A NOTE ON THE ERDŐS-GRAHAM THEOREM

WENHUI WANG and MIN TANG[™]

(Received 10 December 2017; accepted 11 January 2018; first published online 23 April 2018)

Abstract

Let $\mathcal{A} = \{a_1 < a_2 < \cdots\}$ be a set of nonnegative integers. Put $D(\mathcal{A}) = \gcd\{a_{k+1} - a_k : k = 1, 2, \ldots\}$. The set \mathcal{A} is an asymptotic basis if there exists h such that every sufficiently large integer is a sum of at most h (not necessarily distinct) elements of \mathcal{A} . We prove that if the difference of consecutive integers of \mathcal{A} is bounded, then \mathcal{A} is an asymptotic basis if and only if there exists an integer $a \in \mathcal{A}$ such that $(a, D(\mathcal{A})) = 1$.

2010 Mathematics subject classification: primary 11B13; secondary 11B50.

Keywords and phrases: asymptotic basis, exact order.

1. Introduction

A set \mathcal{A} of nonnegative integers is said to be an asymptotic basis if there exists h such that every sufficiently large integer is a sum of at most h (not necessarily distinct) elements of \mathcal{A} . An asymptotic basis \mathcal{A} is said to have an exact order if there exists h' such that every sufficiently large integer is the sum of exactly h' (not necessarily distinct) elements taken from \mathcal{A} . Obviously, when $0 \in \mathcal{A}$, an asymptotic basis \mathcal{A} has an exact order.

For the remainder of the paper, we write $\mathcal{A} = \{a_1 < a_2 < \cdots \}$. For a positive integer h, define $h\mathcal{A}$ to be the h-fold sum set of \mathcal{A} , that is

$$h\mathcal{A} = \{n : n = a_{i_1} + \dots + a_{i_h}, a_{i_1}, \dots, a_{i_h} \in \mathcal{A}\},\$$

and define $D(\mathcal{A}) = \gcd\{a_{k+1} - a_k : k = 1, 2, ...\}.$

In 1980, Erdős and Graham [2] provided a necessary and sufficient condition for an asymptotic basis of the nonnegative integers to possess an exact order.

THEOREM 1.1. An asymptotic basis $\mathcal{A} = \{a_1, a_2, ...\}$ has an exact order if and only if $D(\mathcal{A}) = 1$.

REMARK 1.2. Put $\mathcal{A}(x) = |\{a \in \mathcal{A} : 1 \le a \le x\}|$. The density of \mathcal{A} is defined by $d(\mathcal{A}) = \lim_{x \to +\infty} \mathcal{A}(x)/x$. An asymptotic basis $\mathcal{A} = \{a_1, a_2, \ldots\}$ has an exact order r if and only if the density of integers which can be represented as the sum of exactly r elements

This work was supported by the National Natural Science Foundation of China (Grant No.11471017). © 2018 Australian Mathematical Publishing Association Inc.

taken from \mathcal{A} (allowing repetitions) is 1. The necessity is obvious. To prove the sufficiency, suppose that the density of integers which can be represented as the sum of exactly r elements taken from \mathcal{A} (allowing repetitions) is 1. If $D(\mathcal{A}) > 1$ and n is the sum of exactly r elements of \mathcal{A} , then $n \equiv ra_1 \pmod{D(\mathcal{A})}$. The density of such n is $1/D(\mathcal{A}) < 1$, a contradiction. Thus, we have $D(\mathcal{A}) = 1$. By Theorem 1.1, we know that the asymptotic basis \mathcal{A} has an exact order.

For related problems about exact orders and asymptotic bases, one may refer to [1, 3-6].

It is natural to consider the necessary and sufficient condition for a set of nonnegative integers to be an asymptotic basis. The results in this paper arise from two observations. First, if $\mathcal{A} = \{a_1, a_2, \ldots\}$ is an asymptotic basis, then $(a_k, D(\mathcal{A})) = 1$ for all positive integers k (see [7, Lemma 3]). Second, $\mathcal{A} = \{1\} \cup \{2, 2^2, 2^4, \ldots, 2^{2^n}, \ldots\}$ is not an asymptotic basis.

THEOREM 1.3. Let $\mathcal{A} = \{a_1 < a_2 < \ldots\}$ be a set of nonnegative integers such that the difference of consecutive integers of \mathcal{A} is bounded. Then \mathcal{A} is an asymptotic basis if and only if there exists an integer $a \in \mathcal{A}$ such that $gcd(a, D(\mathcal{A})) = 1$.

COROLLARY 1.4. Let $\mathcal{A} = \{a_1, a_2, ...\}$ be a set of nonnegative integers such that the difference of consecutive integers of \mathcal{A} is bounded. Let \mathcal{F} be a subset of \mathbb{N} . If $\mathcal{A} \cup \mathcal{F}$ is an asymptotic basis and $D(\mathcal{A} \cup \mathcal{F}) = D(\mathcal{A})$, then \mathcal{A} is an asymptotic basis.

EXAMPLE 1.5. Let $\mathcal{A} = \{1, 3, 5, \ldots\}$. Then every positive integer can be represented as the sum of at most two elements of \mathcal{A} , and thus \mathcal{A} is an asymptotic basis. If there exists an integer s such that every sufficiently large integer is the sum of exactly s elements of \mathcal{A} , then the parity of every sufficiently large integer is the same as the parity of s, and thus \mathcal{A} does not have an exact order.

EXAMPLE 1.6. Let $\mathcal{A} = \{2, 4, ..., 2n, ...\}$ and $\mathcal{F} = \{1\}$, we know that every positive integer can be represented as the sum of at most two elements of $\mathcal{A} \cup \mathcal{F}$, and thus $\mathcal{A} \cup \mathcal{F}$ is an asymptotic basis. But \mathcal{A} is not an asymptotic basis because any sum of elements taken from \mathcal{A} is even.

2. Proof of Theorem 1.3

PROOF OF NECESSITY. If for all positive integers k we have $gcd(a_k, D(\mathcal{A})) = d > 1$, then $d \mid a_k$. Therefore, any sum of elements taken from \mathcal{A} is a multiple of d, which contradicts the assumption that \mathcal{A} is an asymptotic basis.

PROOF OF SUFFICIENCY. We write $g_n = \gcd(a_2 - a_1, a_3 - a_2, \dots, a_{n+1} - a_n)$. Since $g_1 \ge g_2 \ge \cdots$, it follows that $\lim_{n \to +\infty} g_n = D(\mathcal{A})$. Then there exists a positive integer n_0 such that $|g_n - D(\mathcal{A})| < 1$ for $n \ge n_0$. Since the g_n and $D(\mathcal{A})$ are integers, $g_n = D(\mathcal{A})$ for $n \ge n_0$. This means that $\gcd(a_2 - a_1, a_3 - a_2, \dots, a_{n_0+1} - a_{n_0}) = D(\mathcal{A})$. Moreover, $\gcd(a_i, D(\mathcal{A})) = 1$ for some $a_i \in \mathcal{A}$.

[3]

If $1 \le i \le n_0 + 1$, then $D(\mathcal{A}) \mid a_{i+1} - a_i$. Also, $D(\mathcal{A}) \mid a_{n_0+1} - a_1$. Thus,

$$\gcd(a_i, D(\mathcal{A})) = \gcd(a_i, D(\mathcal{A}), a_{n_0+1} - a_1)$$

$$= \gcd(a_i, a_2 - a_1, \dots, a_{i+1} - a_i, \dots, a_{n_0+1} - a_{n_0}, a_{n_0+1} - a_1)$$

$$= \gcd(a_i, a_2 - a_1, \dots, a_{i+1}, \dots, a_{n_0+1}, a_{n_0+1} - a_1)$$

$$= \gcd(a_1, a_2, \dots, a_{n_0+1}).$$

If $i > n_0 + 1$, then $D(\mathcal{A}) = \gcd(D(\mathcal{A}), a_{n_0+2} - a_{n_0+1}, \dots, a_i - a_{i-1})$, and thus

$$\gcd(a_i, D(\mathcal{A})) = \gcd(a_i, D(\mathcal{A}), a_{n_0+2} - a_{n_0+1}, \dots, a_i - a_{i-1}, a_i - a_1)$$

$$= \gcd(a_i, a_2 - a_1, \dots, a_i - a_{i-1}, a_i - a_1)$$

$$= \gcd(a_1, a_2, \dots, a_i).$$

Hence, in both cases, there exists a positive integer t such that

$$gcd(a_1,\ldots,a_t)=1$$

and there are integer constants c_i with $\sum_{i=1}^t c_i a_i = 1$. Let $A = a_1 \cdots a_t$ and $b_i = c_i + k_i A$, where k_i is the smallest nonnegative integer with $b_i > 0$. Then $\sum_{i=1}^t b_i a_i = kA + 1$ for some nonnegative integer k. Let $N = \sum_{i=1}^t b_i a_i + kA$, then

$$N+1 = \sum_{i=1}^{t} b_i a_i + kA + 1 = 2 \sum_{i=1}^{t} b_i a_i.$$

Thus, there exists a positive integer h_1 such that

$$\{N, N+1\} \subset \bigcup_{i=1}^{h_1} i\mathcal{A}.$$

Hence, for every positive integer *l*,

$$\{lN, lN+1, \ldots, lN+l\} \subset \bigcup_{i=1}^{lh_1} i\mathcal{A}.$$

Moreover, when $l \ge N$,

$$\{lN, lN+1, \dots, lN+l\} \cap \{(l+1)N, (l+1)N+1, \dots, (l+1)N+l+1\} \neq \emptyset$$

Therefore, for every positive integer $s \ge N$,

$$\{N^2, N^2+1, \ldots, sN+s\} \subset \bigcup_{i=1}^{sh_1} i\mathcal{A}.$$

Since the difference of consecutive integers of \mathcal{A} is bounded, we may assume that

$$\max\{a_{k+1} - a_k : k = 1, 2, \ldots\} < M.$$

Then there exists a positive integer $q \ge N$ such that $N^2 + M \le qN + q$. For every integer $n \ge N^2 + a_1$, there must exist an integer k such that $a_k \le n - N^2 < a_{k+1}$. Thus,

$$N^2 \le n - a_k = n - a_{k+1} + a_{k+1} - a_k < N^2 + M.$$

Hence,

$$n - a_k \in \{N^2, N^2 + 1, \dots, qN + q\} \subset \bigcup_{i=1}^{qh_1} i\mathcal{A},$$

that is, $n = n - a_k + a_k \in \bigcup_{i=1}^{qh_1+1} i\mathcal{A}$.

This completes the proof of Theorem 1.3.

3. Proof of Corollary 1.4

In 2011, Yang and Chen [7, Lemma 3] showed that if $\mathcal{A} = \{a_1, a_2, ...\}$ is an asymptotic basis, then $(a_k, D(\mathcal{A})) = 1$ for all positive integers k. By this result, it follows that $gcd(a_k, D(\mathcal{A} \cup \mathcal{F})) = 1$ for all positive integers k. Since $D(\mathcal{A} \cup \mathcal{F}) = D(\mathcal{A})$, we see that $gcd(a_k, D(\mathcal{A})) = 1$ for all positive integers k. Thus, by Theorem 1.3, \mathcal{A} is an asymptotic basis.

References

- [1] S. Chen and W. Z. Gu, 'Exact order of subsets of asymptotic bases', *J. Number Theory* **41** (1992), 15–21.
- [2] P. Erdős and R. L. Graham, 'On bases with an exact order', Acta Arith. 37 (1980), 201-207.
- [3] X. D. Jia, 'Exact order of subsets of asymptoic bases in additive number theory', *J. Number Theory* **28** (1988), 205–218.
- [4] J. C. M. Nash and M. B. Nathanson, 'Cofinite subsets of asymptotic bases for the positive integers', J. Number Theory 20 (1985), 363–372.
- [5] M. B. Nathanson, 'The exact order of subsets of additive bases', in: *Number Theory (New York, 1982)*, Lecture Notes in Mathematics, 1052 (Springer, Berlin, 1984), 273–277.
- [6] A. Plagne, 'Removing one element from an exact additive basis', J. Number Theory 87 (2001), 306–314.
- [7] Q. H. Yang and F. J. Chen, 'On bases with a T-order', Integers 11 (2011), A5.

WENHUI WANG, School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, China e-mail: wangwenhui96@163.com

MIN TANG, School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, China e-mail: tmzzz2000@163.com