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Abstract

Let L be a linear differential operator with rational coefficients such that 0 is not an irregular
singularity of L and that for sufficiently many p’s the equation Lv = 0 has no zero solution
mod p. We show that if u is a formal power series whose coefficients are p-adic integers for
almost all p and if Lu is rational, then u too is rational.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 12 H 25, 11 B 37.
1. Statement of the results and examples

1.1. Let L be a linear differential operator with rational coefficients and let u be
a formal power series such that Lu is rational. We ask whether u too is rational.
We first review the known results on this topic.

1.2. The first mathematician interested by this problem was G. Pélya who proved
the following result in 1921.

THEOREM (8]. Let u = ), sounz™ € Z{[z]] be a formal power series with
integral coefficients. If its derivative u' =} -, nu,z™~1 is a rational function,
then u too ts rational
1.3. This result was extended in 1965 by D. Cantor.
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THEOREM [3]. Let u = ) - ounz™ be a formal power series whose coeffi-
cients are algebraic integers and let P be a non zero polynomial with algebraic
coefficients. If the series 3 o P(n)unz™ is rational then u too is rational.

1.4. The hypothesis that the coefficients are algebraic integers is in some way
necessary as shown by the counterexample u = Y z"/n = — Log(1 — z) which is
not rational, while ' = Y_ 2" = 1/(1 — z) is rational.

Of course it is well known that this condition can be weakened. Let K be
an algebraic number field and assume that the coeflicients u,, of u belong to K.
Then the conclusions of the two preceding theorems still hold even if we only
assume that u satisfies the condition:

(#) for all but a finite number of prime ideals p of K, all the coefficients u,, of
u are p-adic integers.

If u € K((z)) (resp. u € K|[[z]]) satisfies (*), we shall write from now on that
u € K((z)) (resp. u € K[[z])).

It is easily seen that K ((z)) is a subfield of K((z)) stable under the action of
the derivation. It is clear that K([z] is contained in K((z)) and therefore K(z)
is also contained in K ((z)). This shows that if u does not satisfy the condition
(%), u is not rational.

1.5. Recently J.-P. Bezivin 2] proposed to interpret Cantor’s result in terms
of differential operators: if P € K[Y], consider the Euler differential operator
L = P(zD) where D stands for d/dz; then 3, P(n)u,z™ = Lu. He also gave
a new class of differential operators with a property similar to that of Euler
operators.

Before stating Bezivin’s result, we give a new definition. We shall say that
the differential operator L = )~ A; D' € K(z)[D] is a Pdlya operator at 0 if, for
every u € K((z)), Lu rational implies that u is rational (thus Cantor’s result can
be reformulated: every Euler differential operator L = P(zD), with P € K[Y],
is a Pélya operator at 0). To save space, in what follows, when we say “Pélya
operator”, we mean “Pélya operator at 0”.

An easy consequence of this definition is that if L; and L, are Pélya operators,
then L;L, is a Pélya operator; also if L;Ls is a Pélya operator then L is a
Pélya operator ([2], Proposition 1). Clearly differential operators of order 0
are Pélya operators. Therefore, for any rational functions Q, R € K(z), the
differential operators L and R.L. @ are either simultaneously Pélya operators
or simultaneously not Pélya operators. We shall say that L and R.L. @ are
equivalent differential operators.

1.6. We now exhibit Bezivin’s new class of Pélya operators.
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THEOREM [2]. Let L = Y ;_, AxD* € K[z][D] where Ao is a non zero
constant and for all k > 1 the degree of the polynomial Ay is < k — 1. Assume
further that 0 is not an trregular singular point for L. Then L i3 a Pdlya operator.

A special case of this situation is the case of differential operators with con-
stant coefficients L = P(D) with P € K[Y] and P(0) # 0. We can combine this
result with Pélya’s result to conclude that every operator L = P(D) € K[D] is
a Pélya operator (indeed we can write L = Q(D)D*® with Q € K[Y], Q(0) # 0,
and s an integer > 0).

1.7. The main result. For each prime ideal p of K we denote by K, the
associated residue field. Also p will denote the prime number divided by p.
If L € K(z)[D] we denote L, € K,(z)[D] its reduction modulo p when this
reduction is defined (which is the case for all but a finite number of prime ideals

p).

THEOREM. Let L € K(z)[D]. Assume that
(a) 0 1s not an trregular singularity for L,
(b) there exists an infinite set S of prime ideals with

(1.7.1) Z —I-Logp= +o00

pES,plP
such that for p € S the reduced equation Lyv = 0 has no non zero solution in
Ky ((2)).

Then L is a Pdlya operator.

We recall (see [6] for example) that the equation Lyv = 0 has a non zero
solution in K,((z)) if and only if it has a non zero solution in K,(z).

We observe that the condition (1.7.1) is verified if S has positive Dirichlet
density (see [7], page 131 for the definition). In particular this condition is
satisfied if S contains all but a finite number of the prime ideals.

We shall now discuss the necessity of condition (a) and give examples of
differential operators satisfying condition (b).

1.8. Singular points. Let L = 3" A;D* € K(z)[D] of order [/ and let ¢ € K?&
(algebraic closure of K). By Fuchs’ condition a is an ordinary point or a regular
singular point for L if

ord, A; — ! = min(ord, A; —17)
t

(for a = oo the condition reads orde, A4; + ! = min;(orde A; +¢)). We shall say
that a is a totally irregular singular point for L if

ord, Ao < min{ord, A; —7)
i>1

(for a = oo the condition reads orde, Ag < min;>1(ordec A; +1)).
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1.9. PROPOSITION ([2], Corollaire 1). If 0 is a totally irregular singular
point for L, L is not a Pdélya operator.

For an operator of order 1, an irregular singular point is a totally irregular
singular point.

This situation is illustrated by the following example: L = z2D + z — 1,
u=73.5onz" € Z[[z]] satisfies Lu = —1 but u ¢ Q(z).

Observe that by Proposition 1.11 below, if 0 is a totally irregular singular
point for L, L satisfies the condition (b) of Theorem 1.7.

If 0 is an irregular singular point for L but not a totally irregular singular
point, we do not know whether or not L is a Pdlya operator.

1.10. Assume that the equation Lv = 0 has a non zero solution v € K((z)).
Then for almost all prime ideals p we obtain by reduction mod p a non zero
solution of Lyv = 0, and therefore the condition (b) of Theorem 1.5 is not
satisfied.

Of course if this solution v is not rational, L is not a Pdlya operator. For
example, consider L = (1 — 2z)D + 1; v = /1 -2z € Z|[z]] is solution of
Lu = 0 but u ¢ Q(z). Again consider L = z(1 — z)D? + (1 — 2z)D — 1/4;
u=F(1/2,1/2,1;z) € Z[1/2]([z]] € Q[|z]] is solution of Lu = 0 but u ¢ Q(z).

If Lv = 0 has a rational solution v, then we have the decomposition L =
Lyo(D-v'/v)and D—v'/v = vo Dov™!, equivalent to D, is a Pélya operator.
The problem is reduced to seeing if L, is a Pélya operator.

It may happen that condition (b) of Theorem 1.7 is not satisfied even if Lv = 0
has no non zero solution in K ((z)). This is the case if L = zD—a with @ € Q—Z:
indeed for every p which does not divide the denominator of o, there exists an
integer a(p) such that o = a(p) mod p and v = z*®) is a solution of Lyv = 0.

We shall now give examples of differential operators which satisfy condition

(b).

1.11. PROPOSITION. If L possesses a totally irregular singular point, then
Jor all but a finite number of prime ideals p the reduced equation Lyv = 0 has no
non zero solution in K,((z)).

The hypothesis of Theorem 1.6 implies that oo is a totally irregular singular
point for L. Thus Bezivin’s class of Pélya operators is covered by our criterion.

1.12. We give another example, involving Euler differential operators, where
condition (b) of Theorem 1.7 is satisfied. Consider L = zD —a with a irrational.
Then by Tchebotarev’s Density Theorem ([7], Theorem 10.4), there exists a set
S of prime ideals of positive density such that for all p € S « is not congruent
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to an integer modulo p and thus Lyv = 0 has no non zero solution in K,((z)),
and L is a Pélya operator as 0 is a regular singular point for L.

Although the class of Pélya operators is stable under composition (1.5) the
class of operators satisfying condition (b) of Theorem 1.7 is not stable under
composition. Indeed for all prime numbers p at least one of the three numbers 2,
3, 6 is a quadratic residue modulo p; therefore if L = (2D — v/2)(zD — v/3)(zD -
v/6) then for all prime ideals p of K = Q(v/2, v/3), Lyv = 0 has a solution modyp
in K (), while each of the three factors satisfy condition (b). Of course we see
that L is a Pélya operator as each of the three factors is a P6lya operator.

1.13. For future applications to transcendental results (see for example ‘A
new p-adic method for proving irrationality and transcendence results’ by the
same authors, to appear) we would like to mention that the proof of Theorem
1.7 implies the following result:

THEOREM. Let L € K[z][D] and u € K{[z]]. Assume that

(i) for any infinite place of K (that is, for any embedding of K in C), u has
a non zero radius of convergence,

(ii) u satisfies condition (x),

(iii) there exists an infinite set S of prime ideals with

E 1Logp=+oo

PES.plp
such that for allp € S the reduced equation Lyv = 0 has no non zero solution in
KP (I))
(iv) Lu € K(z).
Then u € K(z).

Indeed in the proof of Theorem 1.7, the hypothesis that 0 is not an irregular
singularity for L is used only to show that u has a non zero radius of convergence
for any embedding of K in C (see point (ii) of paragraph 2.6).

1.14. In paragraph 2, we give the proofs of Theorem 1.7 and Proposition 1.11.
In paragraph 3 we discuss in detail the case of operators of order 1 where we
have a good, albeit incomplete, understanding of the situation.

This article is a development of the ideas of [2] and [10].

2. Proofs of the results

2.1. We begin with the proof of Proposition 1.11, which is simpler.
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PROOF OF PROPOSITION 1.11. Let L = ¥°!_, A;D* € K(z)[D), of order
l, and assume that a € K2 is a totally irregular singular point for L. By
extending K if necessary we may assume that a € K.

Consider a prime ideal p of K such that the reduction Ly of L is defined, a
is a p-adic integer with reduction a, € K, and orda Ag = orda, Agp. These
conditions are verified for all but a finite number of prime ideals p. For such a
p, Gy is a totally irregular singular point for L, as

(2.1.1) ord,, Agp = ord, Ag < min(ord, A; — 1) < min(ordz, Asp — 7).
1

Let v € K(z), v # 0. It follows from (2.1.1) that
ordz, Lyv = ords, Zop +ordg, v
and thus Lyv cannot be zero if v is not zero.

2.2. In order to prove that the solution u of our differential equation is rational
we shall need the following criterion of rationality applied to u(1/z).

For every prime ideal p of K, K will be equipped with the associated nor-
malized absolute value ||, (see [1], page 40) and C; will denote an algebraically
closed extension of K complete under a valuation extending that of K. We
denote (K the set of prime ideals of K.

For every infinite place w of K, K can be embedded in C. We denote N(w)
the degree of C over the completion of K, N(w) =1 or 2. We denote I(K) the
set of infinite places of K.

LEMMA (Pélya-Bertrandias, {1}, Théoréme 5.4.6). Let K be an algebraic num-
ber field and f = Y .oan/2" € K[[1/z]]. Assume that there exists a finite
subset P, (K) of P(K) such that

(i) for allp ¢ A (K) and for alln, |ay), £1,

(ii) for all w € I(K), f defines in C a function analytically extendable on a
connected domain B,, whose complement is bounded and has transfinite diameter
dun

(iii) for p € L1 (K), [ defines in C, a function extendable by an analytic ele-
ment on a set B, of C, whose complement 13 bounded and of transfinite diameter
dp,

(iv) (Twerx) dﬁ(w)) X (npeg,(x) dp) < 1.

Then f i3 rational.

We will not recall the definition of the transfinite diameter, but we ob-
serve that in our application the complement of the set B, will have the form
Ui<i<s B~ (ci,7), where B (c;,7) = {z € Cp; |z —c;| < r}, the ¢; are in different
residue classes, and r < 1. In this case it follows from [1], Example 5.4.4, that
the transfinite diameter of this set is r1/°.
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We recall that an analytic element on B, is the uniform limit on B, of a
sequence of rational functions without poles in B,. If By has the form described
above and u is an analytic element on By, which is zero in a neighborhood of
a point a of By, then u is zero everywhere in By,. Thus if f is defined in a
neighborhood of a by a power series and f can be extended into an analytic
element on By, then this extension is unique.

2.3. LEMMA ([10], Theorem 2.10). Let C be a complete ultrametric valued
field, and assume that its residue field has characteristic p # 0. Let L € C[z][D].
Let A be the disk B*(c,r) = {z € C;|z — c| < r}, and consider L as an endo-
morphism of H(A), the space of analytic elements on A. If L is surjective, then
L 1s injective.

For the reader’s convenience we outline the proof.

PROOF. Assume that L is not injective in H(A) and let u € H(A) such that
Lu = 0. Choose ay, € C with r™ < |a,,| < 6™, o > 1, belonging to the value
group of C. The functions

z—c)?
Uk = Z Qp2kn L—pTr)z—

are unbounded in A, and further the functions uuy are linearly independent over

H(A). On the other hand one sees that L(uug) € H(A). This implies that L is
not surjective.

2.4. We shall need some properties of differential operators in characteristic
p#0.

LEMMA. let k be a field of characteristic p # 0. Let L € k{z][D]. If the
equation Lv = 0 has no non zero solutions in k((z)), there ezist P,Q € K|z][D]
and 7 € k[z], P # 0, © # 0, such that

(2.4.1) PL+QD? =m.
Further there exists a constant o depending only on the degrees of the coefficients
of L and not on p, such that P,Q and  can be assumed to satisfy the additional

conditions: ord P < p—1,ord@Q < ord L — 1, the degrees of ® and the degrees of
the coefficients of P and Q are at most op.

If L =Y A;D' and if we define N(L) = max;(deg A;), then the proof of the
lemma shows that one can take ¢ = N(L). The constant ¢ = N(L) seems to be
optimal.

PROOF. The first part of the lemma is a direct consequence of [5], Corollary
6.1.2.2 which asserts that Ker L = {0} if and only if the left sided ideal generated
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by L and D? in k(z)[D) is k(z)[D]. So assume that we have P, @, and = satisfying
(2.4.1), we shall construct new differential operators P;,Q; and a polynomial
71 # 0 satisfying (2.4.1) and the additional conditions.

Condition on the orders. (a) Observe that as k has characteristic p, one has
DPL = LD?. If weset P= P, + SD? withordP, <p-1and Q; = Q+ SL
then we have PiL + QD = 7 and ord@Q; < ord(P,L) —p <ordL — 1. So we
may assume that P, Q satisfy (2.4.1),ord P<p—1,0ordQ <ordL — 1.

Conditions on the degrees of the coefficients. (b) Let U be the vector space
of differential polynomials with rational coefficients, of order at most p — 1, thus
U ~ [k(z)]P. We consider the following linear forms .%; on U: for R € U

Z(R) = coefficient of D’ in RL, 0<j<p-1

If R = ¥, R;D*, one has %(R) = YP7) a;;R; where the a;; are expressed
in term of the derivatives of the coefficients of L and therefore a;; € k[z] with
deg(aji) < N(L).

If P € U is such that Z(P) # 0 and Z(P) =0,1<j <p-—1, then it is
clear that there exists Q € k(z)[D], deg@ < deg L —1 and = € k(z), m # 0, such
that (2.4.1) is satisfied.

Let r be the rank (over k(z)) of the linear forms .%;, 1 < j < p—1. Then
one can find a subset & = {j1,...,Jp—r} C {0,...,p — 1} such that the system
Zi(R)=0,1<j < p-1 determines uniquely the r unknowns R;, ¢ ¢ £, in
terms of the p — r unknowns R;, j € &, which can be chosen freely. We obtain

Ri = Z %RJ.’ t ¢ P ’
JEP
where the b;; and A are determinants of rank r extracted from the matrix (a,;)
and therefore polynomials of degrees at most rN(L).
if we substitute these expressions of R; in £ (R) we obtain
SR =Y TR
JjEP
where the c; are polynomials with deg(c;) < (r + 1)N(L).
By (a) we know that there exists P € U with £(P) # 0, Z(P) = 0,
1 £ 7 < p—1. Therefore the coefficients c; are not all zero. Assume that c; # 0.
Then if we choose Ry = A, Rj = 0,5 #k, j € P, Ri = bk, + ¢ P, the
coefficients of R have degrees at most *N(L). And we have RL + Q,D? = m
with degm; < (r+1)N(L), deg (coefficients of Q;) < (r+1)N(L). Asr < p-—1,
this ends the proof of the lemma with o = N(L).

2.5. We recall a result on the analytic extension of solutions of differential
equations with polynomial coefficients. Here C denotes an algebraically closed,
complete ultrametric valued field.
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For L =3 A;D* € C[z][D] we define
m(L) := max(deg A; — 7).

LEMMA ([9]). Let u be an analytic element on the unit open ball of C and
L € C[z][D). Assume that Lu is a polynomial. Then u extends into an analytic
element on all the residue classes of C except in at most ord L + m(L) of them.

For the convenience of the reader we outline the proof.

PROOF. (i) Consider the Mittag-Leffler decomposition of u
U= Uoo + Z Uy
[¢ ]

where a runs through the residue classes of C, uy, is an analytic element on the
closed unit ball, u, is an analytic element outside the residue class & and tends
to zero at infinity.

If m(L) = 0, then Lu, is analytic outside a and tends to zero at infinity. The
unicity of the Mittag-Leffler decomposition together with the relation

Lu=Luy + ZLua
a

shows that Luy = (Lu), is the singular part of Lu associated to o and therefore
Luy, =0, as Lu is a polynomial.

But then, as the dimension of the kernel of L is at most the order of L, and as
the u, are linearly independent, we conclude that there is at most ord L residue
classes o with 4, # 0. This proves the lemma in the case m(L) = 0.

(i) If m(L) = m > 0, define Ly = D™L. Then m(L;) = 0, ordL; =
ord L + m(L), L u is a polynomial, and we can apply (i).

(iii) If m(L) = —m < 0, then necessarily L = L; D™ with L, € C[z|[D] and
m(L,) =0, ord L; = ord L + m(L). We apply (i) to D™u and conclude that u,
as D™u, extends in all residue classes except at most ord L of them.

2.6. PROOF OF THEOREM 1.7. Let L € K(z)[D], u € K((z)) such that
Lu € K(z).

We can find an integer s > 0 and a polynomial A € K[z] such that u = z°u,
with u; € K[[z]], AL has polynomial coefficients and ALu is a polynomial. Then
the operators L and L; = ALz® are equivalent, L; € K[z|{D], Liu; € K][z].
Further L and L, satisfy simultaneously the conditions (a) and (b) of Theorem
1.7.

Therefore we can assume without loss of generality that u € K[[z]], L €
K|[z][D] and Lu = p € K|z], L satisfying conditions (a) and (b) of Theorem 1.7.
Define ! := ord L.
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Define f(z) 1= u(1/z) = 3_,50 un/2".

(i) The hypothesis u € K|[[z]] means that there exists a finite set P(K) of
prime ideals of K such that for all p ¢ P(K) and all n, |u,|p, < 1.

(ii) For any infinite place w of K, we have an embedding of K in C. As 0 is
not an irregular singular point of L, it is well known that formal power series
solution of L have a non zero radius of convergence. Therefore u converges in a
disk of positive radius and f defines an analytic function outside a bounded disk
of transfinite diameter d,, < +00.

(iii) For any prime ideal p € P(K), let C, be an algebraically closed complete
extension of (K, ;).

The exponents of L at 0, that is, the roots of the indicial polynomial of L at
0, are algebraic numbers, therefore they are not p-adic Liouville numbers and by
a result of Clark [4], formal power series solutions of L have a non zero radius
of convergence. Therefore, again, f defines in Cy an analytic function outside a
bounded disk of transfinite diameter d, < +o0.

(iv) Consider now a prime ideal p ¢ P(K) such that L, is defined and the
equation L,v = 0 has no non zero solutions in K,((z)). Then, by Lemma 2.4,
we can find P*, Q* € K,[z][D] and 7* € K[z] such that

P*L, +Q*D? =x*.

We may assume that ord P* < p—1, ord Q* < ord Ly —1 and that the degrees
of #* and of the coefficients of P* and @Q* are bounded by o;p, where o; is a
constant depending only on L and not on p = char K.

Again Cp denotes an algebraically closed complete valued extension of (K, ||,).
Consider liftings P, Q € Cy[z}[D] and 7 € Cy[z] of P*, Q* and 7* which preserve
the orders and the degrees of the polynomials. We may also assume that in each
residue class 7 has at most one zero, possibly with multiplicity exceeding 1.

One then has

PL=7n-QD?+R

where R € Q)[z][D], R = }_b,D7 with ord R < p+ 1 — 1, deg(b;) < ozp (with
02 depending on L but not on p), |b;], < 1/p/® (with f(p) = [K,: Fp)), where
|bj|p denotes the Gauss norm of b;.

For 0 < r < 1, let B, := {z € Cp;|z| € r71,|z — ¢;| > r} where c; runs
through the zeroes of 7 and let H = H(B,) be the space of analytic elements on
B, equipped with the sup norm || || on B,.

Then = is invertible on B, and as deg 7 < o1p, and as the gauss norm |r|, of
m is 1, one obtains

I/xllw < /7705,

Using the estimates on the order and on the degrees of the coefficients of P,
@, R, we also obtain the estimates of the operator norms of P, , R and DP
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considered as endomorphisms of H
ID?la < Iplp/7?,
Qe < 1/r:PH-1,
”R”H < 1/(pf(P),,-62p+p+1_1).

Finally we have
l7=(=QD? + R)||m < 1/(proe?*i=1)

where 03 and w depend on L but not on p.
Therefore if 7 = r, := 1/(p!/2(9sp+1-1)) we have

|7~ (-QD? + R)|lw < 1,

which shows that 77! PL = 14+ ~!(—QDP? + R) is invertible in H and so is PL.

Consider a disk A of radius r = 7, contained in B,. The same estimates hold
on H(A) and therefore again PL is invertible in H(A). Thus P is surjective in
H(A) and by Lemma 2.3 we see that P is injective in H(A) and therefore P is
also injective in H(B,) as H(B,) C H(A).

Thus P is surjective and injective inH, and as PL is invertible, we conclude
that L is invertible in H. Therefore the equation Lv = ¢ has a unique solution
ve H. f

As p ¢ P(K), for all n |up|, < 1, and u defines a bounded analytic function
in the unit open ball B=(0,1) of C,.

Let Ay be the annulus B,, " B~(0,1) and let W be the space of functions
analytic and bounded on A;. The same estimates hold and the same argument
can be used to prove that L is invertible in W. The restrictions of u and v to
A; are both in W and both solutions of Lv = ¢, therefore these restrictions
coincide, which means that v is the analytic extension of u on By, .

But now that we know that u is an analytic element on B~(0,1), we can
use Lemma 2.5 to conclude that u extends analytically in all the residue classes
except in at most M of them, with M = ord L + m(L).

Finally we have shown that u extends analytically onto a set of the form

{z€Cpila| <1/rp |z —cj|l 27,1 <7 < H}

where the ¢; are in distinct residue classes and %, < M.

It is equivalent to say that f defines in C, an analytic function on a set whose
complementary is the union of &, + 1 disks of radii r, contained in distinct
residue classes and therefore of transfinite diameter d, = r;/ (F+1),

(v) The result of (iv) is valid for all prime ideals p of a set S satisfying condition

(1.7.1). Therefore
H dy = H r:/(-?p"'l) < H r;/(M"‘l) =0
pES peS peS
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because
1
E Logr, = E Logp=—
s M +1 beSalp 2M +1)(osp+1-1)

One can then find a finite subset S; of S such that

IT & ] a I d <1

wel(K) pEP(K) pES

One then applies the rationality criterion 2.2, with & (K) = P(K)U Sy, to
conclude that f, and therefore u, is rational.

3. Operators of order one

4

We shall now discuss the different possibilities for an operator or order 1,
L =D+ A, with A € K(z).

(i) 0 is an irregular singularity of L, therefore a totally irregular singular point
of L, and by Proposition 1.9 L is not a Pélya operator.

(ii) O is not an irregular singular point of L, but there exists a € K*& U {oo}
which is an irregular singular point of L and therefore a totally irregular singular
point of L. Then by Theorem 1.7 and Proposition 1.11 we conclude that L is a
Pélya operator.

(ili) L does not have irregular singular points. Then A(z) = Y, a:/(z — a;).
The singular points of L are the a; with exponent ;. If one of the exponents
«; is not rational, we can again apply Theorem 1.7 and the argument of 1.12 to
conclude that L is a Pélya operator.

(iv) There remains the case when A(z) = >, a;/(z —a;) with o; € Q for all <.
Observe that for all n € Z and all a € K*8(z — a)"L(z —a)™" = L —n/(z —a)
is equivalent to L. Thus by considering an equivalent operator we can reduce to
the case where all the a; € @ — Z. The different situations are

L = D; this is a Pélya operator (Theorem 1.2),

L = D — a/z; this is a Pélya operator (Theorem 1.3),

L=D-3%)] 1a,/z—a,)w1ths>1 o, € Q—17Z,a; #0. Then u =
[[;(1—=z/a;)* € K{[[z]), is solution of Lu = 0 and is not rational. So L is not a
Pélya operator.

L=D-a/z-Y]_,ai/(z—a;) withs>1, a,a; € Q—1Z, a; # 0. In this
case we cannot prove either that L is a Pélya operator or that it is not.
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