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DOUBLING CONSTRUCTIONS IN LATTICE THEORY 

ALAN DAY 

ABSTRACT. This paper examines the simultaneous doubling of multiple intervals of 
a lattice in great detail. In the case of a finite set of W-failure intervals, it is shown that 
there in a unique smallest lattice mapping homomorphically onto the original lattice, in 
which the set of W-failures is removed. A nice description of this new lattice is given. 
This technique is used to show that every lattice that is a bounded homomorphic image 
of a free lattice has a projective cover. It is also used to give a sufficient condition for 
a fintely presented lattice to be weakly atomic and shows that the problem of which 
finitely presented lattices are finite is closely related to the problem of characterizing 
those finite lattices with a finite W-cover. 

0. Introduction. The doubling of intervals and pseudo-intervals has proven to be a 
valuable construction tool in the solution of several problems in Lattice Theory—see the 
references for some of the applications. In one such application, [2], the construction's 
ability to "repair" W-failures is used to show that all finitely generated free lattices are 
weakly atomic. The method of proof required firstly, the simultaneous repairing of all W-
failures in a lattice, and secondly, the iteration of this repair process to produce an inverse 
limit that satisfied Whitman's condition. The stated result then followed by initializing 
the repair process to the lattice FD(3) and invoking an equivalence proved in McKenzie 
[12]. One should also note that a syntactical proof of weak atomicity was eventually 
found by Freese and Nation in [8]. 

Attempts to apply the above methods from [2] to solve other problems in Lattice 
Theory have been thwarted particularly at the first stage of this construction. The si­
multaneous "repair" of all W-failures in a given lattice, L, was obtained by taking the 
(generalized) pullback of all individual repair epimorphisms L[7] —• L. This produced 
an oversized prehomomorphic image of L that lacked a decent description as a lattice 
manufactured from L and the family of all W-failure intervals on L. The lack of a lattice­
like description limited further manipulations to the generality of Category Theory. The 
fact that certain sublattices of this large lattice would serve just as well showed that it 
also contained many redundancies. 

In this paper, we examine the multiple doubling of intervals—actually of convex 
sets—in great detail. In § 2, we present a complete lattice description of the simultaneous 
doubling of a family of convex sets on a given ordered set that generalizes the original 
interval construction introduced in [1]. In § 3, we restrict our attention to doubling finite 
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sets of W-failure intervals on a lattice and show that there is a unique smallest sublat-
tice of the full pullback that maps by restriction onto the original lattice. This sublattice 
provides then a canonical W-failure repairing and is described by the induced binary re­
lation of "precedence" defined on intervals. In § 4, we consider (inverse) limits of this 
canonical repairing and show that every bounded lattice has a projective cover (in the 
variety of all lattices). 

In § 5, we apply the earlier results to the construction of finitely presented lattices. It 
is shown that, starting with a certain model of a partial lattice, P, FL(P) is constructed by 
iterating the canonical repairing of "Dean-failure" intervals and taking the appropriate 
sublattice of the inverse limit. Thus finitely presented lattices are produced in the same 
way that FL(3) was produced from FD(3) in [2], and projective covers of bounded lattices 
in § 4. This shows that the existence of finite projective covers of bounded lattices and 
the finiteness of finitely presented lattices are identical problems intimately connected 
with the doubling construction. 

Finally in § 6, we show that finitely generated free distributive lattices can be produced 
by the multiple doubling of intervals from certain canonical models. This provides a new 
way of counting the elements of such lattices that might be of some future use in solving 
Dedekind's problem. 

The author thanks Joel Berman, Ralph Freese, J. B. Nation, and Vasek Slavik for their 
help in the preparation of this manuscript. 

1. Preliminaries. In McKenzie [12], many important concepts for the study of lat­
tices were introduced. A lattice homomorphism, <p:L —• M, is called lower bounded if 
for every m G M, {x G L : ipx > m} is either empty or contains a smallest member. 
That (p is upper bounded is defined dually, and (p is bounded if it is both lower and upper 
bounded. 

When (p:L —* M is an epimorphism, i.e. surjective, then (p is lower [resp. upper] 
bounded if and only if there exists a join [resp. meet] monomorphism, a:M —• L 
[/3:M —• L] satisfying ay < x iff y < (px [resp. x < (3y iff <px < y] for all x G L 
and all y G M. A map a: M —• L [resp. /3:M —> L] that satisfies the above property is 
called a left [resp. right] adjoint of (p .l 

A finite lattice, L, is called lower [resp. upper] bounded if any epimorphism, FL(n) —• 
L is lower [resp. upper] bounded. 

The interval construction, L[7], works just as well by replacing the interval, /, of a 
lattice, L with an aribtrary convex set. One can also replace the lattice, L, by an arbitrary 
ordered set, P. The following is just a slight generalization of the original definitions and 
results of [1]. 

DEFINITION. Let (P, <) be an ordered set and C Ç P a convex subset of P. The 
ordered set, P[C], produced by doubling the convex subset C, is given by: 

1. P[C] : = ( P \ C ) U ( C x 2 ) ; 

This reverses the role of a and (3 used by McKenzie [12] and Freese and Nation [8]. 

https://doi.org/10.4153/CJM-1992-017-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-017-7


254 A.DAY 

2. A relation, <p[q, on P[C] defined by: for any x,y G P\ C and any (z, /), (tj) G 

C x 2, 

a.* </>[q.y iff* </>)>; 

b . x < P [ q ( f j ) i ff* <pf; 

c (2,0 </>[q y iff z<p;y ; 
d. (z, /) <p[q (fj) iff z <p x and / < 2 7; 

3. Functions, « :P[C] —» P, and a,(3:P —• P[C] defined by taking the (disjoint) 

union of the identity function, 1P\ c , with the projection, C x 2 —• C, and the two 

embeddings, C —• C x 2, given by JC H—• (*, 0) and x t—• (JC, 1), respectively. 

THEOREM [ 1 ]. L f̂ Cbea convex subset of an ordered set, (P, <). 7/i^« (P[C], <P[Q ) 

/5 a« ordered set, and the mappings K: P[C] —• P and a,(3: P —> P[C], «r^ 6>rJ^r /zo-

momorphisms. Moreover, a [resp. (3 ] is the (injective) left [resp. right] adjoint of the 

surjection, K. Thus a andn preserve all existing joins, while K and /3 preserve all exist­

ing meets. 

The connections between lower and/or upper bounded lattices and the doubling, in 

lattices, of particular classes of convex sets appeared in [3]. We first need the relevant 

definitions. 

DEFINITION. Let L be a lattice, and C, a convex subset of L. C is called a lower 

pseudo-interval if there exist u,v\,...,vn G L such that u < vt for all / and C is the 

(finite) union of the intervals, [u, v/]. An upper pseudo-interval is defined dually. 

Clearly a convex set is an interval if and only if it is both a lower and an upper pseudo-

interval. If L is a finite lattice, then a convex C Ç L has a least [resp. greatest] element 

if and only if C is A-[resp., V-] closed. Thus lower [resp. upper] pseudo-intervals are 

precisely the convex A-[resp. V-] subsemilattices. 

THEOREM [3]. The class of all lower bounded (finite) lattices is the smallest isomor­

phism closed class, LB, satisfying the properties: 

1. 1 G LB, where 1 is the singleton lattice; 

2. L G LB and C Ç La lower pseudo-interval implies L[C] G LB. 

We leave to the reader the proper formulations of the above theorem for upper bounded 

lattices with upper pseudo-intervals, and bounded lattices with intervals. 

2. The doubling construction. In this section we extend the definition of doubling 

a single convex set to handle the simultaneous doubling of an arbitrary collection of 

convex sets. We show that this multi-doubling is the pullback of the family of canonical 

epimorphisms determined by individual doublings. 

A collection of convex sets from a given ordered set, say P, can be dealt with in two 

natural ways: as a subset of Cvx(P), the system of all convex subsets, or as an indexed 

family of convex subsets, i.e. a function with codomain, Cvx(P). It will be convenient 

for our purposes to always work with the indexed family representation. Therefore if we 
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speak of the set of convex subsets, C = (Ca : a G X), we are implicitly assuming that 
the indexing function, a i—+ Ca, is injective. 

DEFINITION. Let P be an ordered set, and C = (CA : A G A) be a family of convex 
subsets of P. We define the doubling of the family, C = (CA : A G A), of convex subsets 
of P by: 

1. For x G P, A(JC) = Ax := { A G A : J C G C A } . 

2. P[C] = P[CX : A G A] := \j{{x} x 2 ^ : JC G P}. 
3. For (JC,X), (y,y) GP[C], (x9X) < (y,Y) :& x < y <md Axil Ay Ç X =ï Y, 

where => is the Boolean operation of implication, i.e. X =ï Y = (A\ X)U Y. 
4. Functions, /c:P[C] -+ P and a, /?:P -* P[C] defined by /C(JC,X) = x,ax = 

(JC,0) and/3x = (x,Ax) respectively. 

THEOREM. L^ P Z?e an ordered set, and C = (CA : A G A) be a family of convex 
subsets of P. Then (P[C], <) is an ordered set, and the mappings, K : P[C] —• P arcd 
a, /? : P —• P[C], are order homomorphisms. Moreover, a [resp. f3 ] is the (injective) 
left [resp. right] adjoint of the surjection, K. Thus a and n preserve all existing joins 
while K and /3 preserve all existing meets. 

PROOF. That < is reflexive is trivial. Anti-symmetry follows easily from the obser­
vation that Ax D Ay Ç X => Y if and only if Ay (1 X Ç Y. To show transitivity, we need 
the following claim: 

x<y<z=^AxnAzÇ:Ay 

Now if (x,X) < (y, Y) < (z,Z), we have Ax H Az = Ax H Ay n Az. Therefore 
AxH AzÇ(X=>Y)n(Y=>Z)ÇX^>Z, as desired. 

To show the claim, we need only note that for any convex set Ca containing x and z, 
we have y G Ca for all y G x\ z. That is a G Ax Pi Az implies a G Ay. m 

COROLLARY. If\C\ = l, i.e. A = { 1} and C = { C}, fAéTi P[C] = P[C]. 

PROOF. Since A = { 1}, 2A = {0,A} and for any (x,X), 0 and A are the only 
possible values of X Ç Ax Ç A. Define ip:P[C] —• P[C] by 

[JC, xgC 
(p(x9X) = I (JC,0), x G C a n d X = 0 

1(JC, 1), j cGCandX=A. 

That (p is an order isomorphism is an easy exercise. • 
Since the dual of an ordered set [and any convex subset] is again such, we can also 

consider the doubling of convex sets associated with the dual structure, P^ = (P, >). Note 
that as sets, P[C] = Pa[C], and the order relation on Pa[C], which we write imprecisely 
as <a , is given by 

(x,X) <d (y,Y) &y<x [in P] and Ax n Ay C X =* Y. 
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LEMMA. The function 3: P[C] —> P[C] defined by 3(JC,X) := (JC, Ax \ X) provides 

a dual order isomorphism between (P[C], <) and ( /^[C], <d) . 

PROOF. For (;c,X) G (P[C] = ( / ^ [ C ] , 3 2 ( J C , X ) = 3(JC, Ax \ X) = (JC, Ax \ (Ax \ 

X)) = ( JC,X) . Therefore 32 = 1(/>IC]). 

For(jc,X), (y,Y) G (P[C],3(y,F) < 2 3(JC,X) iff(y,Ay\ Y) <d (JC,AJC\ X) iff 

JC < y and Ax H Ay Ç (Ay \ K) => (Ax \ X) = X => Y iff (x,X) < {y, Y). • 

The duality above allows results concerning joins and meets in P[C] to come in dual 

pairs. 

THEOREM. Let P be an ordered set, and C = (C\ : A G A) be a family of convex 

subsets of P. For any family, («/, A/)/e/, in P[C], its supremum exists in P[C] if and only 

if the supremum of(af)iç.i exists in P. In this case, we have 

\f(ahAi) ={\Jai,M\Jai)n\jAi). 

PROOF. Let (a, A) = y (at, At). by applying «, which preserves existing joins, we 

get a — K,(a,A) — Kl(y(aijAi)) — V«(fl/,A/) = y at. 

Conversely, assume a = y at exists in P and define A := Aa n \jAt. Now (JC,X) is 

an upper bound of ( a/, A/),€/ if and only if for all / G /, at < x and Ax Pi Aat Ç A,- =4> X 

if and only if a < JC and for all / G /, AJC D Aai Ç At => X. Now at < a < x implies 

AJCD AaC\ Aat = AxD Aa,-. Elementary reworking of the last equivalence makes (JC,X) 

an upper bound of («/, At)ieI if and only if (a, A) < ( J C , X ) . m 

COROLLARY. Let P be an ordered set, and C = (C\ : A G A) be a family of convex 

subsets of P. For any family, (a/,A;);G/, in P[C], the infimum exists in P[C] if and only 

if the infimum of(ai)ieI exists in P. In this case, we have 

f\(ahAi) = (/\ah A(A fl«) H f|(A«/ => At)). 

PROOF. We need only apply duality and calculate A( «/, At) = 3(V 3( «/, A/) ) to ob­
tain the meet formula. • 

COROLLARY. IfP is a (complete) lattice, then so is P[C]. In this case, K : P[C] —• P 

is a (complete) lattice homomorphism and a,(5 : P —• P[C] is a (complete) join [resp. 

meet] semilattice monomorphism. 

If C = (C\ : A G A) is a family of convex subsets of an ordered set, P, then for any 

subset of the indices, say H Ç A, we have the subfamily, 

C | S := ( Q : £ G E), 

obtained by restriction, and a canonical function, 

« A , E : P [ C ] - ^ P [ C | E], 

called the (A, E)-projection defined by (JC,X) —• (JC,X D S ) . If X Ç E Ç A, we easily 

have KEX ° ^A,H = «A, I , and that «;-,- is the identity on P[C | S] . Note that for S = 0, 

P[C | 0] = P and the (A, 0)-projection is the previously defined ^ : P[C] —> P. 
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LEMMA. For any E Ç A, the (A, E)-pwjection «A^: P[C] —• P[C \ E] is a surjec-
tive order homomorphism with left and right adjoints, 

<xzji,l3zA:P[C\ S] —P[C] 

defined by (x,X) i—• (x,X) and (x,X) t—-> (JC, AT D (5 => X) respectively. 

PROOF. One need only note that, for X Ç Ax, Ex = Ax D E and (Ax \ X ) ( 1 S = 
Ex \ X. Now the join formula and the meet formula, via the duality lemma, are easily 
deduced for the projection. • 

By our previous remarks, any suitably closed system of (E, X)-projections will form 
a commutative diagram. We are particularly interested in the system, 

(P[C]-^P[C\Z]-^P)Ee«, 

where 7r is a partition of A. 

LEMMA. If IT is a partition of A, the above diagram is a (generalized) pullback. 

PROOF. Set-theoretically, a typical member in the (generalized) pullback of 
(P[C | E] —* P)HGTT is of the form ((jts,Xs))s67r where xz = jts>, for all E, E' G TT 

and X~ Ç Ex = Ax fï E. Since 7r is a partition of A, we have for any x G P and 
X,X' Ç Ax that X = X! if and only if for all E G ?r, X H E = X! H E. Therefore the 
elements of the pullback can be represented uniquely by the elements of P[C]. m 

COROLLARY. P[C] is the [generalized] pullback of the family. (P[C\ ] —• P)AGA-

PROOF. Let TT be the identity partition of A. • 

3. Lattices and ^-failure intervals. As mentioned in the introduction, several im­
portant applications of the (old) interval construction have dealt with particular cases of 
the general construction, when the underlying ordered set is a (finite) lattice, and when 
the family of convex subsets is a (finite) set of intervals, especially W-failure intervals. 
In these applications, the main concern was to "repair" the W-failures of a given (finite) 
lattice by the construction of a suitable preimage (finite) lattice. 

The known method, [2], of repairing the W-failures of a (finite) lattice, L, is to let I 
be the set of all W-failure intervals of L and produce « : L[I] —•» L. In general, L[I] is 
extremely superfluous in that L[l] will contain many sublattices that map via K onto L 
and any of these would do just as well. The main result of this section is to show that, 
when L is finite, and I is a (finite) set of W-failure intervals, L[I] contains a unique least 
sublattice, L<[I], with this property. This sublattice is described by defining a relation, 
<C on I and considering only those pairs, (JC,X) G L[I], where X is suitably <C-closed. 

Recall that a cover is a surjective homomorphism, f:L—>M, such that, for any g: 
X —> L, g is an epimorphism whenever f o g is. Equivalently, L contains no proper 
sublattice with M as its direct image under/. An interval, u\v = {x G L : u < x < v}, 
in a lattice, L, is called a W-failure interval if there exist finite X, Y Ç L with A X = w, 
V F = v, andw\vfl (XU Y) = 0. 
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LEMMA. Let L be a lattice and I = u\v an interval in L; then the canonical K\ 
L[I] -—> L is a cover if and only if I is a W-failure interval. 

PROOF. Let / be a W-failure interval on L, and S be a sublattice of L[I] with K [S] = L. 
Therefore there exist finiteX, F Ç L\ I with A X = u, V F = v, and XH |v = FH U = 0. 
Now for each p G L \ /, we have Ap = 0 and ap — f3p = (p, 0). Since K[S] = L, we 
also obtain {/?, 0} G S for all p G L \ I. Therefore, {u, A) = A /3 [X\ and ( v, 0) = V oc [ F] 
also belong to 5. Again since K[S\ = L we have for each q e I, (q,Q) G S for some 
G G {0,A}. Since (<?,A) - (<?,£) V <M,A) and (qj) = (q,Q) A (v,0), these 
elements also lie in S. Thus S = L[I] and K is a cover. 

Conversely, assume K is a cover. Since ft[a[L] 1 — «[/3[L]1 = L, neither of these 
proper subsets can be sublattices. Therefore a[L] is not meet-closed and f3[L] is not 
join-closed. 

Take finite XÇL such that A a [X] = ( r, A) where r = AX. Now ( w, A) < ( x, 0) if 
and only if x G (L \ /) n fw. Therefore the meet closure of a [L] is given by 

M := ar[L] U { ( r, A) : for some X C (L \ /) H |M with r = /\X < v}, 

and the join closure of this set is contained in 

S:= a[L]U { ( A A) : for some X Ç (L\ I)H ]u with v > p > f\X} . 

Easy calculations show that S is indeed a sublattice of L and, since K is a cover, 5 = L. 
Therefore u = AX for some X Ç ( L \ / ) f l fa. 

Similarly, by working with (3[L\, we produce a F Ç {L\ I) C\ [v with V F = v. 
Therefore / is a W-failure interval. • 

THEOREM. Let I = (I\ : À G A) be a finite s^ <?/ W-failure intervals in a lattice, L. 
For any sublattice, S Ç L[l], the following are equivalent: 

(J) K[S] = L; 
(2) a[L]CS; 
(3) 0[L]CS. 

In particular, there exists a smallest sublattice ofL[I], namely T := (a[L\) — (/3[L]) 
that maps via ft onto L. 

PROOE. Clearly (2) and (3) individually imply (1). The proofs of (1)=>(2) and 
(1)=K3) are by induction on |A|. If |A| = 1, these results hold by the previous lemma. 

Let A = S U { oo}, J = (h ' A G E) and I = J U (/oo), and set P := L[l] and 
Q :--- L[J] = L[I j E]. Then the canonical projections, 

= *'{oo},0 ° «A,{oo} : P —»• L [ 7 o o 1 —»• L 

are the two edges of a pullback square. Let 5 be a sublattice of P which maps onto L. 
Since K.{OÛ}J0 is a cover, /cA>{oo} [5] - L[/CX)]. 
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Define T := ACA,E[S]. Then ftS$[F] = L. Since | J| < |I | , we have, by induction, that 
T contains both a$E[L] and fog\L\. To complete the proofs, take x G L. 

(1)=^(2): Since a$E(x) = (x,0) G T, there exists A Ç Ax with (x,A) G S and 
A D S = 0. Therefore A C { oo}. If A — 0, we are done; therefore assume A — { oo} 
and hence oo G Ax. Since (x,0) G L[/ooL there is a 5 Ç AJC with (x,B) G 5 and 
BH {oo} = 0. Therefore a^A(x) = (x,(b) = (x9A) A (x,B) G S. 

(l)=>(3): Since /3^(x) — (x,Ex) G T, there exists A Ç Ax with (JC,A) G 5 and 
A H E = Ex. If AJC = Ex we are done; therefore assume oo G AJC. This implies that 
(x, { oo}} G WOQ] and hence there exists B Ç Ax with (x,B) G 5 and # Pi { oo} = 
{oo}. Therefore (3®A(x) = (x9Ax) = (x,A) V (x,B) G S. m 

Now that the existence of T is known, we need a suitable description. 

DEFINITION. Let I = a\b and J = c\dbe two intervals in a lattice L. We say that / 
precedes J [or / succeeds I] if a < c < b < d. This is denoted by / <C / . If (I\ : A G A) 
is a family of intervals in a lattice L, we define <C on the index set A by À <C /i if and 
only if/A <C /M. A <^-ideal of A is a subset, X Ç A, satisfying a « jî e X implies 
a G X. We let Id(A, < ) be the set of all <C-ideals of A. 

The concept of a ^-filter and Fil(A, <C) is defined dually. As with order ideals and 
filters, it is trivial to show that the systems of <C-ideals and filters are closed under unions 
and intersections, hence are distributive lattices. Moreover, the complement of a <C-ideal 
[resp. filter] is a Ofilter [resp. ideal]. 

LEMMA. Let I = (I\ : À G A) be a set of intervals on a lattice L; then <C is a 
reflexive, acyclic relation on A. 

PROOF. <C is clearly reflexive. Take a\,...,an G A with ct\ <C • • • <C an <C oc\. 
Then we have u\ < • • • < un < u\ and vi < • • • < vn < v\. Thus the intervals are equal 
and since I is a set, oc\ = • • • = an. m 

THEOREM. Let I = (I\ : X G A) be a set of intervals on a lattice L; then 

L[I, < ] := { (JC,X> G L[I] : X G Id(Ajc, < ) } 

is a sublattice ofL[l]. 

PROOF. Let (a,A) = V(#/, A/) where At is a <C-ideal of Aat for each index /, and 
J a — ua \ va for each a G A. Take (5 G A and a G Aa with a <C (3. From the definition 
of A, there exists an index, /, with (5 G At. The above relations give us ua < up < at < 
a < va < vp. Therefore a G Aat and, since A; G Id(A#/, <C), a G Aa H A/ Ç A. Thus 
A G Id(Aa, < ) and (a,A) G L[I, < ] . 

To show closure with respect to meets, we use duality. With respect to La, we have, 
for intervals / and /, / <^d J if and only if J <C I. Thus, <Ca-ideals are just <C-filters. 
Therefore, the duality, d:L[I] —• Ld[l] provides a duality between L[I, <C] and Ld[I, 
< 0 ] . • 
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COROLLARY. Let I = (I\ : A G A) be a set of W-failure intervals on a finite lattice 
L; then T C L[I, < ] . 

PROOF. Both 0 and AJC are <C-ideals of AJC. Thus both a [L] and /? [L] are subsets of 
L[I, < ] , a sublattice of L[I]. • 

We now wish to show that the above inclusion is actually equality. For any X Ç A, 
we let \.X denote the <^-ideal closure ofX in (A, <C). Thus for any \i G A, \\x is the 
smallest (or principal) <C-ideal of (A, <C) containing \i. When working with a restricted 
version of <C, say in (AJC, <C) we use \.x to denote the closure operation of (Ax, <C). Thus 
if /i G AJC, ^ / I := AJC Pi ^/i is the smallest (or principal) <C-ideal of (AJC, <C) containing 
/i. Note that, for a set of intervals, <C is usually not transitive. Thus computing a principal 
<C-ideal in A would normally require the calculation of transitive chains. When we re­
strict ourselves to some Ax, this problem disappears. 

LEMMA. For any x G L, (AJC, <C) is an ordered set. 

PROOF. Take À,/i,i/ G AJC with À < / / < i / . Then u\ < uv and vA < vv follow 
easily. Since A, v G AJC, the third condition, uv < vA is trivially true. • 

COROLLARY. For any x G L and any X C AJC, I X — {A G A J C : A <C/X /or some 
(lex}. 

THEOREM. Let I — (7A : A € A) be a set of W-failure intervals on a finite lattice L, 
and T be the smallest sublattice ofL[l] mapping onto L. Then T = L[I, <C]. 

PROOF. We need only show that, for every x G L and \i G AJC, (JC, \X\L) G 7\ We 
claim that 

(x,lxn) = ((*,0) V (u^Aup)) A /\{(x,Ax) A ( vA,0) : A G A* and vA £ vM}. 

This is in T since a [L] and /3 [L] are subsets of 7. 
Let 

(JC,X) := (JC,0) V (u^Auy) = (JC, AJC Pi AU^) 

and for any A G AJC, 

(x,Yx) :=(x,Ax) A (vA,0) = (x,Ax\Avx). 

Since // G AvA if and only if vA < vM, we have // G X Pi fl{ Y\ : vA ^ vM}. This 
provides the desired conclusion in one direction. On the other hand, X forces all its A to 
satisfy u\ < u^ and fl{ ^A '• V\ ^ vM} throws out all A with vA jt vM. Therefore the 
equality is proven. • 

COROLLARY, r = L[I] (fanJ <?rc(y */<C is the equality relation on A. 

PROOF. For each JC G L, 2 ^ = Id(Ajc, < ) if and only if (AJC, <C) is an antichain. • 
We close this section by noting that bothLfl] and L[I, <C] are (generalized) gluings in 

the sense of Herrmann and Day [5] with L as the skeleton and L(JC) = 2 ^ [resp. Id(Ajc, 
<C)] as the blocks. As such, these lattices can sometimes be more easily constructed by 
the gluing approach. 
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4. Inverse limits of bounded covers. In the last section, we constructed from a 
given finite lattice, L, a canonical bounded cover, l! —• L, which "repaired" a finite set 
of W-failures in L. This construction can be of course iterated, and, depending on the 
choices of W-failure intervals, different finite and infinité limits can be produced that 
are to various degrees free of W-failures. In this section we present general results on 
the inverse limit of sequences of bounded covers, together with a specific application 
that ensures the existence of projective covers for all (finite) bounded lattices. This latter 
result generalizes the same result for finite distributive lattices given in Day, Gaskill, and 
Poguntke [4]. 

Let (7rn+i5„:L„+i —> Ln)ne^ be a sequence of bounded covers with lower and upper 
bound functions, anjn+\ and /3n/l+\:Ln —* Ln+\, respectively. By [even empty] com­
position, we produce for every n > m in N, a bounded cover, nnm:Ln —• Lw, with 
associated lower and upper bound functions, amn and (5mn\Lm —» Ln, respectively. If 
LQO = lim(7r„,m : n > m), then we can represent L^ by 

Loo = {x G Yl(Ln : rc G N) : 7rn+in(xn+i) = xn}. 

The projection maps, ^oon'-^oo —• Ln, are also bounded by anoo and /3noo where, for 
a G Ln, 

\ <Xnm(à), n<m 
OCnooWm = { , . . 

\ Ttnmia), n>m, 

and (3noo is defined similarly. 
LEMMA. For a sublattice S Ç L^, the following are equivalent: 
(1) There exists « G N such that7roon[S] = Ln; 

(2) For all n € N we have KooniS] — Ln. 

PROOF. Clearly (2) implies (1), so assume TT^IS] = Ln for some n G N. Since for 
all m < n, irnm is surjective, 7room[5] = Lm. Since for all m > n, 7rw,„ is a cover and 
TTmn̂ oomtS]] = ir^S] = L„, T r ^ S ] = Lm. Therefore (2) holds. • 

LEMMA. Let S be a sublattice ofLoo satisfying 7roon[5] = Ln, for some n G N, 

(1) ^oon\s is lower bounded if and only ifan0O[Ln] C S; 

(2) ftoon\s is upper bounded if and only if/3noo[Ln] Q S. 

PROOF. We show (1) and leave (2) for the reader. We may also assume without loss 
of generality that n = 0. The condition is clearly sufficient, so let p := 7^01 s be lower 
bounded by a: LQ —> S. Since S Ç L^, we have «oooW < 0"(*) f° r all x G Lo. By the 
last lemma, we have 7room[S] = Lm for all m G N. Therefore, for any x G Lo and for 
each m G N, there exists sm G 5 such that 7room(sm) = otom(x). Since 7rooo(sm) = x, we 
must have a(x) < sm for all m G N. Therefore a(x)m < croooWm for all m G N and 

ff = «Ooo- • 
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COROLLARY. (aoooUJ) and((looo[L]) are the least sublattices of L^ that are lower, 
resp. upper, boundedpreimages O/LQ. 

There seems to be little more that one can say about inverse limits of bounded covers 
in this general setting. 

DEFINITION. Let L be a lattice. The Whitman-dilation of L is the lattice, L# := 
L[I, <C], where I is the set of all W-failure intervals on L. The W-dilation series for L 
is the sequence of bounded covers canonically determined by Lo = L, and Ln+\ = l\. 

LEMMA [2]. The inverse limit of the W-dilation series for a finite lattice satisfies 
(W). 

Again, there is very little one can say about sublattices of L that are preimages of L 
save that they do indeed satisfy (W). If we further restrict ourselves to bounded lattices, 
we can extend a result of [4]. Recall that a projective cover in lattices of a lattice L is a 
cover, P —» L, where P is a projective lattice. When a projective cover (p:P-^L exists, 
it is unique up to "isomorphism over L" in that, if t/; : Q -—• L is a projective cover, there 
is an isomorphismr)\P—*Q such that xfj o r\ — (p. 

THEOREM. Every bounded [finite] lattice has a projective cover in the variety of all 
lattices. 

PROOF. Let L be a bounded lattice and L^ the limit of its W-dilation series. Since L 
is finite, any sublattice of L^ that maps onto L[= Lo] contains a finitely generated sublat-
tice that does likewise. Since L is bounded, any homomorphism from a fintely generated 
lattice onto L is bounded. Therefore T := ( c*ooo[L]) = (/?o<x>[£]) *s t n e s m a ^ e s t sublat­
tice of LQO that maps onto L by 71-000. 

Let p := 7Tooo|r̂  T —• L. We have that p is a bounded cover of L and that T is finitely 
generated and satisfies (W). Since L is bounded, T is projective via Kostinsky [10]. • 

It is an open problem to decide which other lattices have projective covers. If L has 
a projective cover, then the fact that the maps in the W-dilation series of L are covers 
endows the series members with extra approximation properties. Let ipo: P —> L — LQ be 
the projective cover of L. Since each 7r„+in: Ln+\ —*• Ln is surjective, there exists a lifting 
(pn+i : P —+ Ln+[ with 7r„+i,n o < n̂+1 = <£>„ for each n G N . Since each Trn+\,n: Ln+\ —> Ln is a 
cover, each <£?n is surjective. Therefore, even without passing to the limit, the W-dilation 
members provide better and better finite approximations of any existing projective cover 
of L. We will return to this approximation idea in the next section on finitely presented 
lattices. 

If some member of the W-dilation series satisfies ( W), be L bounded or not, then the 
sequence terminates and a finite W-cover is produced. In [4], it is shown that, for a finite 
distributive lattice, the existence of such a finite W-cover is determined by the exclusion 
of 6 forbidden sublattices. While such a list seems impossible in general—or even if L is 
bounded—there might be some solution hidden in the first few terms of the W-dilation 
series. 
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PROBLEM. IS there a bounding formula, n — n(L), such that a finite lattice L has a 
finite VK-cover (or projective cover) if and only if its nth W-dilation satisfies (W)? 

5. Finitely presented lattices. In this section, we examine finitely presented lat­
tices from a model theoretical view and use the inverse limit of doubling constructions 
to approximate and produce them. As is well-known (cf. Freese [7], or Je2ek and Slavik 
[9]), every finitely presented lattice, FL(X,R), is obtainable as the lattice freely gener­
ated by a finite ordered set with certain declared joins and meets, say P = (P, <, sup, inf). 
Here, sup and inf are partial functions from the system of all finite subsets of P into P 
satisfying for all X in the appropriate domain, supZ = \/(p,<)X and infZ = A(p,<)X 
respectively. We denote this lattice by FL(P) = FL(Py <, sup, inf). 

Let P = (P, <, sup, inf) be such a partial lattice which we fix for the remainder of this 
section. A model of P [or a P-lattice] is a lattice, L, together with an order preserving 
function, cp:P —> L that preserves the joins and meets declared by sup and inf; i.e. for 
X in the domain of sup, (p(supX) = V(L,<) ^ffl and dually. We let Mod(P) be the class 
of all P-models. P-homomorphisms,/: (L,<p) —• (Af,t/j), are lattice homomorphisms, 
/ : L —• M satisfying/ o tp = \p. Note that Mod(P) can be considered as a variety of 
algebras by extending the type of lattices to include constants for all p G P and adding, 
as identities, all the relations induced by the order relation and the declared sup's and 
inf s. 

There are two canonical members of Mod(P): (ld(P), j ) , the system of all sup-ideals 
of (P, <, sup), together with the principal ideal map, x »—» [Px := {y £ P : y < X}; 
and Fil(P), the system of all inf-fllters on (P, <, inf) ordered by reverse set inclusion, 
together with the principal filter map x *—• ]Px := {y € P : y > x}. By adroitly adjoin­
ing the bound elements, 0 and 1, as required, these lattices can be seen to be the join-
[resp. meet-] semilattice freely generated by the appropriate partial semilattice. This last 
observation produces, by elementary categorical methods, the natural lower and upper 
bounded lattice epimorphisms, j : FL(P) —• Id(P) and f: FL(P) —• Fil(P), respectively. 
The lower bound map for j is / \—• V /, and the upper bound for f is F »—• A F. Dean's 
solution to the word problem for FL(P), [6], now can take the following form. 

THEOREM [6]. For (L, <p) e Mod(P), L ^ FL(P) if and only ifL = ( ipP) and for 
allp, q G P and a, b,c,d G L, 

Dl (fp < (fq & p < q; 
D2 (pp<cV d&peld(<p-l[lc]U <p-l[ld]); 
D3 aAb<<pq&qe F i K ^ t î û ] U p~l[]b]); and 
D4 aAb<cV d & (a A b)\(cV d)H ({a,b,c,d} U <pP) ^ 0. 

Here, Id and Fil are the appropriate closure operators on Id(P) and Fil(P) respectively. 

Dean's fourth condition, as listed above, indicates the type of W-failure intervals that 
are of interest when working in some Mod(P). For (L, <p) G Mod(P) and convex C Ç L, 
C is called ¥-disjoint if ip [P] H C = 0. 
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LEMMA. For (L,<p) G Mod(P) and V-disjoint interval C C L, there exists a unique 
ip : P —y L[C] such that 

(1) (L[C],^)GMod(P), 
(2) K\(L[C],^)-+{L,(p),and 
(3) n o i/> = if. 

PROOF. Since C is P-disjoint, a ((/?(/?)) = /?(^(p)) for all p G P. Therefore we 
define ip:=ao(f=/3o(f. Clearly, K O xj; — ip and -0 is uniquely defined. 

Now for any X G dom(sup), Vz,[q i>X = VL[C] Û?[(/?X] = a(\lL ipX) = a((/?(supX)) 
= 0(supX). Similarly, using 0 = jî o </?, inf's are preserved. • 

We now can generalize [1] to provide a semantic justification of Dean's (fourth) con­
dition. 

COROLLARY. Any projective objective, (L,(p) G Mod(P), satisfies Dean's (fourth) 
condition: 

aAb<cV d implies (a A b)\(cW d)D ({a,b,c,d} U <p[P]) ^ 0. 

PROOF. Assume the condition fails for some a,b,c,d G L, and let / : = 
(a A b)\ (c A d). Then / is a P-disjoint interval and by the lemma, (L[7], 0 ) G Mod(P). 
As in [ 1 ], it is impossible to construct a section \i : L —» L[7] of ft. • 

We now are in the position to repair Dean-failure intervals via inverse limits of certain 
canonical doubling constructions. We require a minor modification to the W-dilation 
series defined previously. 

DEFINITION. Let P = (P, <, sup, inf) be a partial lattice, and take (L, y?) e Mod(P). 
The Dean-dilation of(L, if) is the pair (L#, y*) G Mod(P) where L# := L[I, < ] , I is the 
set of all P-disjoint W-failure intervals on L, and c^#: P —• L# is the canoncial function 
determined by the pullback. The D-dilation series for (L, 9?) is the sequence of bounded 
covers canonically determined by (Lo, </?o) = (L, < )̂, and (L„+i, (/?n+i) = (L*, ^ ) . 

THEOREM, 77ie inverse limit of the D-dilation series for a finite (L,(p) G Mod(P) 
satisfies Dean's (fourth) condition. 

PROOF. If L^ is the inverse limit of the Dean dilation series, then there exists a 
unique (p^: P —* L^ with 7roo„ o ( ^ = (pn for all rc G N. Standard limit calculation 
gives us (Loo, V̂ oo) £ Mod(P). For convenience, we write ip^p — p for all/7 G P. 

Now take a, b, c, d G L^ with u : = a A b < v : = c V d and u\ v Pi ({ a, b, c, d} U 
^00^) = 0- Thus there exists indices /, j , &, /, (m(p),p G P) in N such that a, ^ v,-, 
b/ ^ y/, u* ^ c*, u/ £ d/, and pm(p) £ um(p)\ vOT(p) for all/? G P. Since |P| < 00, the 
maximum of all these indices exists and these inequalities hold for any n G N greater 
than or equal to this maximum. Since u < v is assumed, u„\ \n is a P-disjoint W-failure 
interval in Ln for all such n G N. 

Let un \ \n = I\ G I where Ln+\ — L„[I, <C]. Thus we have a factorization, 

L„[I,<] —L n [ I A ] ->L n . 
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Now un+i = a„+i A bn+i > a„,„+1(a„) A a„,„+1(b„), and dually, \n+i < /3n,n+](cn) V 
Pn/i+i (d«)- The right sides of these inequalities map via Ln+\ —• Ln[In] to ( u„, { A } ) and 
( v„, 0) respectively and this contradicts u„+i < vn+i. • 

We now consider conditions Dl through D3. For any P-model, p : P —» L, we obtain 
a function,/(L,^):L —• Id(P), defined by/(L^)(c) := p~l[[Lc] = {p E P : pp < c}. 
Easy calculations show that/(L,< )̂ is a meet-semilattice homomorphism. Dually, there 
is an induced g^y.L —+ Fil(P) by g(L,̂ )(c) := ^_ 1[ |Lc] which is a join-semilattice 
homomorphism. 

LEMMA. For (L,p) G Mod(P), 

(1) (L, if) \= Dl & D2 if and only iff(L>ipy. (L, <p) —* (ld(P), | P ) is a F-morphism; 

(2) (L, p)\= Dl & D3 if and only ifg(L,<p)'- (L, p) —+ (Fil(P), ÎP) is a V-morphism; 
(3) (L,<p) \= Dl & D2, and h: (M, \j)) —> (L, p) lower bounded by a: L —> M satis­

fying a o p = I/J imply (M, I/J ) \= Dl & D2; 
(4) (L,p) \= Dl & D3, and h: (M, x/j) —> (L,<p) upper bounded by TT:L —• M satis­

fying 7T o p = ijj imply (M, I/J) \= Dl & D3; 

PROOF. Re (1): For p,q G F, (pp < pq if and only if p G f{L^)(^pq)- Thus Dl is 
equivalent to the Mod(P) morphism property,/L,^) ° P = i/>- D2 is the join preserving 
property, thinly disguised. 

Re (3): It is enough to show, under the assumptions, t h a t / ^ ) = f^) ° h, i.e. 
-0/7 < x & pp < hx for all p G P and x G M. This is trivial given the properties 
of the lower bound map, a. • 

The above lemma suggests the following definition. 

DEFINITION. Let P = (F, <, sup, inf) be a partial lattice; the partial completion of 
P is the "P-diagonal" sublattice of Id(P) x Fil(P) generated by the image of P under 
x i—» (|JC, ]x). We denote this lattice by FC(P), and use <5 : P —» FC(P) for the embedding. 

LEMMA. For any partial lattice, P, (FC(P), £ ) [= 7)7, 7)2 arcd 7)3. 

PROOF. We must show that the first and second projections of FC(P) onto Id(P) and 
Fil(P) are the induced/ = fpc(P),8) and g = g(pc(P),6) respectively. Take p G P and 
(7,F) GFC(P).Now 

p G/(/,F) *> (jp.îp) < (7,70 *•/> G / a n d F Ç T/7. 

Since FC(P) = (SP), we have F Ç [/(/) for all (7,70 G FC(P), where U(I) is the set 
of all upper bounds of 7. Thus p G 7 and (7,70 G FC(P) imply F Ç £/(7) Ç f/(p) = 1>. 
This shows that/ = 7Ti as desired. • 

We now can construct FL(P) by the Dean-dilation series for LQ = FC(P). 

THEOREM. FL(P) is the sublattice ofLœ generated by pooP-

PROOF. Let T := ( PooP) Ç Foo- Then T satisfies D4 since Lœ does and we need 
only check Dl through D3. The above lemma states that LQ satisfies these properties, and 
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the previous lemma (3) & (4) provide the induction steps to show that all Ln satisfy Dl 
through D3. The passage of these properties to the inverse limit, and hence T is easily 
left to the reader. • 

Thus, PC(P) is the "first approximation" of FL(P), and each Dean-dilation provides 
an improved approximation. This gives yet another proof of: 

COROLLARY. Finitely presented lattices are residually finite. 

There are two properties of some interest for finitely presented lattices: finiteness and 
weak atomicity. Finitely generated free lattices are weakly atomic [2], while Freese [7] 
shows that not all finitely presented lattices need be. Our general results in § 4 on limits 
of bounded covers produced the following. 

THEOREM. For any partial lattice P = (P, <, sup, inf) with Dean-dilation series 
(Ln) ofPC(F), the following are equivalent: 

(1) FL(P) -> PC(P) is bounded; 
(2) FL(P) —• Id(P) is upper and FL(P) —• Fil(P) is lower bounded; 
(3) For some nGN, FL(P) —• Ln is bounded; 
(4) aooo[PC(P)] and(30oo[PC(?)] C FL(P). 

COROLLARY. IfP is finite and FL(P) —• PC(P) is bounded, then FL(P) is weakly 
atomic. 

PROOF. Suppose that a < b in FL(P). Then, for some n, the homomorphism 7 ^ : 
FL(P) -—• Ln satisfies iXoonia) < ^oonib). Since Ln is finite, there are elements x and v with 
Koonia) <x^y< TCoon(b). Let c = b A ftooW and d = c V anoo(y). Then 7roon(c) = x 
and TToonid) = y so if c < e < d then 7roo„(e) is either x or >>. If 7roon(̂ ) = x then 
c < e < f3noo(x) A b ~ c and similarly, if Koon(e) — >', then e = d. Thus a < c < d < d, 
proving that FL(P) is weakly atomic. • 

In unpublished work, Freese has constructed a counter-example which shows that the 
converse of the above corollary is false. 

PROBLEM. IS there a characterization of finite finitely presented lattices2? 

Jezek and Slavfk [9] have answered this question when the partial lattice is join- or 
meet-trivial, e.g. P = (P, <, sup, 0). A solution following our Mod(P) approach requires 
finding a member of the Dean-dilation series for PC(P) that satisfies Dean's (fourth) 
condition. Thus this problem is identical to finding finite W-covers [resp. projective cov­
ers] of finite [bounded] lattices, in that one examines finite lattices of the form, L[I <C] in 
search of canonical patterns that force infinite W-failure generation. Preliminary (unpub­
lished) studies by Slavfk and by this author leads one to be reasonably optimistic about 
the feasibility of this approach. 

V. Slavfk has recently announced that, if | FL(P)| > 86 • | PC(P)|, then FL(P) is infinite, thus effectively 

solving this problem. His proof makes use of the results of this section. 
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6. Counting free distributive lattices. It is an open problem, despite the result 
in Kisielewicz [11], to determine the cardinalities of finitely generated free distributive 
lattices. In this section, we construct FD(n) using the doubling construction, and examine 
the counting formulae determined by this representation. These formulae do not advance 
the state of the art to any great degree but may prove valuable in future investigations. 
We refer the reader to Quackenbush [13] for a recent survey of this problem. 

For « G N , with n > 3 (to avoid degenerate cases), let n= := (n, =, 0,0) be the partial 
lattice given by the «-element antichain. Then Id(n=) = Fil(n=) = 2n, and PC(n=) 
is the distributive lattice obtained by gluing these two copies of the power set on top 
of each other and adding n generators between coatoms of the bottom power set and 
their bijectively associated atoms in the upper power set. Since PC(n) := PC(n=) is 
distributive, we have a canonical factorization, 

FL(n) -+ FD(n) - • PC(n\ 

where both homomorphisms are bounded covers. Moreover FD(n) is produced from 
PC(ri) by doubling those ^-failure intervals that keep the resultant lattice distributive. 
The relevant observation from [4] is: 

LEMMA. Let Lbea distributive lattice and take I — u\v in L. L[F\ is again distribu­
tive if and only ifL = \u U [v. 

Note that the doubling of such an interval as in the lemma produces a join-prime 
element and recall that any join-prime element in a finitely generated lattice is a meet of 
generators. These observations provide the following result. 

THEOREM. FornEN with n>3, FD(n) = L[I, < ] where L = PC(n) and I is all 
intervals of the form, IY = A{xt : i g Y} \ \/{xj:j G F}, Y Ç n with 2<\Y\ <n-2. 

PROOF. By the preceding lemma, the lattice L[I, <C] is distributive. It is also gener­
ated by the «-element set, X — { (JC,-, 0) : i = 1,... n) that satisfies for any Y,Z Ç X, 
A Y < V Z if and only if Y D Z ^ 0. This describes FD(n). m 

COROLLARY. |FD(n)\ = £{ | Id(Ax, < ) | : x e PC(n)}. 

PROOF. Elements of L[I, <J are of the form, ( JC, X), x e L and X G Id(A;c, < ) . • 
For more detailed analysis, we need an explicit description of PC(n) as a sublattice of 

2n x 2", [= Id(n=) x Fil(n=)]. For / G n = { 0 , . . . ,n - 1}, let 

be the generators of PC(n). Thus we replace the filter, ]{i} — {i}, in the second com­
ponent by its complement. For any A C n, we let 

uA = (M), 
vA = (A, n), 
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Then 
PC(n) := {Xi : / < n} U { uA, vA : A Ç n } . 

LEMMA. The following properties hold in PC(n): 
(1) UA — A{*/ ' i $ A}, for A Ç n vwY/i |A| < n — 2; 
(2) vA = \f{xi : / E A}, for A Ç n vWfft |A| > 2; 
(3) m := un = v0; 
W WA < uB <=> VA < vfi <=• A Ç £; 
(5) UA < Vfl, /or all A and B; 
(6) uA\vA <^uB\vB &AQB,for2< \A\,\B\ <n-2. 

The W-failure [and n=-disjoint] intervals we need to repair have the form, IA = 
UA\VA- These are conveniently indexed by 

A : = { A G 2 " : 2 < \A\ <n-2}. 

By (6) above, the precedence relation on A is set-inclusion: 

A < £ <£• A Ç £. 

LEMMA. For any A, B Ç n, 

(1) A Ç B & A(KA) Ç A(uB) & A(vB) Ç A(vA); 
(2) s e A(uA) &^se A(V^A); 

(3) ( ld(A(W A) ,<),ç)0 <* ( ld(A(v^) ,<) , C). 

PROOF. Only the last statement requires some deduction. From (2), we have (A(wA), 

< ) *t ( A ( V . A ) , < ) 0 . NOW, ( ld(A(v^) ,< ) , C ) ~ (Fi l (A(v^,<) , D) = (ld(A(v^), 

< ) \ 2 ) = (ld(A(MA), < ), D) = (ld(A(iiA), < ), Ç)9 . • 
A precise formula can now be given for | FD(n)\ by running over just the generators 

and the wA's of PC(n), doubling the latter contributions to cover the v^'s. For n G N, 
n > 3 and 0 < k < n, we define 

p(k,n):= | I d ( { Z Ç k : 2 < |X| <n-2})\. 

THEOREM. | FD(n)\ = n + p(n, n) + 2 E ^ 1 [fjp(i9 n). 

PROOF. There are n generators that are not in any interval, m — un — V0 which is 
contained in every interval, and twice the count for each wA with 0 < \A\ < n. There are 
of course, (f) subsets of cardinality /. • 

The above formula represents only a modest improvement on the canonical version, 
\FD(n)\ + 2 = | Id(2", C)|. At present, the author knows of no way to further refine 
the numbers, p(k,n). For example, the calculation of /?(5,5) = 5232 seems at least as 
complicated as computing |FD(5)| = 7579, even though /?(4,5) = 113 can easily be 
done by hand. 

Another avenue for exploration might be the decomposition of A into n — 3 antichains 

A, : = { S e A : | S | = * } , 
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for 2 < k < n - 2. We let lk := {Ia €l : a <E Ak} and define 

Dn(k) = PC(n)[lk]. 

Since 1̂  is an antichain, the full pullback provides a bounded cover factorization, 
FD(n) - • Dn(k) - • PC(n). 

LEMMA. For A Ç n and 2 < k < n — 2, 

(I) |A*(KA)| = (W); 

f2; |A*(vA)| = ( -W) . 

THEOREM. F<?r any n G N w/f/z « > 3 and & E [2,n — 2], Ai(fc) w # homomorphic 
image ofFD(n) of cardinality 

\Dn(k)\ = n+2+2© + E (;)2G) + E (^)2C:°-

/« f/*e above formula, we define Q) = 0ifi< k. 

COROLLARY. | FZ)(«)| > |Dn(ifc)| /or ^c/z ik e [2, « - 2]. 

While these lower bounds of \FD(n)\ are not too interesting, |Z>5(3)| = 1571, the 
partition of A into the A^'s does provide a chain of n — 3 consecutive pullbacks that 
produce FD(n) from PC(n). We merely "repair"one &-level at a time, reinterpretting the 
remaining A/s in the new pullback. It is unclear though whether this approach could 
supply any enlightenment to the main counting problem. 
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