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Abstract. Let Ry(n) denote the number of representations of a natural number » as the sum of
three cubes and a kth power. In this paper, we show that R3(n) < n*/°*¢ and that
Ry(n) <« n*7/%0*¢ where ¢ > 0 is arbitrary. This extends work of Hooley concerning sums of four
cubes, to the case of sums of mixed powers. To achieve these bounds, we use a variant of the
Selberg sieve method introduced by Hooley to study sums of two kth powers, and we also
use various exponential sum estimates.
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1. Introduction

In [5], Hooley showed that the number of representations of a natural number n as
the sum of four cubes is O(n!/19+%) where ¢ > 0is arbitrary. In forthcoming papers
[12, 13], the author extends this to show that if £ > 3 is an odd integer, then the
number of representations of n as the sum of four kth powers is O(n!!/©0+%) In
this paper, we show that similar results can be obtained for sums of mixed powers,
as stated in the following theorem.

THEOREM 1.1. Let Ri(n) denote the number of solutions to
X+ v+ 224+ whk=n, (1.1)

where X, Y, Z, W are nonnegative integers. Then R4(n) < n®/2%¢ and Rs(n) <«
(47/90)+¢
n .

By a counting argument, we note that the expected order of magnitude of Ry (n) is
n'/* and that up to a constant, Ry(n) achieves this size infinitely often. To consider
the strength of Theorem 1.1, one can obtain R(n) <« n!/3+(1/0+2 by using standard

* This material is based upon work supported under a National Science Foundation Graduate
Research Fellowship.
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estimates for the divisor function. Thus, we have achieved a savings over the trivial
estimate of 1/36 in the exponent when k = 4, and of 1/90 when k = 5. Our methods
do not surpass the trivial estimate when k > 6, because the trivial estimate is
not enough larger than 1/3 in these cases.

It is known from Briidern [1] that almost all positive integers can be written as a
sum of three cubes and a fourth power, where these represented numbers n satisfy
R4(n) > n'7'** Also, Ming-Gao Lu [9] has shown that almost all positive integers
can be written as a sum of three cubes and a fifth power, where these represented
numbers satisfy Rs(n) >> n*¥/319-¢_In [2], Briidern shows that if Ri(n) is the number
of representations of n as the sum of six cubes and two fourth powers, then
Ri(n) > n*? for all large n, which is the expected order of magnitude. It might
be expected that more recent developments in the circle method due to Vaughan
and Wooley would enable us to achieve the correct lower bound for Ry(7) when
k=4, 5, or possibly even 6.

The methods used to prove Theorem 1.1 are based on those developed by Hooley
in [5]. The central idea is that since X + Y3 has a linear factor, we can transform
(1.1) into

2k 4+ 35 =n— 23 — W¥, (1.2)

and then apply the Selberg sieve method to exploit the term 3s®> which arises. The
error terms which arise can be treated by exponential sums. These sums are more
difficult to treat than those appearing in [5], because of the inhomogeneity of
the equations under consideration. To bound the sums, we use methods developed
by Hooley [6, 7] which are based upon Deligne’s resolution of the Riemann hypoth-
esis for L-functions of algebraic varieties over finite fields.

We note at this point that our methods allow us to achieve Ry(n) <« n’/4*¢, which is
better than the previously mentioned trivial estimate of n°/®. However, if we trans-
form (1.1) into (1.2), where k = 2, and now fix r and Z, this gives us n*3 choices
for r and Z. When r and Z are fixed, then (1.2) is a binary quadratic form in
W and s, so that there are at most »n® solutions for W and s, which shows that
Ry(n) < n?/3*¢ which is better than the bound our methods achieve.

For convenient reference, we will make a few comments about the notation used in
this paper. We note that ¢ denotes a sufficiently small positive real number, where the
value of ¢ is free to change as needed throughout. We use <« and > to denote
Vinogradov’s familiar notation, where the constants depend at most on ¢. As usual,
the greatest common divisor of uy, ..., u; is denoted by (uy, ..., u;); p*||x means that
p* | x but p*t } x; the divisor function of n will be denoted by 7(n); w(u) denotes
the number of prime factors of u; ¢;(1) denotes the sum of the jth powers of the
divisors of u; |¢|| denotes the distance of ¢ from the nearest integer; [x] denotes
the greatest integer not exceeding x; [x] denotes the smallest integer greater than
or equal to x; [, denotes the finite field with ¢ elements; we denote e(x) = e*™™.
The Legendre symbol will be written as (a|p) or (a/p).
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2. Initial Transformations and Introduction of the Sieve

We now begin the proof of Theorem 1.1 by first transforming (1.1) into a form suit-
able for application of a sieve method. We will assume throughout that k =4
or 5. Let R (n) denote the number of solutions to (1.1) for which at least two of
the variables X, Y, Z are nonzero. Then

Ri(n) < R, (n) +n'>. (2.1)

For any representation of » arising in R} (n), we can choose two of the variables X, Y,
Z to have the same parity, and such that at least one of them is nonzero. Therefore

Rm< Y L (2.2)

X31y34Z3 4 wk=n
X>0,X > Y;X=Y (mod 2)

By substituting

X=r+s, Y =r—s, (2.3)
where r is a positive integer and s is a nonnegative integer, we see that

R).(n) < v(n, k), (2.4)
where v(n, k) is the number of solutions in r, s, Z ,W of

2(P? +3H) =n—2> - wk (2.5)

such that r is a positive integer, and s, Z, W are nonnegative integers.
Let Z(n, k, r) denote the number of solutions to (2.5) in s, Z, W for a fixed value of

r. Then
v(n, k) =Y E(n. k. r), (2.6)
r<N
where
N =N®) = (n/2)"? < n's. (2.7)

We can now introduce a sieve to take advantage of the term 3s> which appears in
(2.5). To do this, we will replace that term by a member of a larger set which includes
all numbers of the form 3s?, and which will be a set surviving a sieving process.
Namely, let © = S(n, r) be the set of all integers (positive or negative) that are
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not quadratic non-residues, modulo p, for all primes p such that

i (2.8)

pin, (2):1, p > Dy, 2.9

where D) is a suitable sufficiently large absolute constant exceeding 5.

We can now use Selberg’s upper bound sieve method as described in Chapter One
of [4] to obtain an upper bound for the characteristic function of S. Let d denote a
square-free number (possibly 1) consisting entirely of prime factors p satisfying (2.8)
and (2.9), and let $H(d) denote the set of all integers (possibly negative) that are
quadratic non-residues modulo each prime divisor of d (where $H(1) is the set of
all integers). We now introduce real numbers A; = 44,4, Which satisfy the con-
ditions that 2, =1 and iy =0 for d > ¢ = n’, where f will be determined later
to satisfy 0 < f < 1/3, and where it is understood that & and f will depend on
k. Then considering

2
(Z zd> =2 r (2.10)

ueH(d) ueH(d)

as a function of u, we see that this function is non-negative and is equal to 1 when u is
three times a square, and that this will be an upper bound for the characteristic
function of &. It is convenient to note that we can express p; as

pa= Y. diidr (2.11)

[d,db]=d

so that p, = 0 for d > & = n?/.
Combining this upper bound for © with the definition of E(n, k, r), we obtain

B k)< > > pa (2.12)

zZ,w.,l d
Le$(d)

where the first summation is over 0 < Z < n'/3, 0 < W < n'/*, and over [/ satisfying

20 + 1) =m— 7> — WK, Let ®(n, k, r, d) denote the number of solutions in Ly,
Z, W of the conditions

(P +Ly)y=n—-2>—wk;, zZ<n'?, w<a% L;e 9, (2.13)
and let
O k,r)=Y_ p,On k,r,d). (2.14)
d< &
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Then
E(n, k,r) < On, k, ), (2.15)
and by (2.6), we see that

v, k) < Y Ok, 7). (2.16)

r<N

In order to estimate O(n, k, r), we need to transform ®(n, k, r, d). Let [; throughout
refer to an integer belonging to any given complete set of incongruent representatives
of H(d), modulo d. Then the number of solutions to (2.13) is the same as the number
of solutions in /;, Z, W of

20 4+ 1) =n — Z° — WX (mod 2rd), (2.17)
such that Z < n'/3 and W < n'/. Let Y(n, k, r, d) denote the number of solutions in
ly, Z, W of (2.17) with Z, W < 2rd. Then we can rewrite ®(n, k, r, d) as
(714 D([n'/*1+ 1)

4r2d?

where @, (n, k, r, d) is defined by this relation. Since (r, d) = 1, then Y(n, k, r, d) is the
number of simultaneous solutions of the congruences

O(n, k, r,d) = Y, k, r, d) + ®>(n, k, r, d), (2.18)

n—2>—wkF=0 (mod2r), (2.19)

n—2—wk=2*+1;) (mod d), (2.20)
for which Z, W < 2rd. Therefore we can write
Y(n, k,r,d) =vy(n k,rynk,rd), (2.21)

where Y/(n, k, r) is the number of incongruent solutions in Z and W, modulo 2r, of
(2.19), and where y(n, k, r, d) is the number of incongruent solutions in Z, W, I,
modulo d, of (2.20). If we define

®y(n, k, 7, d) = V("’Izli’zr’d), (2.22)
then (2.18) can be written as
1/3 1/k
O, k,r,d) = 1+ 1)([n4r3 + Dy(n k. ) Oi(n, k,r,d)+ DOy(n, k, r,d).
(2.23)
Thus, if we let
Oimk.r) =) p,iln. k.r.d) (2.24)

d<é
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for i = 1,2, then (2.14) yields

(7' + D([n"*T+ Dp(n, k, 1)
452

O, k,r) = Oi(n, k,r)+ Ox(n, k,r). (2.25)

To conclude our preliminary work, let

v k) = ([n'3] + 1§[n1/k] + l)rZ;V V(n, k, r):?l(n, k, 7)7 (2.26)
and let
v k)= Oyn k1), (2.27)
r<nN
so that by (2.16) and (2.25), we obtain
v(n, k) < vi(n, k) + va(n, k). (2.28)

3. Lemmata on Congruences

We next develop some lemmata which will be useful in estimating v,(n, k) and
vo(n, k), and which are the analogues of Lemmata 1 and 2 from Hooley’s work [5].

LEMMA 3.1. Let g(u; v) be the multiplicative function of u defined on prime powers by

pr2 ifa=3, and p v,

gp*iv) = {1 (3.1

otherwise.

Then we have
Yn, k,r) < k + D)Or g(r: n).

Proof. If p* is any prime power, let y,(n, k, p*) denote the number of solutions in Z
and W, modulo p*, of

n—2>-~wk=0 (modp*). (3.2)

On noting that

W(n ko) < 4] Tn(n k. p%), (3.3)

p*lr

it suffices to show that for any prime power p*, we have

Yi(n k, p*) < 2k + 1) g(p™: ). (34
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We let p* be any prime power, and examine the possible values of a.. If o = 1, then
for each given value of W, there are at most three values of Z, modulo p, satisfying
(3.2), so that

Yy (n, k, p*) < 3p. (3.5)

When o > 2, we first examine solutions of (3.2) which do not satisfy the condition
Z=W =0 (modp). (3.6)

These solutions satisfy either n — Z> = 0, mod p, or m — W* = 0, mod p. In the first
case, for each such Z, there are at most k values of W satisfying (3.2), and in
the second case, for each appropriate W, there are at most three values of Z
satisfying (3.2). Consequently there are at most 2kp* solutions of (3.2) which do
not satisfy (3.6).

It remains to consider the solutions of (3.2) satisfying (3.6) when o« > 2. When
a = 2, there are at most p* such solutions, modulo p*. When o > 3, there will only
be solutions satisfying (3.2) and (3.6) if p* | n, in which case there will be at most

p?*~2 such solutions modulo p*.
So combining the conclusions of the previous two paragraphs, we see that if o = 2,
we have
¥i(n, k, p”) < 2k + 1)p”, (3.7

and if o > 3, then

2kp*, if pPyn

Lk, p™) < .
VKPS Y o 1pe i

(3.8)
Upon combining (3.5), (3.7), and (3.8), we see that (3.4) holds, which proves the
lemma. O

Another result we will require in our analysis of v(n, k, r) is expressed in the
following lemma.

LEMMA 3.2. Let T(n, k, r, p) denote the number of solutions in a, Z, W modulo p, of
the congruence

2k + a®) =n — Z° — W* (mod p). (3.9)
If p¥ 2r, then we have

T(n, k,r,p)=p*+O@*?).
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Proof. Let

4 P
biw) =Y ewy/p),  cw) =) e(ug(x)/p), (3.10)

x=1 x=1

where g(x) = 2r(r* + x?). It is known that if (u, p) = 1, then |b;(u)] < (j — 1)p'/?; see,
for instance, Lemma 4.3 in [11]. Then we have

P
T(n, k,r,p) :%Zb3(u)bk(u)c(u)e(—un/p). (3.11)
u=1

By applying the triangle and Cauchy-Schwarz inequalities, we obtain

p

p—1
Tk, 7, p) = PP < (1 max |b3<v>|) o> et (3.12)

u=1

1 1/2 12 1/2
<2p”2(p2|bk(u)|2> (pDc(u)F) : (3.13)
u=1

u=1

By considering the number of solutions to the wunderlying congruences
u* =V (mod p) and q(u) = g(v) (mod p) of the sums in (3.12), it follows from
orthogonality that

\T(n, k, r, p) — p*| < 2p'*)(kp)'*(2p)'2,

which gives the desired result. O

4. Estimation of vy(n, k) by the Selberg Sieve

In order to achieve a bound for vi(n, k), we will employ Selberg’s sieve method to
bound ©O(n, k, r), where the condition for each prime p which we are sieving out
is the property of being a quadratic non-residue, modulo p.

Let p denote a prime satisfying (2.8) and (2.9). Recalling (2.20) and that if d = p,
then /, must lie in H(p), we see that

1 1
v, k,r,p) = p* — 3 T ke, p) =Sy (n = 2%, k, p),

because each of the p? choices of Z and W allows only one possible value, modulo p,
for [,, so the latter two terms will subtract off those values for which /, is not in $H(p).
(Here, T(n, k,r, p) is defined as in Lemma 3.2, and y,(n — 213, k, p) as defined in
Lemma 3.1 compensates for the solutions of (3.9) for which p | @.) Combining this
result with (3.5) and Lemma 3.2 gives

1
y(n k. r,p) = 51?2 +0(™?), 4.1
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and from (2.22), this gives
®(n, k,r,p) = %Jr o(p~1/%). 4.2)
Since by (2.9), one has p > Dy, then if Dy is chosen sufficiently large, we have
0<®i(n k,r,p) <1. (4.3)

In order to utilize Selberg’s sieve method, let

1

S =1 ker d) =g 6 v dy 44
and following Hooley’s treatment in [4], let
fitd) =Y ukfd/k) = [(f@) - 1), (4.5)

kld pld

where we recall that d is square-free. Note that by (2.22), f(d) is multiplicative, and
that since f(p) > 1, then fi(d) > 0. From (2.24), (2.11), and (4.4), we see that

Ad i
Oi(n, k,r)= e
. )dgébmmén

(4.6)
Since the sum on the right hand side of (4.6) is the sum which appears in the main
term of Selberg’s method, then from [4], we have that ©;(n, k, ) has a minimum
value of 1/V(&) subject to the constraints on J;, where

2
1 (d)
Vé =V ,ré = N 4.7
(&) = Vikr(©) Z;ﬁw> (4.7)
and where the 1; which give this minimum are given by
2 2
gy = M) 5~ 1) p(da) (4.8)

TVO 4 ldy) =, fildi)

(dgd)=1

When D is sufficiently large, it follows from (4.2), (4.4), and (4.5) that when

p > Dy,
fip)=1+0(p7"* <2 and fi(p)>1/2. (4.9)
Then by (4.7) and recalling that primes dividing d must satisfy (2.8) and (2.9), we
obtain
1
V@145 > L (4.10)

Di<p<¢
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where the summation is over primes p satisfying p 4 rn and (3|p) = 1. Therefore,

D¢
log¢’

for some constant D», since r < N < n by (2.7), and since ¢ = nf, where 0 < < 1/3.
This gives

V(é) > @.11)

O(n, k, r) « n e, (4.12)

So along with (2.26), this gives

(k) < AR5 3 w (4.13)

r<N ¥

To estimate the sum in (4.13), we see from Lemma 3.1 that

nk,r e
S VEED S ), (4.14)
r<N r<N
When p | n,

logn] ;.
e 1 oy

= p P

s

so that since g(u; n) is multiplicative in u, we obtain

. ! 11
2 : r’lﬂg(r; I’l) < | | <1 _ _) | | (1 + -4 ngl’l) (415)
r<N ps<n p pln P P

pln

The final product in (4.15) satisfies

11 !
1—[(1 L ogzn) < 20)(:1)(1Ogn)(logn)”2 H (1 __) . (4.16)
pln p p p>(logm1/2 p

pln

From (4.14), (4.15), and (4.16), we have
kK, AN
ZM« n ]‘[(1-) < 1. (4.17)
r<n r ps<sn p
Finally, by using this estimate for the sum in (4.13), we see that

vi(n, k) < nV/AHR=p+e (4.18)
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5. Expression for v,(n, k) in Terms of Exponential Sums

We now need to estimate v,(n, k). To do this, we will express ®(n, k, r, d) using
exponential sums, and then appeal to (2.18) to obtain an expression for
®y(n, k,r,d). Let

Nmk.rdbo= Y 1

0<z<nl/3
0<w<nl/k
Z=b, W=c (mod 2rd)

Then from (2.13) and (2.17), we have

On k,r,d)=Y" > N(nkrdbo), (5.1)

lo. 0<be<2rd
where the inner sum is over b and ¢ such that
2P + 1) =n—b— & (mod 2rd). (5.2)
By orthogonality, one has

47d°N(n.k.r.d.b.c)y= > > e(wb—2Z)+ v(c — W))/2rd)

o<z<nl3 0 <uv<2rd

0<w<nllk
=i+ ik Y Ouze(ub/2rd)+iiz Y 0, re(ve/2rd)+
O<u<2rd O0<v<2rd
+ > Ousbyie((ub + ve)/2rd), (5.3)
O<u,v<2rd

where 7;; = [n'/] + 1, and

Oy =Owjoran= Y, e(—wV/2rd) < (5.4)

o< V<nlli

lw/2rd |l

Therefore, by substituting (5.3) back into (5.1), and comparing this with (2.18), we

see that
[nl/k] +1
Oy (n, k, r, d) :Wo X;d 0,38, k, r, d; u, 0)+
nl/3]+ 1
% Y 0uiS(nk,r,d; 0, )+
O<v<2rd
1
+Wo ZZ‘d 0,30,,Sn, k,r, d; u,v), (5.3
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where

S(n.k,rodiu,v) =" Y el(ub+ve)/2rd), (5.6)

Iy 0<b,e<2rd

with the inner sum of (5.6) being over b and ¢ satisfying (5.2).
Let S*(n, k,r,d; u, v; I;) be the inner sum of (5.6), so that

Sk, rodyu,v) =" S*(n,k,r.d;u, v L) (5.7)
la

On noting from (2.7), (2.24), and (2.27) that
rd < NE < 12 < oy,

then it follows from (5.4) and (5.5) that

1/k S, k,r,d;u,0
Oy(n, k,r, d) <« Z |S(n, k,r,d;u )|+
i’d 0 |u|
<lu|<n
+ﬁ Z |S(n, k,r,d;0, V)|+
0<|v|<n [v]

|S(n, k, r, d; u, v)|
+ > WG . (5.8)

0<|ul,|v|<n

Next, from (2.27), (2.24), and (5.8), we obtain

1 |pd'||S(nvks rvd; U,O)|
1/k 2 Y
va(n, k) < n'* ) T E > 7 +

O<|u|l<n r <Nrd<52

AP NS

0<|v|<n l <N d<

+ > S Ioa ISk, ds u,v)). (5.9)

O<|ul,|v|<n r <Nd<C

mMMMkrdom

IMIIVI

We now need to bound the size of p, which occurs in our expression for v,(n, k), so
we now consider (4.8), which gave the optimal values for the A;. In examining the
sums given in (4.8), if we recall (4.9) and note that d; and ds are square-free, we
see that

Mz(d3) o(d) e 24¢ €
Z m <T(d)2 Ld K (E)Y «n', (5.10)
(l'3|d
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and that

u (d4) ,uz(d4) (dy) n‘
< 29« —. 5.11
dy <¢/d fl(d4) d ;/d fl(d4) d4§/d d ( )

(dg,d)=1

By using (4.11) and the latter two estimates in (4.8), we get

&

/ — 12
ha L (5.12)
so that by (2.11), we have
1 nit(d)?
pg L1’ — < 1« L=
[dI; sy d [d%}‘;d d d
By substituting this bound for p, into (5.9), we obtain
va(n, k) < nVv3(n, k) + 0V vy(n, k) + nfvs(n, k), (5.13)
where
1 S, k,r, d u, 0
va(n k)= Y Tl Z Z I5( )| (5.14)
O<|u|<n SN gg¢
1 |S(n, k r, d 0,v
v k)= Y — Z Z ( )|, (5.15)
O<|vl<n r< N d<é
and

Z Z|S(nkrduv)| (5.16)

r<N d<

s k)= )

0<|ul,|v|<n |M||V|

In order to estimate v3(n, k), v4(n, k), and vs(n, k) we will first examine some results
about exponential sums.

6. Some Results on Exponential Sums

We now develop some results about exponential sums which will assist us in esti-
mating S(n, k, r, d; u,v). The first lemma will allow us to exhibit a multiplicative
property of an exponential sum under suitable conditions.

LEMMA 6.1. Let Y (m; x, y) indicate a condition on a positive integer m and integers x
and y satisfying the following two properties:

() Ifx =x(mod m)andy =y (mod m), then WY (m; x, y) is equivalent to ¥ (m; x', y/).
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(2) If my and my are coprime, then Y(mymo; x, y) holds if and only if ¥(my; x, y) and
W(my; x, y) both hold.

Let the exponential sum P(m; u,v) be given by

Pim;u,v)= Y e((ux+ vy)/m). (6.1)

Y(k;x,y)
0<xy<m

Then if (my,my) = 1, we have

P(kika; u, v) = P(my; mau, myv)P(my; myu, myv), (6.2)
where my and my are defined by the congruences

mm; =1 (mod my), mymy =1 (mod my).

Proof. The proof relies on the Chinese Remainder Theorem, and Hooley gives a
sketch of the proof following Lemma 3 in [5]. O

This leads to the following useful corollary.

LEMMA 6.2. Let P(m; u,v) be defined as in Lemma 6.1. If u and v are given and
(m1, my) = 1, then there exist integers uy,vi,u,v2 such that

P(mimy; u, v) = P(my; uy, vi)P(my; up, v2),
with
(mimy, u, v) = (my, ur, vi)(ma, uz, v2).

We will also need a bound on exponential sums which comes from a result of
Chalk and Smith [3], which they proved using algebraic geometry.

LEMMA 6.3. Let

ux—+v
Qumuvi= Y (=), (6.3)
3 k= m
s

If p¥ (u,v), then

|0@; u, v; )| < (K + 2k — 3)p'* + k2. (6.4)

Proof. From Theorem 2 in [3], it suffices to show that for every 7in I,, we have that
ux + vy — t does not divide x* + y* — pin F,[x, y]. It is easy to check that if p} (u, v)
and k =4 or 5, then ux + vy — ¢ can not divide x* +y* — p. O
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The estimate given in the preceding lemma allows us to bound an exponential sum
arising from S*(n, k, r, d; u, v; I;). In order to obtain a bound for Qy(m; u, v; u) when
m is a prime power, we require the following results.

LEMMA 6.4. Let

J
W(m; ay, ar) = Z e(w) (6.5)
0< x<m m
Then for o = 3,
WO a1, @) K p“/z(p“, ai, a2)1/4(p°‘, a2)1/4. (6.6)

Proof. Forj =1, 2,let a; = pia;, where p t a;. (If either ¢; = 0, we can replace it by
p* without affecting (6.6).) We note that the result is trivial when p* | (a;, a3), so that
we can suppose that at least one of the y; is less than o.

Suppose that y; > y,. Then

W@ a1, a) = p? W 7 p" ay, a).

However, W(p*; by, b;) = 01if p | by but p} b5, so that in this case, W(p*, a;, az) = 0.
Therefore, we can now restrict our attention to the case where y; < y,. Then

WQ*; ar,a) = p" W@ ™ 4y, pt @), (6.7)
From the proof of Lemma 7 in [§], we have that if p} b, then
W(p*; by, by) < p*(p*, ax)'/*.

Thus, we obtain from (6.7) that

WO ar, ar) < p>'1+(%71)/2(pvrv1 7p1771)1/4

= pl/DTO (2 py4, (6.8)
By recalling that y; < vy,, we see that (6.6) follows from (6.8). O
LEMMA 6.5. Let
EQin= Y e<M> (6.9)
1<ypyp <p* P

yl‘zylzc (mod p%)
Then

Er(p*; v) < p*(v, p)E2/ED, (6.10)
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Proof. The cases o = 1 and 2 are trivial, so we can suppose o > 3. We begin by
noting that the contribution to Ei(p*; v) from yi, y, for which p/*k1 | (31, y,) is

Vi [o/k1 o—[o/k]

v =)\ _ [ vy
e( p:j [:zklz ) = Z (px fal/k]>
6.11)

_ pZ(afra/kW), lfpotf[x/k'\ |v
0, otherwise.

J1.ir=1

Therefore, this contribution does not exceed our bound in (6.10).

We can now restrict our attention to the contribution from y;, y, for which
y1 =p'y, and y, = p'y,, where 0 <y < [a/k] and pty,y,. Let Ui(m) denote the
set of reduced residues w modulo m for which w* =1 (mod m). Then for a given
value of y in the above range, the contribution to Ej(p*; v) from the associated values
of y1, yz is

> (=) 612

K=k (mod pr=7k)
pliin

Note that % = 74 (mod p*~%) if and only if there exists @ € Uy (p* %) such that
$; = oy, (mod p*~7%). Therefore, if we replace ; by wy, + cp* 7%, we can rewrite

(6.12) as
(p*(k 1)> (6.13)

Z i (V((U— 1)J’2>
el (p*—7k) }2 1
I3
Since the inner sum is 0 unless p"*~1 | v, and since Uy (p*~7%) has at most k elements,
the contribution from a particular value of y is at most kp*t*=2) if prk=D |,
and is 0 otherwise. Let p“|lv, where we adopt the convention that a = oo if
v=20. Then a particular y satisfying 0 <7y < [a/k] — 1 will only contribute to
Ex(p*; v) when 7y < 4. By summing the contribution from the values of y with
0 <y < [a/k] — 1, and noticing that all other values of y are handled by (6.11),
we see that (6.10) holds. O

p 7(e=1)

The preceding two lemmata allow us to obtain a bound for Q(p*; u, v; p).

LEMMA 6.6. Let Qi (p*; u, v; ) be defined as in (6.3), let V(m; a) be the multiplicative
function of m defined on prime powers by

1, ifao=1andplka,

. .14
®*; a) {pa/Z otherwise, o
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and let H(m; wi, wa; a) be the multiplicative function of m satisfying

", W1)1/4(p“, wz)ﬁ, if o =3andp|a,

HP™; wi, wa; a) = (6.15)
L, otherwise.
Then we have
Or(m; u, v; ) < m"* 85 (m; (u, v)YH(m; u, v; ). (6.16)

Proof. By repeated application of Lemma 6.2, it suffices to prove that for any
prime power p”,

Or(p™; u, v; p) < Ap™*V(p*; (u, v)YHP*; u, v; W), (6.17)

where 4 is a positive constant, since 4°"™ « m*. So let p* be a given prime power. If
o = 1, then (6.17) follows from Lemma 6.3. If & = 2, then (6.17) follows from (3.7). If
> 3 and p } u, then (6.17) follows from (3.8).
It remains to consider the cases where « >3 and p|pu. By applying the
Cauchy-Schwarz inequality, we obtain the bound

o o o

lprZ€<IX3 +ux) pze(ty +vy ,u)
P P

t=1 x=1 y=1

| Ok(@™; u, v; )| =

1 2\ 2
1 & 1 EE k4w
< <7Z|W(p“; : u)|2> — Ze(Lﬂ) (6.18)
P Ly p
Moreover, by Lemma 6.4, the first term of (6.18) is bounded above by
| 2 1/2
(_szx(pa’ Z)I/Z(pa’ u)1/2> < pa/Z(pu’ u)1/4. (619)
P

We can rewrite the second term of (6.18) as Ex(p*; v)'/?, so that (6.17) follows from
using the bounds from (6.19) and Lemma 6.5 in (6.18). This completes the proof
of the lemma. ]

We have now laid the framework to obtain an expression for S(n, k, r, d; u, v) that
will be used to estimate v3(n, k), v4(n, k), and vs(n, k). Let

U(n,k,r,d; ay, ay; ly) = Z e((a1b + axc)/d), (6.20)
0< b,e<d

where the sum is over b, ¢ for which
2P + 1) =n—b—c& (mod d). (6.21)
If S*(n, k, r, d; u, v; I;) is as defined in (5.7), then by Lemma 6.1, and by recalling that
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@r,d) =1,

S*(n, k, r, d; u, v; 1j) = Ox2r; du, dv; n)U*(n, k., r, d; 2ru, 2rv; I), (6.22)
where dd = 1 (mod 2r), and 2r2r = 1 (mod d). Let

Un k. rodar,a) =Y Y el(arb + ax0)/d), (6.23)

li 0<be<d
where the sum is over I;, b, ¢ satisfying (6.21). Then by (6.22) and (5.7),
S(n, k,r,d; u,v) = Qx(2r; c_z’u c_lv; mU(n, k,r, d, 2ru, Zv). (6.24)
Recalling that (2r, d) = 1, we can use Lemma 6.6 to obtain

S(n, k,r,d;u,v) < r1/2+£V(r; (u, V)YH(r; u, v; )| U(n, k, r, d; 2ru, 2rv)|. (6.25)

7. Estimation of v3(n, k) and v4(n, k)

In order to bound v3(n, k) and v4(n, k), it is sufficient to bound U(n, k, r, d; 2ru, 2rv)
trivially in (6.25), so that

Sn, k,r,d;u,v) < r1/2+"d2V(r; (u, vV)YH(r; u, v; n). (7.1)

We will need the following result.

LEMMA 7.1. Let Fi(m; a) and Fy(m; a) be the multiplicative functions of m defined on
prime powers by

, “if pla,
Rgta =0 Trle (7.2)
1, otherwise,
and by
PEDRED g
F(p* a) = 7.3
2Ap"; a) {1, otherwise. (7.3)
If j=1or 2 and a < n, then
Yo Fnmr' < Y FtnVsar <. (7.4)
O<t<n O<t<n

Proof. Since F|(t; a) < F5(t; a) and V(t; a) = 1, it suffices to show that the final
inequality in (7.4) holds when j = 2, so let j = 2. By multiplicativity in #, and since

k=2 b o1
2k—1) 27 T2k-1)
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we have that the left side of (7.4) is bounded by

1+%+ p—m/2 14+ p—m/Z(k—l)
p

[ﬂ)Ygt;‘ m=3 ;\;Z m=1
N3
< (nay [ (1 ——) <,
p<n p

where we have used that C*"® « (na)® for any constant C. This completes the proof
of the lemma. O

By using the bound for S from (7.1) in (5.14), we obtain

vi(n, k) < Z

0 <lul<n

Z pl2e Z V(r; uyH(r; u, 0; n)

r<nl/3 a<@

1
|ul

« n1/0+2h+e Z Fi(u; n) Z V(r; u)F>(r; n)
r

O<u<n r<nl3

< n(1/6)+2ﬁ+8’ (75)

since Lemma 7.1 provides upper bounds for the final two sums in (7.5).
In a similar manner, we obtain from (5.15) that

Z pml2e Z V(r; vYH(r; 0, v; n)

r<nli3 a<é

va(n. k) < Y

O<|v|<n |V|

« n(1/6r+2p+ Z Fy(v; n) Z V(r; v)F((r; n)
v r

O<v<n r<n?/’3

< n(1/6)+2[}’+8. (76)

8. Estimation of U(n, k,r,d; u,v)

In order to bound vs(n, k) we will need a more precise estimate for U(n, k, r, d; u, v)
than that used in (7.1). In order to achieve this, we will use estimates based on
the work of Deligne. The methods we use are based on those developed by Hooley
in [6, 7]. We will require the following lemma concerning absolute irreducibility,
which is Theorem III.1 B of Schmidt [10].

LEMMA 8.1. Let

n0x, 1) = eoy" + @1 ()" + -+ @, (),
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where ¢ is a non-zero constant, be a polynomial with coefficients in a field K. Let
1
o(n) = max —deg(e)),
1<i<ml

and suppose that 6(n) = j/m with (j,m) = 1. Then n(x, y) is absolutely irreducible.
The next lemma will provide a bound for U(n, k, r, d; u, v).
LEMMA 8.2. If d is square-free number whose prime factors satisfy (2.8) and (2.9),
then
Umn,k,r.d;u,v) < d(d,u). (8.1)

Proof. We point out that it should be possible to obtain the bound d (d, u, v), but
this bound will prove sufficient for our purposes. By repeated application of
Lemma 6.2, it suffices to show that

Umn,k,r,p;u,v) < p(p,u) (8.2)

for any prime p satisfying (2.8) and (2.9). Since (8.2) holds trivially when (p, u) = p,
we can suppose that p fu. Let

Gn,k,r,p,u,v) = Z e(ux * vy), (8.3)
0<x,pyz<p p
where the sum is over X, y, z satisfying
2r(? +2%) =n — x> — yF (mod p). (8.4)
Then
1
Un,k,r,p;u,vy=—=Gn, k,r,p;u,v) + Z e(m)
2 0 < x,y<p p
ux +v
+ Y e( Y ) (8.5)
0<xy<p P

2r3=n—x3—yk (mod p)

since /, must be a quadratic nonresidue modulo p. The second term on the right side
of (8.5) is zero because p t u, and the final sum in (8.5) is O(p), so that

Un, k,r,p;u,v) <L Gn, k,r,p;u,v)+ O(p). (8.6)
Therefore (8.2) follows from showing that

Gn, k,r,p,u,v) <L p. (8.7)
Let

h(x,y,2) = x>+ +2r(? +2%) —n, and w(x, y) = ux + vy, (8.8)
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where for convenience, we omit the dependence on n, k, r, u, and v. Next, let E
denote the algebraic closure of IF,. We point out that (2.9) gives that p > 3, and
that 2r # 0 when considered as an element of I7,. Also, since u is an integer and
p tu, then u# 0 in [F,. In [7], Hooley uses Deligne’s resolution of the Riemann
hypothesis for algebraic varieties over finite fields to develop conditions under which
(8.7) will hold. Theorem 5 of [7] shows that (8.7) is true provided that the following
two conditions are satisfied:

(H) Ifre FT,, then the curve defined by A(x, y, z) = 0 and w(x, y) = ¢ is absolutely
irreducible over I,(), the algebraic closure of the function field I'(z), for all
but at most D3 values of ¢, where D3 is some absolute constant.

(2) For all 1€, and for any natural number o, the number of (x,y,z) € }F;L
satisfying A(x, y, z) = 0 and w(x, y) = ¢ is O(p”).

Note that since p 4 u, then w(x,y) =t means that x = u~'(t — vy). From this
expression for x, we find that /(x, y, z) becomes

h(y,2) = u3(t —vy)® + Y + 217 + 2% — . (8.9)

Then the number of solutions to /,(y, z) = 0 is O(p*), because for each choice of
y € I, there are at most two values of z satisfying the equation, so that Condition
(2) holds.

Showing that condition 1 holds will require proving that /,(y, z) is absolutely
irreducible except for at most Ds values of 7. If k = 5, then by Lemma 8.1, we have
that %,(y, z) is absolutely irreducible for all values of ¢ € E, because (2,k) =1 in
this case. When k =4, we will have to resort to direct attempts at factoring
h(y, z), which will show that Ay, z) is absolutely irreducible over I',(¢) unless ¢
is one of the solutions of certain polynomials.

So suppose that k = 4, and that

h(y, z) = g1(y, 2)g2(, 2) (8.10)
is a non-trivial factorization of /,(y, z), where g1, g2 € F,(¢)[y, z]. The degree of g; and
g» with respect to z can not be two, or else the other polynomial would be constant.

Therefore, on multiplying g; and g, by suitable elements of E, we can suppose
without loss of generality that

g, 20)=g» +yz j=12, 8.11)

where y? = 2r. On equating the coefficients involving z in (8.9) and (8.10), we find
that

810) = -5, (8.12)
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Let g,(») = 2 + 1y + co. From (8.9), (8.10), (8.11), and (8.12), we see that

50 =y +u =) + 27—

By equating the coefficients of y in this last equation, we see that

3 =-1, (8.13)

2c100 = uV, (8.14)
&+ 2000y = =3u~ v, (8.15)
2coc1 = 3u" v, (8.16)

¢ =n-2r —u>r. (8.17)

Suppose first of all that v =0 in IV, and that ¢ # 0. Note from (8.13) that ¢, # 0.
This means that ¢; = 0 by (8.14), and then that ¢y = 0 from (8.15). Then from (8.17),
we see that

£ =ud(n—2r°. (8.18)

Next suppose that v # 0in [, that ¢ # 0, and that (8.18) does not hold. By (8.17),
our final supposition shows that ¢y # 0. Using (8.13), (8.14), and (8.16) to solve for
2c1, we see that

—u e, = 3c51u_3v12. (8.19)
By squaring both sides of (8.19), and then using (8.17) to substitute for ¢j, we obtain
w3 42 —np* =914, (8.20)

So if (8.10) is a nontrivial factorization of /,(y, z), then ¢ is either zero or satisfies
(8.18) or (8.20). Since the number of solutions ¢ in E of (8.18) or (8.20) are bounded
by 3 and 4 respectively, then there are at most eight values of 7 in ]FT, for which /,(y, z)
fails to be absolutely irreducible. This proves that condition 1 holds, which by our
previous discussion proves (8.7). The lemma now follows from (8.6). O

9. Estimation of vs(n, k)

We can now use the bound for U from the previous section to obtain a bound for
vs(n, k). From (5.16), (6.25), Lemma 8.2, and recalling that (2r,d) =1 in (6.25),
we have that

sk < Y 33 PR (O v i)

ullvl, &,

« nl1/2+ Z Fi(u; n) Z V(r; (u, v))F(r; n) Z d, u). 9.1)

r
O<u,v<n r<nl3 d< &

O<|ul,|v|<n
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The final sum in (9.1) satisfies

D duy< D 6Y 1< E(u) < P 9.2)

d<é& Ou  a<e
old
By Lemma 7.1, the sums over « and r in (9.1) are O(»°), so that from (9.1) and (9.2),
we have

vs(n, k) <« nt/P+2b+e, 9.3)

10. Completion of the Proof
We now complete the proof of Theorem 1.1. By (5.13), (7.5), (7.6), and (9.3), we have

va(n, k) « n1/2+2h+e, (10.1)
By (2.1) and (2.4), we have
Re(n) < v(n, k) +n'/? (10.2)

From (2.28), (4.18), and (10.1), we see that choosing f to be 3; — & will minimize our
bound for v(n, k), so that (10.2) will yield Theorem 1.1.
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