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UNIQUE FACTORISATION RINGS

by A. W. CHATTERS, M. P. GILCHRIST and D. WILSON
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Let R be a ring. An element p of R is a prime element if pR = Rp is a prime ideal of R. A prime ring R is said
to be a Unique Factorisation Ring if every non-zero prime ideal contains a prime element. This paper
develops the basic theory of U.F.R.s. We show that every polynomial extension in central indeterminates of a
U.F.R. is a U.F.R. We consider in more detail the case when a U.F.R. is either Noetherian or satisfies a
polynomial identity. In particular we show that such a ring R is a maximal order, that every height-1 prime
ideal of R has a classical localisation in which every two-sided ideal is principal, and that R is the intersection
of a left and right Noetherian ring and a simple ring.

1980 Mathematics subject classification (1985 Revision): 16A02, 16A38.

1. Introduction

The concept of a unique factorisation domain in commutative algebra was extended
in two different ways to non-commutative rings in [5] and [6]. However, these
generalisations were only studied in the context of Noetherian rings. Even here there is
a surprisingly rich supply of genuinely non-commutative examples, including trace rings
of generic matrix rings and many twisted polynomial rings, group rings and universal
enveloping algebras (see [1], [5], [6], [13]). The aim of this paper is to develop a theory
of non-commutative U.F.R.S (unique factorisation rings) without the Noetherian con-
dition. The non-Noetherian setting is perhaps the right one in which to study U.F.R.s,
but dropping the Noetherian condition does introduce extra technical problems. The
precise definition of a U.F.R. is given in Section 2 and some general results are proved
in Section 3. For example, if A is a U.F.R. then so also is the ring of polynomials over
R in an arbitrary number of central indeterminates (Theorem 3.7). It is also possible to
prove a non-Noetherian version of the theorem of Gilchrist and Smith, that certain
U.F.R.s which are not commutative are principal ideal domains (Theorem 3.8).

After a certain point it is difficult to extend the general theory any further without
being able to use Goldie's theorem. For this reason we specialise in Section 4 to U.F.R.S
which satisfy a polynomial identity, because one feature of such rings is that all their
prime factor rings are Goldie rings. For these rings the theory can be pushed much
further. Such a ring R satisfies the standard non-commutative version of being
integrally-closed (Corollary 4.8), the height-1 prime ideals of R are localisable (Theorem
4.6), the invertible ideals of R are principal (Corollary 4.17), and R is the intersection of
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its simple Artinian quotient ring with a left and right Noetherian ring in which every
two-sided ideal is principal (Theorem 4.13).

2. Definitions, notation and preliminaries

All rings considered here are associative with identity element. Let R be a ring. An
element x of R is normal if xR = Rx. Normal elements x and y of R are associates if
xR = yR. A principal ideal of R is an ideal of the form xR for some normal element x of
R. An element is regular if it is not a zero-divisor. If / is an ideal of R then C(I) denotes
the set of elements of R which are regular modulo /.

General background material about ring theory can be found in [4] or [15]. For the
theory of maximal orders we refer to [14], and for rings satisfying polynomial identities
we refer to [16].

Let R be a prime ring. A prime element of R is a non-zero normal element p such
that pR is a prime ideal. Such an element p is said to be completely prime if R/pR is an
integral domain. We say that R is a U.F.R. (unique factorisation ring) if every non-zero
prime ideal of R contains a prime element, and that R is a U.F.D. (unique factorisation
domain) if R is an integral domain and every non-zero prime ideal contains a
completely prime element. These definitions were introduced for Noetherian rings in [5]
and [6].

Notation 2.1. Let R be a U.F.R. Set

C = {ceR:ceC(pR) for every prime element p of R}.

We shall repeatedly use the fact that if x is a normal element of R and P is a prime
ideal of R, then either x e P or xeC(P); this is because (xR + P)/P=(Rx + P)/P is a two-
sided ideal of the prime ring R/P, and an ideal of a prime ring is either 0 or its left and
right annihilators are 0.

3. General theory

In this section we establish some basic properties of U.F.R.s without making any
extra assumptions such as chain conditions. In particular we shall show that if R is a
U.F.R. then the set of principal ideals of R is closed under finite intersections and
satisfies the ascending chain condition (Theorem 3.5), and the polynomial ring over R in
an arbitrary number of central indeterminates is also a U.F.R. (Theorem 3.7). Provided
that things are done in the correct order, the proofs are usually not hard and we shall
keep them as short as possible. The results of this section are what one might
reasonably hope for in view of the commutative theory of U.F.D.'s (see for example
[12]).

Lemma 3.1. Let p and q be prime elements of a prime ring R.
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(1) IfqR^pR then qR = pR.

(2) / / pR # qR then pqR = pRnqR = qpR,

Proof. (1) Suppose that qRQpR. Then q=px for some xeR. Suppose that qR^pR.
Then peC(qR). Because pxeqR, we conclude that x = yq for some yeR. Hence q=pyq
and 1 = py. This is a contradiction because pR # R.

(2) Suppose that pR^qR. Then peC(qR) and qeC(pR). Let xepRnqR. Then
x=py = qz for some y, zeR. Because peC(qR), y = qr for some reR. Thus x = pqr. It
follows that pR n qRspqR, and the rest of the proof is straightforward. •

Lemma 3.2. Let R be a U.F.R.

(1) Every non-zero ideal of R contains a product of prime elements.

(2) Let x be a non-zero element of R. Then there are only finitely-many non-associate
prime elements p of R such that x e pR.

Proof. (1) Apply Zorn's lemma to the set of ideals of R which do not contain a
product of prime elements.

(2) Let x be a non-zero element of R. By (1) there are prime elements Pi,...,pn of R
such that plp2...pneRxR. Let p be a prime element of R such that xepR. We have
PiP2-PnepR where each pf is a normal element of R. Hence ptepR for some i. Thus
we have pR = ptR for some i, by Lemma 3.1, and so there are only finitely-many
possibilities for pR. •

Theorem 3.3. Let R be a U.F.R. and let p be a prime element of R.

(1) The prime ideal pR has height 1.

(2) 0?=lP"R = 0.
(3) C(pR) £ C(p"R) for every positive integer n.

(4) The elements of C(pR) are regular as elements of R.

(5) Let x be a normal element of R with x 4 pR. Then xR n p"R = xp"R for every

positive integer n.

Proof. (1) Suppose that Q is a non-zero prime ideal of R with Q^pR. We must
show that Q = pR. Because R is a U.F.R., there is a prime element q of R such that
qeQ. Hence qR^pR. By Lemma 3.1 we have qR = pR so that Q = pR.

(2) Set I = 0™=iPnR and suppose that / # 0 . Because p is a regular element of R it is
easy to show that I = pl. By Lemma 3.2 there are prime elements Pi,...,pn of R such
that plp2...pnel. Let n be the smallest positive integer such that / contains such a
product. Then plp2...pnepR so that p(epR for some i. By 3.1 we have pR=ptR. It
follows from Lemma 3.1(2) that pipJR=pjpiR for all i and j . Therefore without loss of
generality we may suppose that pR = p^. Thus l=pl = pj and P\P2.pnzpxl. Hence
p2p3...pnel, which contradicts the minimality of n.

(3) Let ceC(pR) and suppose that ceC(pkR) for some positive integer k. We must
show that ceC{pk+iR). Let xeR with cxepk+lR. Then cxspkR so that xep*/?. Thus
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x — ypk for some yeR. Also cx = zpk+i for some zeR. Hence cypk = zpk+1, and so
cy = zp. But ceC(pR). Therefore yepR and hence xepk + iR as required.

(4) This follows easily from (2) and (3).
(5) Let x be a normal element of R with x$pR. Then xeC(pR). Hence xeC(p"R) for

every positive integer n, by (3). Suppose that xa = p"b for some a, beR for and positive
integer n. Because xeC(p"R) it follows that aep"R. Hence xaexp"R and the result
follows easily. •

Let R be a U.F.R. and let p be a prime element of R. Then Theorem 3.3 shows that
pR satisfies most of the properties which one might expect. The one obvious exception
is localisability, and there is no hope of proving this because we did not know enough
about the ring R/pR. We will show in Section 4 that pR is localisable if R satisfies a
polynomial identity, and the Noetherian case was dealt with in the proof of Theorem
2.1 of [6].

The next two results establish the main properties of normal elements and principal
ideals in U.F.R.s.

Lemma 3.4. Let R be a U.F.R. and let x be a non-zero normal element of R.

(1) If there is no prime element p of R such that xepR, then x is a unit of R.

(2) x is a product of prime elements of R.

(3) There are non-associate prime elements plt...,pn of R and non-negative integers
a{\),...,a(n) such that

xR = pa
1

il)p"2
i2)...p°in)R = P i

(4) Let P be a prime ideal of R which is minimal over x. Then height(P) = 1 and P = pR
for some prime element p of R.

Proof. (1) Suppose that there is no prime element p of R such that xepR. By
Lemma 3.2 there are prime elements pu...,pn of R such that PiP2..pn = xr f ° r some
reR. Thus xr e pnR. Also x $ pnR so that x e C(pnR). Therefore r = spn for some seR. We
have plp2...pn = xr = xspn so that plp2...pn-i=xs. Repeating this process gives \=xt
for some teR.

(2) For each prime element p of R there is a positive integer n such that x $ p"R, by
Theorem 3.3(2). By Lemma 3.2(2) there are only finitely-many non-associate prime
elements p of R such that xepR. From these two statements it follows that there are
(not necessarily distinct) prime elements p1,...,pnof R such that x=plp2-..pny, where y
is an element of R with the property that there is no prime element p of R with yepR.
Because x and the p, are normal elements of R, so also is y. Therefore y is a unit of R
by (1), and x is the product of the prime elements p1,...,pB_1)p,j>.

(3) By (2) and Lemma 3.1(2) there are non-associate prime elements Pi , . . . ,p n of R
and non-negative integers a(i) such that xR = pf1)p"2

(2)...p°ln)R. Set y=p2
{2)pf3) ...pa

n
in).
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Then y^PiR. It follows from Theorem 3.3(5) and Lemma 3.1(2) that
pfl)yR = xR. We now repeat the process for yR, and so on.

(4) Let P be a prime ideal of R which is minimal over x. By (2), x = p1p2...pn for
some prime elements p; of R. For some i we have PieP. Hence xR^ptR^P. Therefore
P=PiR. •

Theorem 3.5. Let R be a U.F.R. Then the set of principal ideals of R is closed under
finite intersections and satisfies the ascending chain condition.

Proof. Let x and y be non-zero normal elements of R. We shall show that
xRnyR = zR for some normal element z of R, and it will follow that the set of principal
ideals of R is closed under finite intersections. By Lemma 3.4(3) there are non-associate
prime elements plt...,pn of R and non-negative integers a(i), b(i) such that xR —
pa

1
(1)Kn...np°(n)K and yR=p\il)R n ...np*n)K. For each i set c(i) = Max(a(i), b(i)).

Then xR n yR = p\{1)R n ... np?">K. Set z = pc
1
(1)p2(2)...pc

n
(n). Then x/?ny/? = zR by

Lemma 3.1(2).
In order to show that R satisfies the ascending chain condition for principal ideals, we

let x be a non-zero normal element of R and will show that in fact there are only
finitely-many principal ideals of R which contain x. Let j be a normal element of R
such that xR^yR. By Lemma 3.4(3) there are non-associate prime elements p1 ; . . . ,pn of
R and non-negative integers a(i) such that xR = p\n)R n... np°(n)/?. Similarly yR =
5!|1)Rn...r\5j("Ji for some non-associate prime elements ql,...,qk and non-negative
integers b(j). It is now routine to show that for each j there is an i such that q,R = ptR
and that b{j)<La(i). •

In the commutative case the converse of Theorem 3.5 is also true, but in the
non-commutative case a prime ring need not be a U.F.R. even if its set of principal
ideals is closed under finite intersections and satisfies the ascending chain condition (see
[11, 8 lines up from the bottom of p. 111]).

We next turn to polynomials over a U.F.R. The case of one indeterminate will be of
importance in Section 4 as well as being the main step towards dealing with an
arbitrary number of indeterminates.

Proposition 3.6. Let R be a U.F.R. and let X be an indeterminate which commutes
with the elements of R. Then R[X~1 is a U.F.R.

Proof. As far as possible we will follow the proof of the Noetherian case given in
Theorem 3.1 of [6]. The idea is to make use of a simple partial quotient ring S of R and
the fact that every ideal of S[X] has a single central generator, in the same sort of way
that one can use Q[X] to prove that 1\_X\ is a U.F.D. (where Q and Z denote the field
of rational numbers and the ring of integers respectively).

Let D be the multiplicative semigroup with 1 generated by the prime elements of R.
Because the elements of D are normal, we can form a partial quotient ring S of R by
inverting the elements of D. By Lemma 3.2 we know that every non-zero ideal of R
contains an element of D, from which it follows that S is a simple ring. To simplify the
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notation we set R* = /?[X] and S* = S[Jf|. Because S is simple, every ideal of S* has a
single central generator (for a proof of this well-known fact see for example [6, proof of
Theorem 3.1]). We shall use this property of S*, together with the fact that S* is the
partial quotient ring of R* formed by inverting the elements of D.

Let P be a non-zero prime ideal of R*. We must show that P contains a prime
element of R*. The prime elements of R are also prime as elements of R*, and the
elements of D are normal elements of R*. If P nDjt=d> then P contains a product of
prime elements of R* and hence contains a prime element of /?*.

From now on we suppose that P nD = (j). Then D ̂  C(P). We wish to show that PS*
is a two-sided ideal of S*, that is, that S*P^PS*. This would be standard in the
Noetherian case, but here and in similar places in Section 4 we must give a direct proof
using the special features of the situation. Let d e D and xeP. It is enough to show that
d~1xePS*. Because d is a normal element of R* we have xd = dy for some yeR*. Thus
dyeP with deC(P). Therefore yeP and d~1x = yd~1 ePS*.

Therefore PS* is a two-sided ideal of S*. By the discussion above, PS* = zS* for some
central element z of S*. Also z = fd~l for some feP and deD. Because d is a normal
element of R* and z is a central element of S*, fR* = zdR* = R*zd = R*f. Let r be a
non-zero coefficient of / when / is considered as a polynomial in X. There are prime
elements Pi,...,pn of R such that r = r'plp2...pn, for some r'eR with the property that
there is no prime element p of R with r'epR (this follows from Lemma 3.2(2) and
Theorem 3.3(2)). Because r is one of the coefficients of /, we can conclude that if p is a
prime element of R with f epR* then p is an associate of p, for some i. Therefore there
are prime elements uu...,u, of R such that f=guiu2.--ut, for some geR* with the
property that there is no prime element p of R with gepR*. Because / and the ut are
normal elements of R*, so also is g. For all i we have uteC(P). Also gu1u2...uteP.
Therefore geP.

Thus P contains a normal element of g of R* with the property that there is no prime
element p of R with gepR*. We shall complete the proof by showing that P=gR* and
by symmetry P=R*g. Let we P. We have PS* = zS* = fd'1S* = fS*=guiu2...u,S* =
gS*. Because we#S* there are prime elements qu...,qk of R such that yqlq2...qk=gb
for some beR*. But g$qkR*, so that geC{qkR*). Also gbeqkR*. Hence b = cqk for some
ceR*. Therefore wqlq2...qk^i=gc. By continuing in this way we eventually obtain
wegR*. •

Theorem 3.7. Let R be a U.F.R. and let W be a non-empty set of central indetermi-
nates. Then R\_W] is a U.F.R.

Proof. Set R* = R[Wr] and let P be a non-zero prime ideal of R*. There are
finitely-many elements Xu...,Xn of W such that Pn 7V0, where T = R[Xl,...,Xn]. It
is routine to show that P n T is a prime ideal of T Also T is a U.F.R., by repeated use
of Proposition 3.6. Therefore PnT contains a prime element p of T Thus peP, and p
is also prime as an element of R*. •

We conclude the section with some general information about U.F.D.s which will be
used in a special case in Section 4.
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Theorem 3.8. Let R be a U.F.D. in which the elements of C, as defined in 2.1, are
units. Then every one-sided ideal of R is two-sided. If R is not commutative then every
one-sided ideal of R is two-sided and principal (this was proved in the Noetherian case by
Gilchrist and Smith in [9]).

Proof. Let xeR. We shall show that RxR = xR. From this it will follow that every
right ideal of R is two-sided. By Lemma 3.2(2) and Theorem 3.3(2) there are prime
elements pu...,pn of R such that x=plp2...pac for some ceC. Because c is a unit of R
we have RxR = Rplp2...pnR = plp2...pnR = xR.

Suppose now that R is not commutative and let P be a non-zero prime ideal of R.
Exactly as in [9] it can be shown that height(P) = l. Hence P = pR for some prime
element p of R. Thus every non-zero prime ideal of R is principal and maximal, and
every one-sided ideal of R is two-sided. It follows easily that every non-zero one-sided
ideal of R is of the form qtq2 •..qkR for some prime elements qt of R. •

4. Unique factorisation rings which satisfy a polynomial identity

We shall now specialise to the case of U.F.R.s which satisfy a P.I. (polynomial
identity). One reason why these are easier to study compared with general U.F.R.s is
that every prime factor ring of a P.I. ring is a Goldie ring. Also prime P.I. rings have a
rich supply of central elements. The class of U.F.R.s which satisfy a P.I. includes
commutative U.F.D.s; trace rings of generic matrix rings ([13]); polynomials in an
arbitrary number of central indeterminates over a finite-dimensional division algebra
(Theorem 3.7); the ring of n by n matrices over a commutative Dedekind domain of
finite class number n; and the group ring RG where R is any U.F.R. which satisfies a
P.I. and G is a torsion-free Abelian group which satisfies the ascending chain condition
for cyclic subgroups (Example 4.1). But every U.F.D. which satisfies a P.I. is either
commutative or is a principal right and left ideal domain (Corollary 4.7).

Let R be a U.F.R. which satisfies a P.I. We shall show that R/xR has an Artinian
quotient ring for every normal element x of R (Corollary 4.5); that the height-1 prime
ideals of R are localisable and that R is the intersection of the corresponding rings RP

(Theorem 4.6); and that R is a maximal order. We shall however, express things in such
a way that no knowledge of maximal orders is required. We shall also prove and use
the fact that R is the intersection of its simple Artinian quotient ring with a left and
right Noetherian principal ideal ring which arises as a partial quotient ring of R[X~\
(Theorem 4.13). Consequences of this include that R satisfies the ascending chain
condition for principal essential right ideals (Corollary 4.14) and every invertible ideal of
R is principal (Corollary 4.17).

Some of the results of this section will be proved for U.F.R.s which are left and right
Noetherian or which satisfy a P.I.

Example 4.1. Let R be any U.F.R. which satisfies a P.I., and let G be a torsion-free
Abelian group which satisfies the ascending chain condition for cyclic subgroups. Then
the group ring RG is a U.F.R. which satisfies a P.I. ([7, Theorem 4.2]). The class of
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such groups G is closed under arbitrary direct products and subgroups, so that G could
for example be any subgroup of the direct product of an arbitrary number of copies of
the infinite cyclic group. The necessity of the condition that G should satisfy the
ascending chain condition for cyclic subgroups follows from Theorem 3.5 and the fact
that cyclic subgroups of G give rise to principal ideals of RG. •

Question 4.2. Let R be a ring and let G be a group such that the group ring RG is a
prime P.I. ring, i.e. let R be a prime P.I. ring and let G be an Abelian-by-finite group
with no proper finite normal subgroups. Is it true that RG is U.F.R. if and only if G
satisfies the ascending chain conditions for cyclic subgroups and is dihedral-free (see
[1]), and R is a U.F.R.?

The first few results establish some general properties of U.F.R.s which satisfy a P.I.,
for example localisability at height-1 primes, and the appropriate non-commutative
generalisation of the fact that every commutative U.F.D. is integrally-closed.

Proposition 4.3. Let R be a U.F.R. which satisfies a P.I. Suppose that, up to
associates, R has only finitely-many prime elements pu...,pn. Then R is a left and right
Noetherian semi-local ring with maximal ideals pxR,...,pnR. Also every proper two-sided
ideal of R is principal and is a product of maximal ideals.

Proof. Let ceC(plR)r\...nC{pnR). We shall show that c is a unit of R. By
Theorem 3.3(4) we know that c is a regular element of R. Because R is a P.I. ring there
is a non-zero central element z of R such that z = cx for some xeR. By Lemma 3.4(2),
z = qlq2.qk for some prime elements qt of R. But for each i we have qtR=PjR for some
j . Hence ceC(qtR) for all i. In particular ceC(qkR), and cx = qlq2...qkeqkR. Hence
x = yqk for some yeR. Therefore cy = qtq2 Qk-i- By continuing in this way we find
that c is a unit of R.

Now let / be any ideal of R which is not contained in any of the ideals ptR. We shall
show that I = R. For each i, the ideal (/ + p£/?)/p,/? of the prime Goldie ring R/ptR is
non-zero and so contains a regular element, by Goldie's theorem. Therefore
/ nC(p(R) ## . Hence there is an element c of / such that ceC(pjR) for all i ([17,
Proposition 2.4]). We showed above that c is a unit. Therefore / = R. It follows that the
PiR are the maximal ideals of R. We can now show as in the proof of Theorem 3.8 that
every proper ideal of R is a product of ideals of the form ptR. Thus every ideal of R is
principal, and so R satisfies the ascending chain condition for ideals. It follows by
Cauchon's theorem that R is left and right Noetherian ([2, Theoreme 1.4]). •

Theorem 4.4. Let R be a U.F.R. which satisfies a P.I. and let pu...,pn be
finitely-many non-associate prime elements of R. Set D = C(p1R)r\...r\C(pnR) and let W
be the multiplicative semigroup with 1 generated by the prime elements q of R such that q
is not an associate of any pt. Then D is an Ore subset of R. The corresponding partial
quotient ring RD is a left and right Noetherian semi-local U.F.R. in which, up to
associates, the p; are the only prime elements. Also RD can be formed from R by inverting
the elements of W.
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Proof. The elements of W are normal in R. Hence we can form the corresponding
partial quotient ring T = RW of R by inverting the elements of W. We shall show that T
satisfies the hypotheses of Proposition 4.3. It will then follow easily that the elements of
D are units of T, that T — RD, and that RD has the stated properties.

Because T is a partial quotient ring of R and is a subring of the simple Artinian
quotient ring of R, it is routine to show that T is a prime P.I. ring. Let p be one of the
p{. We shall show that p is prime as an element of T. Let weW. By Lemma 3.1(2) we
have pwR = wpR. Also wT= T by definition of T. Hence pT=pwT=pwRT=wpRT= wpT,
and so w~1pT=pT. Hence TpT=pT, and by symmetry pT = Tp. Also because Wg
C{pR) it is easy to show that R n pT=pR. Therefore pT is an ideal of T and is prime.

Let P be a non-zero prime ideal of T. Then PnR is a non-zero ideal of R. By
Lemma 3.2(1) there are prime elements qi,...,q, of R such that qlq2...qaePnR. For
each i, either qiR=PjR for some ;, or q,e W. Thus each qt is either an associate of one of
the prime elements pj of T, or qt is a unit of T. Because qlq1...q,eP it follows that
PjSP for some j . Because each pj is prime as an element of T it follows that T is a
U.F.R. and that, up to asssociates, the pj are the only prime elements of T. Thus T
satisfies the hypotheses of Proposition 4.3, as required. •

Corollary 4.5. Let R be a U.F.R. which satisfies a P.I. and let x be a non-zero normal
element of R which is not a unit. Then R/xR has an Artinian quotient ring. In fact the
quotient ring of R/xR is a factor ring of a ring of the form RD as described in Theorem
4.4.

Proof. By Lemma 3.4(3) there are non-associate prime elements Pi,...,pn of R and
positive integers a{i) such that xR = p?1)Rn...npa

n
in)R. Set D^CiPiR)/^ ...nC(pnR).

Then D is an Ore subset of R by Theorem 4.4, and D^C(xR) by Theorem 3.3(3).
Set S = RD. We shall show that xS = Sx. It is then routine to show that the Artinian

ring S/xS is the quotient ring of R/xR. By Theorem 4.4 we know that S can be formed
from R by inverting those prime elements q of R such that q is not an associate of any
pf. For such q we have q e D so that q e C(xR). Also qR = Rq so that xq = qy for some
yeR. Thus qyexR with qeC(xR). Therefore yexR and q~1x=yq~1exS. It follows
that Sx g xS and by symmetry that Sx = xS. •

Theorem 4.6. Let R be a U.F.R. which satisfies a P.I. and let P be a height-l prime
ideal of R. Then the classical localisation RP of R at P exists and is a left and right
Noetherian local ring in which every two-sided ideal is principal. Also R = nRP as P
ranges over the height-l primes of R.

Proof. By Theorem 4.4 we know that RP exists and has the stated properties. Set
T = nRP as P ranges over the height-l primes of R, and let S be the partial quotient
ring of R formed by inverting the prime elements of R. Then S is a simple ring, by
Lemma 3.2(1). Also S is a P.I. ring, because it is a subring of the classical quotient ring
Q(R) of R. Therefore S is simple Artinian and S = Q(R). Thus T= SnT.lt is now easy to
modify the proof of Theorem 2.10 of [5] to show that R = Sr\T=T. •
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Corollary 4.7. Let R be a U.F.D. which satisfies a P.I. and suppose that R is not
commutative. Then R is a principal right and left ideal domain.

Proof. Let C be as in 2.1. By Theorem 4.6 the elements of C are units of R, because
each element of C has an inverse in RP for every height-1 prime P of R. The result now
follows immediately from Theorem 3.8 •

The next result could be stated in the form "Every U.F.R. which satisfies a P.I. is a
maximal order", but for the benefit of the reader who is not familiar with maximal
orders we will spell it out in detail. The significance of Corollary 4.8 is that it generalises
the fact that every commutative U.F.D. is integrally-closed. Further information about
maximal orders can be found in [14].

Corollary 4.8. Let R be a U.F.R. which satisfies a P.I. and suppose that Q is the
classical quotient ring of R. Let I be a non-zero ideal of R. If q is an element of Q such
that either ql^I or Iq^I, then qeR.

Proof. Suppose that ql^I. By Lemma 3.2(2) and 3.2(3), there are (not necessarily
distinct) prime elements pu...,pn of R such that I = KpY ...pn, where K is an ideal of R
which is not contained in pR for any prime element p of R. Because q / s / we have
qK^K. Let P be a height-1 prime ideal of R. Then K£P, so that KnC{P)^<f> by
Goldie's theorem applied to the ring R/P. Let RP be as in Theorem 4.6. Since qK^K
and KRP = RP, we conclude that qeRP for all such P. Therefore qeR by Theorem
4.6. •

Example 4.9. Let R be a U.F.R. which satisfies a P.I. Then R need not be a finite
module over its centre even if R is Noetherian. Let S be a Nagarajan's example of a
commutative Noetherian U.F.D. which has an automorphism a of order 2 such that the
fixed ring T of a is not Noetherian (see for example [10, Section 41, Exercise 4]). Take
R = S[X; a] where multiplication in R is governed by the rule that Xs = a(s)X for all
seS. Then R is a U.F.R. ([6, Corollary 4.3]). Also R is a Noetherian P.I. ring. Let A be
the centre of R. If R were a finite /1-module then A would be Noetherian ([8, Theorem
3]). But A = T[X2] which is not Noetherian. •

Lemma 4.10. Let R be a U.F.R. which is left and right Noetherian or which satisfies a
P.I., and let c be a regular element of R. Then, up to associates, there are only finitely-
many prime elements p of R such that c $ C(pR).

Proof. If R is left and right Noetherian then the result follows immediately from
Corollary 4.8 and [3, Lemma 3.5]. Now suppose that R satisfies a P.I. Then there is a
non-zero central element z of R such that zecR. Let p be a prime element of R such
that c$C(pR). Then (cR + pR)/pR is not an essential right ideal of R/pR, by Goldie's
theorem. Hence (cR + pR)/pR does not contain a non-zero ideal of R/pR. But
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(zR+pR)/pRc(cR+pR)/pR. Hence {zR + pR)/pR = 0, and so zepR. Up to associates
there are only finitely-many such p, by Lemma 3.2(2). •

The Noetherian case of the next result was part of the second author's Ph.D. thesis at
the University of Leeds. He would like to thank Professor J. T. Stafford for suggesting
this problem and for improving the method of proof.

Proposition 4.11. Let R be a U.F.R. which is left and right Noetherian or which
satisfies a P.I. Set R* = R\_X], W = {pR*:p is a prime element of R}, and D=f]PeWC(P).
Let I be a right ideal of R* such that for all PeW we have InC{P)^<f>. Then I

Proof. We first show that / is an essential right ideal of R*. Let PeW and let
ael n C(P). We have P=pR* for some prime element p of R. Thus p is a prime element
of R*, and R* is a U.F.R. It follows from Theorem 3.3(4) that a is a regular element of
R*. Therefore / is an essential right ideal of R*.

By "the anti-leading coefficient of a polynomial ro + j'1X + --- + rBJf"" we mean r, if
r , ^ 0 and r, = 0 for all j<i. Let K be the right ideal of R which consists of 0 together
with the anti-leading coefficients of the non-zero elements of /. We shall show that K is
an essential right ideal of R. Let L be a non-zero right ideal of R. Because / is an
essential right ideal of R*, there is a non-zero element f(X) of R* such that
f(X)eI nLR*. Now f(X) = ro + rlX + —\-rnX" for some non-negative integer n and
some rjeL. Let r, be the anti-leading coefficient of f(X). Then r , # 0 because f(X)^0.
Also rteKnL. Hence K n L # 0 , and K is an essential right ideal of R. Therefore K
contains a regular element of R, by Goldie's theorem.

Thus we can fix an element a of I such that the anti-leading coefficient aT of a is a
regular element of R. By Lemma 4.10 there are only finitely-many non-associate prime
elements Pi,...,pu of R such that ar$C{piR). For each such i set P,=p,/?*. Then P(eW
for all i.

Set W'=W-{PU...,PU}. Let Pe W'. We have P = pR* for some prime element p of R
such that ar e C(pR). Because ar is the anti-leading coefficient of a, it follows easily that
a e C(P) for all PeW'.

For each i from 1 to u we have / n C ( P , ) / $ . By [17, Proposition 2.4] we can fix be I
such that beC(Pi) for all i. For each positive integer j^r+l set fj = a + bXJ, where the
anti-leading term of a is arX

r. Then f}el for all j . We shall complete the proof by
showing that fj e D for some j . Because the anti-leading coefficient of f} is ar, f} e C(P)
for all ; and all Pe W'= W-{Pl,...,Pu).

Suppose that there is no value of j such that fjeD; we shall obtain a contradiction.
Then for each ; there is a positive integer i with l^i^u such that fj$C(Pt). We can fix
a value of i such that J = {j:fj4C(Pj)} is an infinite set. We can enumerate the elements
of J as an increasing sequence j(l)<j(2)< For each jeJ there exists gjeR* such
that fjgjePf and gj$Pi. For each positive integer s set A(s)=gj(1)R*+ ---+gJ(s)R*. Then
the right ideals {A(s) + P,)/P; form an ascending chain in the prime Goldie ring R*/Pi.
Hence there is a positive integer s such that (A(s) + P,)/P( is an essential submodule of
(/4(s+l) + P,)/P;. It follows that (A(s+l) + Pi)/(A(s) + P,) is torsion as a right
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R*/Prmod\xle. In particular there exists c6C(Pj) such that (,gjl,+ i) + Pi)ce(A(s) + Pi)/Pi,
which means that gj{,+1)ceA(s) + Pi=gfll)R* + ---+gJls)R* + Pi.

Thus there is a positive integer t minimal with respect to the property that

+ *"" +8mhJit)epi f o r s o m e hm e R * w h e r e hKt)e c(p>)- (!)

By our choice of fj and g}, fjgj^Pi for all j , and recall that a = fj—bXJ. By multiplying
(1) on the left by a, we thus obtain

(2)

But b e C{Pi). Therefore

gJil)hj(l)X*» + • • •+gMhmXJW e P, (3)

Suppose that t ^ l . By multiplying (1) by Xj(1) and then subtracting the resulting
element from (3) we obtain

gmhm{X™ - XJ(1)) + • • •+gmhM(X*» - X*») e Pt. (4)

But hm(Xm-XJ(U)eC(Pi). Thus (4) contradicts the choice of t. Therefore t = \, and
w i t n hja)eC(Pi). But then gKl)sPt, which is the desired contradiction. •

Corollary 4.12. Let R* and D be as in Proposition 4.11. Then D is an Ore subset of
R*.

Proof. Let ceD and aeR*. Set I = {z6R*:azecR*}. Then / is a right ideal of R*.
Let p be a prime element of R. Then R* satisfies the Ore condition with respect to
C(pR*) by Proposition 3.6 and Theorem 4.6. Because ceC(pR*) it follows that az = cb
for some beR* and zeC(pR*). Thus z e / and so 7nC(p/?*)#0. Therefore /nD#<^> by
Proposition 4.11, i.e. adecR* for some deD. This establishes the right Ore condition
with respect to D, and the left Ore condition follows by symmetry. •

Theorem 4.13. Let R be a U.F.R. which is left and right Noetherian or which satisfies
a P.I. Set R* = R[X], W = {pR*:p is a prime element of R}, and D = f)PeWC(P). Let S be
the simple ring formed from R by inverting the prime elements of R, and let T be the
partial quotient ring of R* formed by inverting the elements of D. Then T is a left and
right Noetherian ring in which every proper ideal is of the form PiP2...pBT = Tplp2...pn

for some prime elements p{ of R. Also R = SnT where S and T are regarded in the
natural way as being subrings of the quotient ring of R*.

Proof. Let p be a prime element of R. We shall show that pT=Tp. Suppose that
deD. By Corollary 4.12 we have pc = db for some ceD and beR*. Thus dbepR* with
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deC(pR*). Hence bepR*. Therefore d~1p=bc~i epT. It follows that Tp^pT and by
symmetry that Tp — pT.

Let / be an ideal of T such that there is no prime element p of R with / £p73 We
shall show that / = T, and it will then follow, as in the last paragraph of the proof of
Proposition 4.3, that T has the stated properties. Let p be a prime element of R. Then
I£pT, so that InR*£pR* (this is because I=(InR*)T). Thus InR* is a two-sided
ideal of R* which is not contained in the prime ideal pR*. It follows by Goldie's
theorem that / n R * n C(pR*)#<£. By Proposition 4.11 we have I nR* nD^cp, and so
InD*4>. Thus 7 = 7:

Let seSnT. Because seS we have plp2...pnseR for some prime elements p, of /?.
Also sdeR* for some deD. Thus p1p2...pnsdeplR* nRd. Because deG(p1R*) we have
plR* nRd = ptR

m n(RnplR*)d = p1R* npiRd = plRd. Hence pip2...pnsdeplRd so
that p2p3...pnseR. By continuing in this way we eventually obtain seR. •

Corollary 4.14. Let R be a U.F.R. which satisfies a P.I. Then R satisfies the ascending
chain condition for right ideals of the form cR where c is a regular element of R.

Proof. We shall use the notation of Theorem 4.13. Let c be a regular element of R.
Because S is the classical quotient ring of R in the P.I. case of Theorem 4.13, we have
cS = S. Hence cR = c(Sr>T) = cSncT = Sr\cT. The result now follows because T is right
Noetherian. •

Notation 4.15. Let R be a prime Goldie ring with classical quotient ring Q and let /
be any subset of Q. Set I, = {qeQ:qI^R} and Ir = {qeQ: Iq^R}.

In the language of maximal orders, the next result says that any reflexive ideal of a
suitable U.F.R. is principal.

Theorem 4.16. Let R be a U.F.R. which is left and right Noetherian or which satisfies
a P.I., and let I be an ideal of R such that (/(), = / in the notation o/4.15. Then I is
principal.

Proof. We may suppose that 0#/#J? . By Lemma 3.2(2) and Theorem 3.3(2), there
are prime elements Pi,-..,pn of R such that I = p1p2...pnK, where K is an ideal of R
such that there is no prime element p of R with K^pR. Set x=ptp2...pn.

We have I,xK = I,I^R so that I,x^K,. Hence I,x(K,),^R, and so x{K,)r^(I,)r = I =
xK. Therefore (K,),gK so that (K,)r = K. In the notation of Theorem 4.13 we have
K,(KSnKT)^K,KSnK,KT^RSnRT=Sn T = R. Hence KSnKTz(K,)r = K, and it
follows that KSr\KT = K. By Lemma 3.2(1) we know that K contains a product of
prime elements of R. Hence KS = S. For each prime element p of R we have K£pR so
that K£pR*. Thus KR* is a two-sided ideal of R* with KR*£pR*. Therefore
KR*nC(pR*)*<t>. By Proposition 4.11 we have KR*nD*<p, so that T=KR*T = KT.
Hence K = KSnKT=SnT = R. D
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Corollary 4.17. Let R be a U.F.R. which is left and right Noetherian or which
satisfies a P.I., and let I be an invertible ideal of R. Then I is principal.

Proof. To say that / is invertible means that IX = XI = R for some .R-subbimodule
X of the quotient ring of R. In the notation of 4.15 we have X^I,. Also I, = I,R =
ItIX^RX = X. Therefore 7, = X. Hence (/()r = Xr = RX, = IXX,g/. It follows that
(7,)r=7 and Theorem 4.16 applies. •

Our final aim is to show that if R is a U.F.R. which satisfies a P.I. then R is a prime
Krull ring as studied in [18].

Definition 4.18. Let R be a prime Goldie ring with classical quotient ring Q and let /
be a right ideal of R. We say that / is closed if I = {xeR:xK^I for some essential right
ideal K of R with Ki = R in the notation of 4.15}.

Theorem 4.19. Let R be a U.F.R. which satisfies a P.I. Then R satisfies the ascending
chain condition for closed right ideals.

Proof. We shall use the notation of Theorem 4.13. Let A be a closed right ideal of R
and set B = ASnAT. Note that BgR by Theorem 4.13. We shall show that B = A, and
the result will then follow easily because both S and T are right Noetherian rings (in
fact S is the simple Artinian quotient ring of R).

Let beB and set K = {reR:breA}. Because be AS we have bee A for some regular
element c of R (we can take c to be a product of prime elements of R). Thus ceK and
so K is an essential right ideal of R. We shall show that K{ = R, and it will follow that
be A because A is closed. Because be AT we have bdeAR* for some deD. Now
d = ro + rlX + --- + rnX" for s o m e r,eR. T h u s bro + brlX + --- + brnX"eAR*, so t h a t
brteA for all i. Thus rteK for all i. Hence Kp^R for all i, and so Ktd^R*. Therefore
K,^T. But K,<iS because S is the classical quotient ring of R. Hence K,^R by
Theorem 4.13, and clearly R^K,. Therefore Kt = R as required. •

Corollary 4.20. Let R be a U.F.R. which satisfies a P.I. Then R is a prime Krull ring
as studied in [18].

Proof. By definition, a prime Krull ring is a prime Goldie ring which satisfies the
conclusions of Corollary 4.8 and Theorem 4.19. •
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