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Properties of the solution set of a

generalized differential equation

J.L. Davy

We prove that the solution set of a generalized differential
equation is connected and that points on the boundary of the
solution funnel are peripherally attainable. This is done
without the additional assumption of continuity in the state
variable required in previous results. The result on upper
semicontinuity of the solution set with respect to initial

conditions is extended to include variations of initial time.

1. Introduction
In this paper we study the generalized differential equation
z'(t) € F(¢t, x(t)) ealmost everywhere t € I ,
x(ty) = xg .

F(t, x) 1is a convex compact set valued function which is upper
semicontinuous in x and bounded by an integrable function on the compact
interval I . We assume that for a given & there exists a measurable

selector f;(t) contained in F(t, x) . The solution set of the equation,
denoted by H(to, xo) , is a nonempty compact subset of ¢{(I) , ([11],
[101, £33, [71).

H(to, xo) is upper semicontinuous in z , ([33, [81). We prove that

H(to, xo] is upper semicontinuous in (to, xo) . If F 1is also
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continuous in zg > H(to, xo) is a connected subset of C(I) , every

point on the boundary of the solution funnel is peripherally attainable and
the generalized differential equation has the bang-bang property ([8], (9],
{12]). We show that connectedness and peripheral attainability follow
without the additional assumption of continuity. We give an example to

show that the bang-bang property does not hold without continuity.

Filippov's paper [6] contains results similar to ours, but assumes the
existence of a measurable selector f(t, x) contained in F(t, x) and

does not contain proofs.

To make the paper self-contained we include results on upper

semicontinuity due to Berge [2] and a proof of the existence of solutionms.

2. Upper semicontinuity

Upper semicontinuity of compact set valued functions is a
generalization of the concept of continuity of point valued functions. A
point valued function is upper semicontinuous (as a set valued function) if

and only if it is continuocus. This section is based on Berge [2].

X and Y are topological spaces and §(Y) is the set of nonempty
compact subsets of Y . F maps from X to Q(Y) . Let A Dbe a subset
of X . Then

F(4) = U F(x) .
x€d

F 1is upper semicontinuous at x5 if for all open sets G containing
F(xzp) , there exists a neighbourhood U(xy) of 3 such that
F(U(xo)) C G . F is upper semicontinuous if F is upper semicontinuous

at every point of X .
THEOREM 2.1. F <ig upper semicontinuous if and only if

F (6) = (& | Flz) C G} g an open set for all open sets G in Y.

+
Proof. (a) Assume F 1is upper semicontinuous. Let zg € F (G) .

There exists a neighbourhood U(zg) of =z such that F(U(xzp)) <G .

Thus Ulxg) < F*'(¢) and F'(G) 1is an open set.

(b) Assume G is open implies F'(6) is open. Let xp € X and let
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G be an open set containing F(zp) . F'(G) is a neighbourhood of =z
and F(F'(G)) <6 . /1

THEOREM 2.2. If F <is upper semicontinuous the image F(K) of a

compact set K 1is compact.
Proof. Let {Gi | £ € I} be an open covering of F(X) . If x € X ,

the set F(xz) , which is compact, is covered by a finite number of Gi .
+
Let their union be denoted by Gx . {F (Gx) | = € K} is an open covering

+ +
of K . Thus, there exists a finite subcovering F (Gx ], vees F (G ] .
1 n

x
Gx s eees Gx cover F(K) and each Gx is the union of a finite number
1 n J
of Gi . Therefore F(K) is covered by a finite number of Gi and thus
is compact. //

THEOREM 2.3. If F 1is upper semicontinuous, K 1is a connected
subset of " X and F(x) ie a connected subset of Y for each x € K then
F(K) 18 a conmnected subset of Y .

Proof. Suppose F(K) is not connected. That is, there exist two

open disjoint sets A}, 4 of Y such that F(X) € 4) v 4; and

F(K) nAy # 9 and F(K) nd, # 8 . Then F+(A1) and F+(A2) are open
sets of X . Let x € K ; then F(x) < 4; udy , and since Flx) is
connected, it is contained in 4; or in A4, . Thus K'E,F+(A1) u F+(A2) .
It is obvious that F+(A1) n F+(A2) =9 ,and Kn F+(A1) # @ and

+
KnF(4;) # 4 . Thus X 1is not connected, which is a contradiction.

Therefore F(X) is connected. //

THEOREM 2.4. Let F; : X ~ Q(Y) and Fy : Y + Q(Z) be upper
semicontinuous. Define Fy © Fy(x) = Fo(F1{x)) . Then Fy o F) maps X
to Q(2Z) and is upper semicontinuous.

Proof. By Theorem 2.2, F,(F1(x)) € 2(2) . Let G be an open set of
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(Fp 0 F1)T(6) = {z | Fy © Pi(x) < G}

{z | Fi(z) c F3(G)}
R [F3(0)] ,

which is open in X by Theorem 2.1. Thus F; o F; 1is upper

semicontinuous by Theorem 2.1. //

Let X be a metric space, € a positive real number and zx € X .

Define B.(z) = {y | dlz, y) <€} . Let A be a subset of X . Define

e—
A = U Bs(a:) .

xed

THEOREM 2.5. Let X and Y be metric spaces and F : X + QY) .

F 18 upper semicontinuous at &z, if and only if for each € > 0 there

0

exists & > 0 such that F[Bé[xo)] c Fe(xo]

Proof. {(a) Suppose F 1is upper semicontinuous at =z Choose a

0

neighbourhood U(xo) of x, such that F[U(xo)] c F® (xo) . Choose § >0

0
such that BG (xo) c U(xo) . Therefore F[BG (xo)] c F* (xo)
(b) Let G %be an open set of Y containing F(xo) . Suppose there

€ .
does not exist € > 0 such that F (:co) C G . Then there exists

z € Fl/k(xo) such that x, { G . Now z, € Fl(xo) which is a compact

set. Therefore there exists a subsequence, also denoted by {xk} s

converging to a point x € Fl(x But x, € Fl/p (xo] for all k zZp .

o
Thus x, € E’l/p(:co) for all p . Therefore =z is contained in F(xo)
But z;, € 6% , which is closed. Hence z, € 6° . This contradiction

implies that there exists € > 0 such that F& (:co) € G . Choose 6 >0

such that F(Bé(xo]] € Flzg) €6 . Put Ulzy) = Bylzy) - /1

Let X be a normed linear space. A subset K of X is said to be
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convex if, given zx, and x, € K , all points of the form ox; + (1-a)x,

with 0o =<1 arein K. If A 1is a subset of X , the convex hull of
A , denoted by cod4 , is the smallest convex set containing A . Since the
intersection of any collection of convex sets is a convex set, cod4 1is the
intersection of all the convex sets containing A . The closed convex hull

of A , denoted by cod , is defined by cod = (cod) .
€ €
LEMMA 2.6. co(A ) = (cod) .
Proof. (a) Let =x € co(AE) . Then x = A:cl + (l—A)xz where

z, x5 € 4% and 0 <X <1 . Thus there exist y, and y, €A such that
“-xl_yl” < € and ||x2-y2|| <e. Put y =y + (l—k)yz . Then y € cod
and

llz-yll = Ilk(xl—yl)“(l-)\)(xz-yz) i < xe + (1-A)e = € .

Therefore x € (cod)® .
(b) Let zx ¢ (coA)e . Then there exists y € coA such that
liz-yl} < € . Therefore y = )\yl + (1—)\)y2 where y, sand y, € 4 and

0<=A=sl. Put 2=zx-y, ) =Yyt 3 end x, =y, + 2 . Then xy

and x, € A% ana )\xl + (l—)x):,r:2 =x . Thus x € co(Ae) . //

COROLLARY 2.7. coA = colA) .

THEOREM 2.8. Let X be a metric space and Y a normed linear

space. Suppose F : X +» Q(Y) 1is upper semicontinuqus at Zy If T

tends to z, then

N co U F(x]gcol"(x)
i1 k=i K °

Proof. Let € > 0 . Choose 6 > 0 such that F[BG (a:o)] = F* (xo)

Choose k, such that k = ko implies =z, € B‘S(xo) . Therefore k = ko
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- -]
implies F(xk) EFE(:::O) and U F[:ck) gFe(xo) . Thus
k=k

0
co kgk F(xk] C coF (xo] = [coF(xo)]
=Ko
Therefore
T U Pl € [eorley)
co U Flz,) c (coF:c ]
k=ko X 0
Hence
@ [} E
N U F(xk)g[col’(zo}) .
=1 k=1
Thus
=] «©
N co U F[xk) EcoF(xo]
=1 k=1
since coF(a:O) is closed by Corollary 2.7. //

3. Generalized differential equations
We will consider the generalized differential equation
x'(¢) € F(t, z(¢)) almost everywhere t € I ,
z(ty) ==, ,
where F satisfies the following conditions:
1. F maps from I X R into Q(Rn) where I 1is the compact
interval [a, b] ;

2. F(t, x) is convex;
3. forall t €¢I, xb F(t, x) is upper semicontinuous on R

L. for all z € R there exists fx : I + R such that fx is

measurable and fx(t) € F(t, x) 3
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5. there exists g € Ll(I) such that y € F(t, x) implies
ly| = gle) .

o €1 and =z ¢ E' . The function x is a solution of the

generalized differential equation if and only if

Let ¢

(1) = : I » R is absolutely continuous,
(ii) z'(t) € F(t, z(t)) almost everywhere ¢t € I ,
(111) =z(gy) = = .
The set of all solutions is called the solution set and is denoted by
H(to, xo) . In this paper we will study the properties of the solution

set.

4. Existence

In this section we give Aumann's proof [!] of a result on the
convergence of absolutely continuous functions and use this result in

Kikuchi's proof [7] of the existence of a solution.

THEOREM 4.1. [Let {xk} be a sequence of absolutely contiruous
functions x; : I+ ', we suppose that

(<) xk(t) >xz(t) as k+® forall t €I where = : I+R"',

(i) IxL(t)I = g(t) almost everywhere t € I where g : I +R 1ig
an integrable function.

Then x 8 an absolutely continuous fumction such that

oo «©

z'(t) € N co U z,(¢) almost everywhere t €I .
=1 k=1

. 1
Proof. Since P is absolutely continuous, xi € L'(I) . Also

|zi(t)l < g(¢t) almost everywhere ¢t € I . Therefore by Theorem IV.8.9 on

page 292 of Dunford and Schwartz [5] there exists a subsequence {xk(j)}
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converging weakly to f € Ll(I) . Thus

x(t) = lim xk(j)(t)

J-Kb

¢ '
= n [xk(j)(a) * L xk(j)]

J-)w
t
= z{a) + r .
l,

Therefore &% 1is absolutely continuous and x'(%t) = f(£) almost everywhere
t €I,

By Corollary V.3.1h4 on page 422 of Dunford and Schwartz [5], there

exists a sequence {gm} of convex combinations of {xi(l), xL(2), ...}

converging strongly to f . There exists a subsequence, also denoted by

{gm} , such that gm(t) > f(t) almost everywhere t € I . But

0
g (t) €co U x,..(t)
m J=1 k(J)
o
Cco U xk(t)
k=1
Hence
- -]
f(t) e co U xk(t) almost everywhere t € I ,
k=1
But {xi, T;4ps ...} also tends to x for all positive integers < .
Thus
o
F(t) € co U xi(t) almost everywhere t € I .
=7
Therefore
o (=2
fl) € N co U xi(t) almost everywhere t € I . //
i=1 k=1

THEOREM 4.2. H({z,, xo) is nonempty.
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Proof. Subdivide [t,, b] into k equal parts by

b—to

=ttt %

= i i < 17
xk(to) Ty - Suppose x; is defined up to ti where 0 =1 <k .

. We define z; : [to, b] + R" inductively. First

Select a measurable function f% : [f. t > R" such that

1’ i+lJ

£,(8) € F[t, xk(ti)) for a1l t € [¢;, ¢, ] . Define

t
2, (¢) =z, (¢,) + L f; forall te€[t,, ¢t 1.
1: .

Define f : [tg, B] » F' by F(t) = £,(t) for a1l t € [, t: 1)
Hence

t

xk(t)=xo+f .
to

| l i
x, (t)-x.| = J g »
k (o] to

b
EYOTIERENI P
to

Therefore xk is well defined.

Now
xk(t) = f(t) almost everywhere t € [to, b]
Thus
lxk(t)| < g(t) almost everywhere ¢ € [to, b]
Therefore {xk} is equicontinuous. Define y, @ [to, B] » B* by
yy(t) = xk(ti) it te [t ti+l] . Then x;(t) € F(t, ¥z (t)) almost

everywhere ¢t € [to, b] .

Consider the sequence {xk} . It is bounded and equicontinuous. Thus
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by Ascoli's Theorem it has a convergent subsequence, also denoted by

{xk} , converging to x € C(I) . By Theorem 4.1, x is absolutely
continuous and

o

[»+]
z'(t) € N co U =z!(t) almost everywhere ¢t € [t,> B]
i=1 k=i X 0

c N co U Fe, yk(t)] almost everywhere ¢t € [to, b]
i=1 k=1

c F(t, x(t)) almost everywhere ¢t € [to, b]
by Theorem 2.8 since yk(t) tends to x(t) . Also
4
z(t,) = lim z, (¢t} = . .
[0} Ko k( 0 0

Similarly-we can find x : [a, to] + R" such that x(to) =x, and

z'(t) € F(t, x(t)) almost everywhere ¢ € (a, to] . Putting these two
functions together we have & : [a, b] - R* ana x € H(to, xo) . Thus

H(to, xo) is nonempty. //

5. Compactness and upper semicontinuity
In this section we prove that the solution set is compact and upper
semicontinuous.
THEOREM 5.1. IFf M € Q(I x R"} , then H(M) 1is a compact subset of
c(r) .

Proof. (a) Let x € H(M) . There exists to € I such that

[to, a:(to)] €M . Let M' be the projection of M into R" . M' is

compact and x(to) € M' . Thus |x(t0)| <d , wvhere d is a bound for
t

M' . Now z(t) = x(to) + f x2' . Therefore Ix(t)-a:(to][ Sf g -
to I

Hence x| =d + f g . Thus H(M) is bounded.
I

(b) If =z € H(M) we have |z'(t)| =g(t) almost everywhere t € I .
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t
Thus lx(t)—x(to)! SI g . Therefore H(M) is equicontinuous.
to

(e) Let Z, > x where =z € H(M) . By Theorem 4.1, =z is

absolutely continuous and

o (o]
2'(¢) € N co U xllc(t) almost everywhere ¢t € I
i=1 k=1
[+ [=-]
c N co U F(t, z, (t)) almost everywhere ¢ € I
Tl k=t k

c F(t, z(t)) almost everywhere t € I

by Theorem 2.8.

For each x, there exists tk € I such that {tk, xk(tk)] €M,

Since M 1is compact there exists a subsequence, also denoted by
{(tk, xk(tk)]} , such that [tk, xk(tk)] tends to (ty, ) €M . Let

€ >0 . Choose k. such that k = k., implies ]]x—xkll <% ,and 6 >0

0 0

such that |t—to| < 6 implies |x(t)-x(t0)| < % . Choose k; = k, such

that k = k; implies |[t,-t | <& and |z (t;)-%,| <%. Therefore

1
lz(to)""’ol = lx(to)‘x(tk)l + Ix(tk]‘xk(tk)l + |xk(tk)'xal

<EL,E,
3

wim

wim
I
m

fSince € is any positive number we have x(to) =x, . Thus =z € H(M) and
H(M) 1is closed in C(I) .

(d) Thus by Ascoli's Theorem, H(M) is compact in C(I) . //

COROLLARY 5.2. H maps from I x R' into Q(c(I)) .
Proof. Theorems 4.2 and 5.1 give the result. //

We now use Theorem 5.1 to prove that H 1is upper.semicontinuous.

THEOREM 5.3. H : I x B" » Q(c(1)) ie an upper semicontinuous map.
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Proof. Let (to, :co) € I xR'. Assume that # is not upper

semicontinuous at (to, xo) 3 that is, there exists eo > 0 such that

for all 6 >0 , H[BG(tO’ :z:o)] ¢ B0 [to, xo) . Choose &z, such that

€ i ]
T € H[Bl/k(to’ xo)] and z ¢ 7 o(to, xo) . Now g €H Bl(to, xo) s

which is compact by Theorem 5.1. There exists a subsequence, also denoted
by {xk} , such that L'ck converges to x € HiBl (to, xo)l . But there
exists ¢, € I such that [tk, xk(tk)] € Bl/k(to, z)) . Let €>0.

Choose k, such that k 2 ko implies ||x—xk|| <—§- and 6 > 0 such that

|t-t,] <& implies |x(t)-z(t,)| < % . Choose k; =k, such that k 2k

implies |tk-t0| <§ and |xk(tk)-xo| < % . Therefore

€ [ €
Ix(to)—xol = Ix(to)—x(tk)l + |x(tk)'xk(tk)l + |xk(tk)-xol < g + 3 + 3 =€ .
Since € is any positive number we have x(to] =Xy . Thus

x € H(to, xo) .

But zg ¢ il (to, xo) . Therefore =z ¢ H(to, :co) . From this

contradiction we conclude that H is upper semicontinuous. !/
6. Connectedness
In this section we prove that the solution set is connected.

LEMMA 6.1. Let (to, xo) €I xR". Suppose F does not depend on

x . Then H(to, xo) 18 convex.
Proof. Let x, end x, € H(to, .'x:o] ; that is x, (to) =2, and
x;:(t) € P(t) almost everywhere t € I for < =1, 2 .

Consider =z = A:cl + (l—)\):c2 , 0=A=<1. We have
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x(to) = Az + (1-A)z, = x,
and
x'(8) = Az (2) + (1-A)zy(2) ,
€ F(t) almost everywhere ¢t € I ,
since F 1is convex. Thus H(to, xo) is convex. //

LEMMA 6.2. Suppose F depends on a parameter u € K" and that F

ig upper semicontinuous in (x, u) . Let H(to, Lqs uo) denote the
solution set passing through (to, xo) when u = Uy - Then
H:Ixg"m> C(I) s upper semicontinuous.

Proof. We consider the system

x' € F(t, x)

that is, z' € F(t, ) where #% = (i] and F = [g) . The solution set of

this system I;(to, Zq» uo) is upper semicontinuous by Theorem 5.3. Define

p:C +m(I) +C n(I) by pl(x)(t) = q o Z(t) where g is the projection
R

7

operator q : -GN Then p is continuous, and

H(t s Tns U ) =po ﬁ(t s Tas U ) + Therefore H 1is upper semicontinuous
0* "0* "0 0> "0’ "0
by Theorem 2.4, //

. b-a
Subdivide I = [a, b] into k equal parts by t; =a+ 13— . We

define a function 4, : C[t,, t;] ~a(C[tys t;,,]), =0, ..., k-1 . Let
z € C[ty, t;] - Then y € A (x) if and only if

(1) o i [tgs t;p) *F s

(ii) y(¢) = =(¢) for all t € [t,, t.] 3

(iii) y 1is absolutely continuous on [ti’ ti+1] 3
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= L}
(iv) y'(¢) € F[t, x(ti)) almost everywhere ¢t € [ti’ ti+l] .
LEMMA 6.3. Ai(:z:) i8 a compact convex nomempty get.
a; = cfey, ;] > alcfz,s ti+l-” 18 upper semicontirnuous.
Proof. Consider the equation

y'(t) € F(t, :c(tt]] almost everywhere t € [ti’ ti+l] ,
y(ti) = x(ti) .

The right-hand side does not depend on y . Thus by Lemma 6.1 and Theorems

4.2 and 5.1, Ai(x) is a compact convex nonempty set.

By Lemma 6.2, H[ti’ x(ti) ’ x(tt)] is upper semicontinuous. Let

< 28

€ >0 . Choose 6§ > 0 such that |(t, u, v) - [ti, xo(ti), xo(ti)]

implies H(%t, u, v) < He[ti, x, (t), xo(ti}) and such that & <€ .

Therefore le—xoll < § implies lx(t)-:co(t)l <€ for all ¢t € [to, ti]
€ .
ana a1ty 2(t), =(e)) € (1 w08 2()) 5 that ts, Momagl < 8
implies A.(z) < Az (xo) . //
Let y € C(I) . Define a function

byi [t to4q] » gy t,01) 5 220, ooy K1

Ar i i
Let »r € [ti, t Then 3 € byl( ) if and only if

s
(1) 2 [ty ty,] > B

(i1) 2(¢) = y(¢) if ¢t ¢ [to, r] ;

(iii) 2 is absolutely continuous on [r, ti+1] 3

(iv) 3'(t) ¢ F(t, y(ti)] almost everywhere ¢t € [r, ti+l] .

LEMMA 6.4. byi(r) i8 a compact comvex nonempty set.
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byi : [ti’ t;] > alclzy, t;,11) is upper semicontinuous.

Proof. Consider the equation
'
a'(t) ¢ F(t, y(ti]] almost everywhere ¢t € [ti’ ti+l] s

3(r) = y(r) .

The right hand side does not depend on 2 . Thus by Lemma 6.1 and Theorems
4.2 and 5.1, byi(r) is a compact convex nonempty set. By Theorem 5.3,

H(r, a) is upper semicontinuous. Let € > 0 . Choose Y > 0 such that

|(r, a)-(r,, a0)| <2y implies H(r, a) € He(ro, a Choose & >0

o)
such that |r-ro| <8, implies |y(r)—y(ro)| <Y and such that & <y .
Thus |r-rg| < 8, implies H(r, y(r)) g.HE[rO, y(ro)} . The set of all

solutions is an equicontinuous family. Choose 52 > 0 such that

|r-ry| < 8, implies |z(r)-2(r0)| < g- for all solutions 2 . Choose

N €
65 > 0 such that Ir-ro| < 6, implies |y(r)—y(r0)| <5 . Put

§ = min{8,, 6y, 83} . Then |r-rg| < & implies b ,(r) gbzi(r) . /]

Define a function Byi : [ti’ ti+1] ) , i=0, ..., k-1,
by B (6) =4 ) .
B : I~+Qqc(I)) vy By(t) =B

.. © Ai+l o byi(t) . Define a function

,i(t) for all ¢ ¢ £, tpa] -

LEMMA 6.5. By(t) is a compact connected nonempty set.
B : I+ q(c(I)) is upper semicontinuous.

Proof. First we note that a convex set is connected. By Lemmas 6.3
and 6.4 and Theorems 2.2, 2.3 and 2.4 we have that Byi(t) is a compact
connected nonempty set and that Byi is upper semicontinuous. Now
Byi(tiﬂ_) = By(i+l)(ti+1) » ©=0, ..., k-2 . Hemce B is well defined
and upper semicontinuous. //

Having defined the operator By we can now mimic the standard proof
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of Kneser's Theorem, (see Coppel [4]).
THEOREM 6.6. et (ty, z)) € I x K" . Then B(ty, x,) isa
connected subset of C(I) .

Proof. If H(to, :co)l and H[to, :L'O)l are connected

then H(ro, :co) is connected. So without loss of generality we can assume

that to =a.

Suppose that H(a, xo) is disconnected; that is, H(a, xo) = Hl v H2

where Hl and H2 are disjoint nonempty closed sets. Let z € Hl and

x, € H2 . Subdivide I into k equal parts. By Theorems 2.2 and 2.3 and
Lemma 6.5, B:z:l(I) and sz(I) are compact connected nonempty sets.
Fur?her Bxl(a) = sz(a) . Thus Bxl(I) n sz(I) # @ and

X, = Bxl(I) v BxZ(I) is connected. Now Bxl(b) = {xl} and

B -(b)={x,} . Thus z, and =z € X, . Let G. and G. be disjoint
X2 2 k 1

1 2 2
open sets in C(I) such that H) C G, and H, S G, . Then there exists a
function Y5 € Xk which is not contained in either Gl or 02 .
Now yk is of the form

(i) yk(t) = .’z:i(t) for all t € [a, r'k] .

(ii) y]'((t) € F[t, yk(ti)] almost everywhere ¢t € [I’k, b] where
t € [ti, tiﬂ_)
Thus yk(a) =z, and |y1'<(t)| = g(t) . We now let k (the number of

subdivisions of I ) vary to obtain a sequence {yk} . These y, are

bounded and equicontinuous. By Ascoli's Theorem there is a convergent

subsequence, also denoted by {yk} , such that ¥, tends to ¥ .

Therefore Yy 1is not contained in H(a, :co) .

But y(a) = lim yk(a) =z, . Define 3z : I~ R vy
ko 0
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(1) =(2) =y, (2) if ¢ ¢ [a, rk] R
(11) 2, (¢) =y, (¢;) it t e [r,, B] anda t € [t tia)

Thus yL( ) € F(¢t, zk(t)) almost everywhere t € I and 2z, tends to ¥ .

Therefore
o« o«
y'(t) € N co U yk(t) almost everywhere ¢ € I
=1 k=1
00 oo
cn co U F[t, zk(t)) almost everywhere t € T

=1 k=1

g}F(t, y(t)) almost everywhere ¢ € I ,

by Theorems 4.1 and 2.8. Thus y € H(a, xo) which gives us a
contradiction. Therefore H(a, mo) is connectegd. //
COROLLARY 6.7. Let M be a commected subset of I X R' . Then

H(M) s a connected subset of C(I) .

Proof. Theorems 6.6, 5.3 and 2.3 give the required result. //

7. Peripheral attainability and the bang-bang property

If a point on the boundary of the funnel can be reached by a solution
lying on the boundary of the funnel, the point is said to be peripherally
attainable. In this section we prove that every point on the boundary of

the funnel is peripherally attainable.

Let ¢t. €I and z. € R"

0 0 ‘Deflne

2(tgs zp) = (¢, a(8)) : t € I, z € Hty, z)} .
Let t € I . Define
Alt, ty, z5) = {=(t) = = € H{ty, =)}

2(ty, x,) 1is called the solution funnel and al(t, too z,) 1is called the
solution cross-section.

The next two theorems follow easily from these definitions and the

preceding theorems.
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THEOREM 7.1. 2 maps from I xR' to Q(I x B") and is upper
semicontinuous. If M 1is a connected subset of I X R' then 2(M) is

connected.

THEOREM 7.2. A maps from I xI xR" to QF") . For all
t € I, the map (to, zy) & At s x,) 1is upper semicontimuwous. For all

(ty> =) € T % B the map t» A(t, £ :co] ig continuous. If M is a

connected subset of I x R*, then A(t, M) 1is connected.
WeAnow use Corollary 6.7 to show that every point on the boundary of

the funnel is peripherally attainable.

THEOREM 7.3. Let K € Q) . If q € 24(b, a, K) , then there
existe x € H(a, K) such that x(b) = q and x(t) € d4(t, a, K) for all
t €1.

Proof. (a) We first prove that there exists x € H(a, X) such that
x(b) = q eand xz(a) € 39K . Suppose that intX is nonempty (otherwise

there is nothing to prove). Let yk be an exterior point of A4(b, a, K)
such that lyk—ql <1/k . Let y,q denote the closed line segment joining

Yy, 81d q . ¥q is connected. Therefore K, =A4la, b, y,q) 1s

connected. Now K, n K # 9 since Yp t A(b, a, k) . Also KL nK#D

since q € 4(b, a, X) . 1If Kl NnoK =9 , then Kl Nnintk # § and

1{1 c Kc n intk . But Kc and intX are disjoint nonempty open sets.

This is a contradiction since Kl

Thus there exists x € H(a, X) such that xk(a) € 3K and xk(b) € 'Z/ZE .

is connected. Therefore l(l N3k #¢ .

Hence ka(b)—ql < 1/k . By Theorem 5.1 there exists a convergent
subsequence, also denoted by {zk} , converging to x € Hla, X) .
Therefore xz{b) = q . Also xz(a) € 3K since 0K is closed.

(b) Suvdivide I = (a, b] into Kk equal parts by t, =a +1 ___b-l;a )
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Using part (a) we can find z, € H(a, k) such that xk(b) =q

t102]

xk(tk-l) € aA(tk_l, a, K) . Again using (a) we can extend to

z € H{a, K)| such that xk(tk—z) € 3A(tk_2, a, Rj . Continuing
ty-27t]

in this manner we obtain x; € H(a, K} such that xk(ti) € BA(ti, a, k) ,
2=0, «.., k-1 and xk(b) = q . By Theorem 5.1 there exists a
subsequence, also denoted by {xk} , converging to x € Hla, K) .
Therefore x(t) € 34(t, a, X) for all ¢t € I and x(b) = q . //

If x(t) € 34(t, M) for all t € I implies that
z'(t) € aF(t, x(t)) almost everywhere t € I , the generalized
differential equation x'(t) ¢ F(t, x(t)) is said to have the bang-bang
property. In [9] Kikuchi proves that if F is continuous in x then F

has the bang-bang property.

The assumption of continuity is needed, as is shown by the following
example. Let I = [0, 1] . Define

[0, 2] if z=1¢ ,
F(t, x) =

{o} otherwise.
Consider
' (t) € F(¢, x(t)] almost everywhere t € [0, 1] .
x(0) =0 .
The peripheral solutions are xl(t) =t and xa(t) =0 . Thus xi(t) =1

is not on the boundary of [0, 2] .
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