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Power-transfer and fixed-point analysis of previous NIMROD simulations (Roberds et al.,
Phys. Plasmas, vol. 23, issue 9, 2016, 092513) improved the understanding of the effect
of 3D (non-axisymmetric equilibrium) magnetic fields on sawtooth oscillations in the
Compact Toroidal Hybrid (CTH) experiment. Computing the locations of order-1 fixed
points, their Greene’s residues, and local values for the rotational transform results in
a description of CTH sawteeth consistent with Kadomtsev’s model. A power-transfer
analysis quantifies the distribution of energy among toroidal Fourier modes and their
nonlinear interactions. The Lorentz power transfer drives sawtooth growth, and it is
unambiguously interpreted as the flow of energy from toroidal mode n′ to mode n,
catalysed by Bn−n′ . It has been reported previously that the CTH sawtooth frequency
increases with the 3D field strength. This is attributed to an increased growth rate of
the internal kink that drives sawtooth oscillations. Here, 3D fields remove energy from
the kink, eliminating the possibility that these fields are an additional energy source
that drives growth. Instead, 3D fields catalyse energy transfer from large-to-small scales,
where magnetic reconnection is stronger. It is proposed that this energy transfer increases
the reconnection rate at small scales, which is consistent with the increased growth rate
observed at higher 3D field strengths.

Key words: fusion plasma, plasma instabilities, plasma simulation

1. Introduction

The standard signature for sawtooth oscillations in a toroidal confinement device is
a gradual temperature increase in the core followed by a fast crash. First reported in
the ST tokamak (von Goeler, Stodiek & Sauthoff 1974), they have also been observed
in stellarators (Carreras et al. 1998; Takagi et al. 2004; Varela, Watanabe & Ohdachi
2012). During the crash, there is heat redistribution and temperature flattening in the
core. On tokamaks, sawteeth both degrade confinement (through enhanced transport) and
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seed neoclassical tearing modes (Sauter et al. 1997; La Haye 2006). On the stellarator
side, W7-X has observed sawtooth and sawtooth-like crashes in discharges with a
strong electron cyclotron current drive (ECCD) (Zanini et al. 2020; Aleynikova et al.
2021). ECCD is used in W7-X as one strategy to balance the bootstrap current and
obtain a low-shear configuration with a set of magnetic islands at the plasma edge that
function as a divertor. ECCD application may locally modify the rotational transform
(the ratio of poloidal over toroidal turns along a magnetic field line) profile and render
the plasma susceptible to magnetohydrodynamic (MHD) instabilities. ECCD-induced
sawtooth crashes affect the strike lines’ position on divertor plates, and their understanding
is vital to avoid component damage.

The Kadomtsev (1975) model is a standard description of sawteeth in tokamaks. In
Kadomtsev’s theory, a tokamak with an on-axis safety factor (q0) below unity leads to
an n = m = 1 internal kink mode, whose evolution causes the flattening of the central
temperature and current density until q0 > 1. After that, a temperature-dependent Spitzer
resistivity ensures that current accumulates in the core until the on-axis safety factor drops
below unity again, and the process repeats.

The Compact Toroidal Hybrid (CTH) experiment (Hartwell et al. 2017) is a
current-carrying five-field-period (Nfp = 5) stellarator in which a variable external
rotational transform enables the study of the effect of 3D magnetic fields on MHD stability.
In CTH, the rotational transform (ῑ) is due to the magnetic field generated both by plasma
current and external coil current. The plasma current is driven inductively, its rotational
transform contribution is denoted by ῑplasma. The vacuum or external transform, ῑext, can
be independently controlled by currents in the helical and toroidal field coils. At the
plasma edge, the value of the external transform can be set to be in the 0.02 < ῑext < 0.3
range. CTH power supplies are inadequate to operate as a tokamak, i.e. with ῑext = 0.
Numerically, it is possible to consider hypothetical configurations with 0 ≤ ῑext ≤ 0.02.
The rotational transform is given by the sum ῑ = ῑplasma + ῑext, and the safety factor is the
inverse of the rotational transform (q = 1/ῑ).

Experimental (Herfindal et al. 2019) and computational (Roberds et al. 2016) studies
have evaluated the effect of external rotational transform on the sawtooth instability
in CTH’s stellarator scenarios (i.e. scenarios with non-zero ῑext). Experiments show a
reduction in the sawtooth amplitude and an increase in the sawtooth period as ῑext is
increased (Herfindal et al. 2019). The latter observation is computationally reproduced in
Roberds et al. (2016). This work revisits 3D nonlinear NIMROD simulations of sawtooth
oscillations in CTH (Roberds et al. 2016). We analyse these simulations with tools based
on the dynamics of fixed points and the energy transfer between toroidal Fourier modes.
We conclude that the fixed-point dynamics during sawtooth oscillations in tokamak
and stellarator scenarios are similar. However, the stellarator fields modulate the energy
transfer between Fourier modes in the stellarator configuration.

A new search algorithm that locates fixed points and calculates their associated Greene’s
residues in NIMROD improves the description of sawtooth cycles in CTH. Fixed points
result from the intersection of a closed magnetic field line with a Poincaré cross-section.
An important quantity characterising a fixed point is the Greene’s residue (Greene
1968, 1979). The Greene’s residue of a thin magnetic island monotonically increases
with its width; the residue has been employed as a proxy for the degree of stochasticity
of stellarator vacuum magnetic fields (Hanson & Cary 1984; Cary & Hanson 1986). In
this work, the determination of fixed points, Greene’s residues and local values for the
rotational transform result in a description of sawtooth oscillations in CTH consistent
with Kadomtsev’s model. The present analysis may be considered a generalisation of the
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fixed-point tokamak sawtooth picture of Smiet, Kramer & Hudson (2019) to the stellarator
case.

This article addresses the observed increased sawtooth frequency with 3D shaping
(Herfindal et al. 2019). A power-transfer analysis is utilised to investigate how energy
is deposited into the sawtooth instability and redistributed within the instability. This
analysis determines that stellarator fields have a two-fold effect on the sawtooth instability
growth. On the one hand, stellarator fields damp that sawtooth instability linear growth,
implying a stabilising effect. On the other hand, stellarator fields catalyse energy transfer
from large-to-small scales. It is hypothesised that this transfer of energy to small scales
effectively enhances the reconnection rate, which would increase the growth rate and the
sawtooth frequency.

The power-transfer diagnostic was introduced by Ho & Craddock (1991) during the
exploration of the conversion of poloidal magnetic field into toroidal magnetic field
(the dynamo effect) in a reversed-field pinch (RFP). It is a diagnostic tool that focuses on
the dynamics of specific Fourier modes. Their framework expresses the time rate of change
of the Fourier mode energy as a superposition of quasilinear, nonlinear and dissipative
power-transfer terms. This analysis allowed them to ‘piece together a picture of the flow of
power through Fourier space’ and has become a standard diagnostic tool (Sovinec 1995;
Choi et al. 2006; Reynolds, Sovinec & Prager 2008; Futch et al. 2018; Howell et al. 2022).
This article adapts the power-transfer analysis to a 3D equilibrium. Here, it is recognised
that the nonlinear Lorentz power transfer obeys a specific energy conservation relation,
allowing unequivocal characterisation of energy transfer between toroidal Fourier modes,
including those that characterise a sawtooth oscillation in a 3D equilibrium.

The rest of the paper is organised as follows. Section 2 summarises previous work on
sawtooth oscillations in CTH. Section 3 introduces the power-transfer analysis tool in
the context of a 3D equilibrium, and shows that the Lorentz power-transfer coefficient
is unambiguously interpretable as transfer of energy between two toroidal Fourier modes.
Section 4 discusses the dynamics of fixed points during sawtooth oscillations. Section 5
considers the energy transfer between Fourier modes. A final discussion is provided in § 6.

2. Sawtooth oscillations in CTH

This work reconsiders CTH sawtooth NIMROD simulations with increasing levels of
3D shaping (Roberds et al. 2016). Our focus is on comparing a tokamak plasma with a
stellarator configuration using new analysis tools. This section summarises experimental
(Herfindal et al. 2019) and computational (Roberds et al. 2016) work that evaluates the
effect of 3D shaping on sawtooth simulations in CTH.

The CTH vacuum vessel is circularly shaped with a minor radius a = 0.3 m and a major
radius Ro = 0.75 m. The degree of 3D shaping is quantified by the amount of external
rotational transform relative to the total transform, h3D = ῑext/(ῑplasma + ῑext) evaluated at
the plasma edge. The value h3D = 0 corresponds to a tokamak, in which the rotational
transform is generated entirely by ohmically driven currents, whereas h3D = 1 represents
a current-free stellarator. Herfindal et al. (2019) have performed a systematic study of the
effects of 3D shaping on CTH sawtooth oscillations by varying the fractional rotational
transform in the h3D = 0.04–0.42 range. The configurations have tokamak-like profiles for
the safety factor, with an on-axis safety factor around unity that monotonically increases
to an edge value between 1.6 and 5. The line-averaged electron density varies in the
ne = 0.6–3.5 × 1019 m−3 range and the peak plasma current in the range from 15 to
60 kA. In CTH, a typical value for the on-axis magnetic field is 0.5 T and for the electron
temperature is 200 eV.
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Experiments report that the sawtooth oscillation frequency increases with the degree
of 3D shaping. As measured from soft X-ray (SXR) emission of the plasma core, a
sawtooth signal consists of a slow rise (the ramp-up phase) and a subsequent fast drop
(the crash phase). However, there is no correlation between the crash time and the
fractional rotational transform, and the increased sawtooth frequency can be attributed
to a faster ramp-up.

Roberds et al. (2016) simulate sawtooth oscillations in CTH current-carrying stellarator
using NIMROD (Sovinec et al. 2004). The plasma model consists of an MHD system
of equations with Spitzer resistivity and anisotropic thermal conduction. Simulations are
initialised with equilibria from the Variational Moments Equilibrium Code (VMEC) and
are run by applying toroidal loop voltage at the plasma surface, which drives plasma
currents typical in CTH. The role of 3D shaping is investigated by considering a set
of four configurations with increasing values for the external rotational transform, ῑext =
0.0, 0.0134, 0.0333 and 0.0970. For these scenarios, approximate values for h3D computed
right after the first sawtooth crash are h3D ∼ 0.0, 0.03, 0.07 and 0.16.

The sawtooth frequency increase with 3D shaping has been retrieved from simulations
of CTH. It is shown that the n = 1 energy grows faster for configurations with higher
ῑext, suggesting that equilibrium modifications lead to a faster linear growth rate. For all
ῑext cases, the linear growth rate is demonstrated to be proportional to S−2/3, where S in
the Lundquist number, which is in agreement with the linear growth rate of the resistive
internal kink mode (Coppi et al. 1976; Ara et al. 1978).

3. Power-transfer analysis and the Lorentz power-transfer triad coefficients

This paper focuses on understanding the effect of 3D magnetic fields on the sawtooth
instability. In a CTH’s hybrid configuration, the stellarator fields modulate the energy
transfer that drives the sawtooth instability. This section includes a recap of Ho
& Craddock (1991) energy-transfer analysis tailored towards a generalisation for 3D
geometry. The generalisation introduces the Lorentz power-transfer triad coefficients,
which capture nonlinear interactions among Fourier modes, including those associated
with stellarator fields.

The generalisation of the power-transfer analysis to a 3D equilibrium requires a
consistent usage of the concepts of linear eigenmode and toroidal Fourier mode. A linear
eigenmode is an eigenmode of the linearised extended MHD system of equations. Given
(R, Z, ϕ) cylindrical coordinates, for a scalar field g(R, Z, ϕ, t), the toroidal Fourier mode
gn(R, Z, t)einϕ originates from the standard decomposition

g(R, Z, ϕ, t) =
∞∑

n=−∞
gn(R, Z, t)einϕ. (3.1)

The index n is the toroidal mode number. For a 3D vector field

g(R, Z, ϕ, t) = gR(R, Z, ϕ, t)êR(ϕ) + gZ(R, Z, ϕ, t)êZ + gϕ(R, Z, ϕ, t)êϕ(ϕ), (3.2)

a toroidal Fourier mode, gn(R, Z, ϕ, t)einϕ , results from the decomposition of each scalar
component, so that

gn(R, Z, ϕ, t) = gRn(R, Z, t)êR(ϕ) + gZn(R, Z, t)êZ + gϕn(R, Z, t)êϕ(ϕ). (3.3)

For an axisymmetric equilibrium, a linear eigenmode is associated with a single toroidal
mode number n; the internal n = 1 kink mode corresponding to a sawtooth instability in

https://doi.org/10.1017/S0022377822000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000770


Sawtooth oscillations of a current-carrying stellarator 5

a tokamak is an example. In contrast, if the equilibrium possesses 3D features, a linear
eigenmode has as projection onto multiple Fourier modes. In summary, n is a good
quantum number when the equilibrium is axisymmetric (Spong 2015).

Toroidal Fourier modes are linearly coupled for a 3D equilibrium state, but they are
not linearly coupled for an axisymmetric state (nonlinear effects couple Fourier modes
in both cases). For a genuinely 3D equilibrium state with no symmetries whatsoever,
linear coupling of the Fourier modes extends over the entire toroidal mode spectrum:
n = −∞, . . . , 0, . . . ,+∞. When the equilibrium possesses field-periodicity (as in CTH
and other stellarators), the spectrum reduces to specific bands, known as mode families. A
3D equilibrium with a field period of Nfp can be expressed as a superposition of Fourier
modes restricted to the toroidal mode numbers kNfp for k an integer (k ∈ Z). Likewise,
the Fourier decomposition of a linear eigenmode for which gn �= 0 (for some n) requires
the superposition of all toroidal Fourier modes gn′ that satisfy the constraint n′ = n + kNfp
for k ∈ Z. CTH is a five-field period device (Nfp = 5) and its banded structure consists of
three families: a symmetry-preserving family, n = kNfp, and two symmetry-breaking ones,
n = kNfp ± 1, kNfp ± 2. The internal kink linear eigenmode responsible for the sawtooth
activity in CTH includes the complete kNfp ± 1 family (Roberds et al. 2016), and not just
the n = 1 toroidal Fourier mode, as in a tokamak. Henceforth, the n = kNfp ± 1 family
is referred to as the ±1 fields, whereas the n = kNfp ± 2 family is referred to as the ±2
fields. In addition, when referring to the n = ±5, ±10,±15, . . . Fourier modes, excluding
n = 0, the terms higher-order symmetry-preserving fields or stellarator fields are used.

In this work, the power-transfer analysis is based upon assigning an energy content to
each toroidal Fourier mode and quantifying the energy exchange between these modes.
The standard definition of the total energy of a plasma involves an integral over internal,
magnetic and kinetic energy density contributions:

E =
∫

V

(
p

γ − 1
+ |B|2

2μo
+ ρ|V |2

2

)
dA dϕ. (3.4)

Here, V is the confinement volume, dA is a poloidal cross-sectional differential of area
and γ is the adiabatic constant (taken as γ = 5/3 in this work). To sort the total energy
into contributions assigned to each toroidal mode, the starting point is to Fourier expand
the pressure, magnetic, velocity and mass density fields in (3.4). During the evolution of
the sawtooth simulations analysed in this work, non-axisymmetric Fourier mass density
components (ρk, for k �= 0) are smaller than its axisymmetric part (ρ0). To leading order
in the mass density, the plasma energy may be Fourier expanded as

E =
∑

n

∫
V

(
pneinϕ

γ − 1
+
∑

q

[Bn · B∗
q

2μo
+ ρ0V n · V ∗

q

2

]
ei(n−q)ϕ

)
dA dϕ + O

(
ρk

ρ0

)
, (3.5)

where superscript ∗ indicates a complex conjugate. The internal, magnetic and kinetic
energy densities are linear, quadratic and cubic in the fields (p, ρ, B and V ), respectively.
Accordingly, the Fourier mode decomposition of their constitutive fields leads to a single,
a double and a triple sum, in that order. In (3.5), the triple sum originating from the
kinetic energy density is a higher-order term, included in O(ρk/ρ0). During the toroidal
integration of (3.5), only the n = 0 pressure component and the q = n magnetic and kinetic
terms survive. Toroidal integration yields the desired energy splitting:

E =
∑

n

En + O
(

ρk

ρ0

)
. (3.6)
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Here, the (leading-order) plasma energy associated with the nth Fourier mode is defined
as an integral over the poloidal cross-section (A):

En = 2π

∫
A

(
pn

γ − 1
δ0,n + |Bn|2

2μo
+ ρ0|V n|2

2

)
dA. (3.7)

The Kronecker delta δ0,n ensures that the internal energy contributes only when n = 0.
Note that the index n in En indicates that the integrand in (3.7) contains only the toroidal
Fourier mode n of the fields p, B and V .

A positive power transfer represents the addition of energy into a Fourier mode, which
corresponds to mode growth, whereas a negative power transfer supports mode damping.
For this reason, power transfers are used to track the Fourier mode energy time evolution.
The power transfers that modify the internal, magnetic and kinetic Fourier mode energies
are obtained from the time evolution equations. In this work, different energy types
are lumped together into the Fourier mode energy (En in (3.7)); accordingly, the power
transfers that determine the rate of change of the internal, magnetic and kinetic Fourier
mode energies are combined into a single equation for the time evolution of En.

The Fourier mode energy time evolution is controlled by a competition between
power-transfer contributions, each with concrete physical meaning. The governing
equation for the time rate of En, and definite expressions for the power transfers, are
given in appendix A. The Lorentz power (PLn ) captures the nonlinear interaction among
Fourier modes and, in particular, the current drive for instabilities. The resistive dissipation
power (Pηn ) represents the dissipation due to a Spitzer resistivity that is fully dependent on
position through the electron temperature. The Poynting flux (PPFn ) is a conservative term
that tracks energy flux across the plasma boundary; it captures the effect of the imposed
loop voltage that drives CTH’s ohmic currents. The viscous dissipation (PΠn ) represents
the power associated with the viscous stress tensor; it is negligible in this work. Additional
power transfers are the pressure gradient (P∇pn

) and the centre-of-mass advection (PAn ).
The Lorentz power drives the sawtooth oscillation linear growth and it is the central

quantity in our analysis. Its analytic expression,

PLn = 2π

∫
A

V ∗
n · (J × B)n dA + 2π

∫
A

J ∗
n · (V × B)n dA + c.c., (3.8)

indicates that it is due to the J × B Lorentz force and the V × B induced electric field.
In (3.8), c.c. indicates the complex conjugate of the previous terms. For conciseness, PLn

is referred to as the Lorentz power. The Lorentz force drives the kinetic energy growth,
whereas the induced electric field controls the evolution of the magnetic energy. Here PLn

lumps together the Lorentz force and the induced electric field in the same way as En
combines different energy types.

The terms (J × B)n and (V × B)n in (3.8) can be expanded as the sum

(A × B)n =
∑

n′
An′ × Bn−n′, (3.9)

with A = J or A = V . We define

fn,(n−n′),n′ = 2π

∫
A

{
V ∗

n · (J n′ × Bn−n′) + V n · (J ∗
n′ × B∗

n−n′)

+ J ∗
n · (V n′ × Bn−n′) + J n · (V ∗

n′ × B∗
n−n′)

}
dA, (3.10)
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so that

PLn =
∑

n′
fn,(n−n′),n′ . (3.11)

Note that the middle index in fa,b,c is the index of the magnetic field. The triad (or
three-wave-coupling) coefficient fn,(n−n′),n′ tracks the energy flowing into En due to fields
with toroidal Fourier numbers n′ and n − n′. Without further information, however, one
does not know what portion of this energy flow comes from mode n′ and what portion
from mode n − n′. A direct calculation shows that fn,(n−n′),n′ = −fn′,(n′−n),n implying that
we can unambiguously interpret fn,(n−n′),n′ as an energy flow from mode n′ to mode n: the
energy gained by mode n (fn,(n−n′),n′) is lost by mode n′ (−fn′,(n′−n),n). The magnetic field
Bn−n′ is unchanged by the interaction, and acts as a catalyst for the energy transfer between
modes n′ and n.

4. Magnetic field topology during sawtooth oscillations

This section expands the analysis of Roberds et al. (2016) by accurately tracking order-1
fixed points during sawtooth cycles. The analysis starts with an in-depth description of
the first sawtooth cycle for the tokamak case (ῑext = 0), followed by a comparison of the
tokamak versus the stellarator configurations. It is concluded that 3D shaping does not
significantly modify the fixed-point picture of a sawtooth instability in a current-carrying
stellarator.

4.1. First sawtooth cycle: a prolonged initial instability growth and first crash
Determining fixed points and associated quantities enables the study of topological
changes in the magnetic field during sawtooth cycles. Early during the sawtooth cycle’s
ramp-up phase, the magnetic axis bifurcates into three fixed points, two o-points and an
x-point. One o-point and the x-point correspond to the o-point and x-point of a newly
formed magnetic island. The second o-point is the original magnetic axis. This bifurcation
happens as the on-axis safety factor drops below unity and a q = 1 surface emerges.
In Kadomtsev’s theory, a growing m = n = 1 resistive internal kink causes the q = 1
surface to shrink and to expel energy to outer regions. The crash phase ends with the
coalescence of the central o-point with the x-point, leaving the m = n = 1 island centre as
the new magnetic axis and q > 1 everywhere. A temperature-dependent Spitzer resistivity
leads to a subsequent current peaking in the core until q0 < 1 again, restarting the cycle.
This section analyses topological changes in the magnetic field by accurately tracking the
position, safety factor and Greene’s residue of all relevant fixed points during sawtooth
oscillations of the tokamak simulation.

An accurate description of the topological changes during a sawtooth cycle requires
an accurate determination of order-1 fixed points and their safety factors. This can be
accomplished with a fixed-point finder algorithm such as that described by Hanson &
Cary (1984). The algorithm tracks magnetic field lines via the return map, which follows
the magnetic flow from one Poincaré surface back to the same surface. A fixed point of
order n is defined as an invariant point of the map that results from applying the return
map n times. These points can be determined to high accuracy using a Newton’s method.
The linearisation of the return map results in the tangent map, and the behaviour of the
tangent map in the neighbourhood of a fixed point is described by either its eigenvalue
or, equivalently, by its Greene’s residue (Greene 1968, 1979). A Greene’s residue (Rg)
characterisation of the tangent map is physically advantageous. For example, the island
width of a thin island is proportional to

√
Rg, where Rg is the Greene’s residue of the

island centre. More importantly, the Greene’s residue of a fixed point and the safety factor
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at that location are related by cos(2π/q) = 1 − 2Rg. In summary: during a sawtooth cycle
order-1 fixed points are accurately determined using Newton’s method and that is followed
by the evaluation of their Greene’s residues and safety factors.

Figure 1 shows the initial growth and two more sawtooth oscillations for the tokamak
(ῑext = 0) simulation. This figure depicts a prolonged (∼3 ms) first cycle from 4.5 ms up to
approximately 7.5 ms, followed by two shorter (∼0.5 ms) oscillations. Figure 1(a) shows
the electron temperature measured at the initial location of the magnetic axis. Figure 1(b)
illustrates the volume-integrated energy content of successively higher toroidal Fourier
modes, as given by (3.7). Here n = 0 corresponds to the axisymmetric fields, whereas
n = 1 is the growing internal kink responsible for the temperature crash. Figure 1(c) shows
the safety factor of order-1 o-points. Figure 1(d) shows the major radius of fixed points at
the ϕ = 0 plane. In this plane, the Z coordinates of the order-1 fixed points are very close
to zero. Figure 1(e) gives the Greene’s residue of these fixed points. The ramp-up phase
of the first sawtooth cycle is bounded by the first and second vertical dashed lines; the first
crash phase is bounded by the second and third vertical dashed lines. The determination of
fixed points and related quantities allows to accurately specify the instants when q0 crosses
1.

Initially (4.5 ms), the configuration possesses a set of good nested magnetic surfaces and
a safety factor at the magnetic axis that is greater than unity (q0 = 1.01 in figure 1c). As the
simulation progresses, the magnetic axis safety factor (green line in figure 1c) decreases
due to a peaking of the current profile in the less-resistive hotter core plasma. The Greene’s
residue (green line figure 1e) associated with the magnetic axis also decreases. This trend
continues until 4.7 ms, when q drops below one, the residue drops to zero and a fixed-point
bifurcation occurs (first dashed vertical line in figure 1). For a given o-point, its Greene’s
residue (Rg) and safety factor are related by cos(2π/q) = 1 − 2Rg; Rg = 0 is consistent
with q = 1. The emergence of a q = 1 surface is signaled by the bifurcation event that
produces an o–x fixed-point pair. For ϕ = 0, figure 1(d) shows that the o-point (x-point)
originates in the outboard (inboard) side of the poloidal cross-section.

The ramp-up phase begins at 4.7 ms and lasts until approximately 7.5 ms. The first
indication of the resistive internal kink is the appearance of the o–x pair in the Greene’s
residue plot at 4.7 ms. In contrast, the n = 1 mode energy plot does not register the
instability onset, and the mode growth is masked under numerical noise. The n = 1 growth
in the energy is first seen at 5.7 ms. The residues for the o–x fixed-point pair remain at a
numerical noise level of approximately 10−9 until 6.5 ms. During the ramp-up, the o–x
fixed-point pair separate, indicating an expansion of the q = 1 surface.

The sawtooth crash begins just before 7.5 ms. First, we see that the electron temperature
peaks at 7.43 ms (second vertical dashed line in figure 1). Then the n = 1 energy reaches
a maximum at 7.55 ms. Shortly thereafter there is a bifurcation where the o–x fixed points
coalesce at 7.58 ms (third vertical dashed line in figure 1). The coalescence is illustrated in
figure 1(d) by the mutual destruction of a solid green trace with a dashed blue trace. After
the coalescence, the centre of the growing island has become the new magnetic axis (red
trace of figure 1d), and it is located roughly in the same position as the original magnetic
axis. The fast electron temperature decrease and the subsequent reconnection process are
known as the sawtooth crash. After the crash, the safety factor at the new magnetic axis is
greater than unity (red trace in figure 1c). From then on, there is a sequence of sawtooth
oscillations, and figure 1 displays two of them, from 7.6 to 8.6 ms.

4.2. Tokamak and stellarator simulations: analogous fixed-point picture
For the current-carrying stellarator simulations considered here, the 3D shaping has a
small effect in the fixed-point picture of a sawtooth instability. Figure 2 compares sawtooth
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(a)

(b)

(c)

(d)

(e)

FIGURE 1. Sawtooth oscillations for a tokamak (ῑext = 0). The simulation consists of a
prolonged first cycle from 4.5 ms to approximately 7.5 ms, followed by a sequence of more
frequent cycles. The panels correspond to (a) the electron temperature (Te) at the location of
equilibrium magnetic axis for ϕ = 0, (b) the volume integrated magnetic plus kinetic Fourier
mode energies, (c) the safety factor, (d) the fixed-point R coordinate and (e) the Greene’s residue.
Panels (c–e) follow order-1 fixed points on the ϕ = 0 plane. Their Z coordinate is vanishingly
small and is not shown. Red and green solid traces identify o-points, whereas dashed blue traces
recognise x-points. Blue traces do not appear in panel (c), as the safety factor is undefined for
x-points. The ramp-up phase of the first sawtooth cycle is bounded by the first and second vertical
dashed lines; the crash phase is bounded by the second and third vertical dashed lines.

cycles for a stellarator configuration (ῑext = 0.0333) with the tokamak scenario (ῑext = 0).
The time window is centred around the second sawtooth cycle for both cases, and the
time coordinate is shifted by the instant when the first coalescence occurs (tsaw = Time −
Tfirst coalescence). For example, Tfirst coalescence = 7.58 ms for the tokamak simulation (shortly
after the third dashed vertical line in figure 1). In figure 2, four vertical dashed lines bound
regions where q0 > 1 and q0 < 1. The discussion is complemented with Poincaré plots
through the sawtooth cycle in figure 3.

The tokamak and the stellarator quantities given in figure 2 at tsaw = 0 (first vertical
dashed line) are similar. Both configurations have a monotonically decreasing on-axis
safety factor of approximately q0 ∼ 1.02 (red traces in figure 2c,h). Around this time, there
is a local minimum in the electron temperature (figure 2a, f ), maximum energy stored in
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(a)

(b)

(c)

(d )

(e)

( f )

(g)

(h)

(i)

( j)

FIGURE 2. Sawtooth oscillations for a tokamak (ῑext = 0) and a stellarator (ῑext = 0.0333). To
facilitate the comparison, we have shifted the time by the instant when the first o–x coalescence
occurs (right after the initial sawtooth cycle). (a, f ) Electron temperature; (b,g) magnetic plus
kinetic Fourier mode energies; (c,h) the safety factor at the fixed-point location; (d,i) fixed-point
R coordinate on the ϕ = 0 plane; (e,j) the absolute value of the Greene’s residue. In panels
(d,e,i,j), the dashed blue curves correspond to x-points whereas the solid curves correspond to
o-points. The vertical dashed lines limit the regions where the on-axis safety factor is greater or
smaller than unity.
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

FIGURE 3. Poincaré surface of sections during sawtooth oscillations for (a–d) a tokamak
(ῑext = 0) and (e–h) a stellarator (ῑext = 0.0333) at the ϕ = 0 plane. (a,e) On-axis q is larger
than one. (b, f ) On-axis q has dropped below unity. The q = 1 surface emergence is recognised
by the newly created central o-point (green dot) and x-point (blue x). (c,g) As the internal kink
mode grows, the magnetic axis is pushed towards the x-point. (d,h) The reconnection process has
been completed, and the centre of the growing island has become the new magnetic axis.
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non-axisymmetric fields (figure 2b,g), and vanishing residues for the magnetic axis and the
reconnection point of the previous sawtooth cycle (green and blue traces in figure 2e,j).
Tokamak and stellarator Poincaré plots at 0.03 ms and 0.01 ms are given in figures 3(a) and
3(e), respectively. The tokamak case shows circular nested flux surfaces. The stellarator
case shows elongated nested surfaces with symmetry-preserving 6/5 and 8/5 island chains.

The q = 1 surfaces emerge at tsaw ∼ 0.07 ms in tokamak and stellarator simulations.
This is indicated by the bifurcation event that produces an o–x fixed-point pair at the
second vertical dashed line in both the R coordinate plot (blue and green traces in
figure 2d,i) and the residues plot (blue and green traces in figure 2e,j). The red traces of
figure 2(d,i) at tsaw ∼ 0.07 ms show that the original magnetic axis is displaced towards the
inboard side due to the formation of a q = 1 surface in the core. Furthermore, the original
magnetic axis’s safety factor retains a value greater than unity through this event (red traces
in figure 2c,h). The tokamak and stellarator Poincaré plots in figures 3(b) (tsaw = 0.39 ms)
and 3( f ) (tsaw = 0.35 ms) confirm that the bifurcation process has effectively transformed
the original magnetic axis into a magnetic island centre (red dot). In these plots, the newly
created central o-point is marked by a green dot and the x-point by a blue x. The bifurcation
dynamics in the first 10 μs after q crosses unity is more complicated than the simplified
picture presented here. This is examined in more detail in appendix B, but has minimal
effect on the longer time scale sawtooth dynamics.

Sawtooth crashes for the tokamak and stellarator cases occur at tsaw ∼ 0.54 ms and
tsaw ∼ 0.41 ms, respectively. Poincaré plots before (tsaw = 0.49 ms) and after (tsaw =
0.55 ms) the tokamak sawtooth crash are given, respectively, in figures 3(c) and 3(d).
Similarly, figure 3(g,h) show Poincaré plots before (tsaw = 0.39 ms) and after (tsaw =
0.43 ms) the crash for the stellarator case. The temperature crash (figure 2a, f ) is due to the
displacement of the hot core towards the reconnection point during the coalescence event.
As the magnetic island grows, it pushes the recently created o-point towards the x-point,
which drives the reconnection process. This process is portrayed in figure 2(d,i) as green
and blue traces merging around the third vertical dashed line.

The fixed-point picture during sawtooth cycles is mostly unchanged by the application
of a stronger external rotational transform. This analysis has also been performed
for the ῑext = 0.0133 and 0.0970 cases considered by Roberds et al. (2016) and the
fixed-point picture is consistent throughout. The decrease of the sawtooth period for
increased levels of 3D shaping has been experimentally observed (Herfindal et al.
2019) and computationally verified (Roberds et al. 2016). Despite some well-understood
particularities during the q = 1 surface emergence (appendix B), the tokamak and
stellarator simulations are described by Kadomtsev’s model.

5. Power transfer in a 3D geometry

Although 3D shaping does not affect the sawtooth fixed-point picture, there are
differences between the tokamak and stellarator simulations in how the sawtooth
instability is driven. Section 2 highlights that the sawtooth frequency increases with 3D
shaping; it also points out that part of this variation is explained in terms of an increased
growth rate during the linear phase. This section focuses on the power transfer that drives
the sawtooth instability in the linear phase for the tokamak and the stellarator cases. The
nonlinear saturation and crash phases are discussed briefly. We find that the stellarator
fields have two competing effects on the linear kink instability. First, the stellarator fields
remove energy from the kink, which is stabilising. Second, the stellarator fields catalyse
energy transfer from large-to-small scales. We conjecture that this transfer of energy to
small scales effectively enhances the reconnection rate, which would increase the linear
growth rate.
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The internal kink linear eigenmode in a stellarator configuration consists of coupled
toroidal Fourier modes. In a tokamak, the equilibrium is characterised by n = 0;
in contrast, the stellarator equilibrium encompasses the symmetry-preserving family
(n = 0,±5,±10, . . .). For the tokamak, the internal kink linear eigenmode is identified
with n = 1. In the stellarator, n = 1 toroidally couples with all the kNfp ± 1 fields. Figure 2
shows the evolution of Fourier mode energies for the tokamak (figure 2b) and stellarator
(figure 2g) simulations. The linear growth phase for the tokamak case occurs from ∼0.2
to ∼0.4 ms; the linear growth phase for the stellarator case occurs from ∼0.2 to ∼0.35 ms.
For the tokamak in the linear growth phase, the n = 1–4 mode energies are at successively
lower values, with successively higher growth rates. In contrast, for the stellarator case,
the n = 1 and 4 modes grow at the same rate, and the n = 2 and 3 mode energies are at a
lower energy and grow at a higher rate than the n = 1 and 4 modes. In the stellarator case,
the internal kink linear eigenmode has a finite projection onto the ±1 fields, and vanishing
projection onto the remaining Fourier modes.

Figure 4 shows the energy evolution of the extended Fourier spectrum for the stellarator
simulation. Figures 4(a)–4(c) show the energy of symmetry-preserving fields, ±1 fields
and ±2 fields, respectively. The energy in each symmetry-preserving field (n = kNfp) is
constant in time, with energy decreasing with higher n. These energies are predominately
magnetic field energy and are approximately seven orders of magnitude larger than the
symmetry-breaking modes with similar n values. The ±1 modes show a characteristic
linear growth phase, the log energy increasing linearly in time at the same rate, and the
total energy decreasing with increasing n. The ±2 modes are at smaller amplitude than
nearby ±1 modes. Toward the end of the linear growth phase, the ±2 mode energies all
show exponential growth, with a faster growth rate than the ±1 modes. This is consistent
with the fact that the ±2 modes are driven nonlinearly by ±1 mode interaction. During the
linear growth phase, the energy evolution is dominated by the linear eigenmode growth.
Thus, we use the ±1 modes as a proxy for the linearly growing eigenmode. We note that
the higher n modes growth rate begins to increase towards the end of this phase, which
indicates that the linear approximation, or the assumption that the ±1 Fourier modes are
a good proxy for the eigenmode, is beginning to break down.

The Lorentz power drives the growth during the linear phase, as can be seen in figure 5.
This figure shows the power transfers for the tokamak n = 1 (figure 5a), stellarator n = 1
(figure 5b) and stellarator n = 4 (figure 5c). In all three cases, the total power transfer and
the Lorentz power transfer are nearly identical during the linear growth phase, and the
other power transfers (pressure gradient, resistive dissipation and advective) are negligibly
small. The other power transfers become important once the x and o points coalesce (at
the third vertical dashed line).

To further understand the Lorentz power during sawtooth cycles, it is convenient
to consider energy-transfer rates between specific Fourier modes. As explained in § 3,
fn,(n−n′),n′ is the Lorentz energy transfer rate from En′ to En catalysed by Bn−n′ . The fn,(n−n′),n′

coefficients for the tokamak and stellarator cases are plotted in figures 6(a)–6(c) and
6(d)–6( f ), respectively. Figures 6(a) and 6(d) correspond to times right after the crash,
but before q0 drops below unity again, figures 6(b) and 6(e) are for times during the linear
phase, and figure 6(c) and 6( f ) are near saturation, shortly before the next crash. As the
coefficients cover multiple orders of magnitude, figure 6 uses a logarithmic scale. For a
given n, the Lorentz power PLn is obtained by summing over all matrix elements in the nth
column.

Several properties of the Lorentz power-transfer coefficients are reflected in the structure
of the plots in figure 6. (i) The conservation of energy antisymmetry (fn,(n−n′),n′ =
−fn′,(n′−n),n) implies that the Lorentz power-transfer coefficients are the same, save for
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(a)

(b) (c)

FIGURE 4. Magnetic plus kinetic Fourier mode energies for the stellarator (ῑext = 0.0333)
simulation: (a) symmetry-preserving modes; (b) ±1 Fourier modes; (c) ±2 Fourier modes. Note
that panel (a) has a different energy scale than panels (b,c). The energy content of a given +n
field is equal to that of the energy content of −n, so only half on them are shown.

a sign change, upon reflection across the n = n′ line. (ii) The n = n′ diagonal is zero,
because there is no energy transfer of a Fourier mode to itself. (iii) Fourier modes of
real fields obey a complex conjugate symmetry (e.g. Bn = B∗

−n). This property implies
that the plots are invariant under inversions through the origin: fn,(n−n′),n′ = f−n,(n′−n),−n′ .
The physical implication is that the Lorentz power transfer from En′ to En is equal to
that from E−n′ to E−n. (iv) The conservation of energy antisymmetry and the complex
conjugate symmetry, in turn, imply that the coefficients change sign when reflected across
the n = −n′ line, i.e. fn,(n−n′),n′ = −f−n′,(n−n′),−n. The interpretation is that the power transfer
from En′ to En is the negative of that from E−n to E−n′ . (v) From the preceding condition,
it follows that the coefficients along the n = −n′ line vanish (f−n,(−2n),n = 0). This is
expected: the Lorentz power coefficients modify the magnetic and kinetic Fourier mode
energies, and these quantities are proportional to |Bn|2 = Bn · B−n and |V n|2 = V n · V −n,
respectively, i.e. the energies are constructed from Fourier modes with indices n and −n.
(vi) It is seen that figure 6 can be recovered through reflections and transpositions from,
say, the upper wedge (n′ > |n|). The remaining matrix entries are redundant.1

CTH’s five-fold toroidal periodicity imposes a structure in the power-transfer matrix
for the stellarator simulation. For this simulation, the symmetry-preserving Fourier modes
B5k are the largest of the magnetic field Fourier modes. Their catalytic effect is quantified
by the fn,(5k),n−5k coefficients, located along the n′ = n + 5k lines in figures 6(d)–6( f ).
Along these lines, the f5n,5(n−n′),5n′ entries are local extrema. These coefficients correspond

1The power axis uses a signed-log scale. For a given positive number p, the scale is linear in between −p ≤ x ≤ p,
maps to log(x/p) + p for x > p and to − log(|x|/p) − p for x < −p. In figures 5 and 6, p = 10 W. In figures 7 and 8,
p = 1 W.
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(a)

(b) (c)

FIGURE 5. Power-transfer contributions during the first sawtooth oscillation: (a) tokamak
n = 1; (b) stellarator n = 1; (c) stellarator n = 4. The power scale is linear within the grey
area and logarithmic elsewhere1. The vertical dashed lines limit the regions where the on-axis
safety factor is greater or smaller than unity. The first and third vertical lines correspond to
fixed-point coalescences during sawtooth crashes, the second and fourth vertical lines correspond
to bifurcations of the magnetic axis as the on-axis safety factor drops below unity.

to power transfers catalysed by symmetry-preserving fields exclusively. An example of
an interaction of this class is the f5,(5),0 coefficient, corresponding to power transfer from
n′ = 0 to n = 5. This coefficient is the global maximum of figure 6(d), early during the
cycle, and of figure 6( f ), right before the crash. The following discussion explores ways
in which the B5k symmetry-preserving Fourier modes modulate the sawtooth growth.

In the tokamak case, the n = 1 resistive internal kink grows by taking energy from
n′ = 0. The f1,(1),0 entry in figures 6(a)–6(c) captures this interaction. These figures show
that f1,(1),0 increases during the cycle. In a tokamak, the coefficients that drive the linear
growth peak around the origin (n = n′ = 0).

In the stellarator case, we use the ±1 Fourier modes as a proxy for the linearly growing
kink eigenmode. Energy flow into and within the eigenmode is given by

Peigen =
∑

n=kNfp±1

∑
n′

fn,(n−n′),n′ . (5.1)

We separate the n′ indices into four disjoint groups: (i) n′ = jNfp, energy transfer into the
eigenmode from symmetry-preserving fields; (ii) n′ = jNfp ± 2, energy transfer into the
eigenmode from ±2 fields; (iii) n′ = jNfp ± 1 and n − n′ = lNfp, energy rearrangement
within the eigenmode catalysed by symmetry-preserving fields; (iv) n′ = jNfp ± 1 and
n − n′ = lNfp ± 2, energy rearrangement within the eigenmode catalysed by ±2 fields.
Here, j and l are integers. Groups (i) and (ii) quantify energy transfer into the eigenmode
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(a)

(b)

(c)

(d)

(e)

( f )

FIGURE 6. Lorentz power-transfer triad coefficients during the sawtooth cycle for the (a–c)
tokamak (ῑext = 0) and (d–f) stellarator (ῑext = 0.0333). Panels (a,d) correspond to times after
the crash, but before q0 drops below unity again, (b,e) are for times during the linear phase, (c, f )
correspond to times near the saturation, shortly before the next crash. Note the different colour
scales and axis range for each configuration. The power scale is linear in the −10 to 10 W range
and logarithmic elsewhere.

from Fourier modes not belonging to the eigenmode itself. Groups (iii) and (iv) quantify
energy rearrangement within the eigenmode.

Figure 7 shows the Lorentz power transfer into (but not within) the kink eigenmode
from the whole Fourier spectrum. That is, the n′ values included in the sum are those
described in groups (i) and (ii). In addition to plotting the total flow in, the figure also
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FIGURE 7. Stellarator simulation (ῑext = 0.0333). Lorentz power transfer into the kink
eigenmode from the whole Fourier spectrum, the n = 0 field, the stellarator fields (n =
±5, ±10, ±15, . . .) and the ±2 fields (n = ±2, ±3, ±7, . . .). The power scale is linear within
the grey area and logarithmic elsewhere.

shows the individual contributions from the axisymmetric fields (n′ = 0), the stellarator
fields (n′ = kNfp), and the ±2 fields (n′ = kNfp ± 2). During the linear growth phase, the
power from the whole Fourier spectrum is approximately equal to the transfer from the
axisymmetric fields. The transfer from the ±2 fields is negligible, and the transfer from
the stellarator fields is small and negative. The stellarator fields remove energy from the
eigenmode. Thus, they are not a source of free energy that drives growth.

The Lorentz power transfer within the kink eigenmode can be expressed in sums
of the form of (5.1), with n′ in the groups (iii) (energy rearrangement catalysed by
symmetry-preserving fields) or (iv) (energy catalysed by ±2 fields). However, the
complete sum in (5.1) with all n′ in group (iii) or all n′ in group (iv) gives zero. Every
contribution describing flow from n′ to n is cancelled by the energy flow from n to n′. To
clarify what is happening with the energy flow within the eigenmode, we add a condition
to the sum: that |n| > |n′|. With this condition, the sum only includes the power flow from
small |n′| to large |n| (large scale to small scale):

Pup =
∑

n=kNfp±1

∑
n′=lNfp±1 and |n|>|n′|

fn,(n−n′),n′ . (5.2)

Note that the sign of Pup and f can both be positive or negative. If positive, the energy is
flowing from large-to-small scales. If negative the energy is flowing from small-to-large
scales.

Figure 8 shows the large-to-small scales energy rearrangement within the eigenmode
catalysed by the stellarator fields (n − n′ = ±5,±10,±15, . . .), ±2 fields (n − n′ =
±2, ±3,±7, . . .) and by the field pairs B±5, B±10 and B±15. This figure shows that
the large-to-small scales energy rearrangement within the eigenmode catalysed by the
stellarator fields is positive during the linear phase while there is a negligible catalytic
effect of the ±2 fields. The implication is that the higher-order Fourier modes of the
kink eigenmode grow at the expense of energy catalysed by the stellarator fields from
large-to-small scales.

Figure 8 also shows that the large-to-small scales energy rearrangement within the
eigenmode catalysed by the stellarator fields is mainly due to the catalytic effect of B±5
and B±10. The forward cascade catalysed by B−5 and B5 are equal and figure 8 shows
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FIGURE 8. Stellarator simulation (ῑext = 0.0333). Large-to-small scales energy rearrangement
within the eigenmode catalysed by the stellarator fields (n = ±5, ±10, ±15, . . .), ±2 fields
(n = ±2, ±3, ±7, . . .), B±5, B±10 and B±15. The power scale is linear within the grey area
and logarithmic elsewhere.

their sum. The same observation applies for the B±10 and B±15 pairs. The B±5 and B±10
fields have a comparable catalytic role during the linear phase that rearranges, within the
eigenmode, energy from large scales to small scales. Unexpectedly, the catalytic effect
of B±5 is of the same order of magnitude as that of B±10. The catalytic effect of B±15 is
orders of magnitude smaller than that of B±5 and B±10. The smallness is expected from
the ordering of the symmetry-preserving fields.

Figure 8 highlights that stellarators fields rearrange energy within the kink eigenmode
through a forward cascade. The forward cascade transfers energy from large scales to small
scales, and magnetic reconnection is stronger at smaller length scales. It is hypothesised
that this energy catalysis results in an increased reconnection rate. This hypothesis is
consistent with the observed increase in the resistive kink growth rate with increasing
stellarator fields reported in Roberds et al. (2016), and it is consistent with experimental
trends (Herfindal et al. 2019).

6. Discussion and conclusions

This paper revisits sawtooth NIMROD simulations of CTH operating as a tokamak
and as a current-carrying stellarator. The analysis employs a new fixed-point finder for
NIMROD post-processing and adapts the power-transfer analysis of Ho & Craddock (1991)
to explore a 3D equilibrium.

This work determines that the fixed-point picture during sawtooth oscillations in CTH’s
tokamak and stellarator scenarios are similar. The fixed-point analysis allows for a detailed
description of the sawtooth cycle. (i) During the initial sawtooth oscillation for the
tokamak case, the first indication of the kink eigenmode onset is the bifurcation of the
magnetic axis into an n = m = 1 magnetic island centre and reconnection point (as shown
in the Greene’s residue plot) rather than the growth of the sawtooth energy content (which
is masked under numerical noise). (ii) The accurate determination of fixed points, safety
factors and residues resulted in the identification of two fixed-point mechanisms during
the emergence of the internal kink, as shown in (appendix B).

The Lorentz power transfer is the internal kink eigenmode driver for the tokamak
and the stellarator cases. Surprisingly, stellarator fields damp the sawtooth instability’s
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linear growth. The primary role of stellarator fields is to catalyse energy transfer from
large-to-small scales within the eigenmode. The aforementioned forward cascade may be
related to the increased linear growth with 3D shaping, as reported by Herfindal et al.
(2019) and Roberds et al. (2016). This is a topic of future work.

An important consequence of the generalisation of Ho & Craddock (1991) analysis
to a 3D equilibrium is the introduction of the Lorentz power-transfer triad coefficients
fn,(n−n′),n′ . The coefficient can be interpreted as an energy flow from mode n′ to mode n
catalysed by the magnetic field Bn−n′ . The collection of coefficients for CTH’s stellarator
scenarios has an underlying structure imposed by the Nfp = 5 field-periodicity. These
coefficients may prove fruitful for analysing sawtooth or other MHD activity in generic
stellarators. The power-transfer analysis makes no β assumptions and may be employed
for configuration with arbitrary cross-sectional geometry. The Lorentz power-transfer triad
coefficients can be used to quantify symmetry-breaking effects in tokamaks, such as those
produced by 3D fields for edge localized mode (ELM) suppression.
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Appendix A. Explicit expressions for the power transfers

The Ho & Craddock (1991) power-transfer analysis has been summarised in § 3. This
appendix complements that discussion by providing an equation for the time evolution of
the Fourier mode energy (A1) and expressions for the power transfers (A2)–(A7).

A positive power transfer supports mode growth, whereas a negative power transfer
corresponds to mode damping. The competition of power transfers determines the Fourier
mode energy (En in (3.7)) time evolution. This work focuses on the Fourier energy of
non-axisymmetric modes (n �= 0), and the equation for their time evolution is obtained by
adding the (spectrally decomposed) induction and momentum equations projected into the
velocity and magnetic fields, respectively. The resulting equation is

dEn

dt
= 1

2

(
P∇pn

+ PAn + PΠn + Pηn + PPFn + PLn

)
. (A1)
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The power-transfer terms on the right-hand side are defined as follows:

pressure gradient: P∇pn = −2π

∫
A

V ∗
n · (∇p)n dA + c.c., (A2)

advective: PAn = −2π

∫
A
ρ0V ∗

n · (V · ∇V )n dA + c.c., (A3)

viscous dissipation: PΠn = 2π

∫
A

V ∗
n · (∇ · Π)n dA + c.c., (A4)

resistive dissipation: Pηn = −2π

∫
A
(ηJ )n · J ∗

n dA + c.c., (A5)

Poynting flux: PPFn = −2π

∮
∂A

·
(

En × B∗
n

μo

)
· dn + c.c., (A6)

Lorentz power: PLn = 2π

∫
A

V ∗
n · (J × B)n dA + 2π

∫
A

J ∗
n · (V × B)n dA + c.c. (A7)

In these equations, superscript ∗ denotes the complex conjugate, c.c. indicates the complex
conjugate of the previous terms and dA is a poloidal cross-sectional differential of area.
The physical interpretation of these terms has already been discussed in § 3, but some
comments are in order.

Here PAn is the power transfer associated with the centre of mass advection. Its definition
entails the axisymmetric mass density only. During sawtooth cycles analysed here, the
non-axisymmetric Fourier mass density components (ρk, for k �= 0) are smaller than its
axisymmetric part (ρ0). Equation (A3) is accurate up to O(ρk/ρ0), but this is the same
approximation employed in the definition of the leading-order Fourier mode energy, En, in
(3.7).

We use Pηn to denote the power dissipation due to electrical resistivity. This work
includes a Spitzer resistivity in which the electron temperature is fully dependent on
position and (A5) takes this into account. The resistive dissipation integrand (ηJ )n · J ∗

n,
differs from ηJ n · J ∗

n = η|J n|2, which is valid for a situation with constant resistivity
through the confinement region. Although η|J n|2 is negative definite, (ηJ )n · J ∗

n is not.
Although individual Pηn contributions may be positive, the sum of Pηn contributions over
the complete Fourier spectrum is negative, indicating an overall mode damping effect, as
expected from a dissipative power transfer.

The term PPFn is a conservative term that allows energy flux across the plasma boundary.
In this work, it captures the imposed toroidal loop voltage that is responsible for driving
ohmic currents that are typically in CTH. Here, only the n = kNfp fluxes of energy
through the plasma boundary are significant. In (A6), ∂A is the boundary of the poloidal
cross-section (A) and dn is a vector normal to it.

Appendix B. Posterior sawtooth cycles: an example of a complex fixed-point
mechanism during bifurcations

This appendix describes the unexpectedly complicated fixed-point changes that occur
early in the second tokamak sawtooth cycle, between the times of figure 3(a) (0.030 ms)
and figure 3(b) (0.39 ms).

Figure 9 shows four Poincaré plots, focused on the central plasma region (0.65 m < R <
0.85 m) at times between those of figures 3(a) and 3(b). Figures 3(a) and 9(a) (0.060 ms)
both show a single o-point, near the midplane. By the time of figure 9(b) (0.067 ms) an
o–x pair has been generated, both located near the midplane. The order in major radius is
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(a) (b)

(c) (d)

FIGURE 9. Poincaré plots for the tokamak simulation during the q = 1 surface emergence of
the second sawtooth cycle.

o–x–o. Just 6 μs later, in figure 9(c) (0.073 ms) two more o–x pairs have been generated,
one pair above and one pair below the midplane. By the time of figure 9(d) (0.092 ms)
the two off-midplane o-points have merged with the on-midplane x-point to form an
on-midplane o-point, at approximately R = 0.071 m. In addition, the two off-midplane
x-points have merged with the outer on-midplane o-point to form an on-midplane x-point,
at approximately R = 0.082 m. The configuration of figure 9(d) shows three near-midplane
fixed points with major radius order o–o–x, the same as in figure 3(b).

It is important to note that all of the o-points in figure 9 have limiting q values very
close to 1. Thus, only a very small change in the magnetic field is required to cause the
fixed-point topology changes that are shown in figure 9.
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