
J. Austral. Math. Soc. 22 (Series A) (1976), 119-127.

USING CYCLOTOMY TO CONSTRUCT ORTHOGONAL DESIGNS

JOAN COOPER AND JENNIFER SEBERRY WALLIS

(Received 29 November 1974)

Communicated by W. D. Wallis

Dedicated to George Szekeres on his 65th birthday

Abstract

An orthogonal design of order n and type (s,, x2) on the commuting variables x,, x2 is a matrix of
order n with entries from {0, ±xu ±x2] whose row vectors are formally orthogonal.

This note uses cyclotomy to construct orthogonal designs and finds several infinite families of
new designs.

1. Introduction

Orthogonal designs in various guises have received attention lately
[Baumert and Hall (1965), Cooper (1972), (1973), Cooper and Wallis (1972),
Geramita, Geramita and Wallis (1975), Geramita and Wallis (1974), (1975), Hunt
and Wallis (1972), Turyn (1972), (1974), Wallis (1973)] because they give insight
into long standing problems on Hadamard matrices, weighing matrices and
Baumert-Hall arrays. Ian Blake has noticed their application in coding theory
and they are intimately related to the decomposition of integers into squares.

We shall assume all definitions which appear in the book by Wallis, Street
and Wallis (1972) and give only those other definitions we need.

An orthogonal design of order n a n d type (sus2,---,Si)(si>0) o n t h e

c o m m u t i n g v a r i a b l e s xux2,--,x, is a n n*n m a t r i x A w i t h e n t r i e s f r o m

0, ± JCI, • • •, ±xi s u c h t h a t

Alternatively, the rows of A are formally orthogonal and each row has precisely
^ entries of the variable ± *,-.

In Geramita, Geramita and Wallis (1975), where this was first defined and
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many examples and properties of such designs were investigated, it is mentioned
that

and so the alternative description of A applies equally well to the columns of A.
It was shown in the same paper of Geramita, Geramita and Wallis that / S p(n),
where p(n) (Radon's function) is defined by

p(n) = 8c+2d

when

n = 2" • b, b odd, a = Ac + d 0 S ^ < 4 .

The identity matrix will be represented as / and the cXt i matrix in which
every entry is 1 will be J.

Let v = ef+l = p" (a prime power) and consider the associated cyclic
group G, of order v - 1, which is the multiplicative group of the Galois field
GF(Pa). Then the associated cosets (or cyclotomic classes (the names are
interchangeable see Storer (1967))) of G will be defined as

where JC is a primitive element of GF(p") and a generator of G. Write the
elements of G as 0, zu z2, • • •, zef.

The transpose of a coset, CJ, will be defined as - Q where

-C,= -{x"+l:0S/s/-l}

with k = e/2 for / odd and k = 0 for / even.
We will define [Q] the incidence matrix of the coset Q by

f1 if z, - 2, G

0 otherwise

As G = CoUC1U---UG-1=GF(p")/{0}, its incidence matrix is / - /
(i.e., S':J[Cs} = / - 7 ) and the incidence matrix of GF(p") is /. Therefore the
incidence matrix of {0} will be I.

Now if [G] is incidence matrix of a coset of G then [CJ] = [Q]T and
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(i) [C]T = [C] if / is even:

(ii) [ C ] r = [C+!] if / is odd.

The term [Q] [G] will be taken to mean the ordinary matrix product of the
incidence matrices of the cosets G and Q.

2*1

§a.[G]-

if

if Q =

j and

where the a, are integers giving the coefficients of the matrices (for proof see
Cooper (1972)).

2. Results

We shall consider various matrices obtained by taking linear combinations
of the incidence matrices of cyclotomic classes. Part of this work appeared in the
Ph.D. thesis of Joan Cooper (1974).

In every case p will be a prime power.

CASE 1: p = 2f + 1, f odd.

Consider

(1) P=aI +

b2[C0] [C0]
T + c2[Cx][d]T

where a, b, c are commuting variables. Now

PPT = a2l + a(b[C0] + c [C,] + b [C0]
T + c

+ bc([C0][C,]T

Using the adapted cyclotomic array for e = 2 (in Hunt and Wallis (1973)) the
Table 1 (writing ii for [ G ] [ G ] r and ij for {[Q][C,]T+ [Ci]

T[Q])). We can
calculate the coefficients

co,c,
A=(f-l)/2

A =(/-l)/2

A+B=f

{0}

/
/
0

oo
n
01

Table 1

of the incidence matrices [G] in PPT from Table 1 obtaining:

https://doi.org/10.1017/S1446788700013379 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013379


122 J. Cooper and J. Seberry Wallis [4]

(1) the coefficient for [Co] is (b2 + c2 + bc)A + bcB + ab + ac ;

(ii) the coefficient for [C,] is (b2 + c2 + bc)A + bcB + ab + ac.

As we are mainly interested in the situation where the coefficients of the
[ C ] , i = 1,2, • • • are equal we obtain

(2) PPT = {a2-ab-ac+ \{b2 + c2) + \{b - cff)I

+ {ab + ac- l(b2 + c2) + lj(b + c)2f)J.

Summarising

THEOREM 1. Suppose p = 2 / + l (f odd) is a prime power and G the
associated cyclic group GF(p)/{0} of order p - 1 with cosets CO and C\ of order f.
Then

a, b, c, commuting variables, is a square matrix satisfying (2).

COROLLARY 2. Suppose p = 2/ + 1 (fodd) is a prime power. Then there exists
an orthogonal integer matrix of order p.

PROOF. Set a = —1(/ — l)c, b = 0 and c any integer in Theorem 1.

We now use P to obtain orthogonal designs. Let X, Y, Z and W be derived
from P given in (1) by setting
(i) a = c = 0, (ii) a = - b, c = 0, (iii) a = b, c = 0, (iv) c = - b respectively, then

XXT= b\\+\f)I + b\-\ + \f)J

YYT = b\5l2 + f/2)I + b2(-3/2 + f/2)J

ZZT = b\\ + kf)I + b2(\ + \f)J

WWT = (a2 +b2 + 2b2f)I - b2J.

Then we have

THEOREM 3. Let I + S be a skew-Hadamard matrix of order (i) ?(/+ 1) (ii)
!(/ - 1) (iii)!(/ + 3) respectively, where p = 2/ + 1 (/ odd) is a prime power. Then
with X, Y, Z, W, R as above (i) / x XR + S x W (ii) / x YR + S x W (iii)
/ x ZR + S x W respectively are orthogonal designs of order

(i) §(/ + 1)(2/ + 1) and type (\(f- 1),f),

(ii) \<j- 1)(2/ + 1) and type $(f - 3), ( / - I)2),
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(iii) i(/ + 3)(2/+l) and type &(f+1),(/+1)2),

respectively.

PROOF. Straightforward verification.

EXAMPLE. With / = 5 we see that the orthogonal design (1,16) exists in
order 22 and (3,36) exists in order 44; while with / = 9 an orthogonal design
(3,64) is obtained in order 76 and with / = 13 a (7,196) is obtained in order 216.

CASE 2: p = If + 1, e = 2, f even.

Again we use

and obtain PPT as before. However as / is even C,T= G, i = 1,2 and

PPT = a2l + lab [Co] + lac [ d ] + b2[C0] [Co]

+ c2[C1][C1] + lbc[C0][C1].

From Storer (1967, p. 30) the cyclotomic matrix for e =1, f even is

B=\(f-2)
A=if.

Using Hunt and Wallis (1973) we see that expression [Ci][C,] is easily
determined (see Table 2) and, since for / even C,T= Q, the cyclotomic arrays can
be used immediately to evaluate PPT.

(writing ii for [Ci][C,]

and ij for [C,][q]).

0

1

0

B

A

1

A

A

00
11

01

Co

B
A

A

{0}
A
B

A

/

/
0

Table 2

Hence

The coefficients of [Co] and [Ci] are equal when

(i) b = c or (ii) la = b + c.

The case b = c is trivial and the other case gives
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PPT = (l(b - cf + kib - c)2/)/ + (§(*> + c)2f+bc)J.

Thus we have

THEOREM 4. Let p = 2/ + 1 (f even) be a prime power and G the associated
cyclic group of GF(p) of order p - 1 with cosets Co and d of order f. Then

P = h(b + c)I + b[C0] + c[C,J,

where b and c are commuting variables, is a matrix satisfying

PPT = (i(6 - cf + l
2(b - c)2f)I + (k{b + cff+ bc)J.

To obtain orthogonal designs we will consider

(3) P = aI +

Now

PPT + QQT = (a - b - cf + a2-2bc + (b - cff)I

+ (2a(b + c)-(b2 + c2) + (b + c)2f)J.

Setting c = — b we get M, N satisfying

MMT + NNT = 2(a2+b2 + 2b2f)I - 2b2 J.

Choosing X = dl + b(J - I) and Y= - dl + b(J - I) we have

XXT+ YYT = 2(d2+b2)I + 2b\2f-l)J,

and hence, since M, N, X, Y are all symmetric, we have

THEOREM 5. Let p = 2/ + 1 (f even) be a prime power. Suppose there exists a
skew -Hadamard matrix, I + S, of order 2f. Then

-M\

is an orthogonal design of order 4/(2/+ 1) and type (2,2(/- 1),8/2).

PROOF. By straightforward verification.

CASE 3: Now we consider p = 4/+ 1 (/ even or odd) a prime power. As
before G is the associated cyclic group of GF(p) of order p -1 with cosets
Co, Ci, C2 and C3 of order /. Then

P = \{b + c)+ b [Co] + c [C,] + b [C2] + c [C3],
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where b and c are commuting variables, is a matrix satisfying

PPT = (J(6 - cf + (b - cff)I + {{b + cff + bc)J.

To obtain orthogonal designs we will consider two cases

(a) P = l(b + c)I + b[C0] + c[C,] + b[C2] + c [C3]

O = \{b + c)I + c[C0] + fc[C] + c[C2]

(b) P = aI + b[C0] + c[C,] + b[C2]

Q = al + c[Co] + b[Ct] + c[C2]

In case (a)

PPT + QQT = (l(b - cf + 2(6 - cff)I + 2((6 + cff+bc)J.

Setting b = - c we get M, N satisfying

MMT + NNT = 2(b2 + 4b2f)I - 2b2 J.

Choosing

X = dI+b(J-I) and Y = - dl + b(J - I)

we have

XXT + YYT = 2(d2 + b2)I + 2b2(4f - l)J,

and hence, since M, N, X, Y are all symmetric we have

THEOREM 6. Let p - 4 / + 1 (/ even or odd) be a prime power. Suppose there
exists a skew-Hadamard matrix, I + S, of order 4 / Then

ix \ X Y]+Sx\M N
IX [-Y X \ + S X [ N -M

is an orthogonal design of order 8/(4/+ 1) and type (2,32/2).

PROOF. By straightforward verification.

In case (b) we set b = - c and we get M, N satisfying

MMT + NNT = 2(a2 + b2 + Afb2)I - 2b2 J.

Choosing

X = dI + b(J-I) and Y = - dl + b(J - I)

we have
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XXT

and hence, since M, N, X, Y are all symmetric we have

THEOREM 7. Let p = 4/ + 1 (/ euen or odd) oe a prime power. Suppose there
exists a skew-Hadamard matrix, I + S, of order Af. Then

X Y] [ M AT
• Y X J L M -M

is an orthogonal design of order 8/(4/+ 1) and type (2,2(4/- 1), 32/2).

Clearly these methods can be extended to obtain similar results for other e.
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