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The local eddy diffusivity model for the turbulent scalar flux is widely used to understand
and predict scalar transport in turbulence. However, local approximation in space and
time is not always valid for actual turbulent flow. An exact non-local expression for the
scalar flux was previously derived by the author using Green’s function. Even though
the profile of the non-local eddy diffusivity in a turbulent channel flow was evaluated,
its model expression was only discussed phenomenologically. In this study, the non-local
eddy diffusivity approach was validated with help of direct numerical simulation (DNS)
data of homogeneous isotropic turbulence with an inhomogeneous mean scalar to propose
a systematic model expression. Initially, it was verified that the non-local expression for
the scalar flux agrees with the value directly obtained from the DNS. In addition, the
non-local effect accounts for the overestimation of the scalar flux by the local model
and the counter-gradient diffusion phenomenon. The temporal behaviour of the non-local
eddy diffusivity was further evaluated using the DNS data. Its model expression being
proportional to the two-point velocity correlation was proposed in a manner customary in
the statistical theory of turbulence. The profile of the non-local eddy diffusivity obtained
from the model expression agrees well with the DNS value, and the non-local model
reproduced the scalar flux. These results substantiate the potential of the non-local eddy
diffusivity model.

Key words: isotropic turbulence, turbulence modelling, turbulence simulation

1. Introduction

Eddy viscosity and diffusivity models are widely used to predict the mean velocity and
mean scalar quantities in turbulent flow, respectively. In the eddy diffusivity model, the
turbulent scalar flux at a point is assumed to be proportional to the mean scalar gradient at
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the same point. However, this local approximation is not always valid for actual turbulent
flow. A local gradient-transport model requires that the characteristic scale of the transport
mechanism is small compared with the distance over which the mean gradient of the
transported property changes appreciably (Corrsin 1974). In turbulent flow, the length
scale of turbulence is often as large as that of the mean-field variation which may span
the entire flow domain.

One typical example is scalar transport in the atmospheric boundary layer; convective
eddies driven by buoyancy are as large as the boundary layer height, so the eddy
diffusivity model is not always accurate. Several attempts have been made to develop
non-local models. Stull (1984, 1993) proposed the transilient turbulence theory that
describes non-local transport using a matrix of mixing coefficients. Ebert, Schumann
& Stull (1989) used tracers in their large eddy simulation (LES) to directly obtain the
transilient matrix. Fiedler (1984) proposed an integral model similar to the transilient
theory; Fiedler & Moeng (1985) used scalar profiles obtained from the LES to construct
the matrix in the integral model. Pleim & Chang (1992) used a non-local model named
the asymmetrical convective model to apply to regional or mesoscale atmospheric
chemical models. Berkowicz & Prahm (1980) proposed a generalization of the eddy
diffusivity; that is, the scalar flux is expressed by a spatial integral of the scalar gradient.
Nakayama, Nguyen & Daif (1988) applied this model to the calculation of the scalar
field in the turbulent boundary layer for engineering problems. Romanof (1989) studied
space–time non-local models for turbulent diffusion and Romanof (2006) applied them
to diffusion in atmospheric calm. For atmospheric air pollution flux, Vilhena et al.
(2008) presented a semi-analytical solution for the three-dimensional advection–diffusion
equation by considering a non-local turbulence closure. Sun et al. (2016) modified the
Monin–Obukhov similarity theory by considering the non-local turbulence mixing by
large coherent eddies and applied their hypothesis to the observational data of the
atmospheric surface layer.

In addition to scalar transport, non-local models have been developed for momentum
transport. Nakayama & Vengadesan (1993) proposed a non-local eddy viscosity model for
the Reynolds stress. As a generalization of Prandtl’s mixing-length theory, Egolf (1994)
developed a non-local model called the difference-quotient turbulence model (DQTM).
It was shown that the DQTM corresponds with the non-local eddy viscosity model
(Egolf & Hutter 2020, 2021). Schmitt, Vinkovic & Buffat (2010) analysed Lagrangian
statistics on particle trajectories in turbulent channel flow and proposed a non-local
formulation for predicting the Reynolds stress. Bernard & Erinin (2018) also thoroughly
investigated fluid particle dynamics in turbulent channel flow, and showed that the
Reynolds shear stress is a non-local phenomenon that cannot be described by a local
model relying on the local mean velocity gradient. Mani & Park (2021) developed the
macroscopic forcing method to reveal the differential operators associated with turbulence
closures. Using this method, Shirian & Mani (2022) computed the scale-dependent
eddy diffusivity characterising scalar and momentum transport in homogeneous isotropic
turbulence, and demonstrated that the eddy diffusivity behaviour is captured by a non-local
operator.

Recently, non-local models have been developed by using fractional derivatives
because they involve both differential and integral operators, and can describe
non-local properties (Uchaikin 2013). Fang et al. (2020) applied the Caputo fractional
derivative for the velocity gradient in their neural-network models, in order to
represent anisotropic and non-local properties of the Reynolds stress in a turbulent
channel flow. Di Leoni et al. (2021) assessed the two-point correlation between
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the filtered strain rate and subfilter stress tensors in isotropic and channel flow
turbulence. They showed that the non-local eddy viscosity model based on the
fractional derivative accounts for long-tailed profiles of the correlation, and suggested
the potential of non-local modelling for LES. Seyedi & Zayernouri (2022) proposed
a non-local subgrid-scale model for homogenous isotropic turbulence using the
fractional Laplacian operator, thereby determining the fractional order using data-driven
approaches.

The non-local expression for the scalar flux was also investigated theoretically
using Green’s function. Using the direct interaction approximation (DIA) developed by
Kraichnan (1959), Roberts (1961) studied turbulent diffusion to derive the probability
distributions of the positions of fluid elements. Kraichnan (1964) showed that the
non-local eddy diffusivity can be approximated in terms of the averaged Green’s function
and velocity correlation. Moreover, using Green’s function for the scalar equation,
Kraichnan (1987) derived an exact non-local expression for the scalar flux. Georgopoulos
& Seinfeld (1989) also derived a similar exact expression. However, these derived
expressions for the scalar flux were implicit representations; they involved the scalar
flux also on the right-hand side, and the scalar flux had to be solved implicitly.
Hamba (1995) modified the Green’s function to obtain an explicit exact expression
for the scalar flux; the Green’s function was calculated to evaluate the non-local eddy
diffusivity in the convective boundary layer. Larson (1999) investigated the relationship
between the transilient matrix and the Green’s function for the advection–diffusion
equation.

In addition to the scalar flux, Hamba (2005) developed an exact non-local expression for
the Reynolds stress using Green’s function. The non-local eddy diffusivity and viscosity
were evaluated using the direct numerical simulation (DNS) data of turbulent channel
flow (Hamba 2004, 2005). Although the evaluated profiles provided insight into scalar and
momentum transport, it is also necessary to model the non-local diffusivity and viscosity
in terms of turbulence statistics to apply them to turbulence simulations. The profile of the
non-local eddy diffusivity was complex because of the anisotropy and inhomogeneity of
the turbulence. Hamba (2004) empirically proposed a model expression for the non-local
eddy diffusivity in turbulent channel flow, but, unfortunately, it does not have a solid
theoretical basis. In this study, we examine the DNS of homogeneous isotropic turbulence
with an inhomogeneous mean scalar to propose a systematic model expression for the
non-local eddy diffusivity. Because the non-local eddy diffusivity is determined solely by
the velocity fluctuation, regardless of the mean scalar field, the profile of the non-local
eddy diffusivity is isotropic and appropriate for examination as a first step. Similar to
statistical theories such as the DIA and the two-scale direct interaction approximation
(TSDIA) (Yoshizawa 1984, 1998), we constructed a model expression for the non-local
eddy diffusivity in terms of Green’s function and the two-point velocity correlation.

The remainder of this paper is organised as follows. In § 2 we describe an exact non-local
expression for the scalar flux, in which the non-local eddy diffusivity is expressed in
terms of the velocity fluctuation and Green’s function. In § 3 we examine the DNS data
of homogeneous isotropic turbulence with an inhomogeneous mean scalar. We show the
limitations of the local model and the accuracy of the non-local expression. In § 4 we
construct a model expression for the non-local eddy diffusivity by further studying the
DNS data. We evaluate the temporal behaviour of the non-local eddy diffusivity and the
velocity correlation to propose a model expression similar to that of DIA and TSDIA.
Finally, we conclude the paper in § 5.
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2. Non-local expression for scalar flux

In this study we investigated local and non-local expressions for the turbulent scalar flux.
The velocity u∗

i and the scalar θ∗ are divided into mean and fluctuating parts as follows:

u∗
i = Ui + ui, Ui = 〈u∗

i 〉, (2.1a,b)

θ∗ = Θ + θ, Θ = 〈θ∗〉. (2.2a,b)

Here 〈 〉 denotes the ensemble averaging. In the prevalent local eddy diffusivity model, the
turbulent scalar flux 〈uiθ〉 is approximated as

〈uiθ〉 = −κTij
∂Θ

∂xj
, (2.3)

where κTij is the eddy diffusivity tensor and the summation convention is used for repeated
indices. The isotropic eddy diffusivity model is often assumed to be

〈uiθ〉 = −κT
∂Θ

∂xi
, (2.4)

where κT(= κTii/3) is the eddy diffusivity. The eddy diffusivity model is local in space
and time, in the sense that the scalar flux at a point and time is expressed in terms of
physical quantities at the same point and time. This local approximation is only valid if the
turbulence length and time scales are significantly smaller than the length and time scales
of the mean-field variation (Corrsin 1974). However, this condition does not always hold
for actual turbulent flow.

A non-local expression for the scalar flux can be written as

〈uiθ〉(x, t) = −
∫

dx′
∫ t

−∞
dt′κNLij(x, t; x′, t′)

∂

∂x′
j
Θ(x′, t′), (2.5)

where
∫

dx = ∫ ∞
−∞ dx

∫ ∞
−∞ dy

∫ ∞
−∞ dz (Hamba 1995, 2004). Here, κNLij(x, t; x′, t′) is the

non-local eddy diffusivity, representing the non-local effect of the mean scalar gradient
at (x′, t′) on the scalar flux at (x, t). Modifying the analysis by Kraichnan (1964, 1987),
Hamba (1995) derived an expression for the non-local eddy diffusivity using Green’s
function as follows. The transport equation for scalar fluctuation is given by

Dθ

Dt
+ ∂

∂xi
(uiθ − 〈uiθ〉) − κ

∂2θ

∂xi∂xi
= −ui

∂Θ

∂xi
, (2.6)

where D/Dt = ∂/∂t + Ui∂/∂xi and κ is the molecular diffusivity of the scalar. By
considering the right-hand side of (2.6) as a source term for θ , we introduce the Green’s
function gi(x, t; x′, t′) satisfying the following equation:

D
Dt

gi(x, t; x′, t′) + ∂

∂xj
(uj(x, t)gi(x, t; x′, t′) − 〈ujgi〉) − κ

∂2

∂xj∂xj
gi(x, t; x′, t′)

= ui(x′, t′)δ(x − x′)δ(t − t′). (2.7)

Note that the velocity fluctuation ui(x′, t′) is included on the right-hand side of (2.7). The
Green’s function gi(x, t; x′, t′) represents a scalar field at (x, t) associated with a point
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source at (x′, t′) whose value is proportional to ui(x′, t′). Using Green’s function, a formal
solution of (2.6) can be written as

θ(x, t) = −
∫

dx′
∫ t

−∞
dt′gi(x, t; x′, t′)

∂

∂x′
i
Θ(x′, t′). (2.8)

Therefore, the scalar flux can be written as

〈uiθ〉(x, t) = −
∫

dx′
∫ t

−∞
dt′〈ui(x, t)gj(x, t; x′, t′)〉 ∂

∂x′
j
Θ(x′, t′), (2.9)

which yields
κNLij(x, t; x′, t′) = 〈ui(x, t)gj(x, t; x′, t′)〉. (2.10)

Hamba (2004) evaluated Green’s function using the DNS data of turbulent channel flow
to verify the non-local expression given by (2.9).

Let us consider the relationship between the non-local expression and local
approximation. The non-local eddy diffusivity κNLij(x, t; x′, t′) has a non-zero value if the
distance |x − x′| and time difference t − t′ are comparable to or less than the turbulence
length and time scales, respectively. If the mean scalar gradient ∂Θ/∂x′

i is nearly constant
in this region in terms of scale and time, then the scalar flux can be approximated as

〈uiθ〉(x, t) � −κLij(x, t)
∂Θ

∂xj
, (2.11)

where κLij(x, t) is the local eddy diffusivity defined as

κLij(x, t) =
∫

dx′
∫ t

−∞
dt′κNLij(x, t; x′, t′). (2.12)

Conversely, if the mean scalar gradient changes appreciably in the region, the local
approximation is invalid and the non-local expression should be used to predict the scalar
flux.

To apply the eddy diffusivity approximation given by (2.4) to turbulence simulations, we
must further model the eddy diffusivity itself. In the K–ε model, the local eddy diffusivity
κT in (2.4) is expressed as

κT = Cκ

K2

ε
, (2.13)

where K(= 〈u2
i 〉/2) denotes the turbulent kinetic energy, ε[= ν〈(∂ui/∂xj)

2〉] denotes its
dissipation rate, ν denotes the molecular viscosity and Cκ denotes a model constant with
a typical value of 0.1. This expression can be empirically obtained using dimensional
analysis and is proportional to the product of the turbulence intensity K1/2 and the
turbulence length scale K3/2/ε. Moreover, it can be derived theoretically using the TSDIA
as follows (Yoshizawa 1998). Starting from the basic equations for velocity and a scalar
quantity, and applying theoretical procedures to the scalar flux, an expression for the eddy
diffusivity is obtained as

κT = 1
3

∫
dk

∫ t

−∞
dt′Gθ (k, t, t′)Qii(k, t, t′), (2.14)

where
∫

dk = ∫ ∞
−∞ dkx

∫ ∞
−∞ dky

∫ ∞
−∞ dkz. Here, Qii(k, t, t′) and Gθ (k, t, t′) are the

two-time velocity correlation and the mean Green’s function for scalar fluctuation,
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respectively, expressed in wavenumber space. Because it is very difficult to evaluate
Qii(k, t, t′) and Gθ (k, t, t′) by solving their transport equations for inhomogeneous
turbulence, their profiles were further assumed to be

Qij(k, t, t′) = Dij(k)E(k) exp[−ω(k)|t − t′|], (2.15)

Gθ (k, t, t′) = exp[−ωθ(k)(t − t′)], (2.16)

where Dij(k) = δij − kikj/k2, E(k) is the energy spectrum and ω(k) and ωθ(k) are the
inverse of the time scale for the velocity and scalar, respectively. The Kolmogorov
spectrum and time scales were adopted for E(k), ω(k) and ωθ(k) as

E(k) =
{

CKε2/3k−5/3, k ≥ kc,
0, k < kc,

(2.17)

ω(k) = Cωε1/3k2/3, (2.18)

ωθ(k) = Cωθε
1/3k2/3, (2.19)

where kc[= (3CK/2)3/2K−3/2ε] is the cutoff wavenumber in the energy-containing range
and the model constants are given by CK = 1.5, Cω = 0.42 and Cωθ = 1.6Cω. Finally,
substituting (2.15)–(2.19) into (2.14) and performing the integrals in (2.14) yields (2.13),
with Cκ = 0.136. Therefore, the eddy diffusivity given by (2.13) reflects the behaviour of
the two-time velocity correlation and the Green’s function.

In contrast to the local eddy diffusivity, the model expression for the non-local eddy
diffusivity appearing in (2.5) has not been studied extensively. When applying the
non-local expression to turbulent channel flow, a one-dimensional spatially non-local
expression was proposed as

κNLyy( y; y′) ∝ 〈u2
y〉 exp(−|y − y′|/L), (2.20)

where L is the turbulence length scale (Hamba 2004). This profile was obtained
empirically and does not have a solid theoretical basis. In § 4 we systematically investigate
the non-local eddy diffusivity in a manner similar to the TSDIA for the local eddy
diffusivity described above.

3. The DNS of isotropic turbulence with inhomogeneous scalar

To verify the non-local expression given by (2.5), Hamba (2004) examined the DNS data
of a turbulent channel flow. However, the non-local eddy diffusivity showed a complex
profile because of the anisotropy and inhomogeneity of the turbulence. It was difficult
to propose a model expression for the non-local eddy diffusivity that agrees with such
a complex profile. In this study, we examine the DNS data of homogeneous isotropic
turbulence with an inhomogeneous mean scalar to systematically investigate the non-local
eddy diffusivity. Because the non-local eddy diffusivity is determined solely by the
velocity fluctuation, regardless of the mean scalar field, the profile of the non-local eddy
diffusivity is isotropic and appropriate for an examination in a first step.

The DNS was performed as follows. Using a pseudo-spectral method, numerical
solutions for the velocity were obtained from the Navier–Stokes and continuity equations

∂ui

∂t
= − ∂

∂xj
(ujui) − ∂p

∂xi
+ ν

∂2ui

∂x2
j

+ fi,
∂ui

∂xi
= 0, (3.1a,b)

where p is the pressure and fi is the external force. The mean velocity Ui was set to zero.
The size of the computational domain was Lx × Ly × Lz = 2π × 2π × 2π and the number
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Case Mean scalar gradient

1 cos y
2 cos 2y
3 cos y + (1 + cos 2y)/4
4 cos 2y + (1 + cos 4y)/4

Table 1. The functions of mean scalar gradient ∂Θ/∂y for the four cases.

2

1

0

0 1 2

Case 1
Case 2

Case 3
Case 4

3

y
4 5 6 7

–2

–1

∂
Θ

/∂
y

Figure 1. Profiles of the mean scalar gradient ∂Θ/∂y as functions of y for the four cases.

of grid points was 5123. The velocity was normalised such that the initial velocity variance
〈u2

i 〉 was equal to unity. Hereafter, the physical quantities were non-dimensionalised by
the initial turbulence intensity 〈u2

i 〉1/2 and the length scale Lx/(2π). The initial velocity
spectrum was set to E(k) ∝ k4 exp[−2(k/k0)

2], where k0 = 3.5. The external forcing of
negative viscosity (Jiménez et al. 1993; Yamazaki, Ishihara & Kaneda 2002) was applied
to low wavenumbers to maintain constant turbulent kinetic energy over time. The viscosity
was set to ν = 6 × 10−4 and the Taylor micro-scale Reynolds number Rλ(= 〈u2

x〉1/2λ/ν)

was 122.
In addition to the velocity field, we solved the equation for scalar fluctuation

∂θ

∂t
= − ∂

∂xi
(uiθ − 〈uiθ〉) + κ

∂2θ

∂x2
i

− uy
∂Θ

∂y
, (3.2)

where κ was equal to ν. Here, a fixed one-dimensional profile of the mean scalar Θ( y)
was used such that the scalar fluctuation was inhomogeneous in the y direction and
homogeneous in the x and z directions. We adopted the four functions of the mean scalar
gradient listed in table 1 and their profiles are shown in figure 1. The cosine function was
used as a simple profile of an inhomogeneous mean scalar. The length scale of the mean
scalar field in case 2 was half that of case 1. The length scale in cases 3 and 4 was the same
as that in cases 1 and 2, respectively, but in cases 3 and 4 the magnitude of the positive
peak was greater than that of the negative peak.
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Because the velocity field is statistically steady and homogeneous in the x and z
directions, the non-local expression given by (2.5) can be rewritten as

〈uyθ〉( y) = −
∫ ∞

−∞
dy′κNLyy( y; y′)

∂Θ

∂y′ , (3.3)

where

κNLij( y; y′) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dz′

∫ t

−∞
dt′κNLij(x, t; x′, t′)

=
∫ ∞

−∞
dx′

∫ ∞

−∞
dz′

∫ t

−∞
dt′〈ui(x, t)gj(x, t; x′, t′)〉. (3.4)

The non-local eddy diffusivity κNLyy appearing in (3.3) is a function of y and y′ only. To
evaluate it, we must calculate the integrals with respect to x′, z′ and t′ in (3.4); it would
incur considerable computational costs. To reduce computational costs, we introduce
another Green’s function gi(x, t; y′) defined as

gi(x, t; y′) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dz′

∫ t

−∞
dt′gi(x, t; x′, t′), (3.5)

which satisfies the following equation:

D
Dt

gi(x, t; y′) + ∂

∂xj
(uj(x, t)gi(x, t; y′) − 〈ujgi〉) − κ

∂2

∂xj∂xj
gi(x, t; y′)

= ui(x, t)δ( y − y′). (3.6)

In contrast to (2.7), only a delta function with respect to y − y′ is included on the right-hand
side of (3.6). The Green’s function gi(x, t; y′) represents a scalar field at (x, t) associated
with a statistically steady source on the x–z plane at y = y′ whose value is proportional
to ui(x′, t′) at each point and time. We solved (3.6) instead of (2.7) to obtain the Green’s
function gi(x, t; y′). We can then evaluate the non-local eddy diffusivity as

κNLij( y; y′) = 〈ui(x, t)gj(x, t; y′)〉, (3.7)

without any additional integrals. Because the velocity field is also homogeneous in the y
direction, the non-local eddy diffusivity κNLij( y; y′) is only a function of the separation
y − y′, and the local eddy diffusivity, defined as

κLij( y) =
∫ ∞

−∞
dy′κNLij( y; y′), (3.8)

is constant in y. Consequently, the non-local and local expressions for the scalar flux can
be written as follows:

〈uyθ〉NL = −
∫ ∞

−∞
dy′κNLyy( y − y′)

∂Θ

∂y′ , (3.9)

〈uyθ〉L = −κLyy
∂Θ

∂y
. (3.10)

In the present DNS, the profiles of κNLyy( y − y′) and 〈uyθ〉 and the value of κLyy(= 0.23)

were obtained by averaging over the x–z plane and over a time period of 2.5 normalised by
Lx/(2π〈u2

i 〉1/2).
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κ
N
Ly
y(
y–
y′ )

0
–0.2

0

0.2

0.4

0.6

0.8

1.0

1 2 3

DNS
Model 1
Model 2

4

(y – y′)/L
Figure 2. Profiles of the non-local eddy diffusivity κNLyy( y − y′) as functions of ( y − y′)/L for DNS and

models 1 and 2. The separation y − y′ was normalised by the integral length scale L(= 0.465).

Before examining the non-local effect, let us mention the value of the local eddy
diffusivity κLyy = 0.23. Substituting κLyy = 0.23, K = 0.50 and ε = 0.19 evaluated in
the DNS into (2.13), we obtain Cκ = 0.17, which is relatively large compared with
the standard value Cκ = 0.1 mentioned in § 2. This difference can be understood by
considering the transport equation for 〈uyθ〉 as follows. The production term in the
transport equation is −〈u2

y〉∂Θ/∂y and the pressure–scalar-gradient term can be modelled
as 〈p∂θ/∂y〉 = −Cp(ε/K)〈uyθ〉, which represents the dissipation of 〈uyθ〉. By assuming a
balance between the two terms, we can obtain the eddy diffusivity model

〈uyθ〉 = − K
Cpε

〈u2
y〉

∂Θ

∂y
, (3.11)

which indicates that Cκ = (1/Cp)〈u2
y〉/K. The ratio 〈u2

y〉/K is 2/3 for homogeneous
isotropic turbulence and is approximately 1/3 for a turbulent shear flow such as a channel
flow. Because the eddy diffusivity model is usually optimised for turbulent shear flow, the
standard value of Cκ is small compared with the present value obtained for homogeneous
isotropic turbulence. A similar discussion on the model constant Cμ for eddy viscosity is
given in Hanjalić & Launder (2011).

Figure 2 shows the profiles of the non-local eddy diffusivity κNLyy( y − y′) as functions
of ( y − y′)/L. The separation y − y′ was normalised by the integral length scale
L(= ∫ ∞

0 drx〈ux(x, t)ux(x + rxex, t)〉/〈u2
x(x, t)〉), which is equal to 0.465 in the present

DNS. The black line represents the DNS value obtained from (3.7), whereas the other
lines for models 1 and 2 are mentioned in § 4. As the profile is symmetric with respect
to ( y − y′)/L = 0, it is plotted only in the positive region at ( y − y′)/L ≥ 0. It exhibits
a sharp peak at ( y − y′)/L = 0 and decays quickly as ( y − y′)/L increases. The value at
( y − y′)/L = 1 is 9 % of the peak value. This profile suggests that the value of ∂Θ/∂y′ at
y − L < y′ < y + L mainly affects the scalar flux at y in (3.9), and that we should include
the non-local mean scalar profile within the integral length scale to accurately predict the
scalar flux.

Figure 3 shows the profiles of the scalar fluxes as functions of y for the four cases.
Here ‘DNS’ denotes 〈uyθ〉 evaluated directly, ‘Local’ denotes 〈uyθ〉L given by (3.10) and
‘Non-local’ denotes 〈uyθ〉NL given by (3.9). The profile of 〈uyθ〉Model given by (4.30) for
model 2 is discussed in § 4. The profiles of 〈uyθ〉NL plotted as blue lines agree with the
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Figure 3. Profiles of the scalar fluxes 〈uyθ〉, 〈uyθ〉L, 〈uyθ〉NL and 〈uyθ〉Model as functions of y for (a) case 1,
(b) case 2, (c) case 3 and (d) case 4. Insets show enlarged profiles near the first zero point.

DNS values for all cases. This verifies the non-local expression for the scalar flux given by
(3.3). In contrast, the profiles of 〈uyθ〉L, plotted as red lines, overpredicted the DNS values.
The profiles of 〈uyθ〉L were determined using the local value of ∂Θ/∂y with the constant
κLyy = 0.23. For example, the positive peak values in cases 1 and 2 shown in figures 3(a)
and 3(b) are 0.23 because ∂Θ/∂y = −1 at the peak locations. However, the peak of the
DNS values was less than 0.23. The small value can be accounted for by the non-local
effect; the DNS value is small compared with the local model because the scalar flux at
the peak is affected non-locally by ∂Θ/∂y at remote points where its magnitude is less
than unity. This tendency was more significant in case 2 than in case 1 because the length
scale of the mean scalar field was small in case 2.

In addition to the small peak values, another non-local effect appeared in cases 3 and 4.
As clearly seen in the insets of figures 3(c) and 3(d), the locations of the zero points are
different between the local model and the DNS value. For example, in case 3, shown
in figure 3(c), the zero point of the local model is located at y = 1.57(= π/2) where
∂Θ/∂y = 0. However, the zero point of the DNS value shifts to y = 1.67. This difference
in the zero point location indicates a phenomenon of the counter-gradient diffusion; that is,
in the region at 1.57 < y < 1.67, both the values of ∂Θ/∂y and 〈uyθ〉 are negative, which
is inconsistent with the gradient diffusion approximation. This behaviour of the DNS
value cannot be accounted for by the local eddy diffusivity model. This counter-gradient
diffusion can be understood from a non-local point of view. Let us consider the scalar flux
〈uyθ〉 at y = 1.62. The magnitude of ∂Θ/∂y at y < 1.57 was greater than that of ∂Θ/∂y
at y > 1.57, as indicated by the blue line in figure 1. The non-local contribution from
the positive ∂Θ/∂y at y < 1.57 to 〈uyθ〉 at y = 1.62 is greater than the contribution from
the negative ∂Θ/∂y at y > 1.57. Consequently, 〈uyθ〉 becomes negative at y = 1.62 even
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though ∂Θ/∂y is negative at y = 1.62. The counter-gradient diffusion was more significant
in case 4 than in case 3 because the length scale of the mean scalar field was smaller in case
4. In summary, because of the non-local effect, the peak value of the scalar flux is less than
the locally estimated value, and the counter-gradient diffusion appears near the zero point.
These findings indicate the importance of the non-local expression for the scalar flux given
by (3.3). The non-local modelling correctly describes counter-gradient diffusion that local
models are not able to represent.

4. Modelling the non-local eddy diffusivity

In § 3 the non-local expression for the scalar flux given by (3.3) was assessed using the
DNS data of homogeneous isotropic turbulence with an inhomogeneous mean scalar. The
profile of the non-local eddy diffusivity κNLyy( y − y′) was shown in figure 2. In this
section we further analyse the non-local eddy diffusivity and systematically propose its
model expression. In § 3 we treated one-dimensional profiles of the mean scalar Θ( y) and
considered the following non-local eddy diffusivity:

κNLij(ry) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dz′

∫ t

−∞
dt′〈ui(x, t)gj(x, t; x′, t′)〉. (4.1)

Here, integrals are performed with respect to x′, z′ and t′, and the non-local eddy diffusivity
becomes a one-dimensional function of ry(= y − y′). However, in the case of general
profiles of the mean scalar varying in three directions, we must consider the original
expression for the non-local eddy diffusivity for steady turbulence

κNLij(r) =
∫ t

−∞
dt′〈ui(x, t)gj(x, t; x′, t′)〉, (4.2)

which is a three-dimensional function of r(= x − x′). Because the turbulent velocity field
is isotropic and the Green’s function is determined solely by the velocity fluctuation,
the non-local eddy diffusivity can be expressed in the following isotropic form of a
second-rank tensor:

κNLij(r) = κG(r)δij + (κF(r) − κG(r))
rirj

r2

= 1
3
(κF(r) + 2κG(r))δij + (κF(r) − κG(r))

(
rirj

r2 − 1
3
δij

)
. (4.3)

Here κF(r) and κG(r) are functions of r(= |r|) and correspond to the longitudinal and
lateral correlations, respectively. Note that the second line of (4.3) consists of two parts:
the spherically symmetric part and the deviatoric traceless part. It was difficult to evaluate
κF(r) and κG(r) separately using the present DNS data. In this study, we restrict ourselves
to the spherically symmetric part of the non-local eddy diffusivity, and assume that

κNLij(r) = κNL(r)δij, (4.4)

where
κNL(r) ≡ 1

3κNLii(r) = 1
3(κF(r) + 2κG(r)). (4.5)

This can be further written as the time integral

κNL(r) =
∫ ∞

0
dτκNL(r, τ ), (4.6)
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Figure 4. Profiles of r2κNL(r) as functions of r/L for DNS and models 1 and 2.

where

κNL(r, τ ) = 1
3κNLii(r, τ ) = 1

3 〈ui(x, t)gi(x, t; x′, t′)〉, (4.7)

and τ = t − t′. Using the DNS data of homogeneous isotropic turbulence described in § 3,
we evaluate the profile of the non-local eddy diffusivity. Because it incurs considerable
computational costs to directly evaluate (4.2) and (4.7), we first obtain the profiles of
κNL(ry) and κNL(ry, τ ) as functions of ry, and then transform them into κNL(r) and
κNL(r, τ ), respectively (see Appendix A for details). The profile of κNL(ry) was obtained by
averaging over the x–z plane and over a time period of 15 normalised by Lx/(2π〈u2

i 〉1/2),
and the profile of κNL(ry, τ ) was obtained by averaging over the x–z plane and over 40
samples.

Figure 4 shows the profiles of r2κNL(r) as functions of r/L. The black line represents
the DNS value, whereas the other lines for models 1 and 2 are mentioned later. Because
the profile of κNL(r) has a sharp peak at r = 0 and decays rapidly as r increases, it was
multiplied by a factor of r2 to clearly show its profile. The profile of r2κNL(r) exhibits a
peak at r = 0.03 and decreases gradually as r increases. In (4.6), κNL(r) is written as the
time integral of κNL(r, τ ). Figure 5 shows the profiles of κNL(r, τ ) as functions of r/L
at τ = 0.2, 0.4 and 0.6. The turbulence time scale T(= K/ε) is 2.7 in the present DNS.
Considering the initial condition gi(x, t′; x′, t′) = ui(x′, t′)δ(x − x′), the profile at τ = 0
is given by

κNL(r, 0) = 1
3 〈ui(x, t)gi(x, t; x′, t)〉 = 1

3 〈u2
i (x, t)〉δ(x − x′), (4.8)

which is proportional to a delta function. Figures 5(a)–5(c) indicate that the peak value of
κNL(r, τ ) decays rapidly as τ increases, although the normalised time τ/T is less than 0.3.
However, the width of the profile gradually increased as τ increased. This means that the
spatial region in which the mean scalar gradient non-locally affects the scalar flux is very
narrow for small τ and becomes wider as τ increases.

Next, we investigate the profiles of κNL(r) and κNL(r, τ ) from a physical point of view
and propose a model expression in a manner similar to that of DIA and TSDIA. By
replacing ui(x′, t′) with unity on the right-hand side of (2.7), we can obtain the transport
equation for the ordinary Green’s function g(x, t; x′, t′) for scalar fluctuation. Here, we
assume the following relationship:

gi(x, t; x′, t′) = g(x, t; x′, t′)ui(x′, t′). (4.9)
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Figure 5. Profiles of κNL(r, τ ) as functions of r/L for DNS and models 1 and 2 at (a) τ = 0.2, (b) τ = 0.4
and (c) τ = 0.6.

The non-local eddy diffusivity can then be written as

κNLij(x, t; x′, t′) = 〈ui(x, t)g(x, t; x′, t′)uj(x′, t′)〉. (4.10)

A similar expression for eddy diffusivity was theoretically derived in the DIA by
Kraichnan (1964, 1987). By factoring (4.10) into the products of two averages in a manner
similar to the DIA, we obtain the approximation

κNLij(r, τ ) = G(r, τ )Qij(r, τ ), (4.11)

where Qij(r, τ )(= 〈ui(x, t)uj(x′, t′)〉) denotes the two-point, two-time velocity correlation.
Here, G(r, τ ) can simply be a proportional coefficient between κNLij(r, τ ) and Qij(r, τ ) and
does not have to be identical to the mean Green’s function 〈g(x, t; x′, t′)〉 (Hamba 2005).
Nevertheless, we expect that G(r, τ ) will behave like a mean Green’s function. Using
(4.11) we can calculate the local eddy diffusivity κL as follows:

κL = 1
3

∫
dr

∫ ∞

0
dτκNLii(r, τ ) = 1

3

∫
dr

∫ ∞

0
dτG(r, τ )Qii(r, τ )

= (2π)3

3

∫
dk

∫ ∞

0
dτG(k, τ )Qii(k, τ ). (4.12)

This expression is the same as (2.14), except for a factor of (2π)3, which indicates that
(4.11) is consistent with the TSDIA. The difference in the factor of (2π)3 is simply due to
the difference in the definition of the Fourier transform.

First, we examine the behaviour of the velocity correlation Qii(r, τ ) appearing in (4.11).
Figure 6 shows the profiles of Qii(r, τ ) as functions of r/L at τ = 0, 0.2, 0.4 and 0.6. The
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Figure 6. Profiles of Qii(r, τ ) as functions of r/L at τ = 0, 0.2, 0.4 and 0.6.

peak value at r = 0 decreased gradually as τ increased, whereas the profile at r/L > 1.2
hardly changed. We examined this decay in wavenumber space. Following (2.15) assumed
in the TSDIA, the Fourier coefficient Qij(k, τ )[= (2π)−3 ∫

drQij(r, τ ) exp(−ik · r)] is
expressed as

Qij(k, τ ) = (2π)3Qij(k)GQ(k, τ ), (4.13)

where Qij(k) = Qij(k, 0). The time-dependent part GQ(k, τ ) represents the decay of
the two-time velocity correlation with an increasing time difference. Figure 7(a) shows
the profiles of Qii(k, τ )/2 as functions of k(= |k|) at τ = 0, 0.2, 0.4 and 0.6. The
high-wavenumber part decays quickly as τ increases, whereas the low-wavenumber part
decreases slightly. We examined this behaviour by normalising it with the initial profile
Qii(k, 0), as shown in figure 7(b). The normalised value corresponds to the time-dependent
part GQ(k, τ ) as

Qii(k, τ )/Qii(k, 0) = (2π)3GQ(k, τ ). (4.14)

In this study we assume the following function for GQ(k, τ ):

GQ(k, τ ) = 1

(2π)3 exp[−(ωQ(k)τ )2], (4.15)

ωQ(k) = CωQu0k. (4.16)

Here u0 = 〈u2
i 〉1/2 = (2K)1/2 and CωQ = 0.25. The corresponding profiles of Qii(k, τ )/

Qii(k, 0) are plotted as red dotted lines in figure 7(b), and agree fairly well with the DNS
values. The inverse of time ωQ(k), given by (4.16), is proportional to k. This dependence
on k is reasonable because the identical behaviour for the Eulerian two-time velocity
correlation has been discussed and numerically evaluated (Tennekes & Lumley 1972;
Matsumoto et al. 2021). The same profile of the velocity correlation as in (4.15) was
also investigated by considering a simple problem in which large-scale eddies convect
small-scale eddies without distorting them (Kraichnan 1964; Yoshizawa 1998).

Next, we examine the non-local eddy diffusivity κNLij(r, τ ) given by (4.11). The velocity
correlation given by (4.13) can be written in physical space as

Qij(r, τ ) =
∫

dr′GQ(r − r′, τ )Qij(r′), (4.17)
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Figure 7. Profiles of Qii(k, τ ) as functions of k at τ = 0, 0.2, 0.4 and 0.6: (a) Qii(k, τ )/2 and (b)
Qii(k, τ )/Qii(k, 0). The red dotted line in (a) represents the Kolmogorov spectrum given by (4.28) for
CK = 1.7. The red dotted lines in (b) represent (2π)3GQ(k, τ ) given by (4.15).

where Qij(r) = Qij(r, 0). Substituting (4.17) into (4.11), we obtain

κNLij(r, τ ) = G(r, τ )

∫
dr′GQ(r − r′, τ )Qij(r′). (4.18)

This expression is considerably complex; substituting it into (2.5), we obtain a non-local
expression for the scalar flux containing double spatial integrals. By comparing figures 5
and 6, we can see that G(r, τ ) decays rapidly, whereas Qii(r, τ ) decreases slowly. In this
study, by neglecting the time-dependent part of Qii(r, τ ), we assume the following simple
expression:

κNLij(r, τ ) = G(r, τ )Qij(r). (4.19)

Thereby, the non-local eddy diffusivity can be written as

κNL(r, τ ) = 1
3 G(r, τ )Qii(r), (4.20)

κNL(r) = 1
3

∫ ∞

0
G(r, τ )dτQii(r). (4.21)

Moreover, the non-local eddy diffusivity given by (3.4), discussed in § 3, can be written as

κNLyy( y − y′) =
∫ ∞

−∞
drx

∫ ∞

−∞
drzκNL(r), (4.22)

where (4.4) is assumed.
Similar to the discussion in (2.14)–(2.19) for the TSDIA, we further investigate the

functions G(r, τ ) and Qii(r) to construct a model expression for the non-local eddy
diffusivity. In (2.15) and (2.16) the time-dependent parts are given by the same exponential
function except for the model constant. We also assume the same function between
GQ(k, τ ) given by (4.15) and G(k, τ ) as follows:

G(k, τ ) = 1

(2π)3 exp[−(CωGu0kτ)2]. (4.23)

Here CωG is a model constant. Similar to GQ(k, τ ), depicted as red dotted lines
in figure 7(b), the high-wavenumber part of G(k, τ ) decays quickly as τ increases.
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The corresponding function in physical space is written as

G(r, τ ) = 1

(4π)3/2(CωGu0τ)3 exp
[
− r2

4(CωGu0τ)2

]
, (4.24)

and its time integral is given by∫ ∞

0
dτG(r, τ ) = 1

4π3/2CωGu0r2 . (4.25)

Gaussian functions similar to (4.24) were also used to study turbulent diffusion (Roberts
1961; Romanof 1989, 2006). As τ increases, the peak value of G(r, τ ) at r = 0 decays
and the width of the profile increases. Note that the width of the profile of G(r, τ ) is
proportional to τ and increases faster than τ 1/2 for an ordinary diffusion process. In fact,
the temporal behaviour of G(r, τ ) corresponds to a diffusion process with an effective
diffusivity proportional to u2

0τ . Using (4.21) and (4.25), we can calculate the local eddy
diffusivity κL(= κLii/3) as follows:

κL =
∫

drκNL(r) =
∫ ∞

0
dr4πr2 1

12π3/2CωGu0r2 Qii(r)

= u0

3π1/2CωG

∫ ∞

0
dr

Qii(r)
Qii(0)

. (4.26)

The integral
∫ ∞

0 drQii(r)/Qii(0) appearing on the right-hand side can be considered as an
integral length scale L. Equation (4.26) shows that the local eddy diffusivity is proportional
to the product of the turbulence intensity u0 and integral length scale L; this relationship
has often been discussed in turbulence modelling studies. This result indicates that the
expression for G(k, τ ), given by (4.23), is consistent with the conventional concept of the
eddy diffusivity model.

For the velocity correlation Qii(r), we assume the Kolmogorov spectrum in the inertial
range following (2.17)–(2.19) for the TSDIA. The velocity correlation Qii(r) is given by

Qii(r) =
∫

dkQii(k) exp(ik · r) =
∫ ∞

0
dk2E(k)

sin(kr)
kr

, (4.27)

E(k) =
{

CKε2/3k−5/3, kc ≤ k ≤ kd
0, k < kc, k > kd

. (4.28)

Here two cutoff wavenumbers are introduced, kc{= [(3CK/2)−1Kε−2/3 + k−2/3
d ]−3/2} in

the energy-containing range and kd[= (3CK/2)−3/4ν−3/4ε1/4] in the dissipation range.
The derivations of the two wavenumbers are presented in Appendix B. The profile of E(k)
with CK = 1.7 is plotted as a red dotted line in figure 7(a). Finally, we obtain a model
expression for κNL(r, τ ) given by (4.20) with (4.24), (4.27) and (4.28).

Two model constants were used in the above model. Subsequently, the two sets of the
constants listed in table 2 were considered. In model 1 a typical value of the Kolmogorov
spectrum, CK = 1.7, is adopted. The value of CωG = 0.45 was chosen such that the profile
of κNL(r, τ ) was close to the DNS value. The profiles of κNL(r, τ ) are illustrated as red
lines in figure 5. The profiles of model 1 show an overall agreement with the DNS values.
This result indicates that the model expression for κNL(r, τ ) derived above is reasonably
accurate. The dependence of the model on τ is given by (4.24); it suggests a similarity
law which makes the profile of κNL(r, τ ) at a different time difference collapse to a
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Model CK CωG

1 1.7 0.45
2 1.1 0.57

Table 2. The values of model constants for the non-local eddy diffusivity κNL(r, τ ).

single curve. The profile of r2κNL(r) is plotted as a red line in figure 4. This profile slightly
underpredicted the DNS value in the entire region. By substituting (4.25) into (4.21), we
obtain

κNL(r) = 1
12π3/2CωGu0r2 Qii(r). (4.29)

Therefore, the profile of r2κNL(r) obtained using the model is proportional to Qii(r).
Hence, r2κNL(r) for model 1 in figure 4 shows a small negative value at r/L > 2.6, similar
to the velocity correlation. Near r = 0, the DNS value of r2κNL(r) is very small and is
different from that of Qii(r). The small value of r2κNL(r) near r = 0 is due to the viscous
diffusion effect which was not incorporated into the present model (see Appendix C
for details). We further evaluated the profile of κNLyy( y − y′) given by (4.22), which is
visualised as a red line in figure 2. The profile for model 1 notably underpredicted the
DNS value and it decreased more rapidly as y − y′ increased; the profile should be wider
than that of model 1. Therefore, in model 1, κNLyy( y − y′) is too small, although κNL(r, τ )

and r2κNL(r) agree with the DNS values.
Let us next introduce model 2. In model 2 we changed the two model constants

to improve the profile of κNLyy( y − y′) within the framework of the proposed model
expression. To obtain a wider profile, we decreased the cutoff wavenumber kc by choosing
a smaller value of CK = 1.1. The value of CωG was also modified, as shown in table 2. The
profiles of r2κNL(r) and κNL(r, τ ) for model 2 are plotted as blue dotted lines in figures 4
and 5, respectively. Although the profiles near r = 0 are less than the DNS values, the
profiles at larger r values were improved. The profile of r2κNL(r) for model 2 in figure 4
is better in the respect that it always shows a positive value like the DNS value, whereas
that for model 1 shows a small negative value at r/L > 2.6. Thus, in figure 2 the profile
of κNLyy( y − y′) for model 2 agrees well with the DNS value. The scalar flux can then be
expressed as

〈uyθ〉Model = −
∫ ∞

−∞
dy′κNLyy( y − y′)

∂Θ

∂y′ , (4.30)

where the profile of κNLyy( y − y′) for model 2 was used. The profiles of 〈uyθ〉Model are
depicted in figure 3 as green dotted lines. They also agreed well with the DNS values for
all cases.

It is not clear why the profile of κNLyy( y − y′) is better for model 2, although the
overall profiles of r2κNL(r) and κNL(r, τ ) are better for model 1. One reason can be the
approximation given by (4.4). The deviatoric part of κNLij(r) in (4.3) may widen the
profile, which should be examined in a future work. Another reason can be expressions
of exponential form such as (2.16) and (4.15). Other functions may yield more successful
descriptions of turbulent flows. Nevertheless, the present results clearly indicate the
potential of the non-local eddy diffusivity model.
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In this study we examined the DNS data of homogeneous isotropic turbulence,
including the energy spectrum. An extension for inhomogeneous turbulence is an
attractive future research program. However, Fourier transforms cannot always be
applied to inhomogeneous turbulence with boundaries. The author recently proposed a
formulation of the energy density in scale space instead of wavenumber space to examine
inhomogeneous turbulence (Hamba 2022). It would be interesting to apply the formulation
to the present analysis and modelling of the non-local eddy diffusivity for inhomogeneous
turbulence. Another interesting study is the modelling of the non-local eddy viscosity
for the Reynolds stress. Hamba (2005) evaluated the non-local eddy viscosity using
the DNS data of a turbulent channel flow, but its modelling has not been studied
extensively. We expect that the present approach can also be applied to the non-local eddy
viscosity.

5. Conclusions

A non-local expression for the turbulent scalar flux was investigated using the DNS
data of homogeneous isotropic turbulence with an inhomogeneous mean scalar. In
addition to the velocity field, the time evolution of scalar fluctuation was calculated
for four cases with different mean scalar gradients. The profile of the non-local eddy
diffusivity was obtained by evaluating Green’s function for scalar fluctuation. It was
verified that the non-local expression for the scalar flux agreed with the DNS value for
all four cases. The local eddy diffusivity model overpredicted the DNS value because
the scalar flux at a point is non-locally affected by the mean scalar gradient at remote
points. The phenomenon of the counter-gradient diffusion, where the scalar flux and
the mean scalar gradient have the same sign, also appeared because of the non-local
effect.

The profile of the non-local eddy diffusivity was further analysed using the DNS
data. In particular, profiles of the non-local eddy diffusivity at three time differences
were obtained. It was shown that the spatial region where the mean scalar gradient
non-locally affects the scalar flux widened as the time difference increased. A model
expression for the non-local eddy diffusivity was proposed systematically in a manner
customary in the statistical theory of turbulence. Following the DIA, we first assumed
that the non-local eddy diffusivity was proportional to the two-point velocity correlation.
Considering the DNS data of the velocity correlation and following the TSDIA, we
further expressed the profiles of the energy spectrum and the time-dependent part. The
profile of the non-local eddy diffusivity obtained from the model expression fairly agreed
with the DNS value. Although the model expression underpredicted the one-dimensional
non-local eddy diffusivity in the y direction, the profile was improved by adjusting
the model constants such that the turbulence length scale could be longer. The results
clearly indicate the potential of the non-local eddy diffusivity model. The analysis and
modelling of the non-local eddy diffusivity provides insight into scalar transport in
turbulence.
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Appendix A. Transformation from three- to one-dimensional diffusivity

In § 2 we evaluated the one-dimensional profile of κNLij(ry) as

κNLij(ry) = 〈ui(x, t)gj(x, t; y′)〉, (A1)

where

gi(x, t; y′) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dz′

∫ t

−∞
dt′gi(x, t; x′, t′). (A2)

Because the integrals with respect to x′ and z′ are already included in (A2), a good
statistical value of κNLij(ry) given by (A1) can be obtained by summing over a relatively
small number of samples. We can also evaluate the three-dimensional profile of κNLij(r)
as

κNLij(r) = 〈ui(x, t)gj(x, t; x′)〉, (A3)

where

gi(x, t; x′) =
∫ t

−∞
dt′gi(x, t; x′, t′). (A4)

Because the integrals with respect to x′ and z′ are not included in (A4), it is necessary to
sum over a large number of samples to obtain a good statistical value of κNLij(r) given by
(A3).

In § 4, instead of evaluating κNL(r)(= κNLii(r)/3) in (A3) directly, we first evaluated
the one-dimensional profile of κNL(ry)(= κNLii(ry)/3) in (A1) and transformed it into the
three-dimensional profile of κNL(r) as follows. Because κNL(r) is a function of r only, we
can express κNL(ry) in terms of κNL(r) as

κNL(ry) =
∫ ∞

−∞
drx

∫ ∞

−∞
drzκNL(r) =

∫ ∞

ry

dr2πrκNL(r). (A5)

Conversely, by using (A5), we can express κNL(r) in terms of κNL(ry) as

κNL(r) = − 1
2πr

∂

∂ry
κNL(ry)

∣∣∣∣
ry=r

. (A6)

Therefore, using the above relationship, we can evaluate κNL(r) from κNL(ry) without
summing over a large number of samples. Similarly, we can evaluate κNL(r, τ ) from
κNL(ry, τ ) by using the relationship

κNL(r, τ ) = − 1
2πr

∂

∂ry
κNL(ry, τ )

∣∣∣∣
ry=r

. (A7)

Appendix B. Energy spectrum in the inertial range

In the TSDIA described in § 2, the Kolmogorov spectrum was used for E(k) in the
inertial range. In the energy-containing range, E(k) should depart from the Kolmogorov
spectrum and decrease to a smaller value as k decreases. This behaviour of E(k) was
roughly approximated by the lower cutoff wavenumber kc in (2.17). The wavenumber kc
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was determined as follows. The integral of the energy spectrum should equal the turbulent
kinetic energy as follows:

K =
∫ ∞

0
dkE(k) =

∫ ∞

kc

dkCKε2/3k−5/3 = 3
2

CKε2/3k−2/3
c . (B1)

This relationship yields the expression for kc as

kc =
(

3
2 CK

)3/2
K−3/2ε, (B2)

which was used in the TSDIA.
Strictly speaking, in the dissipation range, E(k) should also depart from the Kolmogorov

spectrum and decrease exponentially as k increases. In this study the profile of E(k) is
improved by considering not only the lower cutoff wavenumber kc in the energy-containing
range, but also the higher cutoff wavenumber kd in the dissipation range. First, we
considered the value of the dissipation rate which is given by the following integral:

ε =
∫ ∞

0
dk2νk2E(k) �

∫ kd

0
dk2νk2CKε2/3k−5/3 = 3

2
CKνε2/3k4/3

d . (B3)

This relationship yields the expression for kd as

kd =
(

3
2 CK

)−3/4
ν−3/4ε1/4. (B4)

We then considered the value of the turbulent kinetic energy as

K =
∫ ∞

0
dkE(k) =

∫ kd

kc

dkCKε2/3k−5/3 = 3
2

CKε2/3(k−2/3
c − k−2/3

d ), (B5)

by adopting two cutoff wavenumbers. Thus, kc can be determined by

kc = [(3
2 CK)

−1
Kε−2/3 + k−2/3

d ]−3/2. (B6)

This is slightly different from (B2) and involves the finite Reynolds number effect through
kd. The two cutoff wavenumbers given by (B4) and (B6) were used in the energy spectrum
in (4.28).

Appendix C. Green’s function representing molecular diffusion

In figure 4 the profile of r2κNL(r) at r/L > 0.1 was reproduced overall by the model
expression, but the DNS value near r = 0 is small and clearly deviates from the model
expression. This small DNS value can be understood by considering the viscous diffusion
effect for a small time difference τ as follows. In § 4 we assumed that the profile of
G(k, τ ) is given by (4.23). This profile corresponds to a turbulent diffusion process with an
effective diffusivity proportional to u2

0τ . Turbulent diffusion is caused by the convection
term in the transport equation for gi(x, t; x′, t′) given by (2.7). For a small value of τ , the
effective diffusivity proportional to u2

0τ becomes smaller than the molecular diffusivity κ .
In such a case, the molecular diffusion term in (2.7) dominantly contributes to the time
evolution of gi(x, t; x′, t′). Therefore, for a small value of r[< κ/(CωGu0)] corresponding
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to a small value of τ , the profile of G(k, τ ) should be expressed in the following form to
represent the molecular diffusion

G(k, τ ) = 1

(2π)3 exp(−κk2τ), (C1)

instead of (4.23), which represents turbulent diffusion. In physical space, it is written as

G(r, τ ) = 1

(4πκτ)3/2 exp
(

− r2

4κτ

)
, (C2)

and its time integral is given by ∫ ∞

0
dτG(r, τ ) = 1

4πκr
. (C3)

Consequently, we have

κNL(r) = 1
12πκr

Qii(r), (C4)

which differs from (4.29) by a factor of r and yields r2κNL(r) ∝ rQii(r). Therefore, the
profile of r2κNL(r) near r = 0 is not constant but is proportional to r, which is consistent
with the profile plotted as a black line in figure 4.
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