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C(X) AS A DUAL SPACE
E. G. MANES

It is known [1] that for compact Hausdorff X, C(X) is the dual of a Banach
space if and only if X is hyperstonian, that is the closure of an open set in X is
again open and the carriers of normal measures in C(X)* have dense union in X.
With the desiratum of proving that C(X) is always the dual of some sort of space
we broaden the concept of Banach space as follows. A Banach space may be
comfortably regarded as a pair (E, B) where E is a topological linear space and B
is a subset of E; the requisite property is that the Minkowski functional of B
be a complete norm whose topology coincides with that of E. For an arbitrary
such pair, we may imitate the definition of the dual of a Banach space, and define
(E, B)* by providing the vector-space of continuous linear functionals on E with
the ‘““norm”

¥l = sup{|¢(®)|: b € B}.
Say that (E, B) is a A-space (where A denotes the real or complex scalar field) if
(E, B)* is a Banach space. Our main result is obtained with the help of the
adjoint functor theorem (stated below) of category theory.

MAIN THEOREM. Let X be an arbitrary topological space. Then there exists a
A-space (E, B), with E topologically isomorphic to a product of copies of A, such
that the sup-normed Banach space Co(X) of bounded continuous A-valued funciions
is linearly isometric to (E, B)*.

In developing the proof we point out how an adjoint functor arises naturally
to surmount the original obstruction, and how the concept of ‘‘A-space’ is itself
suggested by the adjoint.

We are grateful to S. Swaminathan for making us aware of [1] and to the
referee for helpful criticism.

In raising the question ‘‘is C(X) a dual space?”’ two fundamental constructions
come into play:

1. If F, F’ are Banach spaces, the vector space & (F, F’) of continuous linear
maps F — F’ is a Banach space in the norm

¥l = sup{|[¢@)|[: [l=|[ = 1}.

2. 1f X is a compact Hausdorff space and Fis a Banach space, the vector space
C(X, F) of continuous maps X — F is a Banach space in the norm

fI] = sup{|[f@]]: x € X}.

Received May 26, 1971 and in revised form, August 24, 1971, This research was supported
by a Killam Postdoctoral Fellowship at Dalhousie University.
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The original question “‘is X represented by an Fsuch that C(X, A) =% (F, A)”
and the similarity of the norm formulas, beg comparison with a central definition
of category theory:

Definition 1. Let o7, & be categories, let U: .o/ — % be a functor and let B
be an object in Z. A free.o/ -object over B with respect to U is a pair (4, n) with 4
an object in &/ and 5: B — UA a morphism in & possessing the universal
property that

B———UA A

I’ /
f 1 0¥ v
\s ¥
vA’ A’
for all similar pairs (4’, f), there exists unique %/-morphism ¢: 4 — A4’ with
Uy-n = f. For intuition, think of &/ as a category of ‘% -objects with additional
structure”’, U as the ‘“‘underlying &-object” functor, B as ‘“‘an object of free
generators’’, n as ‘‘inclusion of the generators’’, and the universal property as

““unique extension by an &/-morphism of an arbitrary Z-morphism on the

generators’’. U has a left adjoint if there exists a free (4, 7) over B for every
% -object B.

Suppose, in particular, that Ban denotes the category of Banach spaces and
norm-decreasing linear maps, that Top is the category of topological spaces and
continuous maps and that U: Ban — Top is the unit disc functor. Consider a
compact Hausdorff space X over which there exists free (F, n) with respect to U.
Then “composing with "’ is a linear map

"ﬂig(F, FI) — C(X, F,)

which (by the universal property) establishes a bijection of the unit balls, and
is hence a linear isometry. In particular, C(X) = F*.

Unhappily, the existence of free (F,n) over X does not characterize the
hyperstonian spaces. Indeed, if (F, ) exists, the continuous map

—1%*
x T p e D ey

is routinely checked to be the evaluation map sending x € X to its evaluation
functional f+ f(x). Since this mapping is also injective (X is completely
regular), X is metrizable. But not all hyperstonian spaces are metrizable; for
example the 8-compactification of an infinite discrete space is hyperstonian, but
not metrizable.

Our immediate goal is to supplant the unit disc functor U: Ban — Top with
another top-valued functor with respect to which free objects always exist. We
pause, then, to consider some basic definitions and theorems which deal with
this problem.
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Definition 2. Recall that &/ is complete [3, p. 44, 2.9, p. 47, 17.3, p. 27] if every
set-indexed family (4,: o € I)hasa product Pg: I1 A, — A4 (not excluding the
case I = 0 wherein 11 4, is a terminal object [3, p. 24, p. 14]) and if every pair
f, g2 413 A, of & -morphisms has an equalizer i: A — 4, [3, p. 8].

Ban is complete. Il F, is the Banach space of all tuples (x.) with
sup{||x«||: @ € I} < 0o with this supremum as the norm; Pg(x,) = x5 The
equalizer of f, g is the isometric inclusion of the closed subspace Ker(f — g) on
which f and g agree.

Top is complete. IT X, is the usual Tychonoff product, and the equalizer of
f, g is the subset on which f and g agree with the subspace topology.

The category Tls of topological linear spaces and continuous linear maps is
complete. IT X, is the usual cartesian product vectorspace with the Tychonoff
topology, and the equalizer of f, g is the linear subspace on which f, g agree
provided with the subspace topology.

Let.oZ be complete. A complete subcategory of & is a full subcategory Z of .o/
which is closed under products (B, in % implies L1 B, as computed in.Z, isin &)
and closed under equalizers (f, g: By 3 Bs)in @ andi: 4 — Bjan equalizer in./
of f, g implies 4 is in &). A complete subcategory is complete qua category.

TrEOREM (Freyd adjoint functor theorem). Let .27 be a complete category and
let U: o/ — & be a functor. Then U has a left adjoint if and only if the following
conditions hold:

Ad 1. Whenever {A, Po: A — A} = 1l Aginot,

(UA, UP,): UA) = U (4} =11 U(4,) in B.

Ad 2. Whenever i: A — A, 1is the equalizer of f, g: Ay 3 Ay inZ, U(1) is the

equalizer of U(f), U(g) in &.

Ad 3. For each B in & there exists a set. ¥ of objects in o/ such that whenever

/ u(s) s
B U®) / 2
™~ /

U(4) A

A is an S -object and f: B — U(A) is a B-morphism, there exist
SeL,geB—>UNS)inZB,and y: S— A in A with UY)-g = f.

For a proof see [3, 3.1, p. 124]. In Ad 3, we emphasize that.¥ is a set as opposed
to a proper class; more precisely, it must be legitimate to form I {S: § € ¥}
inZ. The class. = {A: there exists f: B — U(A4)} has all desired properties
except for “‘smallness’.

It is possible to show that the unit disc functor Ban — top satisfies Ad 2 and
Ad 3. However, Ad 1 fails for infinite products.

TuEOREM 1. Let X be a topological space. Then there exists a compact Hausdorff
space BX such that Co(X) and C(BX) are linearly isometric Banach spaces.
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Proof. The argument is well-known when X is completely regular separated
and BX is the B-compactification. Such BX is characterized by being free over X
with respect to the inclusion functor from the category CT2 of compact
Hausdorff spaces into completely regular separated spaces. The

X———-)-BX

N/

universal property establishes a linear isomorphism Cy(X) — C(8X) because
bounded subsets of A have compact closure. That the sup-norms are the same
requires only that 7(X) be dense in 8X and this is deducible purely from the
universal property (the quickest proof following from the fact that gX is
completely regular; also, c.f. the proof of Theorem 4(1) below). We have only to
show that any topological space has a B-compactification, that is, that the
inclusion functor U: CT2 — Top has a left adjoint. Ad 1 and Ad 2 are clear since
CT2 is a complete subcategory. To prove Ad 3, let X € Top, set a to be the
cardinal of the set of ultrafilters on the set X, and define.% to be the set of all
S € CT2whose underlying setisa cardinal <a. Given C € CT2andf: X — UC
let 4 be the closure of f(X) in C with inclusion

S
P

()~ -2 UA 4
g lUi lz

X —f—+ UcC c

mapi: A — C € CT2. Then f factors through Ui by a unique continuous map g.
For each element x € A4 there exists an ultrafilter % on f(X) converging to x.
As A is Hausdorff, the cardinal of 4 is dominated by « and there exists a
homeomorphism ¢: .S — 4 with S € .. That Ad 3 is satisfied is now clear, and
the proof is complete.

Fix an arbitrary class, %, of Banach spaces. Define @mkto be the full sub-
category of Tls consisting of all E € TIS which are topologically isomorphic to
a closed subspace of a product (in TIS) of elements of .# (considered as topo-
logical linear spaces).

Thus, if # is all Banach spaces, & is the category of complete, separated
locally convex spaces; if # = {A}, & is the class of all E which are topologically
isomorphic to a product (in T1S) of copies of A [4, p. 191, exercise 6].
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Let U: & — Top be the underlying topological space functor.
THEOREM 2. U has a left adjoint.

Proof. The terminal object, 0, of Tls belongs to &. If i,: E, — Il F,5is a
closed embedding then

H 'ia:H E,— H Fop
a,f

is again a closed embedding. Therefore & is closed under products. If E € &
and E' is a closed subspace of E then E’ € & . In particular, & is closed under
equalizers (since all spaces in & are Hausdorff). Ad 1 and Ad 2 are now clear.
The proof of Ad 3 is entirely analogous to thatin Theorem 1 ;define « to be the
cardinal of the set of ultrafilters on the free linear span of the set X and consider
the closure of the linear span of f(X). The proof is complete.

For each topological space X let (E(X), n) denote the free & -object over X
with respect to U. The universal property establishes a linear isomorphism

X — s E(X)

/

N S
¥
F

- L(E(X), F) > C(X, F), for each F € #. When X is compact, the sup-
norm on C(X, F) transports to make . (E(X), F) into a Banach space
FE(X), F]in the norm

Il¥]] = sup{[l¥@®)|]: b € B}

where B = (X). This motivates the definition of an % -space as a pair (E, B)
where E € Tls, B C E are such that % (E, F) is a Banach space Z[(E, B), F]

in the norm

¥l = sup{|[¥(@)[|: b € B}

for all F € #. A A-space is a {A}-space. In view of Theorem 1 and the remarks
preceding Theorem 2 we have proved the main theorem (stated at the beginning
of the paper). We have also proved

THEOREM 3. Let F be a class of Banach spaces and let X be a compact (not
necessarily separated ) topological space. Then there exists an ¥ -space (E, B) with E
topologically isomorphic to a closed subspace of a topological linear space product
of elements of ¥, and with B compact such that the Banach spaces C(X, F) and
LI(E, B), F] are canonically linearly isometric for all F € .

TuEOREM 4. (1) E(X) is the closed linear span of 7(X). (2) X is completely
regular separated if and only if n: X — E(X) is a homeomorphism into, providing
some F € F is non-zero.
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Proof. (1) While a Hahn-Banach argument works, there is a more basic
reason. Let E; be the closed linear

EX)
7 14
x - }51
7 7
v

span of 7(X). As & is closed hereditary, E, € &. Let¢: E; — E(X) be the inclu-
sion map. Then 7 factors through 7 by continuous 7,. By the universal property
there exists ¢ with ¥n = 7,. Since 4 € & and leaves 7 invariant, it follows that
1y = id and ¢zisonto asdesired.

(2) One way is clear. Conversely, let X be completely regular separated. There
exists non-zero Fin.% . Since the unit interval can be homeomorphicly embedded
in F there exists a homeomorphism f of X into F’ for I a sufficiently large set.
By the universal property, for each 7 € I

E(X)

e
2

X ¥

N,

Fleee——-F
Di

there exists

Ex) YL F

in & with ¢ = p,f. There exists unique continuous (and linear) y with
pp = ¢, foralls. yn = fsince the maps agree followed by each product projec-
tion. But whenever a composition of two continuous maps is a homeomorphism
into, so is the first. The proof is complete.

The following theorem is roughly similar to some results of Edelstein [2].

THEOREM 5. Let X be a completely regular separated space. Then there exists a
set I and a homeomorphism n of X into the real topological linear space R with
the following properties:

(1) Every continuous endomorphism f: X — X extends uniquely to a continuous
linear endomorphism f: RT — RY such that fn = nf.

(2) Given two continuous endomorphisms f, g: X 3 X, (gf )~ = &f. Thus every
semagroup of mappings lifts to an isomorphic semigroup.

(3) If f: X — X is a homeomorphism onto, f is a topological isomorphism onto.
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Proof. (2) and (3) are formal consequences of (1). To prove (1), set A = R,
let & correspond to # = {R} and apply Theorem 2. (E(X), 1) = (R, 1) is the
desired construction. The proof is complete.
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