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Abstract

Let A = {a1 < a2 < · · · } be a set of nonnegative integers. Put D(A) = gcd{ak+1 − ak : k = 1, 2, . . .}. The
set A is an asymptotic basis if there exists h such that every sufficiently large integer is a sum of at most
h (not necessarily distinct) elements ofA. We prove that if the difference of consecutive integers ofA is
bounded, thenA is an asymptotic basis if and only if there exists an integer a ∈ A such that (a,D(A)) = 1.
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1. Introduction

A set A of nonnegative integers is said to be an asymptotic basis if there exists h
such that every sufficiently large integer is a sum of at most h (not necessarily distinct)
elements of A. An asymptotic basis A is said to have an exact order if there exists
h′ such that every sufficiently large integer is the sum of exactly h′ (not necessarily
distinct) elements taken from A. Obviously, when 0 ∈ A, an asymptotic basis A has
an exact order.

For the remainder of the paper, we writeA = {a1 < a2 < · · · }. For a positive integer
h, define hA to be the h-fold sum set ofA, that is

hA = {n : n = ai1 + · · · + aih , ai1 , . . . , aih ∈ A},

and define D(A) = gcd{ak+1 − ak : k = 1, 2, . . .}.
In 1980, Erdős and Graham [2] provided a necessary and sufficient condition for an

asymptotic basis of the nonnegative integers to possess an exact order.

Theorem 1.1. An asymptotic basis A = {a1, a2, . . .} has an exact order if and only if
D(A) = 1.

Remark 1.2. PutA(x) = |{a ∈ A : 1 ≤ a ≤ x}|. The density ofA is defined by d(A) =

limx→+∞A(x)/x. An asymptotic basisA = {a1, a2, . . .} has an exact order r if and only
if the density of integers which can be represented as the sum of exactly r elements
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taken from A (allowing repetitions) is 1. The necessity is obvious. To prove the
sufficiency, suppose that the density of integers which can be represented as the sum
of exactly r elements taken from A (allowing repetitions) is 1. If D(A) > 1 and n is
the sum of exactly r elements ofA, then n ≡ ra1 (mod D(A)). The density of such n
is 1/D(A) < 1, a contradiction. Thus, we have D(A) = 1. By Theorem 1.1, we know
that the asymptotic basisA has an exact order.

For related problems about exact orders and asymptotic bases, one may refer to
[1, 3–6].

It is natural to consider the necessary and sufficient condition for a set of
nonnegative integers to be an asymptotic basis. The results in this paper arise from
two observations. First, ifA = {a1, a2, . . .} is an asymptotic basis, then (ak,D(A)) = 1
for all positive integers k (see [7, Lemma 3]). Second,A = {1} ∪ {2, 22, 24, . . . , 22n

, . . .}
is not an asymptotic basis.

Theorem 1.3. Let A = {a1 < a2 < . . .} be a set of nonnegative integers such that the
difference of consecutive integers of A is bounded. Then A is an asymptotic basis if
and only if there exists an integer a ∈ A such that gcd(a,D(A)) = 1.

Corollary 1.4. Let A = {a1, a2, . . .} be a set of nonnegative integers such that the
difference of consecutive integers of A is bounded. Let F be a subset of N. If A∪ F
is an asymptotic basis and D(A∪ F ) = D(A), thenA is an asymptotic basis.

Example 1.5. Let A = {1, 3, 5, . . .}. Then every positive integer can be represented as
the sum of at most two elements ofA, and thusA is an asymptotic basis. If there exists
an integer s such that every sufficiently large integer is the sum of exactly s elements
of A, then the parity of every sufficiently large integer is the same as the parity of s,
and thusA does not have an exact order.

Example 1.6. Let A = {2, 4, . . . , 2n, . . .} and F = {1}, we know that every positive
integer can be represented as the sum of at most two elements of A ∪ F , and thus
A ∪ F is an asymptotic basis. But A is not an asymptotic basis because any sum of
elements taken fromA is even.

2. Proof of Theorem 1.3

Proof of necessity. If for all positive integers k we have gcd(ak,D(A)) = d > 1, then
d | ak. Therefore, any sum of elements taken from A is a multiple of d, which
contradicts the assumption thatA is an asymptotic basis. �

Proof of sufficiency. We write gn = gcd(a2 − a1, a3 − a2, . . . , an+1 − an). Since
g1 ≥ g2 ≥ · · · , it follows that limn→+∞ gn = D(A). Then there exists a positive integer
n0 such that |gn − D(A)| < 1 for n ≥ n0. Since the gn and D(A) are integers, gn = D(A)
for n ≥ n0. This means that gcd(a2 − a1, a3 − a2, . . . , an0+1 − an0 ) = D(A). Moreover,
gcd(ai,D(A)) = 1 for some ai ∈ A.
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If 1 ≤ i ≤ n0 + 1, then D(A) | ai+1 − ai. Also, D(A) | an0+1 − a1. Thus,

gcd(ai,D(A)) = gcd(ai,D(A), an0+1 − a1)
= gcd(ai, a2 − a1, . . . , ai+1 − ai, . . . , an0+1 − an0 , an0+1 − a1)
= gcd(ai, a2 − a1, . . . , ai+1, . . . , an0+1, an0+1 − a1)
= gcd(a1, a2, . . . , an0+1).

If i > n0 + 1, then D(A) = gcd(D(A), an0+2 − an0+1, . . . , ai − ai−1), and thus

gcd(ai,D(A)) = gcd(ai,D(A), an0+2 − an0+1, . . . , ai − ai−1, ai − a1)
= gcd(ai, a2 − a1, . . . , ai − ai−1, ai − a1)
= gcd(a1, a2, . . . , ai).

Hence, in both cases, there exists a positive integer t such that

gcd(a1, . . . , at) = 1

and there are integer constants ci with
∑t

i=1 ciai = 1. Let A = a1 · · · at and bi = ci + kiA,
where ki is the smallest nonnegative integer with bi > 0. Then

∑t
i=1 biai = kA + 1 for

some nonnegative integer k. Let N =
∑t

i=1 biai + kA, then

N + 1 =

t∑
i=1

biai + kA + 1 = 2
t∑

i=1

biai.

Thus, there exists a positive integer h1 such that

{N,N + 1} ⊂
h1⋃
i=1

iA.

Hence, for every positive integer l,

{lN, lN + 1, . . . , lN + l} ⊂
lh1⋃
i=1

iA.

Moreover, when l ≥ N,

{lN, lN + 1, . . . , lN + l} ∩ {(l + 1)N, (l + 1)N + 1, . . . , (l + 1)N + l + 1} , ∅.

Therefore, for every positive integer s ≥ N,

{N2,N2 + 1, . . . , sN + s} ⊂
sh1⋃
i=1

iA.

Since the difference of consecutive integers ofA is bounded, we may assume that

max{ak+1 − ak : k = 1, 2, . . .} ≤ M.
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Then there exists a positive integer q ≥ N such that N2 + M ≤ qN + q. For every integer
n ≥ N2 + a1, there must exist an integer k such that ak ≤ n − N2 < ak+1. Thus,

N2 ≤ n − ak = n − ak+1 + ak+1 − ak < N2 + M.

Hence,

n − ak ∈ {N2,N2 + 1, . . . , qN + q} ⊂
qh1⋃
i=1

iA,

that is, n = n − ak + ak ∈
⋃qh1+1

i=1 iA. �

This completes the proof of Theorem 1.3.

3. Proof of Corollary 1.4

In 2011, Yang and Chen [7, Lemma 3] showed that ifA = {a1, a2, . . .} is an asymp-
totic basis, then (ak,D(A)) = 1 for all positive integers k. By this result, it follows
that gcd(ak,D(A ∪ F )) = 1 for all positive integers k. Since D(A ∪ F ) = D(A), we
see that gcd(ak,D(A)) = 1 for all positive integers k. Thus, by Theorem 1.3, A is an
asymptotic basis.
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