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LOCAL COMPACTNESS IN SET VALUED
FUNCTION SPACES

BY

SAROOP K. KAUL

1. Recently Hunsaker and Naimpally [2] have proved: The pointwise closure
of an equicontinuous family of point compact relations from a compact
T>-space to a locally compact uniform space is locally compact in the topology
of uniform convergence. This is a generalization of the same result of Fuller [1]
for single valued continuous functions.

For a range space which is locally compact normal and uniform theorem B
below is an improvement on the result of Hunsaker and Naimpally quoted
above [see Remark 3 at the end of this paper].

For general topological spaces the notion of equicontinuity has been
generalized to ‘“‘even-continuity” [see [S]] and ‘‘regularity” [4] which are
equivalent under reasonable conditions [4]. Their natural generalizations [3],
however, for the set valued function spaces are quite distinct and together
yield, ‘as shown in [3], an Ascoli type theorem for the set of all set valued
functions with point compact images, continuous with respect to the finite
topology [6] on the hyperspace of the range space, and having the ‘“‘compact-
open” topology. It seems natural to ask if these conditions would also give a
result analogous to that of Fuller quoted above. The purpose of this paper is to
prove that they do.

We need a few notations and definitions before stating the main results. For
any space Y let 2 denote the set of all non-empty closed subsets of Y and
C(Y)={A€2¥:A is compact}. For any set UcY let L(U)=
{Ae2¥:ANU# J} and M(U)={A e€2¥:A c U}. Then the topology gener-
ated by all sets L(U)[M(U)] as a sub-base [base], where U is any open set in
Y, will be denoted by 7[«] and are the so called lower semi finite [upper semi
finite] topologies. The smallest topology containing both = and « is the so
called finite topology [6] and will be denoted by v. A set valued function
f: X — Y assigns to each x € X a closed and non-empty subset f(x) of Y. Thus f
defines a single valued function f: X — 2 and conversely. For any topology ¢
on 2%, f is t-continuous if f is continuous with respect to t. In particular f is
said to be continuous [ls.c.; u.s.c.] if f is v—[7—; k-] continuous.

Let F=F(X, Y) denote the set of all set valued functions from X into Y,
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C(X, Y)={fe F:f(x) is compact for each x € X} and S(X, Y) be the set of all
continuous functions in C(X, Y). For any subset G of F and AcX, let
G(A)=U {f(x):fe G and x€ A}, and G(x) = G({x}). We say that G is regular
at xe X if given any open set U in Y and H< G such that H(x)< U, there
exists an open set V containing x such that H(V)<c U. G is regular if it is
regular at each x € X. We say that G is evenly continuous at x € X if given any
yeY and closed neighbourhood U of y there exist open sets V and W
containing x and y respectively such that if for any ge G, g(x)N W# &, then
g '[Ul={zeY:g(z)NU# @}> V. The point open topology P.[P.] on F is
the topology generated by all sets of the type M(x, U)={feF:f(x)= U},
[L(x, U)y={feF:f(x)N U# J}], where xe X and U< Y is open. The topol-
ogy P, is the smallest topology containing P, and P,. Finally, for any feF,
4(f)= U {xxf(x):x e X} is called the graph of f. Note that if G C(X, Y) is
regular and evenly continuous then G < S(X, Y) provided Y is regular.
The main results of this paper are:

THEOREM A. Let X be a compact T,-space and Y be a locally compact
T;space. If Fe C(X, Y) is regular and evenly continuous, then F, the closure of
Fin (C(X,Y), P,), is locally compact.

THEOREM B. Let X be a compact Tr-space and Y be a locally compact,
normal T,-space. If Fc C(X,Y) is regular, then F, the closure of F in
(C(X,Y), P,), is locally compact.

2. Remark 1. Let X be compact and Y be regular.

If feS(X,Y), then 94(f)e C(XXY): since f is continuous clearly the set
valued function f': X — X X Y defined by f'(x) ={(x, y):y € f(x)} for each xe X
is also continuous, that is, f’:X—) C(XxY) is v-continuous. Hence f'(X)=
{x}xf(x)e C(Xx Y):xe X} is a compact subset of (C(XXY), v). Thus by
theorem (2.5.2) [6, p. 1571, 4(f)={(x, y):xe X, ye f(x)}= U {f'(x):xe X} is a
compact subset of X X Y.

THeEOREM 1. Let Y be a regular space. Let G< C(X,Y) be regular and
evenly continuous and {f,:a € D} be a net in G converging to fe C(X, Y) with
respect to P,. Then f is continuous.

Proof. We shall show that (a) fis u.s.c. and (b) f is Ls.c.

fisus.c.: Let xe X and U > f(x) be open in Y. Then there is an open set V
in Y containing f(x), such that, V < U. Since {f,} converges to f with respect to
P. there exists an agoe D such that for all a=a,, a€D, f,(x)= V. Hence
G(x)c U, where G ={ fo:a €D and a = a,}. By regularity there exists an open
set W containing x such that G(W)< U. We claim that f(W)< U: Suppose
not. Then there exists a ze W such that f(z)Z U. Let 0 be an open setin Y
such that 0N f(z)# < and 0N U =, for one may assume without loss of
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generality, because Y is regular, that U is a closed neighbourhood of f(x). But
then for all a =ay, f.(z)N0=J contradicting that {f,} converges to f with
respect to P,. This establishes the above claim and proves that f is u.s.c.

fis Ls.c.: Let xe X, U, be an open set in Y and f(x) N Up# J. Let U< U,
be a closed neighbourhood of y € UgU f(x). Then by even continuity of F there
exist open sets V containing y and W containing x such that fe F and
f(x)N V# & then W< F*(U). Since {f,} converges to f with respect to P, and
f(x)N(UN V) # J, there exists an ap€ D, such that, for all € D and a = ay,
fe(x)NV# . Hence for any ze W, f,(z)NU# J for all ae D and a = a,.
We claim that for any z € W, f(z) N U# (J: Suppose not, then there existsin Y an
open set 0> f(z) such that 0N U= J, but then f,(z)# 0 for any a € D and
a = ao contradicting the fact that {f,} converges to f with respect to P,. The
above claim thus proves that fis Ls.c.

THEOREM 2. Let F< C(X, Y) be regular and evenly continuous, X be com-
pact T, and Y be a regular space. If {f,} is a net in F converging to g€ F with
respect to P,, then ¥(f,) converges to 4(g) in X X Y with respect to v.

Proof. We shall show that 4(f,) converges to 4(g), (a) with respect to 7, and
(b) with respect to k. Note that by theorem 1, g is continuous and hence
%(g)e C(XxXY) by Remark 1 and the fact that v on C(X X Y) is To.

Proof of (a): Let UX V be a basic open set in X X Y and 4(g)NUX V# .
Then there is an x € X such that x X g(x)N U X V# . Since {f.,} converges to
g with respect to P, and g(x)N V# J there exists an ao such that a=a,
implies f,(x)N V# . Hence, xXf,(x)NUXV#J for a=a, and %(f,)
converges to 9(g) with respect to 7.

Proof of (b): Let W be an open set in X X Y containing 4(g). Since x X g(x)
is compact there are open sets U(x) and V(x) containing x and g(x), such that,
U(x) x V(x)< W. Since {f,} converges to g with respect to P, there exists an
a(x), such that, @ = a(x) implies f,(x)< V(x). Since g(x) is compact we may
assume without loss of generality that F,(x)< V(x) where F, ={f,:a = a(x)}.
By regularity of F there exists an open set 0(x) containing x such that
F,(0(x))< V(x) and 0(x)< U(x). Hence for any z€0(x) and fe F,, z X f(z)<
W. Now, since X is compact there exists a finite open cover {0(x;): 1< i< n} of
X and if ap=a(x;), i=1,...,n, then for any a = ay, x Xf,(x)= W for each
x € X. That is, 4(f,)= W for all @ =a, and the proof is complete.

THEOREM 3. Let Y be a regular space and F< C(X, Y) be evenly continuous
and regular. Let {f,} be a net in F and 4(f,) converge to A€ C(XXY) with
respect to v. Then A = %(g) for some ge S(X, Y), and {f.} converges to g with
respect to P,.

Proof. Let g(x)={y:(x, y)e A}. Then clearly g(x) is compact for each x € X
and to show that ge C(X, Y) it is enough to note that g(x)# & for each x.
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Indeed, if this were not so then for some xeX, xXYNA=, that is,
A c(X—{x})x Y= W. But from the given convergence there exists an «, such
that for a = ao, 4(f.) = W implying that f,(x) = & for all @ = &, which is false.
Clearly 9(g) = A.

To prove that {f,} converges to g with respect to P,, we prove (a) con-
vergence with respect to P (b) convergence with respect to P,.

(a) Let xe X and U be an open set containing g(x). Then X X UU (X —{x}) X
Y = W is an open set containing 9(g) = A, and since {9(f,)} converges to 4(g)
with respect to « there exists an a, such that 4(f,)< W for all @ =a,. Hence
x X f,(x)e XX U, that is, f,(x)< U, and this proves (a).

(b) Let xe X, U be open in Y and g(x)N U# J. Suppose that for a cofinal
set E of values of o, f,(x)NU=. Let H={f,:a€ E} and V< U be a closed
neighbourhood of some point z € g(x)N U. Then H(x)c Y-V=W, and by
regularity of F there exists an open set 0 containing x such that H(0) < W. Now
%(g)N0x V#J, but for all @ € E, 4(f,) N0X V= contradicting that {4(f,)}
converges to %(g) with respect to 7. Hence f,(x) N U# & for all a=a, for
some a,, and this proves (b).

Finally it follows from theorem 1 that ge S(X, Y).

Proof of theorem A. Since F is regular and evenly continuous by theorem 1,
F< S(X, Y). By remark 1, the mapping f — %(f) associates to each element f
of F an element 9(f) of C(X X Y) and is clearly 1-1. Theorems 2 and 3 imply
that the above correspondence is a homeomorphism of (F, P,) into (C(X, Y), »)
and furthermore that {G(f):fe F} is a closed subset of C(X X Y). Hence
(C(X, Y), v) being locally compact [6, prop (4.4.1), p. 162] so is (F, P,). This
proves theorem A.

We need the foliowing result to prove Theorem B.

THeOREM 4. Let Y be a normal T,-space and F< F(X, Y) be regular. Then
F, the closure of F in (F(X, Y), P,), is also regular.

Proof. Let x € X be arbitrary. We shall show that F is regular at x. So let U
be an open setin Y, H< F and H(x) = U. Since Y is normal there is an open set
WoH(x) and Wc U. Let G={feF:f(x)c W}. Then H,=HNF< G, G(x)<
U, and by regularity of F there exists an open set V containing x such that
G(V)c U. We claim that if ge H then g(V)< U. Suppose not. Then ge
H — H; and there exists a net {f,, a € D, =} in F converging to g with respect to
P,. Since g(x)= W and convergence of the net with respect to P, implies
convergence with respect to P, there exist an ape€ D such that if a € D and
a = ay, then f,(x)= W, that is, f, € G. But if g(V) & U then there existsa ze V
such that g(z)— U# J, and hence an open set 0, such that, 0N g(z) # & but
0N U= [For using normality of Y we may get another open set W’ such
that W< W’ and W< U and work with W’ if necessary]. But this leads to a
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contradiction, since the net {f,} converges to g also with respect to p, implying
that there exists an a;€ D such that for all ee D and a=ay, f,(z)N0# J.
This completes the proof.

Proof of theorem B. Let fe F. We shall exhibit a compact neighbourhood in
P, of f in F. By theorem 4, F is regular,so f is u.s.c. By [7, Prop. (2.3), p. 34],
f(X) is compact. Let U pe an open subset of Y containing f(X) and having
compact closure. We shall show that N=FN C(X, U) is the required neigh-
bourhood of f. Now C(X, U)=F(X, U), and (F(X, U), P,) is homeomorphic to
[1{Z.:xe X} with the product topology, where Z, is a copy of 27 with
topology v for each xe X. Since (Z,, v) is compact [6, th (4.2), p. 161],
(C(X, U), P,) is compact. Since N is a closed subset it is compact. Thus to
complete the proof it is enough to show that N is a P,-neighbourhood of f.

For each xe€ X there exists an open neighbourhood V(x) containing f(x),
with V(x)< U. Let H, ={he C(X, Y):h(x)< V(x)}. Then H, is an open neigh-
bourhood of f in P, and H,(x)< U. Since F is regular, there exists an open set
W(x) containing x such that (H, N F)(W(x))< U. Let W(x,), ..., W(x,) cover
X. Then H=H,, N---NH,, is open in P,, fe H and (HN F)(X)< U. There-
fore N which contains HN F is a neighbourhood of f in P,.

ReMAaRk 2. The author is thankful to the referee for correcting earlier proof
of this theorem.

REeMARK 3. For this remark see the definition of equicontinuity of Hausaker
and Naimpally [2]. It is easy to see that if Y is a compact uniform space then
equicontinuity implies regularity. In fact G < F(X, Y)* is equicontinuous if and
only if it is regular and evenly continuous. To see that regularity is decidedly
weaker than equicontinuity it is enough to consider a sequence of continuous
functions converging pointwise to an u.s.c. function which is not l.s.c. then the
sequence is regular but not evenly continuous and hence not equicontinuous.

ExampLE. Let N be the set of all positive integers and A ={0}U{1/n:ne N}.

We define a topology in terms of neighbourhoods of points in Y=
NXxNU{0}x A as follows: For ye NX N any subset of Y containing y is a
neighbourhood of y. If y=(0, 1/n) then any set containing y and a cofinite
subset of n X N is a neighbourhood of y. If y=(0, 0) then any set containing a
set of the type

{(0,00}u{(m, n):me Ny, ne F,,}U{(0, 1/n):n=k for some k}

is a neighbourhood, where N; is a cofinite subset of N and F,,, =N except for a
finite number of elements N, < N, for each of which F,, is cofinite in N. Y
with the topology generated by these neighbourhoods is compact T,. T, is

*[It is enough to assume that G(x) is compact for each x € X].
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clear. To see compactness consider an open covering U of Y. First pick an
open set U e AU containing (0, 0). This leaves a finite number of “rows” m X N,
m e N — Ny, together with a finite set of elements of Y not covered by U. Next
pick one element from 4 containing (0, 1/m) for each me N—N;. Then the
finite set thus obtained from % leaves only a finite set in Y still not covered.

Let X be the space obtained by giving A the relative topology from the
usual topology of the reals.

We now define the functions f,: X — Y, n=0,1,2,... as follows:

For n#0, f.(1/m)=1/m if m=mn, and for m>n, thatis m=n+k,

/m)={G,j+n):j=1,..., k;i=j}
and
£a(0)={(0, 0)}U{(i, j+n):je N, i=j}tU{(0,1),...,(0,1/n)}.

For n=0, fo(1/m)=(0, 1/m), and fo(0) ={0} X A.
It is then easy to check that each f,, n# 0, is continuous, and f; is u.s.c. but
not Ls.c. Also for each xe X,

lim sup f,(x) = lim inf f, (x) = fo(x)

Since Y is compact T, this implies that {f,} converges to f, in p,. This is thus
the type of example mentioned in Remark 3.
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