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A DISTANCE FOR SIMILARITY CLASSES OF SUBMANIFOLDS
OF A EUCLIDEAN SPACE

PATRIZIO FROSINI

A distance is defined on the quotient of the set of submanifolds of a Euclidean
space, with respect to similarity. It is then related to a previously defined function
which captures the metric behaviour of paths.

INTRODUCTION

In the long-term project of formalising the intuitive concept of "shape" of an object
[5, 6], a natural problem is to define a distance which vanishes for similar objects. This
is the aim of the present paper, in which we define a distance between equivalence
classes of manifolds embedded in E m , with respect to similarity (Section 1). A result
connecting this distance with a function defined in [5] is presented in Section 2.

The distance is defined very much in the way Teichmuller distance is, the essential
difference being that the latter considers a ratio between a maximum and a minimum at
each point, while ours uses the ratio between a global maximum and a global minimum.
This is due to the necessity of using a distance that calls attention not to confonnal
mappings but to similarities, because of the central position that similarities hold in
building the intuitive concept of shape.

1. THE BASIC DEFINITION

The proposal of this section is to define a distance on the quotient set of the C°°
compact n-manifolds embedded in the Euclidean space Em with respect to the relation
of similarity. In one sense this distance will measure how different the shapes of two
manifolds are. The definition of this distance will be very similar to the well-known one
of Teichmuller distance (see [8, 2]).

DEFINITION 1.1: Let £„ be the set of the C°° compact n-manifolds (n > 0) with-
out boundary and embedded in the Euclidean space Em and let n be the equivalence
relation so defined: for every M, hf G S n AinM if and only if there exists a similarity
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408 P. Frosini [2]

transformation tf:Em->Em such that 6(M) - M. The equivalence class to which the
manifold AA belongs will be denoted by [M].

For every pair (M, //) of n-manifolds in E n let us denote by D(M, N) the set
of the C°° diffeomorphisms <p from E m to E m such that <p(M) =N and <p and p " 1

have differentials with bounded norm. The norm which we consider is the usual one for
linear operators (see [4], Part 1, Chapter II, Section 3) and for every linear operator A
we shall denote its norm by \\A\\. On the quotient set En/7i let us define the following
function a with values in R U {+00}:

( +00

<[M], W}) = I f /
I. V€D(M,/f) I. \

if D(M,Af) = <D

s u p g u p | | ^ - i ( g ) | A I otherwise

where dtp and dip 1 are the differentials of <p and <p 1 respectively.

REMARK 1.1. We point out that if a is great (and less than +00) then it means that
every <p 6 D(Ai,Af) is very different from a similarity transformation because there
are points on M. in which the norm of the differential of <p has very different values:
in other words in order to change A4 into N we must perform a great deformation of
M.

In the parallelism between a and Teichmuller distance we point out that in one
sense the quotient space Sn/Ti and the set D(A4, N) correspond respectively to the
Teichmuller space Tg and the set of quasiconformal mappings from M to Af. (As
regards these last two concepts we refer to [1]).

The definition of a may bring to mind also the well-known concept of Frechet
Distance (see [3], Chapter IX, Section 31.6). In one sense the structures of the two
definitions are similar but they arise from quite different ideas.

THEOREM 1 . 1 . The function a is a well-defined distance on £„/•£.

PROOF: First of all we observe that a is well-defined. In fact if M.\TiM.i and
M\"RMI (that is [.Mi] = [^2] and [ftfi] = [-A/2]) then there exist two similarity trans-
formations Sx^Sp-. E m —* E m whose differentials have everywhere norm A and \x

respectively (A, n ^ 0) such that we have S\(Mi) = M2 and 5M(M) = -A/i- There-
fore if D(Mi, Af\) ^ 0 we have (d is the operator that takes a C°° function to its

https://doi.org/10.1017/S0004972700028574 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028574
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differential):

inf {log (
Mi,M) I \

sup | | ^ ( P ) | | . sup
P€Em Q€Em

S • ,56.'*( p ) l 1) • G ' St-

I1
1"8

inf (log ( rap ||<fy(A)|| • rap

On the other hand if D(MX, Mi) = 0 then also D(M2, ^2) = 0-
These facts prove that the function a is well defined.
In the second place we observe that the following statements are true:
(1) cr([M], [M]) > 0 for every M, N G En . In fact if D(M,tf) - 0 then

<r({M], [Af]) = +00 > 0 while if D(M, Af)^<H then for every <p £ D(M, M) we have:

log ( sup | |^(P)| |- sup l l ^ - ^ J l l ) ^ log f sup \\d<p(P)od<p-\Q)\\)

^ log f sup H ^ P J o i ^ - 1 ^ ^ ) ) ! ! ) - log ( sup ||/||) = log(l) = 0
\P€Em / \P€Em /

(where / is the identity linear operator).
(2) <r([.M], [M]) — 0 for every A<€E n . In fact if we take <p equal to the identity

function we have that log ( sup Ild^f-P)!! • sup l l d^W)! ! I = log(!) = 0- T n e

\P6E"> Q€Em /
thesis follows from this fact and the previous statement 1.

(3) <r([M], [M]) = 0 implies that [A4] = [//]. We can prove this statement in the
following way: if <r([.M], [.Af]) = 0 then there exists a sequence {y>t};eN of diffeomor-

phisms in D(M,Af) such that lim log ( sup ||<fyi(P)|| • sup l l^rVg)!! ) = 0,

that is lim sup ||<fy>j(P)|| • sup |J<iv3^~1(Q)II = 1. For the sake of simplicity we
i->+oop€Em Q E

shall denote sup ||dyj;(P)|| by Mi and 1/ sup | |^¥ 'r1(Q)| | by m< (we point out that
P€Em Q6E™

because of the definition of D(M, M) it follows that 0 < m*, Mi < +oo).
By observing that for every P, Q £ E m (and in particular for every P, Q 6 M )

and i 6 N it follows that mi • \\P - Q\\ ^ \\<fii{P) - >fii{Q)\\ ^ M{ • \\P - Q\\, and calhng
A(M) and A(/f) respectively the diameters of M and M', we obtain m< • A(A^) <
A ( ^ ) ^ Mi • A(M). Therefore we can say that there exist two values h, k £ R such
that 0 < h < Mi and 0 < m; ^ A: for every t 6 N , otherwise the manifolds M and
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Af could not both have a finite nonvanishing diameter, against the hypothesis that AA
and Af are compact n-dimensional (n > 0) manifolds.

In particular (if necessary by extracting a subsequence) we can suppose that
{nit}t€N converges to a finite value m. Since lim Mi/mi = 1 we have that also

»—»+oo

the sequence {M;}J 6 N converges to the value m, and this fact implies that m > /i > 0
and that all the functions tpi have differentials with norms everywhere bounded by a
constant c < +oo: so the functions <pi are equiuniformly continuous. Moreover, if
for every j G N, Kj is a compact subset of Em of diameter Dj containing AA and
U Kj = E m , then for every i £ N tpi(Kj) is contained in the compact set BK• made

up by the points of Em distant from Af less than Dj • c. So for every such compact

Kj we can apply the Ascoli-Arzela generalised theorem to the space of the continuous

functions from Kj to BjCj (see [7], Chapter II, Section 18): this allows us to extract

from {^>.}teN & subsequence {v«(«, j)}»€N that converges uniformly in Kj to a (contin-

uous) function "ffx- • Moreover the diagonal subsequence {y»(i,i)};eN converges in Em

to a (continuous) function Tp extension to Em of the "ipK. 's. For the sake of simplicity

in the following we shall use the notation {vi}*eN instead of {¥>,(»,<) }»€N-

By computing the limits for i -* +oo in the above-mentioned inequality

mi • \\P - Q\\ < \\<Pi(P) - tpi(Q)\\ < Mi • ||P - Q\\ it follows that ||p(J>) - lp(Q)\\ =

rn • \\P — Q\\ for every P,Q € E m . Therefore ~<p multiplies by m all the distances

between points and so it is a similarity transformation from Em to Em (m ^ 0).

The last thing to prove is that Tp(M) = Af. First of all ?(M) C M: in fact if P 6

M then for every t £ N <pi{P) 6 N (since <pi € D(M, Af)) and so lp(P) = , lim (fi{P)

belongs to M because M is a closed subset of E m . In the second place Tp(M) 3 Af:

in fact if Q € Af then 'ip~1{Q) G AA because otherwise 'ip~1(Q) would have a distance

77 > 0 from AA. (it is a closed subset of Em) . In such a case, since <pi multiplies every

distance by a number not less than mi > 0, fi(y~1(Q)) would have a distance not

less than m< • r\ > 0 from <pi(M) = Af and so Q = ^(^P~1(<?)) = .lim fi{ip~x{Q))

would have a distance not less than m -77 > 0 from Af: this fact would be against the

hypothesis that Q 6 Af. Therefore Tp(M) = Af.

In conclusion Tp is a similarity transformation such that Tp{M) = Af and so we

have that [M] = [Af].

(4) <r{[M], [Af]) = <r([Af], [M]) for every M, Af G S n . This equality follows by

observing that <p e D(M, Af) if and only if ip-1 G D{Af, M): if D{M, Af)^Q then

the infima which give o-([A4], [Af]) and <>"([//], [Af]) are computed in the same set of

values while if D(AA, Af) = 0 then also D(Af, AA) = 0 and the equality is obvious.
(5) *{[£], [Af]) < <J([C], [AA]) + a{[AA], [Af]) for every £, AA, Af G E n . We can

prove this in the following way. If <r([C], [AA]) = +00 or <r([A4], [Af]) = +00 then
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( [ ] , [M\) +<T([M], [AT]) = +00 ^ <r([£], [ft]). On the other hand if a([C], [M]) <
+00 and <r([M], [A/]) < +00 then !>(£, M) ^ 0 and Z>(.M, //*) ^ 0 and it follows that
the functions in D(C, Af) are all and only those which are obtained as a composition
of a function in D(C, M) with a function in D(M, Af) (so D(C, At) ^ 0). Therefore
in this second case we have:

+ *({M], [Af\) = inf , (log ( sup ||dv,(P)|| • sup

log fsup I I^W)" •sup

( sup
\<?€E™

+ log ( sup ||<ty>(Q)|| • sup
H6E"»

inf {log ( sup i w p ) n - s u p

P£E"»

inf

inf {log f sup i\\*Hv(P))\\-\\Mn\)- ««P

inf jlog ( ( •upB||i^(^(P))od#KP)A • ^sup^ H^-1^-1^)) od^-l(R)\\\)\

g f fsup ||d^

The above-mentioned properties show that a is a distance on En/ft. D

2. A RESULT ABOUT THE DISTANCE cr

The above-defined distance is difficult to compute and we need some tools to find
information about the distance between two given equivalence classes \M\ and [Af]
without really studying all the diffeomorphisms in D(AA, Af). For this reason we give
in this section a result that provides a lower bound for a.

First of all we need to define the function f\~{M, x, y) in the real variables x, y.
For every manifold M G En and every x, y G R we consider the set P(M, x) of the
piecewise C1 closed paths in AA. of length less than or equal to z and we quotient

it with respect to the following equivalence relation = : for every a, /3 £ P(A4, x) we
v
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412 P. Prosini [6]

have a = /? if and only if either a and )3 are the same path or there exists a homotopy
y

Hap(t, T) between a and /? such that for every r € [0, 1] the path in the variable
t Hap(t, T) belongs to P(M, y), that is we can "transform with continuity a into
/3 without exceeding the length y". Hap will be said to be a y-jL-homotopy. We
shall define /i"(A4, x, y) as the number of equivalence classes into which P(M, x) is
divided by the relation of j/-L-homotopy (we shall denote all the cardinalities ^ No by
the unique symbol "+oo").

Of course if x ^ 0 and x > y then f\-(M, x, y) = +oo and if x < 0
then f\~{Ad, x,y) = 0. For a more precise and detailed definition of the function
fi~(Ai, x,y) we refer to the paper [5], Section2.

By using the following results we shall point out that even a partial knowledge of
the functions f$~(M, •, •) and f\~{N, •, •) provides a lower bound for <r([.A4], [.A/"]).

LEMMA 2 . 1 . Let M, Af £ £ „ and <p 6 D(M, N). Then for every k, h G R+

such that sup ||dy)(P)|| ^ k and sup ||d^~1(<5)|| < I/A and every x,y,£,rj € R
P € E m Q6E"»

with £ ^ kx and r\ < hy we have f\~(M, £, rj) ^ f\~(M, x, y).

PROOF: We observe that because of its definition the function f$~(Af, £, v) ls non-
decreasing in the variable £ and non-increasing in the variable rj, therefore it will suffice
to prove that fi~(Af, kx, hy) ^ fi~{M, x, y). In order to prove this we shall construct

an injective mapping F from P(M, x)/ = to P(N, kx)/ = (we shall suppose that x ^
y fcy

0 and therefore that P(M, x)/ — and P(M, kx)/ = are not empty because otherwise
y fcy

f\-(N, kx, hy) = f\-[M, x, y) = 0 and the thesis is trivial). This fact will imply that
the cardinality of P{M, x)/ = is less than or equal to the cardinality of P(M, kx)/ —:

y by

since by definition of /J- we have f$~{M, x,y) equal to the number of equivalence

classes in.P(.M, x)/ = and f\~{Af, kx, hy) equal to the number of equivalence classes

in P(Af, kx)/ = , the thesis of the lemma will follow immediately.
hy

Now let us construct F. For every equivalence class C G P{M, x)/ = let us fix
y

arbitrarily one path a in C. We observe that <p o a belongs to P(ff, kx) because of
the inequality sup ||<fy>(.P)|| < k. Define F(C) as the equivalence class of <p o a in

P€Em

P(W, * * ) / = •
hy

If F(C\) = F(C2) then, calling a and 0 the respective representatives of C\ and

Ci, we have by definition that either a. = ip o a and (3 = <p o f3 are the same path or

there exists an hy-L-homotopy H^~ between a and /3. In the first case we have that
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a and 0 are the same path and therefore that C\ = Ci. In the second case, because of

the hypothesis sup ||dy>~1(Q)|| < 1/h we have that the function Hap = <p-1 o H»~
Q6Em a&

is a y-X-homotopy between a and (3 and so Ci = C2 (incidentally we observe that
because of the choice of only one representative per class this equality implies that a
and 0 are the same path also in this case). Therefore in every case C\ = Ci and so F
is injective. u

THEOREM 2 . 1 . Let M,Af € En and let A(M) and A(Af) be the diameters
of M and Af. If f\-{Af, £, r,) < fH-M, x, y) with t,i),x,y>0 then *([M], [Af]) >
log(min{(f • A{M))/(x • A(Af)), (y • A(Af))f(V • A(M))}).

PROOF: We can suppose D(M, Af) ± 0 because otherwise cr([M], [Af]) = +oo
and the thesis is trivial. So let <p £ D(M, Af). For sake of simplicity we shall denote
sup ||<fy>(P)|| by M and 1/ sup ||d^~1(Q)|| by m. Because of Lemma 2.1 the hy-

P6Em Q6Em

pothesis f$-(Af, £, rj) < f\-(A4, x, y) implies that either ^ < Mx or r\ > my. Therefore
either it results M > £/x or 1/m > y/rj.

Furthermore, as seen at point (3) of the proof of Theorem 1.1, we have m- A(A4) ^
A(AT) < M • A(M) and so it must follow that M > A{Af)/A(M) and (1/m) ^
A{M)/A(Af). Therefore if M > (/x then we have M • (1/m) > (£/x) -(A(M)/A(N))
while if 1/m > y/rj then we have M • (1/m) > (A(Af)/A(M)) • (y/17). In either case
we have M • (1/m) > min{(£ • A{M))/{x • A{Af)), (y • A(Af))/(rj • A{M))}. This fact
means that for every ip G D(A/l, Af) the following holds:

sup 7

(which is positive for the hypothesis (, TJ, X, y > 0). Therefore, because of the definition
of cr, we have that

D

REMARK 2.1. It is not difficult to reproduce the result of Theorem 2.1 for geodesic
diameters instead of Euclidean diameters.

In order to show the usefulness of Theorem 2.1 we give the following example.

EXAMPLE 2.1. Let us consider the manifold AA. € £2 obtained by the rotation in E3,
around the z-axis, of the curve p = 1+4 cos2 (6) in E2 (expressed in polar coordinates).
The curve is shown in Figure 2.1.
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2.1

Then let us consider the 2-manifold Af = 5 s , the standard 2-sphere in Es . It
is easy to verify that /}-(-M, 2ir, 8) ^ 2 (we cannot change homotopically the closed
path of length 2ir around the central narrowing of M. into a trivial path without
exceeding the length 8 during the deformation). On the other hand we have proved
in [5] (Proposition 3.1) that f\-(AI', £, y) = 1 for every 0 ^ ( < r\. Therefore for
x = 2n, y = 8, £ = T} = 4-^n/5 (these values have been chosen in order to make
simpler calculations) we have fi~{Af, £> »?) < f\~(AA, x, y). Moreover A(A4) = 10 and
A(Af) = 2. By applying Theorem 2.1 we have <r{[M), [AT]) ^ log(2/v^r) > 0.12.

REMARK 2.2. It can be useful to look at the construction of the distance a in a
more general context. The scheme used here is the following. First of all we consider an
equivalence relation n on a subset 0 of Sn and then the set T = {(A4, //", <p): M, M 6
n, <peD{M,N)}.

In the second place we define a non-negative function 0 : T —» R U {+00} such
that:

(i) for every Ai, M € fl we have A4n/f if and only if there exists a sequence
{v«}»6N of diffeomorphisms in D(M, Af) such that
lim
+

(ii) for every M, N e fl and every <p e D(M,Af), Q((M,Af,<p)) =

(iii) for every C,M,Af G fi, tp £ D{C, M) and V € I^-M, W) we have
©((£, At, y>)) + 0((Af, Af, V>)) > ©((£, .A/", ^ o tp)).

In the third place we observe that the function <r([A ]̂, [Af]) defined equal to
inf Q((M, Af, <p)) if D(A4, Af) ^ 0 and +00 otherwise is a distance in fl/n.

In this paper we have studied a in the case that Q = E n , TC is the similarity

relation and 0((A^, Af, <p)) = log I sup ||<fy>(P)|| • sup |ldy>~1(<5)|| ) , but we can
\P€E m Q€Ero /

change the choice of H and "R. and in particular consider other non-negative functions
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0 : T —» R U {+00} satisfying (i), (ii), (iii). For example, for every natural number k
with 2 < * < n - l , p e D(M, //) and P e E m , let us set

\\dv(P)\\ = max

where the symbol vol(toi, 102, . . . , tot- i , Wt) denotes the ^-dimensional volume of

the fc-simplex defined by the vectors w\,W2, . . . , w*_i, w* in Rm. With this no-

tation the function QMM, M, y>)) = log ( sup \\d<p(P)\\h- sup ^ ^ ( Q J I L ) sat-
\P6E"» <?€E"> " V

isfies the above-mentioned conditions, if we set fi = S n and define M.vM if and
only if there exists a sequence {v,}t€N °f diffeomorphisms in D(M, N) such that

lim &k((M, AT, <pi)) = 0 (we shall not prove here this statement and the fact that
i—»+oo

•R. is an equivalence relation). The distance o-j. that we can obtain by using 0 * is
interesting because it corresponds logically to a in the study of X-homotopy in de-
gree k (see [5], Remark 3.5). It is easy to verify that for M, M € £„ we have
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