we get

ld � ne

d
; �5:12�

so that by (2.11), we have

rd � ne
X
�d1;d2��d

1
d1d2
� ne

d

X
�d1;d2��d

1� net�d�2
d
� ne

d
:

By substituting this bound for rd into (5.9), we obtain

n2�n; k� � n�1=k��en3�n; k� � n�1=3��en4�n; k� � nen5�n; k�; �5:13�
where

n3�n; k� �
X

0<juj<n

1
juj

X
rWN

1
r

X
dW x2

jS�n; k; r; d; u; 0�j
d2 ; �5:14�

n4�n; k� �
X

0<jvj<n

1
jvj
X
rWN

1
r

X
dW x2

jS�n; k; r; d; 0; v�j
d2 ; �5:15�

and

n5�n; k� �
X

0<juj;jvj<n

1
jujjvj

X
rWN

X
dW x2

jS�n; k; r; d; u; v�j
d

: �5:16�

In order to estimate n3�n; k�, n4�n; k�, and n5�n; k� we will ¢rst examine some results
about exponential sums.

6. Some Results on Exponential Sums

We now develop some results about exponential sums which will assist us in esti-
mating S�n; k; r; d; u; v�. The ¢rst lemma will allow us to exhibit a multiplicative
property of an exponential sum under suitable conditions.

LEMMA 6.1. LetC�m; x; y� indicate a condition on a positive integer mand integers x
and y satisfying the following two properties:

(1) If x0 � x �mod m�and y0 � y �mod m�, thenC�m; x; y� is equivalent toC�m; x0; y0�.
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(2) If m1 and m2 are coprime, then C�m1m2; x; y� holds if and only if C�m1; x; y� and
C�m2; x; y� both hold.

Let the exponential sum P�m; u; v� be given by

P�m; u; v� �
X
C�k;x;y�

0Wx;y<m

e��ux� vy�=m�: �6:1�

Then if �m1;m2� � 1, we have

P�k1k2; u; v� � P�m1; �m2u; �m2v�P�m2; �m1u; �m1v�; �6:2�

where �m1 and �m2 are de¢ned by the congruences

m1 �m1 � 1 �mod m2�; m2 �m2 � 1 �mod m1�:

Proof. The proof relies on the Chinese Remainder Theorem, and Hooley gives a
sketch of the proof following Lemma 3 in [5]. &

This leads to the following useful corollary.

LEMMA 6.2. Let P(m; u,v) be de¢ned as in Lemma 6.1. If u and v are given and
�m1;m2� � 1, then there exist integers u1,v1,u2,v2 such that

P�m1m2; u; v� � P�m1; u1; v1�P�m2; u2; v2�;

with

�m1m2; u; v� � �m1; u1; v1��m2; u2; v2�:

We will also need a bound on exponential sums which comes from a result of
Chalk and Smith [3], which they proved using algebraic geometry.

LEMMA 6.3. Let

Qk�m; u; v; m� �
X

x3�yk�m �mod m�
0W x;y<m

e
ux� vy

m

� �
: �6:3�

If p �u; v�, then

Qk�p; u; v; m��� ��W �k2 � 2kÿ 3�p1=2 � k2: �6:4�

Proof.From Theorem 2 in [3], it suf¢ces to show that for every t in Fp, we have that
ux� vyÿ t does not divide x3 � yk ÿ m in Fp�x; y�. It is easy to check that if p �u; v�
and k � 4 or 5, then ux� vyÿ t can not divide x3 � yk ÿ m. &

j

j
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The estimate given in the preceding lemma allows us to bound an exponential sum
arising from S��n; k; r; d; u; v; ld �. In order to obtain a bound for Qk�m; u; v; m� when
m is a prime power, we require the following results.

LEMMA 6.4. Let

W �m; a1; a2� �
X

0W x<m

e
a1xj � a2x

m

� �
: �6:5�

Then for aX 3,

W �pa; a1; a2� � pa=2�pa; a1; a2�1=4�pa; a2�1=4: �6:6�

Proof. For j � 1, 2, let aj � pgj ~aj, where p ~aj . (If either aj � 0, we can replace it by
pa without affecting (6.6).) We note that the result is trivial when pa j �a1; a2�, so that
we can suppose that at least one of the gj is less than a.

Suppose that g1 > g2. Then

W �pa; a1; a2� � pg2W �paÿg2; pg1ÿg2 ~a1; ~a2�:

However, W �pa; b1; b2� � 0 if p j b1 but p b2, so that in this case, W �pa; a1; a2� � 0.
Therefore, we can now restrict our attention to the case where g1 W g2. Then

W �pa; a1; a2� � pg1W �paÿg1; ~a1; pg2ÿg1 ~a2�: �6:7�

From the proof of Lemma 7 in [8], we have that if p b1, then

W �pa; b1; b2� � pa=2�pa; a2�1=4:

Thus, we obtain from (6.7) that

W �pa; a1; a2� � pg1��aÿg1�=2�pg2ÿg1 ; paÿg1 �1=4
� p�a=2���g1=4��pg2 ; pa�1=4: �6:8�

By recalling that g1 W g2, we see that (6.6) follows from (6.8). &

LEMMA 6.5. Let

Ek�pa; v� �
X

1W y1 ;y2 W pa

yk
1
�yk

2
�mod pa �

e
v�y1 ÿ y2�

pa

� �
: �6:9�

Then

Ek�pa; v� � pa�v; pa��kÿ2�=�kÿ1�: �6:10�

j

j

j
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Proof. The cases a � 1 and 2 are trivial, so we can suppose aX 3. We begin by
noting that the contribution to Ek�pa; v� from y1, y2 for which pda=ke j �y1; y2� is

Xpaÿda=ke
~y1;~y2�1

e
v�~y1 ÿ ~y2�
paÿdake

� �
�

Xpaÿda=ke
~y1�1

e
v~y1

paÿda=ke

� �������
������
2

� p2�aÿda=ke�;

0;
if paÿda=ke j v
otherwise:

� �6:11�

Therefore, this contribution does not exceed our bound in (6.10).
We can now restrict our attention to the contribution from y1, y2 for which

y1 � pg ~y1 and y2 � pg ~y2, where 0W g < da=ke and p ~y1 ~y2. Let Uk�m� denote the
set of reduced residues o modulo m for which ok � 1 �mod m�. Then for a given
value of g in the above range, the contribution to Ek�pa; v� from the associated values
of y1, y2 is

X
1W ~y1 ;~y2 W paÿg

~yk
1
�~yk

2
�mod paÿgk �

p j= ~y1 ~y2

e
v�~y1 ÿ ~y2�

paÿg

� �
: �6:12�

Note that ~yk1 � ~yk2 �mod paÿgk� if and only if there exists o 2 Uk�paÿgk� such that
~y1 � o~y2 �mod paÿgk�. Therefore, if we replace ~y1 by o~y2 � cpaÿgk, we can rewrite
(6.12) as

X
o2Uk�paÿgk�

Xpaÿg
~y2�1
p j= ~y2

e
v�oÿ 1�~y2

paÿg

� � Xpg�kÿ1�
c�1

e
vc

pg�kÿ1�

� �
: �6:13�

Since the inner sum is 0 unless pg�kÿ1� j v, and since Uk�paÿgk� has at most k elements,
the contribution from a particular value of g is at most kpa�g�kÿ2� if pg�kÿ1� j v,
and is 0 otherwise. Let pakv, where we adopt the convention that a � 1 if
v � 0. Then a particular g satisfying 0W gW da=ke ÿ 1 will only contribute to
Ek�pa; v� when gW a

kÿ1. By summing the contribution from the values of g with
0W gW da=ke ÿ 1, and noticing that all other values of g are handled by (6.11),
we see that (6.10) holds. &

The preceding two lemmata allow us to obtain a bound for Qk�pa; u; v; m�.

LEMMA 6.6. Let Qk�pa; u; v;m� be de¢ned as in (6.3), letr�m; a� be the multiplicative
function of m de¢ned on prime powers by

r�pa; a� � 1;
pa=2

if a � 1 and p a;
otherwise;

�
�6:14�

j

j
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and let H�m;w1;w2; a� be the multiplicative function of m satisfying

H�pa;w1;w2; a� � �pa;w1�1=4�pa;w2� kÿ2
2�kÿ1�;

1;
if aX 3 and p j a;
otherwise:

(
�6:15�

Then we have

Qk�m; u; v; m� � m1=2�er�m; �u; v��H�m; u; v; m�: �6:16�

Proof. By repeated application of Lemma 6.2, it suf¢ces to prove that for any
prime power pa,

Qk�pa; u; v;m�WApa=2r�pa; �u; v��H�pa; u; v; m�; �6:17�

where A is a positive constant, since Ao�m� � me. So let pa be a given prime power. If
a � 1, then (6.17) follows from Lemma 6.3. If a � 2, then (6.17) follows from (3.7). If
aX 3 and p m, then (6.17) follows from (3.8).

It remains to consider the cases where aX 3 and p j m. By applying the
Cauchy-Schwarz inequality, we obtain the bound

jQk�pa; u; v; m�j � 1
pa
Xpa
t�1

Xpa
x�1

e
tx3 � ux

pa

� �Xpa
y�1

e
tyk � vyÿ tm

pa

� �������
������

W
1
pa
Xpa
t�1
jW �pa; t; u�j2

 !1
2 1

pa
Xpa
t�1

Xpa
y�1

e
tyk � vy

pa

� �������
������
20@ 1A

1
2

: �6:18�

Moreover, by Lemma 6.4, the ¢rst term of (6.18) is bounded above by

1
pa
Xpa
t�1

pa�pa; t�1=2�pa; u�1=2
 !1=2

� pa=2�pa; u�1=4: �6:19�

We can rewrite the second term of (6.18) as Ek�pa; v�1=2, so that (6.17) follows from
using the bounds from (6.19) and Lemma 6.5 in (6.18). This completes the proof
of the lemma. &

We have now laid the framework to obtain an expression for S�n; k; r; d; u; v� that
will be used to estimate n3�n; k�, n4�n; k�, and n5�n; k�. Let

U��n; k; r; d; a1; a2; ld� �
X

0W b;c<d

e��a1b� a2c�=d�; �6:20�

where the sum is over b, c for which

2r�r2 � ld� � nÿ b3 ÿ ck �mod d�: �6:21�
If S��n; k; r; d; u; v; ld� is as de¢ned in (5.7), then by Lemma 6.1, and by recalling that

j
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�2r; d� � 1,

S��n; k; r; d; u; v; ld� � Qk�2r; �du; �dv; n�U��n; k; r; d; 2ru; 2rv; ld�; �6:22�
where d �d � 1 �mod 2r�, and 2r2r � 1 �mod d�. Let

U�n; k; r; d; a1; a2� �
X
ld

X
0W b;c<d

e��a1b� a2c�=d�; �6:23�

where the sum is over ld , b, c satisfying (6.21). Then by (6.22) and (5.7),

S�n; k; r; d; u; v� � Qk�2r; �du; �dv; n�U�n; k; r; d; 2ru; 2rv�: �6:24�
Recalling that �2r; �d� � 1, we can use Lemma 6.6 to obtain

S�n; k; r; d; u; v� � r1=2�er�r; �u; v��H�r; u; v; n�jU�n; k; r; d; 2ru; 2rv�j: �6:25�

7. Estimation of m3�n; k� and m4�n; k�
In order to bound n3�n; k� and n4�n; k�, it is suf¢cient to bound U�n; k; r; d; 2ru; 2rv�
trivially in (6.25), so that

S�n; k; r; d; u; v� � r1=2�ed2r�r; �u; v��H�r; u; v; n�: �7:1�

We will need the following result.

LEMMA 7.1. Let F1�m; a� and F2�m; a� be the multiplicative functions of m de¢ned on
prime powers by

F1�pa; a� � pa=4;
1;

if p j a;
otherwise;

�
�7:2�

and by

F2�pa; a� � pa�kÿ2�=2�kÿ1�;
1;

if p j a;
otherwise:

�
�7:3�

If j � 1 or 2 and aW n, thenX
0<tW n

Fj�t; n�tÿ1 �
X

0<tW n

Fj�t; n�r�t; a�tÿ1 � ne: �7:4�

Proof. Since F1�t; a�WF2�t; a� and r�t; a�X 1, it suf¢ces to show that the ¢nal
inequality in (7.4) holds when j � 2, so let j � 2. By multiplicativity in t, and since

kÿ 2
2�kÿ 1� �

1
2
ÿ 1 � ÿ1

2�kÿ 1� ;
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we have that the left side of (7.4) is bounded by

Y
p j=na
pW n

1� 2
p
�
X
mX 3

pÿm=2

0@ 1AY
p j na
pW n

1�
X
mX 1

pÿm=2�kÿ1�

0@ 1A
� �na�e

Y
pW n

1ÿ 1
p

� �3

� ne;

where we have used that Co�na� � �na�e for any constant C. This completes the proof
of the lemma. &

By using the bound for S from (7.1) in (5.14), we obtain

n3�n; k� �
X

0 <juj<n

1
juj

X
rW n1=3

rÿ1=2�e
X
dW x2
r�r; u�H�r; u; 0; n�

� n�1=6��2b�e
X

0<u<n

F1�u; n�
u

X
rW n1=3

r�r; u�F2�r; n�
r

� n�1=6��2b�e; �7:5�

since Lemma 7.1 provides upper bounds for the ¢nal two sums in (7.5).
In a similar manner, we obtain from (5.15) that

n4�n; k� �
X

0<jnj<n

1
jnj

X
rW n1=3

rÿ1=2�e
X
dW x2
r�r; v�H�r; 0; v; n�

� n�1=6��2b�e
X
0<v<n

F2�v; n�
v

X
rW n1=3

r�r; v�F1�r; n�
r

� n�1=6��2b�e: �7:6�

8. Estimation of U�n; k; r; d; u; t�
In order to bound n5�n; k� we will need a more precise estimate for U�n; k; r; d; u; v�
than that used in (7.1). In order to achieve this, we will use estimates based on
the work of Deligne. The methods we use are based on those developed by Hooley
in [6, 7]. We will require the following lemma concerning absolute irreducibility,
which is Theorem III.1 B of Schmidt [10].

LEMMA 8.1. Let

Z�x; y� � j0y
m � j1�x�ymÿ1 � � � � � jm�x�;
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where j0 is a non-zero constant, be a polynomial with coef¢cients in a ¢eld K. Let

d�Z� � max
1W iWm

1
i

deg�ji�;

and suppose that d�Z� � j=m with �j;m� � 1. Then Z�x; y� is absolutely irreducible.

The next lemma will provide a bound for U�n; k; r; d; u; v�.

LEMMA 8.2. If d is square-free number whose prime factors satisfy (2.8) and (2.9),
then

U�n; k; r; d; u; v� � d �d; u�: �8:1�

Proof. We point out that it should be possible to obtain the bound d �d; u; v�, but
this bound will prove suf¢cient for our purposes. By repeated application of
Lemma 6.2, it suf¢ces to show that

U�n; k; r; p; u; v� � p �p; u� �8:2�
for any prime p satisfying (2.8) and (2.9). Since (8.2) holds trivially when �p; u� � p,
we can suppose that p u. Let

G�n; k; r; p; u; v� �
X

0W x;y;z<p

e
ux� vy

p

� �
; �8:3�

where the sum is over x, y, z satisfying

2r�r2 � z2� � nÿ x3 ÿ yk �mod p�: �8:4�
Then

U�n; k; r; p; u; v� � ÿ 1
2
G�n; k; r; p; u; v� �

X
0W x;y<p

e
ux� vy

p

� �

�
X

0W x;y<p

2r3�nÿx3ÿyk �mod p�

e
ux� vy

p

� �
; �8:5�

since lp must be a quadratic nonresidue modulo p. The second term on the right side
of (8.5) is zero because p u, and the ¢nal sum in (8.5) is O�p�, so that

U�n; k; r; p; u; v� � G�n; k; r; p; u; v� �O�p�: �8:6�
Therefore (8.2) follows from showing that

G�n; k; r; p; u; v� � p: �8:7�
Let

h�x; y; z� � x3 � yk � 2r�r2 � z2� ÿ n; and w�x; y� � ux� vy; �8:8�

j

j
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where for convenience, we omit the dependence on n, k, r, u, and v. Next, let Fp

denote the algebraic closure of Fp. We point out that (2.9) gives that p > 3, and
that 2r 6� 0 when considered as an element of Fp. Also, since u is an integer and
p u, then u 6� 0 in Fp. In [7], Hooley uses Deligne's resolution of the Riemann
hypothesis for algebraic varieties over ¢nite ¢elds to develop conditions under which
(8.7) will hold. Theorem 5 of [7] shows that (8.7) is true provided that the following
two conditions are satis¢ed:

(1) If t 2 Fp, then the curve de¢ned by h�x; y; z� � 0 and w�x; y� � t is absolutely
irreducible over Fp�t�, the algebraic closure of the function ¢eld F�t�, for all
but at most D3 values of t, where D3 is some absolute constant.

(2) For all t 2 Fp and for any natural number a, the number of �x; y; z� 2 F 3
pa

satisfying h�x; y; z� � 0 and w�x; y� � t is O�pa�.
Note that since p u, then w�x; y� � t means that x � uÿ1�tÿ vy�. From this

expression for x, we ¢nd that h�x; y; z� becomes

ht�y; z� � uÿ3�tÿ vy�3 � yk � 2r�r2 � z2� ÿ n: �8:9�

Then the number of solutions to ht�y; z� � 0 is O�pa�, because for each choice of
y 2 Fpa , there are at most two values of z satisfying the equation, so that Condition
(2) holds.

Showing that condition 1 holds will require proving that ht�y; z� is absolutely
irreducible except for at most D3 values of t. If k � 5, then by Lemma 8.1, we have
that ht�y; z� is absolutely irreducible for all values of t 2 Fp, because �2; k� � 1 in
this case. When k � 4, we will have to resort to direct attempts at factoring
ht�y; z�, which will show that ht�y; z� is absolutely irreducible over Fp�t� unless t
is one of the solutions of certain polynomials.

So suppose that k � 4, and that

ht�y; z� � g1�y; z�g2�y; z� �8:10�

is a non-trivial factorization of ht�y; z�, where g1; g2 2 Fp�t��y; z�. The degree of g1 and
g2 with respect to z can not be two, or else the other polynomial would be constant.
Therefore, on multiplying g1 and g2 by suitable elements of Fp, we can suppose
without loss of generality that

gj�y; z� � ~gj�y� � gz; j � 1; 2; �8:11�

where g2 � 2r. On equating the coef¢cients involving z in (8.9) and (8.10), we ¢nd
that

~g1�y� � ÿ~g2�y�: �8:12�

j

j
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Let ~g1�y� � c2y2 � c1y� c0. From (8.9), (8.10), (8.11), and (8.12), we see that

ÿ~g1�y�2 � y4 � uÿ3�tÿ vy�3 � 2r3 ÿ n:

By equating the coef¢cients of y in this last equation, we see that

c22 � ÿ1; �8:13�
2c1c2 � uÿ3v3; �8:14�

c21 � 2c0c2 � ÿ3uÿ3v2t; �8:15�
2c0c1 � 3uÿ3vt2; �8:16�

c20 � nÿ 2r3 ÿ uÿ3t3: �8:17�

Suppose ¢rst of all that v � 0 in Fp, and that t 6� 0. Note from (8.13) that c2 6� 0.
This means that c1 � 0 by (8.14), and then that c0 � 0 from (8.15). Then from (8.17),
we see that

t3 � u3�nÿ 2r3�: �8:18�

Next suppose that v 6� 0 in Fp, that t 6� 0, and that (8.18) does not hold. By (8.17),
our ¢nal supposition shows that c0 6� 0. Using (8.13), (8.14), and (8.16) to solve for
2c1, we see that

ÿuÿ3v3c2 � 3cÿ10 uÿ3vt2: �8:19�
By squaring both sides of (8.19), and then using (8.17) to substitute for c20, we obtain

�uÿ3t3 � 2r3 ÿ n�v4 � 9t4: �8:20�
So if (8.10) is a nontrivial factorization of ht�y; z�, then t is either zero or satis¢es
(8.18) or (8.20). Since the number of solutions t in Fp of (8.18) or (8.20) are bounded
by 3 and 4 respectively, then there are at most eight values of t in Fp for which ht�y; z�
fails to be absolutely irreducible. This proves that condition 1 holds, which by our
previous discussion proves (8.7). The lemma now follows from (8.6). &

9. Estimation of m5�n; k�
We can now use the bound for U from the previous section to obtain a bound for
n5�n; k�. From (5.16), (6.25), Lemma 8.2, and recalling that �2r; d� � 1 in (6.25),
we have that

n5�n; k� �
X

0<juj;jvj<n

1
jujjvj

X
rWN

X
dW x2

r1=2�er�r; �u; v��H�r; u; v; n��d; u�

� n�1=2��e
X

0<u;v<n

F1�u; n�
uv

X
rW n1=3

r�r; �u; v��F2�r; n�
r

X
dW x2
�d; u�: �9:1�
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The ¢nal sum in (9.1) satis¢esX
dW x2
�d; u�W

X
dju

d
X
dW x2

djd

1W x2t�u� � n2b�e: �9:2�

By Lemma 7.1, the sums over u and r in (9.1) are O�ne�, so that from (9.1) and (9.2),
we have

n5�n; k� � n�1=2��2b�e: �9:3�

10. Completion of the Proof

We now complete the proof of Theorem 1.1. By (5.13), (7.5), (7.6), and (9.3), we have

n2�n; k� � n�1=2��2b�e: �10:1�
By (2.1) and (2.4), we have

Rk�n� � n�n; k� � n1=3 �10:2�
From (2.28), (4.18), and (10.1), we see that choosing b to be 1

3kÿ 1
18 will minimize our

bound for n�n; k�, so that (10.2) will yield Theorem 1.1.
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