ON THE EXISTENCE OF NONINNER AUTOMORPHISMS OF ORDER TWO IN FINITE 2-GROUPS

A. R. JAMALI[™] and M. VISEH

(Received 15 March 2012; accepted 15 June 2012; first published online 17 September 2012)

Abstract

In this paper we prove that every nonabelian finite 2-group with a cyclic commutator subgroup has a noninner automorphism of order two fixing either $\Phi(G)$ or Z(G) elementwise. This, together with a result of Peter Schmid on regular *p*-groups, extends our result to the class of nonabelian finite *p*-groups with a cyclic commutator subgroup.

2010 *Mathematics subject classification*: primary 20D45; secondary 20D15. *Keywords and phrases*: finite *p*-groups, noninner automorphism, powerful *p*-groups, cyclic commutator subgroup.

1. Introduction

In 1966 Gaschütz [8], using cohomological techniques, showed that every nonabelian finite p-group, for p prime, possesses a noninner automorphism of order a power of p. A long-standing conjecture closely related to Gaschütz's result asks whether every nonabelian finite p-group G admits a noninner automorphism of order p (see, for example, [11, Problem 4.13]). By a reduction theorem, Deaconescu and Silberberg in [6] reduced the verification of the conjecture to the case where $C_G(Z(\Phi(G))) = \Phi(G)$. As an application of this result, it is seen, by a cohomological result of Schmid [12], that every regular p-group has a noninner automorphism of order p fixing $\Phi(G)$ elementwise (see [2]). The conjecture has also been established for some other classes of nonabelian finite *p*-groups. Liebeck [10] proved that if *p* is an odd prime, then every finite p-group G of class 2 has a noninner automorphism of order p fixing the Frattini subgroup of G elementwise. Using the above-mentioned reduction theorem, Abdollahi [1] showed that Liebeck's result remains true in the case where p = 2by showing that every finite 2-group G of class 2 has a noninner automorphism of order two leaving either $\Phi(G)$ or $\Omega_1(Z(G))$ fixed elementwise. Recently, he extended the result of [2] to a wider family of p-groups containing the finite p-groups of class 2. In fact, he proves that if G is a nonabelian finite p-group such that G/Z(G) is

^{© 2012} Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

powerful then *G* has a noninner automorphism which fixes either $\Phi(G)$ or $\Omega_1(Z(G))$ elementwise. Also in a paper appearing in this issue of the *Bulletin* [13], Shabani-Attar proves the conjecture for another special class of finite *p*-groups.

The object of the present paper is to verify the validity of the conjecture for another class of finite *p*-groups, namely the class of finite *p*-groups with cyclic commutator subgroup. This class of *p*-groups has been studied in [5, 7], for example. It is worth mentioning here that we need only treat the challenging case where p = 2 because it is well known that every finite *p*-group, *p* odd, with cyclic commutator subgroup is regular.

In order to meet our aim we first improve the main results of [1, 2] for the case p = 2 and thereby prove the existence of noninner automorphisms of order two for the case of nonabelian finite 2-groups having cyclic commutator subgroup. We shall derive the following theorem.

THEOREM 1.1. Let G be a nonabelian finite p-group with cyclic commutator subgroup. Then G has a noninner automorphism of order p fixing $\Phi(G)$ elementwise whenever p > 2, and fixing either $\Phi(G)$ or Z(G) elementwise whenever p = 2.

In this paper, p is always a prime and all the groups considered are finite. The notation used is standard. In particular, for a p-group G and an integer $i \ge 0$, we write $\Omega_i(G) = \langle g \in G | g^{p^i} = 1 \rangle$ and $\bigcup_i(G) = \langle g^{p^i} | g \in G \rangle$. We use $\Gamma_i(G)$ and $Z_i(G)$ for the *i*th terms of the lower and upper central series of G, respectively. The notation d(G) is used to denote the minimal number of generators of G. We also recall that a group G is called an (internal) central product of its subgroups G_1, \ldots, G_n if $G = G_1 \ldots G_n$ and $[G_i, G_j] = 1$ for all $1 \le i < j \le n$; in this situation we shall write $G = G_1 \ast \cdots \ast G_n$.

2. Powerful *p*-groups

In this section our aim is to state stronger forms of the main theorems of [1, 2] in the case p = 2. The main result of the present paper relies upon these stronger versions.

To avoid constant repetition, it will be our convention that the term *special Gaschütz* automorphism of *G* will mean a noninner automorphism of order *p* which fixes $\Phi(G)$ elementwise whenever p > 2 and fixes either $\Phi(G)$ or Z(G) elementwise whenever p = 2.

LEMMA 2.1. Let G be a finite 2-group of class 2. If G' is cyclic, then G has a special Gaschütz automorphism.

PROOF. Since G' is cyclic, by [2, Lemma 2.1], we may suppose that Z(G) is cyclic. Now we argue as in [1, Theorem] to complete the proof.

LEMMA 2.2. Let

$$G = \langle a, b \mid a^{2^{r}} = b^{2^{s}}, b^{2^{s+t}} = 1, b^{a} = b^{2^{t}+1} \rangle,$$

where r, s, t are integers with $2 \le t < s \le r$. Then G has a special Gaschütz automorphism.

PROOF. We have $Z(G) = \langle a^{2^s}, b^{2^s} \rangle$. Define the mappings α , β on G such that $\alpha(a) = a^{1-2^{r-1}}b^{2^{s-1}}$ and $\alpha(b) = b$ whenever r > s, and $\beta(a) = a^{1-2^{r-1}}b^{2^{s-1}}$ and $\beta(b) = a^{-2^{r-1}}b^{1+2^{s-1}}$ whenever r = s. It can be shown that both α and β are noninner automorphisms of G of order two fixing Z(G) elementwise.

The following theorem extends [2, Theorem 2.6].

THEOREM 2.3. Let G be a nonabelian finite p-group. If G/Z(G) is powerful, then G has a special Gaschütz automorphism.

PROOF. The theorem holds for p > 2 by [2, Theorem 2.6]. Let p = 2. In this case, we proceed by means of arguments already used in [2, Theorem 2.6] to observe that *G* has a special Gaschütz automorphism unless perhaps if

$$G = \langle a, b \mid a^{2^{t}} = b^{2^{s}}, b^{2^{s+t}} = 1, b^{a} = b^{2^{t}+1} \rangle,$$

where *r*, *s*, *t* are integers with $2 \le t \le s \le r$. If t = s, then $G' \le Z(G)$ and the result follows from Lemma 2.1. Otherwise, Lemma 2.2 can be applied to yield the result. \Box

The following result is a special case of Theorem 2.3 improving the main result of [1].

COROLLARY 2.4. Let G be a finite p-group of class 2. Then G has a special Gaschütz automorphism.

3. *p*-groups with cyclic commutator subgroups

In this section we shall establish a number of fundamental lemmas which, when taken together, give a proof for our main result (Theorem 1.1).

For the sake of brevity, we say that a nonabelian finite *p*-group *G* is a *G*-group if every nonabelian subgroup *H* of *G* has a noninner automorphism of order *p* fixing either Z(H) or $\Phi(H)$ elementwise. In view of Corollary 2.4, every finite *p*-group of class 2 is a *G*-group.

LEMMA 3.1. Let G be a finite p-group which is a central product of two subgroups H and K. If H is a G-group, then G has a noninner automorphism of order p fixing either Z(G) or $\Phi(G)$ elementwise.

PROOF. Let H_0 be a minimal element of the set

$$\{L \le H \mid G = L * K, L \text{ is nonabelian}\}.$$

If $Z(H_0) \leq \Phi(H_0)$, then H_0 has a noninner automorphism of order p fixing $Z(H_0)$ elementwise, and the result is proved by [1, Remark 2.5]. Now suppose that $Z(H_0) \nleq \Phi(H_0)$. Hence H_0 has a maximal subgroup M_0 such that $Z(H_0) \nleq M_0$. So $H_0 = M_0 Z(H_0)$. Since H_0 is nonabelian, so is M_0 . It follows, by the minimality of H_0 ,

that M_0K is a proper subgroup of G. Let M be a maximal subgroup of G containing M_0K . Then

$$MZ(G) = MZ(H_0)Z(K) \ge M_0KZ(H_0) = M_0Z(H_0)K = H_0K = G.$$

Hence G has a noninner automorphism of order p fixing $\Phi(G)$ elementwise by [6, Theorem].

The following lemma plays a key role in the proof of our main theorem (Theorem 1.1).

LEMMA 3.2. Let G be a nonabelian finite 2-group with cyclic commutator subgroup. If $\Gamma_3(G) \leq \mathcal{O}_2(G')$, then G has a special Gaschütz automorphism.

PROOF. According to [7], we may write $G = A_1 * A_2 * \cdots * A_n * B$, where *B* is an abelian subgroup, A_1, A_2, \ldots, A_n are 2-generator subgroups, and the classes of A_2, \ldots, A_n are equal to 2. If n > 1, then on setting $H = A_2 * \cdots * A_n * B$, by Corollary 2.4 and Lemma 3.1, we see that *G* has a special Gaschütz automorphism. Therefore we assume that n = 1. In this case, $G' = A'_1$ and $\Gamma_3(G) = \Gamma_3(A_1)$. Hence, by [5], we may choose the generators *x*, *y* for A_1 such that $y^x Z(A_1) = y^{1+2^x} Z(A_1)$, where $s \ge 2$. Since $A'_1 = \langle [x, y] \rangle$, we have $A'_1 Z(A_1) \le \mathcal{O}_2(A_1) Z(A_1)$. Now $Z(G) = Z(A_1)B$ implies that

$$G'Z(G) = A_1'Z(A_1)B \le \mathfrak{U}_2(A_1)Z(A_1)B \le \mathfrak{U}_2(G)Z(G).$$

It follows that G/Z(G) is powerful and the result holds by Theorem 2.3.

In what follows, we shall show that the result of Lemma 3.2 remains true in the case of nonabelian finite 2-groups satisfying $\Gamma_3(G) \not\leq \mathcal{U}_2(G')$. This case is much more complicated. We shall proceed by a series of lemmas which lead to the main theorem of the paper.

LEMMA 3.3. Let G be a finite 2-group with cyclic commutator subgroup such that $\Gamma_3(G) \not\leq \mathcal{V}_2(G')$. Suppose that G has no noninner automorphism of order two fixing $\Phi(G)$ elementwise. Then:

(i) Z(G) is cyclic;

(ii) $\Gamma_i(G) = \bigcup_{i=2} (G')$ for all $i \ge 2$, and hence $|G' \cap Z(G)| = 2$.

PROOF. (i) By [2, Lemma 2.1], $\Omega_1(Z(G)) \leq G'$. Therefore Z(G) is cyclic since G' is cyclic.

(ii) We assume that $G' = \langle g \rangle$ and $|G'| = 2^m$. It follows from $\Gamma_3(G) \notin \mathcal{O}_2(G')$ that $1 \neq \Gamma_3(G) = \langle g^2 \rangle$. Now since $\exp(\Gamma_{i+1}(G)/\Gamma_{i+2}(G))$ divides $\exp(\Gamma_i(G)/\Gamma_{i+1}(G))$ for all i, we deduce that $\Gamma_i(G) = \langle g^{2^{i-2}} \rangle$ for all $i \ge 2$. We set $I = Z(G) \cap G'$ and observe that $I = \Gamma_{i+2}(G)$ for some j < m, whence

$$\langle g^{2^{j+1}} \rangle = \Gamma_{j+3}(G) = [G, I] = 1,$$

and we conclude that j = m - 1. Thus |I| = 2, as required.

- (i) $Z_2(G) \leq \Phi(G);$
- (ii) $Z_2(G)$ is abelian;
- (iii) $\Omega_1(Z_2(G)) = \bigcup_{M \in \mathcal{M}} \Omega_1(Z(M))$, where \mathcal{M} denotes the set of all maximal subgroups of G.

PROOF. (i) By [6, Remark 1], $Z(G) \le \Phi(G)$. Let $x \in Z_2(G) \setminus Z(G)$. It follows that $1 \ne [x, G] \le G' \cap Z(G)$, and hence $|G : C_G(x)| = 2$ by Lemma 3.3. Consequently, $M = C_G(x)$ is a maximal subgroup of G, and we have $x \in C_G(M) \le C_G(\Phi(G)) \le C_G(Z(\Phi(G))) = \Phi(G)$, the latter equality holding by virtue of [6, Theorem]. Thus $Z_2(G) \le \Phi(G)$.

(ii) Assume that $x_1, x_2 \in Z_2(G) \setminus Z(G)$. Then $1 \neq [x_1, G] \leq Z(G) \cap G'$, and hence $|G: C_G(x_1)| = 2$ because $|G' \cap Z(G)| = 2$. This implies that $M_1 = C_G(x_1)$ is maximal in *G*. Similarly, $M_2 = C_G(x_2)$ is maximal in *G*. By [6, Theorem],

$$x_1 \in C_G(M_1) \le C_G(\Phi(G)) \le C_G(Z(\Phi(G))) = \Phi(G) \le M_2 = C_G(x_2).$$

Hence $[x_1, x_2] = 1$ and $Z_2(G)$ is abelian.

(iii) According to Lemma 3.3, Z(G) is cyclic. In order to complete the proof, it therefore suffices to show that

$$\Omega_1(Z_2(G)) \setminus Z(G) = \bigcup_{M \in \mathcal{M}} \Omega_1(Z(M)) \setminus Z(G).$$

On setting $\Omega_1(Z(G)) = \langle z_0 \rangle$, we see that $G' \cap Z(G) = \langle z_0 \rangle$ since $|G' \cap Z(G)| = 2$ by Lemma 3.3. Let $a \in \Omega_1(Z_2(G)) \setminus Z(G)$. Then $1 \neq [a, G] \leq Z(G) \cap G' = \langle z_0 \rangle$. Thus $|G : C_G(a)| = 2$, which implies that the subgroup $M = C_G(a)$ is maximal. Now since $a \in Z(M)$, we conclude that $a \in \Omega_1(Z(M)) \setminus Z(G)$. Suppose next that $M \in \mathcal{M}$ and $x \in \Omega_1(Z(M)) \setminus Z(G)$. For any y in $G \setminus M$, $1 = [x^2, y] = [x, y]^2$. Hence $[x, y] \in \Omega_1(G')$. Moreover, $M = C_G(x)$ shows that $[x, y] \neq 1$, from which we find that $[x, y] = z_0 \in Z(G)$. Therefore $x \in \Omega_1(Z_2(G)) \setminus Z(G)$ as required.

LEMMA 3.5. Let G be a 2-generator finite 2-group with cyclic commutator subgroup. Suppose that $\Gamma_3(G) \not\leq \mathcal{V}_2(G')$ and |Z(G)| = 2. Then G has a special Gaschütz automorphism.

PROOF. Suppose to the contrary that *G* has no special Gaschütz automorphism. It follows from $\Gamma_3(G) \notin \mathcal{U}_2(G')$ that $|G'| \ge 4$. We therefore assume that $|G'| = 2^m$, where $m \ge 2$. Since *G* is a 2-generator 2-group, *G* has exactly three maximal subgroups. Indeed, there are elements a_0, a_1, a_2 in *G* such that the subgroups $M_i = \langle \Phi(G), a_i \rangle$ for $0 \le i \le 2$ are all maximal subgroups of *G*. Evidently the set $\{a_i, a_j\}$, where $0 \le i < j \le 2$, is a generating set for *G*. At least one of these sets, say *B*, has the property that $[b, G'] \notin \mathcal{U}_2(G')$ for all *b* in *B*. Without loss of generality, we may assume that $B = \{a_1, a_2\}$. We let $G' = \langle u_0 \rangle$ and $u_1 = u_0^{2^{m-2}}$. For every *x* in *G*,

$$[x, u_1] = [x, u_0^{2^{m-2}}] = [x, u_0]^{2^{m-2}} \in \langle u_0^{2^{m-1}} \rangle.$$

Consequently $|G: C_G(u_1)| \le 2$. Now since u_1 is of order four, $u_1 \notin Z(G)$, which shows that $|G: C_G(u_1)| = 2$. It follows that $C_G(u_1)$ is a maximal subgroup of G. Thus there exists an element b_0 in $\{a_0, a_1, a_2\}$ such that $C_G(u_1) = \langle b_0, \Phi(G) \rangle$. Since $[b_0, u_0]^{2^{m-2}} = [b_0, u_1] = 1$, we have $[b_0, G'] \le \mathcal{O}_2(G')$. So $b_0 \notin B$, and thus $b_0 = a_0$. We put $v_1 = [a_0, a_1]$ and observe that $G' = \langle v_1 \rangle$. There exists an odd integer t such that $[v_1, a_1] = v_1^{2t}$. Evidently $(v_1^{2t})^k = v_1^{-2}$ for some odd integer k. Now we define the mapping α_1 by setting $\alpha_1(a_0) = a_0v_1^k$ and $\alpha_1(a_1) = a_1$. By [4, Theorem 3.2], α_1 extends to an automorphism of G. We have

$$\alpha_1^2(a_0) = \alpha_1(a_0v_1^k) = a_0v_1^k[a_0v_1^k, a_1]^k = a_0v_1^k(v_1^{v_1^k}v_1^{2tk})^k = a_0(v_1^2v_1^{2tk})^k = a_0v_1^k(v_1^{2tk})^k = a_0v_1^k$$

whence α_1 has order two. Note that α_1 is an inner automorphism of *G* induced by some $g_1 \in G$ because *G* has no special Gaschütz automorphism. Clearly $g_1^2 \in Z(G) < G'$. Since M_1 is the only maximal subgroup of *G* containing $C_G(a_1)$, we have $g_1 \in M_1$. Also, since

$$\alpha_1(v_1) = [a_0v_1^k, a_1] = v_1[v_1^k, a_1] = v_1v_1^{2tk} = v_1^{-1},$$

we conclude that $g_1 \notin C_G(u_1)$. Hence $g_1 \in M_1 \setminus \Phi(G)$. Similarly, we can find some $g_2 \in M_2 \setminus \Phi(G)$ such that $g_2^2 \in G'$. It is easy to see that $G = \langle g_1, g_2 \rangle$ and |G:G'| = 4. Thus *G* has a special Gaschütz automorphism, by [3, Proposition 4.10] and [2, Corollary 2.4]. This contradiction completes the proof of the lemma. \Box

LEMMA 3.6. Let G be a 2-generator finite 2-group with cyclic commutator subgroup of order four. Then G has a special Gaschütz automorphism.

PROOF. Let *u* be a generator of *G'*. If $u \in Z(G)$, then the lemma follows from Corollary 2.4. So we assume that $u \notin Z(G)$. Thus $C_G(u)$ is a maximal subgroup of *G* and there are generators $a, b \in G$ outside $C_G(u)$, whence $u^a = u^b = u^{-1}$. We can suppose that u = [a, b]. Then $[a^2, b] = u^a u = 1$ and similarly $[a, b^2] = 1$, so $a^2, b^2 \in$ Z(G). Thus the group G/Z(G) can be generated by two involutions and therefore is a dihedral group. Its commutator subgroup has order two, so G/Z(G) in fact has order eight. By [6, Theorem] we may assume that $Z(G) \leq \Phi(G)$. Now, if $\bar{x} \in G/Z(G)$ is an element of order four, $\Phi(G) = \langle x^2 \rangle Z(G)$ and $C_G(\Phi(G)) = \langle x \rangle Z(G)$, which is a maximal subgroup of *G*. We conclude that *G* has a special Gaschütz automorphism by [6, Theorem].

LEMMA 3.7. Let G be a 2-generator finite 2-group with cyclic commutator subgroup. Then for any x in $\Phi(G)$, there are two elements a and b in G such that $G = \langle a, b \rangle$ and $x = a^{2^n}[a, b]^k$ for some positive integers n and k.

PROOF. Let $G = \langle u, v \rangle$ and $x \in \Phi(G)$. Since $\Phi(G) = \mathcal{U}_1(G)$, we may write $xG' = u^{2^n r} v^{2^m s} G'$, where *r* and *s* are positive odd integers and *m*, $n \ge 1$. Without loss of generality, one may assume that $m \ge n$. Now it is readily seen that the elements $a = u^r v^{2^{m-n}s}$ and b = v satisfy the conditions of the lemma.

LEMMA 3.8. Let G be a 2-generator finite 2-group with cyclic commutator subgroup. Suppose that $\Gamma_3(G) \nleq \mathfrak{V}_2(G')$. Then G has a special Gaschütz automorphism. **PROOF.** Suppose to the contrary that *G* has no special Gaschütz automorphism. In view of [6, Theorem], Lemmas 3.3 and 3.5, we see that Z(G) is a cyclic subgroup of $\Phi(G)$, $|Z(G) \cap G'| = 2$, and $|Z(G)| = 2^l > 2$. Let $Z(G) = \langle z \rangle$, $z_1 = z^{2^{l-2}}$, and $Z(G) \cap G' = \langle z_0 \rangle$. By Lemma 3.7, we may choose the elements *a*, *b* such that $G = \langle a, b \rangle$ and $z = a^{2^n} u^k$ for some positive integers *n* and *k*, where u = [a, b]. We have $G' = \langle u \rangle$ and $2^m = |u| \ge 8$ by Lemma 3.6. Let $u_1 = u^{2^{m-2}}$ and $N = \langle a \rangle G'Z(G) \cap \langle b \rangle G'Z(G)$. Evidently $N \le \Phi(G)$ because any of two distinct maximal subgroups of *G* intersect in the Frattini subgroup of *G*. We shall obtain a contradiction in the following steps.

Step 1. $b^2 \in N$. Assume to the contrary that $b^2 \notin N$. Since $G/N = \langle aN \rangle \times \langle bN \rangle$, the mapping α_1 defined by $\alpha_1(a^i b^j x) = a^i (bz_1)^j x$, where $x \in N$, $0 \le i < o(aN)$ and $0 \le j < o(bN)$, is an automorphism of *G*. As $z_1 \in \Phi(G)$, $G = \langle a, bz_1 \rangle$. Thus by [4, Theorem 3.2], there is an automorphism α_2 of *G* fixing *a* and sending bz_1 to bz_1u_1 . Let α be the composite automorphism $\alpha_2\alpha_1$. Then $\alpha(a) = a$ and $\alpha(b) = bz_1u_1$. Obviously α is noninner because $z_1 \notin G'$. On the other hand, $[u^k, a] = 1$ since $z^a = z$. Hence $[a, u]^k = [u, a]^k = 1$ and

$$\begin{aligned} \alpha(z) &= a^{2^{n}}[a, bz_{1}u_{1}]^{k} = a^{2^{n}}([a, z_{1}u_{1}][a, b]^{z_{1}u_{1}})^{k} = a^{2^{n}}u^{k}[a, u^{2^{m-2}}]^{k} \\ &= a^{2^{n}}u^{k}([a, u]^{k})^{2^{m-2}} = a^{2^{n}}u^{k} = z. \end{aligned}$$

It follows that α fixes Z(G) elementwise. Finally, we observe that

$$\alpha^{2}(b) = bz_{1}u_{1}z_{1}[a, bz_{1}u_{1}]^{2^{m-2}} = bz_{1}^{2}u_{1}(u[a, u]^{2^{m-2}})^{2^{m-2}} = bz_{1}^{2}u_{1}^{2}[a, u]^{2^{2m-4}}.$$

But $[a, u] \in \langle u^2 \rangle$ and $z_1^2 = u_1^2 = z_0$, so $\alpha^2(b) = b$. Therefore α has order 2, that is, α is a special Gaschütz automorphism, a contradiction.

Step 2. *k* is even. Suppose that *k* is odd. Then $G' = \langle za^{-2^n} \rangle \leq Z(G) \langle a \rangle = H$. Clearly *H* is abelian. Since $b^2 \in N \leq H$, we also have |G:H| = 2. Therefore, by [6, Theorem], *G* has a noninner automorphism of order two fixing $\Phi(G)$ elementwise, a contradiction.

Step 3. If $N = \Phi(G)$ then $a^2 \notin G'Z(G)$, and in particular $n \neq 1$. Moreover, there exists $c \in G \setminus G'Z(G)$ such that $c^2 \in G'Z(G)$ and

$$G/G'Z(G) = \langle aG'Z(G) \rangle \times \langle cG'Z(G) \rangle.$$

Let $N = \Phi(G)$. Since $a \notin \langle b \rangle G'Z(G)$ and $G'Z(G) \leq N$, we conclude that $N \leq \langle a^2 \rangle G'Z(G)$. Thus since $\langle a^2 \rangle G'Z(G) \leq \Phi(G) = N$, we have $\Phi(G) = \langle a^2 \rangle G'Z(G)$. So

$$|G:\langle a\rangle G'Z(G)| = \frac{|G:\Phi(G)|}{|\langle a\rangle G'Z(G):\Phi(G)|} = 2.$$

Hence $\langle a \rangle G'Z(G)$ is a maximal subgroup of *G*. So $\langle aG'Z(G) \rangle$ is a cyclic maximal subgroup of the finite abelian 2-group G/G'Z(G). Hence it follows from [9, Theorem 5.3.1] that there exists an element $c \in G$ such that

$$G/G'Z(G) = \langle aG'Z(G) \rangle \times \langle cG'Z(G) \rangle$$

and o(cG'Z(G)) = 2. By [2, Corollary 2.3], $d(Z_2(G)/Z(G)) = 2$. Assume that $a^2 \in G'Z(G)$. This implies that $\Phi(G) = G'Z(G)$ and thus $\Phi(G)/Z(G)$ is cyclic. By Lemma 3.4, $Z_2(G)/Z(G) \leq \Phi(G)/Z(G)$, and hence $Z_2(G)/Z(G)$ is cyclic, a contradiction. It follows that $a^2 \notin G'Z(G)$. So $n \neq 1$, as required.

Step 4. $N \neq \Phi(G)$. Assume the contrary. Then $n \ge 2$ and we can choose *c* as in Step 3. Clearly $G = \langle a, c \rangle$, and thus $u = [a, c]^{t_0}$, where t_0 is an odd integer. We set $t = t_0 k$, v = [a, c] and $v_1 = v^{2^{m-2}}$. So $z = a^{2^n} v^t$. Note that $a^2 \notin G'Z(G)$, by Step 3. Then it is straightforward to verify that the mapping α_1 defined by $\alpha_1(a^i c^j x) = (az_1)^i c^j x$, where $x \in G'Z(G)$, $0 \le i < o(aG'Z(G))$ and $0 \le j < 2$, is an automorphism of *G*. As $z_1 \in \Phi(G)$, $G = \langle az_1, c \rangle$. Thus by [4, Theorem 3.2], there is an automorphism α_2 of *G* such that $\alpha_2(az_1) = az_1v_1$ and $\alpha_2(c) = c$. We put $\alpha = \alpha_2\alpha_1$. Then α is an automorphism of *G* with $\alpha(a) = az_1v_1$ and $\alpha(c) = c$. It follows from $z_1 \notin G'$ that α is noninner. Since $z^a = z$, we conclude that $[v^t, a] = 1$. Now we write $t = 2^r s$, where $r \ge 1$ and *s* is odd. First assume that $r \le m - 2$. In this case it follows, from $v_1 \in \langle v^t \rangle$ and $[v^t, a] = 1$, that $[v_1, a] = 1$. We have

$$\alpha(z) = (az_1v_1)^{2^n} [az_1v_1, c]^t = a^{2^n} v^t [v, c]^{2^{m-2}t}.$$

Thus since $[v, c] \in \langle v^2 \rangle$ and *t* is even, $\alpha(z) = z$. We also obtain

$$\alpha^{2}(a) = \alpha(az_{1}v_{1}) = az_{1}v_{1}z_{1}[az_{1}v_{1}, c]^{2^{m-2}} = az_{1}^{2}v_{1}^{2}[v_{1}, c]^{2^{m-2}}$$
$$= a[v, c]^{2^{2m-4}} = a.$$

This shows that α is a special Gaschütz automorphism, a contradiction. Next we suppose that $r \ge m$, and so $z = a^{2^n}$. Since

$$[v_1, a] = [v^{2^{m-2}}, a] = [v, a]^{2^{m-2}} \in \Omega_1(G') = \langle z_0 \rangle,$$

it follows that $(av_1)^4 = a^4$. Hence

$$\alpha(z) = (az_1v_1)^{2^n} = ((az_1v_1)^4)^{2^{n-2}} = (a^4)^{2^{n-2}} = a^{2^n} = z$$

Moreover α has order two, again a contradiction.

It remains to consider the case where r = m - 1. In this case, we put $z' = zz_0$. Since $z_0 = v^t$, we observe that $Z(G) = \langle z' \rangle$ and $z' = a^{2^n}$. As above, we may construct the automorphism β defined by $\beta(a) = az'_1v_1$ and $\beta(b) = b$, where $z'_1 = (z')^{2^{l-2}}$, to reach a contradiction.

Step 5. $a^2 \notin N$. Suppose to the contrary that $a^2 \in N$. By Step 1, we have $b^2 \in N$, and hence G/N is elementary abelian. This implies that $N = \Phi(G)$, a contradiction.

Step 6. n = 1. Assume that this is not the case. So $n \ge 2$. Since k is even, we may write $k = 2^r s$, where s is odd and $r \ge 1$. Using arguments similar to those in the proof of Step 4, we observe that if $r \le m - 2$ or $r \ge m$ then G has a special Gaschütz automorphism α such that $\alpha(a) = az_1u_1$ and $\alpha(b) = b$. Also, when r = m - 1, there exists a special Gaschütz automorphism β with $\beta(b) = b$ and $\beta(a) = a(zz_0)^{2^{l-2}}$.

Step 7. The final contradiction. According to Step 6, n = 1, and so $a^2 = zu^{-k} \in N$ contradicting the fact that $a^2 \notin N$ as shown in Step 5.

The next lemma improves Lemma 3.8.

LEMMA 3.9. Let G be a finite 2-group with cyclic commutator subgroup. Suppose that $\Gamma_3(G) \not\leq \mathcal{V}_2(G')$. Then G has a special Gaschütz automorphism.

PROOF. Assume to the contrary that *G* has no special Gaschütz automorphism. According to Lemmas 3.8 and 3.3, we may suppose that d(G) > 2, Z(G) is cyclic, and $G' \cap Z(G) = \langle z_0 \rangle$ has order two. Let \mathcal{M} be the set of all maximal subgroups of *G*. The following steps lead to a contradiction.

Step 1. For each $M \in \mathcal{M}$, $|\Omega_1(Z(M))| \le 4$. Let $|\Omega_1(Z(M))| > 2$, and let h and h' be distinct elements from $\Omega_1(Z(M)) \setminus \langle z_0 \rangle$. It is clear that [hh', x] = 1 for all $x \in M$. Let $a \in G \setminus M$. Since $h \in Z(M)$ and $[h, a] \in M$, $1 = [h^2, a] = [h, a]^2$. Since $1 \neq [h, a] \in \Omega_1(G') = \langle z_0 \rangle$, we conclude that $[h, a] = z_0$. Similarly, we observe that $[h', a] = z_0$. Hence [hh', a] = 1, and so [hh', G] = 1. Thus $hh' \in \langle z_0 \rangle$, and therefore $|\Omega_1(Z(M)) \setminus \langle z_0 \rangle| = 2$. It follows that $|\Omega_1(Z(M))| = 4$.

Step 2. \mathcal{M} contains two distinct elements M_1 and M_2 such that

$$|\Omega_1(Z(M_2))| = |\Omega_1(Z(M_1))| = 4.$$

For any M in \mathcal{M} , we set $\tilde{M} = \Omega_1(Z(M)) \setminus \langle z_0 \rangle$. It is readily seen that if M_i and M_j are distinct elements of \mathcal{M} , then \tilde{M}_i and \tilde{M}_j are disjoint. By Lemma 3.4,

$$\Omega_1(Z_2(G)) = \bigcup_{M \in \mathcal{M}} \Omega_1(Z(M)).$$

It follows that

$$|\Omega_1(Z_2(G))| = \sum_{M \in \mathcal{M}} |\tilde{M}| + 2.$$

On the other hand, by [2, Corollary 2.3], $r = d(Z_2(G)/Z(G)) = d(G) > 2$. Thus $d(Z_2(G)) > 2$, and so by Lemma 3.4 (ii) we conclude that $|\Omega_1(Z_2(G))| \ge 2^r \ge 8$. Now, if *t* is the number of elements *M* of *M* for which $|\Omega_1(Z(M))| = 4$, then $8 \le 2t + 2$, and hence $t \ge 3$. In particular, there are at least two distinct elements M_1 and M_2 in *M* such that $|\Omega_1(Z(M_i))| = 4$, i = 1, 2.

Step 3. Obtaining a contradiction. Let M_1 and M_2 be as above, and set $N = M_1 \cap M_2$. We choose the elements a_1 and a_2 such that $M_i = \langle N, a_i \rangle$, i = 1, 2. Let $h_i \in \Omega_1(Z(M_i)) \setminus \langle z_0 \rangle$, i = 1, 2. It can be shown that the mapping

$$\alpha(xa_1^{i_1}a_2^{i_2}) = x(a_1h_1)^{i_1}(a_2h_2)^{i_2} \quad (x \in N, 1 \le i_1, i_2 \le 2)$$

is an automorphism of *G*. By Lemma 3.4, $h_1, h_2 \in \Phi(G) \le N$, and so α has order two. Also, α is not inner. To see this simply note that if α were inner, then h_1 and h_2 would be in $\Omega_1(G')$, a contradiction. Thus α is a noninner automorphism of order two fixing $\Phi(G)$ elementwise. This contradiction completes the proof. The next result follows immediately from Lemmas 3.2 and 3.9.

THEOREM 3.10. Let G be a nonabelian finite 2-group with cyclic commutator subgroup. Then G has a special Gaschütz automorphism.

As mentioned earlier, every regular *p*-group, for *p* odd, has a noninner automorphism of order *p* fixing $\Phi(G)$ elementwise. Theorem 1.1 now follows at once using the above theorem.

Acknowledgements

The authors are grateful to the referee for his valuable comments. They would also like to thank the editor for drawing their attention to [13].

References

- A. Abdollahi, 'Finite *p*-groups of class 2 have noninner automorphisms of order *p*', *J. Algebra* 312 (2007), 876–879.
- [2] A. Abdollahi, 'Powerful *p*-groups have noninner automorphisms of order *p* and some cohomology', *J. Algebra* **323** (2010), 779–789.
- [3] Y. Berkovich, Groups of Prime Power Order, Vol.1 (Walter de Gruyter, Berlin, 2008).
- [4] A. Caranti and C. M. Scoppola, 'Endomorphisms of two-generated metabelian groups that induce the identity modulo the derived subgroup', *Arch. Math.* 56 (1991), 218–227.
- [5] Y. Cheng, 'On finite *p*-groups with cyclic commutator subgroup', Arch. Math. 39 (1982), 295–298.
- [6] M. Deaconescu and G. Silberberg, 'Noninner automorphisms of order p of finite p-groups', J. Algebra 250 (2002), 283–287.
- [7] A. A. Finogenov, 'Finite *p*-groups with a cyclic commutator subgroup', *Algebra Logic* **34**(2) (1995), 125–129.
- [8] W. Gaschütz, 'Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen', J. Algebra 4 (1966), 1–2.
- [9] H. Kurzweil and B. Stellmacher, *The Theory of Finite Groups: An Introduction* (Springer, New York, 2004).
- [10] H. Liebeck, 'Outer automorphisms in nilpotent p-groups of class 2', J. Lond. Math. Soc. 40 (1965), 268–275.
- [11] V. D. Mazurov and E. I. Khukhro (Eds.), 'Unsolved problems in group theory', in: *The Kourovka Notebook*, Vol. 16 (Russian Academy of Sciences, Siberian Division Institute of Mathematics, Novosibirsk, 2006).
- [12] P. Schmid, 'Frattinian p-groups', Geom. Dedicata 36 (1990), 359–364.
- [13] M. Shabani-Attar, 'Existence of noninner automorphisms of order p in some finite p-groups', Bull. Aust. Math. Soc. 87 (2013), 272–277.

A. R. JAMALI, Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, 599 Taleghani Ave., Tehran 15618, Iran e-mail: jamali@tmu.ac.ir

M. VISEH, Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, 599 Taleghani Ave., Tehran 15618, Iran e-mail: m.viseh@tmu.ac.ir