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SUMMARY

Computer simulations have been done to study the effects of stabilizing
and disruptive selection on a polygenic character. The results are reported
in terms of three components of genetic variability which represent
changes in gene frequencies, departures from Hardy—Weinberg equili-
brium and linkage disequilibrium respectively. Under random mating the
first and third components are the most important. The observed changes
in gene frequencies are interpreted in the light of previous theoretical work
on the stability of equilibria under selection. In addition, large and rapid
changes in the genotypic variance result from the generation of link-
age disequilibrium under selection; the observed changes are in good
agreement with those predicted on theoretical grounds.

1. INTRODUCTION

Selection can change both the mean and the variance of a metric character. Its
theoretical effect on the mean is well known, but its effects on the variance is more
difficult to study in theory and is less well understood. Theoretical understanding
of this problem is nevertheless important both in interpreting the results of
experiments on disruptive and stabilizing selection and in investigating problems
such as the evolution of niche width in natural populations. The purpose of this
paper is to report the results of computer simulations designed to illustrate the
effect of selection on genetic variability and to interpret these results in the light
of some theoretical results which have been obtained previously.

It is important to distinguish changes in the variance due to changes in gene
frequencies from those due to departures from Hardy-Weinberg or linkage
equilibrium. It is therefore convenient to partition the genetic variance of a metric
character into three components representing these three factors:

vG = yg+oHW+cL. (i)
In this formula Vu is the genotypic variance calculated from the distribution of
genotypic values; Vg, which will be called the genie variance, is the variance
calculated from the observed gene frequencies on the assumption that there is
perfect Hardy-Weinberg and linkage equilibrium; (Pg + CHW) is denned as the
variance calculated from the observed genotype frequencies at each locus on the
assumption that there is perfect linkage equilibrium between loci; and GL is
defined as the difference between Vo and (Vg + CHW). Thus CHW measures the
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effect on the variance resulting from covariances between alleles at the same locus
due to Hardy-Weinberg disequilibrium, and CL measures the effect resulting from
covariances between loci due to linkage disequilibrium. (It should be noted that
'linkage disequilibrium' is understood to include correlations between loci on
homologous chromosomes as well as 'gametic phase disequilibrium' between loci
on the same chromosome; it is not advantageous to represent these covariances
separately since the distinction ceases to be meaningful for loci on different
chromosomes.)

The genotypic variance can always be partitioned in this way. In this paper
we shall consider a simple model of a metric character determined by n loci without
dominance or epistasis; it will be assumed that each locus has two alleles labelled
+ and — which contribute 1 and 0 respectively to the character. (In addition there
will be an environmental component with variance Ve.) The formulae for the three
components of the genotypic variance under this model are:

(2)

= 22 Cov

In these formulae Pi is the frequency of the + allele at the ith locus, Pf(.) is the
frequency with which 0, 1 or 2 + alleles are found at the ith locus, and Cov (i, j) is
the covariance between the numbers of + alleles at loci i and j .

These components of variance may be affected both by sampling fluctuations
due to finite population size and by systematic pressures such as selection. We
shall first consider the effect of population size in the absence of selection; it will
be shown that the genie variance declines fairly steadily (in the absence of
mutation) due to genetic drift but that the genotypic variance may fluctuate
considerably above and below the genie variance due to departures from Hardy-
Weinberg and in particular from linkage equilibrium. We shall then consider the
effects of disruptive, stabilizing and directional selection; it will be shown that
these can best be understood by considering separately the stability of equilibria
under selection, which determines the genie variance, and the generation of
linkage disequilibrium which determines CL.

2. DESCRIPTION OF THE SIMULATIONS

The metric character studied was assumed to be determined by 12 loci each
with two alleles, + and —, contributing 0 and 1 to the character without domi-
nance or epistasis. The genotypic value was thus the number of + alleles, ranging
from 0 to 24. The phenotypic value was obtained by adding a normally distributed
environmental component with zero mean and variance 4.

Two alternative assumptions about linkage were made. In one set of simulations
(called mouse simulations) the 12 loci were all assumed to be on different chromo-
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somes and hence to segregate independently. In the other set of simulations
(called Drosophila simulations) the loci were assumed to be arranged in groups of
4 on 3 chromosomes; non-homologous chromosomes were assumed to segregate
independently in both sexes, and the recombination fraction between adjacent
loci on the same chromosome was taken to be 0-1 in females (with no interference)
and zero in males.

In each generation 100 individuals of each sex were selected (either at random,
or with directional, disruptive or stabilizing selection) to be the parents of the next
generation. These selected individuals were then paired, in most experiments at
random but in some cases assortatively, and each pair was programmed to produce
10offspring (with one exception to be described shortly); from the 1000 offspring
produced 500 were chosen at random to be male and 500 female. (An appropriate
random number generator was used to choose individuals at random, to simulate
recombination and segregation, and to generate normal deviates.)

Several different selection procedures were used. In the control simulations
100 males and 100 females were chosen at random from the 500 individuals of each
sex in the population. Two types of stabilizing selection were used. In the first type
{rank selection) the 500 individuals of each sex were arranged in rank order by their
phenotypic value and the middle 100 were selected; in the second (value selection)
the 100 individuals of each sex with phenotypic values nearest 12 were selected.
Similarly two types of disruptive selection were used. In the first (rank selection) the
500 individuals of each sex were arranged in rank order and the largest 50 and the
smallest 50 were selected; in the second (value selection) the 100 individuals of each
sex with phenotypic values furthest from 12 were selected. In directional selection
the largest 100 individuals of each sex were selected. All these procedures used
a 20 % selection rate. The effect of a 50 % selection rate under disruptive selection
was also investigated. In these simulations the largest 50 and the smallest 50
individuals of each sex were selected, but each pair was programmed to produce
4 instead of 10 offspring, so that the population before selection contained 200 males
and 200 females. The different selection procedures are summarized in Table 1.

In most simulations the selected males were mated at random with the selected
females, but the effects of positive and negative assortative mating were also
investigated under disruptive rank selection. In positive assortative mating the
50 largest males were mated at random with the 50 large females, and the small
males with the small females; in negative assortative mating the 50 large males
were mated at random with the 50 small females and vice versa.

The simulations were started by selecting 500 individuals of each sex (200 under
50% selection) from a very large initial population in perfect Hardy-Weinberg
and linkage equilibrium. To investigate the effect of different initial gene fre-
quencies, the frequency of the -f allele in the initial population was taken to be
0-25 at 3 loci, 0-5 at 6 loci and 0-75 at the remaining 3 loci. In the Drosophila
simulations the + allele frequencies at successive positions on each chromosome
were 0-25, 0-5, 0-75 and 0-5 respectively. The simulations were continued for 20, or
sometimes 30, generations.
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The three components of variance defined in (2) were calculated and printed in
each generation (before selection) together with the distribution of genotypic
values and the gene frequencies at the 12 loci. The phenotypic mean and variance
both before and after selection were also calculated and printed in each generation.

Table 1. Description of the selection procedures

Type of selection
Control
Stabilizing rank
Stabilizing value
Disruptive rank
Disruptive rank (50%)
Disruptive value
Directional

Type of mating
Random

Individuals of each sex selected
100 at random
Middle 100 in rank order
100 •with values nearest 12
Largest 50 and smallest 50
Largest 50 and smallest 50
100 with values furthest from 12
Largest 100

Number of
each sex
before

selection

500
500
500
500
200
500
500

100 selected males mated at random
with 100 selected females

Positive assortative* Largest 50 males mated at
random with largest 50 females
and smallest 50 males with
smallest 50 females

Negative assortative* Largest 50 males mated at
random with smallest 50 females
and vice versa

* Disruptive rank selection only.

3. CONTROL SIMULATIONS

In these simulations 100 males and 100 females were chosen at random in each
generation from the 500 individuals of each sex in the population and were then
paired at random. The results show what is likely to happen in the absence of
selection. Two mouse and two Drosophila simulations were done, each lasting for
20 generations. The effective population size can be calculated as N = 4 x 200/
(2 + cr2), where cr2 is the variance of the number of offspring which survive to
breed; this is the binomial variance, cr2 = 10 x 0-2x0-8 = 1-6, since each of the
10 offspring has a survival probability of 0-2. Hence N = 222.

The genotypic and genie variances in the first mouse simulation are shown in
Fig. 1. It can be seen that the genie variance declines slowly but steadily, pre-
sumably because of genetic drift. Table 2 shows the genie variance after 20 genera-
tions in all four experiments. The genie variance should decrease through drift by
a fraction 1/2IV per generation, or by 4-5 % in 20 generations. It will be seen from
Table 2 that the observed genie variance after 20 generations averaged over the
four simulations is in excellent agreement with its predicted value.

It can also be seen from Fig. 1 that the genotypic variance fluctuates quite
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noticeably above and below the genie variance, presumably due to departures
from Hardy-Weinberg and linkage equilibrium. The components CHW and CL

which measure these effects have been computed in each generation; the mean,
standard deviation and first serial correlation coefficient have been calculated

60

5-5

50

4-5

\ I
\l
V

10
Generations

20

Fig. 1. Genie variance (solid) and genotypic variance (dotted) for the first mouse
control simulation.

Table 2. The genie variance after 20 generations with no selection

Mouse 1
Mouse 2
Drosophila 1
Drosophila 2
Average
Variance in initial
Predicted variance

population
after 20 generations

4-92
4-99
4-90
5-19
500
5-25
5 0 1

from the values for each component in each of the four experiments for generations
6-20 and the results are shown in Table 3. (In interpreting these results it should
be remembered that the average genie variance was about 5-1.) The mean values
are in both cases nearly zero as it to be expected with no selection under random
mating. The standard deviation of CL is considerably larger than that of CBW,
which shows that most of the fluctuations in the genotypic variance are due to
randomly generated linkage disequilibrium. I t will also be seen that there is
a positive correlation between successive values of CL. The practical importance of
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this is that observations on the genotypic variance in successive years are not
independent of one another, so that more observations are required to obtain
a given accuracy than if they were independent.

Table 3. Departures from Hardy-Weinberg and linkage equilibrium
with no selection

GHw CL

Mouse 1
Mouse 2
Mouse (predicted)
Drosophila 1
Drosophila 2
Drosophila (predicted)

Mean

0 0 0
-0-04
- 0 0 1
- 0 0 3
-0-02
- 0 0 1

S.D.

0-11
0-10
010

0-10
009
0-10

H

- 0 0 4
- 0 1 9

0-00
+ 0-10
-0-27

0 0 0

Mean

-0-10
- 0 0 2

000

0-48
- 0 1 1

0 0 0

S.D.

0-43
0-45
0-38
0-63
0-49
0-58

^

0-31
0-62
0-50
0-64
0-50

>0-50

The predicted values in Table 3 were obtained as follows. It can be shown by
standard techniques that

( 3 )

If the gene frequencies are all the same the variance simplifies to

Var (CHW) ~ VynN (4)

in the general case with n loci; this expression gives a good approximation pro-
vided that the gene frequencies are not too different. The mean and standard
deviation of CBW can therefore be predicted by putting Vg = 5*1 in (3) and (4).
There is good agreement between the observed and predicted values.

We turn now to the distribution of GL. Let Dit be the gametic phase dis-
equilibrium between loci i and j denned as the determinant of the gametic
frequencies, and let cti be the recombination fraction between these loci. (In the
Drosophila simulations cti will be taken as the average of the recombination
fractions in the two sexes.) Provided that Nc^ >̂ 1 (which is satisfied here) it
follows from results of Hill & Robertson (1968) that

Var (Dv) ~Pi{l-Vi)Pi{l -Pi)l2NCij(2-c) / K >

I t has also been shown by Hill (1974) that covariances between disequilibria at
different pairs of loci are zero. These results were obtained under a rather
unrealistic haploid model in which no random variation was permitted in obtain-
ing the zygotic from the gametic frequencies. It follows that Cov (i, j) = 2Di}

exactly under this model, so that

E{CL) = 0 |

Var (CL) ~ 8 | ( 6 )
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A good approximation to the variance, obtained by assuming all the gene fre-
quencies to be the same is given by

Vtu(CL)~(n-l)V*lnNa, (7)

where a is the harmonic mean of the quantities ci}(2 —c )̂, which is equal to 0-75
for the mouse and 0-323 for the Drosophila simulation. The observed standard
deviation of GL is in good agreement with the value predicted from (7). This
theoretical value should, however, be regarded with some caution because of the
unrealistic model under which it was obtained.

It will be seen from (4) and (7) that the standard deviation of GL does not
decline, relative to Vg, as the number of loci increases whereas that of CHW does;
linkage disequilibrium is thus the dominant source of random fluctuations in the
genotypic variance of a character determined by many loci. The reason for this is
that n loci contribute to CHW whereas \n{n — 1) pairs of loci contribute to CL.

Successive values of GBW will be independent of one another but successive
values of CL will be correlated, because the correlation between successive values
ofDtj is (1 — cit). The correlation between successive values of GL should clearly be
\ in the absence of linkage and greater than \ in the presence of linkage; this
expectation is confirmed by the observed results.

4. THE STABILITY OF EQUILIBRIA UNDER SELECTION

The genie variance depends only on gene frequencies; it will therefore be affected
by any directional changes in gene frequencies or by their movement towards (or
away from) stable (or unstable) equilibria. In this section we shall investigate how
stability or instability affects the genie variance under stabilizing and disruptive
selection.

The problem of determining the stability of equilibria has been investigated
elsewhere (Bulmer, 1971a, 1974a) under a rather general model of selection acting
on a character determined by n loci with equal effects without dominance and
under random mating. Suppose that there is an equilibrium with all the gene
frequencies taking some common value, f> (which is \ under the models con-
sidered here). The stability of this equilibrium depends on two quantities which
will here be called ft and y and which are defined as

j
y = Cov (y, 8WI8M).}

In these equations y is the phenotypic value of the character which is assumed to
be normally distributed with mean M and (phenotypic) variance F before selection;
W is the absolute fitness of an individual with value y, and the effect of
selection is to change the phenotypic variance from V to V*. Thus ft will be
negative under stabilizing and positive under disruptive selection, y is rather more
difficult to interpret, but seems to be related to the 'softness' or 'hardness' of
selection.
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If these quantities are evaluated at the equilibrium then it was shown that the
following recurrence relations are approximately true near the equilibrium:

In these equations p^t) a,ndp(t) denote the gene frequency at the ith. locus and the
average gene frequency respectively in generation t and h2 is the heritability. Thus
the quantities (pt — p) are stable or unstable according as /? is positive or negative;
we would therefore expect the variance of the gene frequencies, defined as

P)

to decrease towards zero if /? is positive and to increase if /? is negative. This kind
of stability will be called stability in variance. On the other hand, (p — ft) is stable
or unstable according as /? + y is negative or positive; this will be called stability in
mean.

Table 4. Observed and predicted values of /?

Type of selection Observed /? Predicted /?

Stabilizing rank
Stabilizing value
Disruptive rank
Disruptive rank (50%)
Disruptive value

-0-9769
-0-9785

2-17
0-84
—

-0-9785
-0-9785

2-25
0-86
2-25

If the phenotypc value is normally distributed then /? can be evaluated from the
following formulae under the forms of truncation selection used here:

/? = — 2z^(z)/P under stabilizing selection, (10a)

P = 2z<p(z)jP under disruptive selection, (106)

under directional selections. (10°)= — ^ - ^ p - ^ — z

In these formulae P is the proportion of animals selected, taken from the middle
of the distribution under stabilizing selection, taken equally from the two tails of
the distribution under disruptive selection and taken from one tail under
directional selection (though there is no equilibrium in the last case); z is the
standard normal deviate corresponding to %(l+P) in (10a), to (1 — \P) in (10&)
and to (1 — P) in (10c); and <f>(z) is the standard normal density function.

Table 4 compares the values of ft predicted from (10) with the values calculated
by using the definition in (8) from the observed phenotypic variances in the
simulations before and after selection. The first ten (or sometimes fifteen)
generations during which linkage disequilibrium was building up were excluded;
no value was calculated for the disruptive value simulation in which the gene
frequencies moved rapidly to fixation. The values for the mouse and Drosophila
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simulations were similar in all cases and were averaged. It will be seen that the
observed value is very close to the predicted value under stabilizing selection, but
is slightly less than the predicted value under disruptive selection; this can be
attributed to departures from normality in the latter case caused by the high
degree of linkage disequilibrium.

Table 5. Predicted behaviour under different types of selection

Type of selection /?

Stabilizing rank < 0
Stabilizing value < 0
Disruptive rank > 0
Disruptive value > 0

Stability
in

ft + y variance

0 Unstable
< 0 Unstable

0 Stable
> 0 Stable

Table 6. Observed stability behaviout

Type of selection
Control*
Control*
Stabilizing rank
Stabilizing rank
Stabilizing value
Stabilizing value
Disruptive rank
Disruptive rank
Disruptive rank
Disruptive rank
Disruptive rank
Disruptive rank
Disruptive rank (50%)
Disruptive rank (50%)
Disruptive value
Disruptive value

Type of
simulation
Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila

Stability
in

mean

Neutral
Stable
Neutral
Unstable

cr*(p) P

Increase Random
Increase Near £
Decrease Random
Decrease Near 0 or 1

• after 20 generations of selection

Type of
mating

Random
Random
Random
Random
Random
Random
Random
Random
Positive
Positive
Negative
Negative
Random
Random
Random
Random

<T2(p)

0043
0-040
0-060
0059
0057
0083
0-000
0000
0-000
0-000
0016
0014
0-010
0009
0-000
0000

P

0-528
0-521
0-528
0-492
0-499
0-503
0-500
0-500
0-500
0-500
0-499
0-511
0-455
0-549
0-000
1-000

v.
4-96
5 0 4
4-53
4-58
4-63
401
600
6 0 0
6-00
6-00
5-62
5-66
5-70
5-72
000
0-00

Value in initial population 0-031 0-500 5-25
* Average of two simulations.

It is also quite easy to show under the assumption of normality that y = /?
under both types of rank selection, while y = 0 under both types of value selection.
The predicted behaviour under different types of selection is summarized in
Table 5, and the observed behaviour after 20 generations of selection is shown
in Table 6. The observed behaviour can be characterized by the variance of the
gene frequencies, o-2(p), and the mean gene frequency, p, but it is also of interest
to consider the genie variance which is related to these two quantities by the
formula

(11)

It will be seen that the predictions in Table 5 are in most cases fulfilled in
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Table 6. The variance in the gene frequencies, <r2(p), has increased considerably
more under both types of stabilizing selection than in the control simulations and
has decreased under both types of disruptive selection. The mean gene frequency,
p, has moved a small distance, apparently at random, under both stabilizing rank
and disruptive rank (50 %) selection, has remained very close to \ under stabilizing
value selection and has been fixed at one or other of the boundaries under dis-
ruptive value selection. There is, however, one exception. Under disruptive rank
selection (with 20 % selection) with either random or positive assortative mating
the mean gene frequency was exactly \ after 20 generations and was clearly
positively rather than neutrally stable. It will be shown in the next section that
linkage disequilibrium becomes so large in these simulations that the system
behaves as if it is controlled by a single locus with two alleles having values 0 and
12. The stability analysis outlined above is inappropriate since it assumes that
the system behaves in a polygenic manner. It is easily verified that in a single
locus situation in which equal numbers of both homozygotes are selected and
mated either at random or with positive assortative mating, there is a stable
equilibrium with a gene frequency of \.

It is fairly easy to see intuitively the reason for stability or instability in mean.
Under stabilizing value selectioninwhichindividuals withphenotypic values nearest
12 are selected, an external optimum is imposed on the system, whereas no
preference is given to any particular value under stabilizing rank selection. Under
disruptive value selection in which individuals with phenotypic values furthest
from 12 are selected, the system will clearly be repelled from this value whereas no
disadvantage is given to any particular value under disruptive rank selection. In fact
disruptive value selection behaves, after the first few generations, like directional
selection in which the direction is determined by random events during the first
few generations.

The main weakness of the above theory is that the critical equations (8)
denning stability were derived under the assumption that there is no linkage
disequilibrium. It seems reasonable to suppose, however, that they will remain
approximately true as linkage disequilibrium builds up under selection (if linkage
is not too strong) provided that A2 is interpreted as the ratio VG\ V which allows for
the effect of disequilibrium on the apparent heritability and provided that allow-
ance is also made for any change in the quantities /? and y; under truncation
selection these dimensionless quantities depend only on the shape of the pheno-
typic distribution and so change little as demonstrated for ft in Table 4.

To test the validity of (8) I have calculated the observed regression coefficients

X(dt{t+l)-dt(t))dt{t)
6, = id

£

https://doi.org/10.1017/S0016672300016797 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300016797


Effect of selection on genetic variability 111

In these equations dt (t) =pt (t) —p(t); the regression lines have been constrained to
pass through the origin. If (9) is valid then bx is an estimate of — ̂ 2/?/24 and 62 is »n
estimate of h2(fi+y). The results are shown in Table 7. The disruptive value
simulations, which moved very rapidly towards fixation, have been excluded, as
have the simulations with non-random mating. Only the first ten generations of
the disruptive rank simulations have been used, before they began to behave like
a single locus model. The observed values of 62 are in reasonable agreement with
their predicted values. The observed values of 6X, though always of the correct
sign, tend to be smaller than expected under stabilizing selection and larger than
expected, in absolute value, under disruptive selection. They are nevertheless of
the right order of magnitude, and it can be concluded that the stability equations
(9) remain at least qualitatively valid when linkage disequilibrium becomes
established.

Table 7. Observed and predicted valves of stability coefficients

Type of selection
Stabilizing rank
Stabilizing rank
Stabilizing value
Stabilizing value
Disruptive rank
Disruptive rank
Disruptive rank (50%)
Disruptive rank (50%)

Type of
simulation
Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila

61 + S.E.

0-012 ±0-006
0-009 ± 0-005
0-010 ±0-007
0-011 ±0-004

-0-116 ±0-015
-0-104 ±0-015
-0-044 ±0-009
-0-039 ±0008

-7ia/?/24
0019
0016
0-019
0016

- 0-082
-0-082
-0-028
-0-029

&2 + S.E.

003 + 005
-0-09 ±0-08
-0-46 + 0-18
-0-31 ±013
-0-22 + 0-18
- 0 0 3 ±0-13

0-00 ±0-04
- 0 0 4 ±0-05

0
0

-0-47
-0-39

0
0
0
0

5. THE GENERATION OF LINKAGE DISEQUILIBRIUM UNDER SELECTION

We turn now to the effect of selection in generating linkage disequilibrium and
so causing the mean value of GL to depart from zero. Figs. 2 and 3 show the genie
and genotypic variances in the mouse stabilizing and disruptive rank simulations
(with random mating). The genotypic variance fluctuates considerably as in the
control simulation shown in Fig. 1 (though the difference in scale between Figs. 1,
2 and 3 should be noted), but about a mean level which is below the genie variance
under stabilizing selection and above the genie variance under disruptive selection.
Under random mating the difference in mean between the genotypic variances is
due entirely to a negative (or positive) value of CL (see Table 8) which reflects the
generation of negative (or positive) gametic phase disequilibrium under stabilizing
(or disruptive) selection.

This phenomenon has been considered theoretically elsewhere (Buhner, 19716,
19746), and it was shown that, when a steady state is reached after a number of
generations of selection, CL attains a mean value which satisfies the equation

GL(VO + Ve+OL) = W{Va + CL?lH. (13)

In this equation Vg, Ve and Va are respectively the genie variance, the environ-
mental variance and the additive contribution to the genie variance, H is the
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harmonic means of the recombination fractions, and /? is defined in (8). Under
truncation selection p is a known constant (or very nearly so, see equation 10 and
Table 4), so that (13) can be solved as a quadratic equation in CL. The appropriate
solution is the smallest root (in absolute value) which has the same sign as /?.
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Fig. 2. Genio variance (solid) and genotypic variance (dotted) for the mouse
stabilizing rank simulation.

When ft is large (that is to say, under strong disruptive selection) there may
be no real positive root; the conditions for this to occur are that

(i) fi > 2H
(V V) minand (ii) VJ(Vg + Ve)

In these circumstances the theoretical treatment based on an effectively infinite
number of loci predicts that CL will increase without bound, though it must also
be remembered that the theory is only valid in the presence of linkage (that is to
say with S < \) provided that the individual linkage disequilibria are small at
nearly all pairs of loci. It can be concluded that if (14) remains true when H is
replaced by £ then CL will increase up to its maximum possible value. However, if
(14) ceases to hold when H is replaced by £, it can only be concluded that CL will
become larger than the value predicted from (13) with H = £. Under disruptive
truncation selection it is therefore critical whether fi is smaller or larger than 1,
which corresponds to whether the proportion of animals selected is larger or smaller
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than 45%; if the proportion selected is less than 45% it is predicted that the
genotypic variance will increase up to its maximum possible value under random
mating, provided that the initial heritability is not too small.

Table 8 shows the observed breakdown of the genotypic variance averaged over
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Fig. 3. Genie variance (solid) and genotypic variance (dotted) for the mouse
disruptive rank simulation.

the last part of each simulation after an approximate steady state had been reached.
As expected CBW is nearly zero except under assortative mating, but CL departs
markedly from zero. The predicted values of CL were calculated from (13) after
substituting the observed value of /? from Table 4 and putting Va = Vg, Ve = 4
and H = 0-5 for the mouse and H = 0-18 for the Drosophila simulations.
Agreement with the observed values is good. In particular it will be seen that CL

attains nearly its maximum possible value under disruptive selection with 20 %
selected but not with 50% selected. In fact in the former case with random
mating the system moved to a steady state in which all the gene frequencies were
exactly \ (see Table 6) and in which linkage disequilibrium was so strong that, of
the 25 genotypic values between 0 and 24 which can occur, only three were in fact
observed (0, 12, 24); the relative frequencies of these values were approximately
0-25, 0-5 and 0-25, though small fluctuations occurred from generation to
generation (subject to the first and last frequencies being equal), presumably
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due to random variation in the frequencies of different mating types under
random mating. The system thus behaves as if it is controlled by a single locus
with a gene frequency of £ with two alleles having values 0 and 12. Under dis-
ruptive rank selection with positive assortative mating the system moved to a
steady state in which only the two extreme genotypic values, 0 and 24, occurred in
exactly equal frequencies.

Table 8. Components of variance under selection

Type of
selection

Stabilizing rank
Stabilizing rank
Stabilizing value
Stabilizing value
Disruptive rank
Disruptive rank
Disruptive rank
Disruptive rank
Disruptive rank
Disruptive rank
Disruptive rank

(50%)
Disruptive rank

(50%)

Type of
simulation

Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila
Mouse
Drosophila
Mouse

Drosophila

Value before selection

Type of
mating

Random
Random
Random
Random
Random
Random
Positive
Positive
Negative
Negative
Random

Random

Genera-
tions

included

11-20
21-30
11-20
21-30
13-20
13-20
13-20
13-20
11-20
11-20
15-30

20-30

y.

4-75
4-41
4-95
3-83
6-00
6-00
6-00
600
5-60
5-50
5-73

5-84

5-25

CHW

- 0 0 4
+ 0-01
- 0 0 5
+ 0-01
-0-06
-0-26
+ 6-00
+ 6-00
-0-28
-0-51
+ 0-02

-0-01

0

CL

-1-42
-2-20
-1-54
-1-78

+ 64-59
+ 62-75

+ 13200
+132-00

-1-16
+ 1-01

+ 10-82

+ 19-46

0

Predicted
OL

-1-46
- 2 1 8
-1-54
-1-82

+ 66*
+ 66*

—
—
—
—

+ 12-64

>13-29f

* Maximum possible value under random mating,
t Note that 2H < fi < 1.

Table 9. Components of variance and heritability under directional selection

Mouse Drosophila

y.
CHW
CL

Selection differential, S
Response to selection, R
Realized heritability = RjS
Theoretical heritability = VGI(VG + 4)

Under directional selection the gene frequencies went to fixation after 13
generations in the mouse and 16 generations in Drosophila. The gene frequencies
moved too rapidly for a steady state to be reached, but negative values of CL were
generated, as expected since ft was negative (see equation 10c). Table 9 shows the
components of variance averaged over the first five generations, before fixation was
approached, together with the selection differential, the response to selection and
the realized heritability as defined by Falconer (1960) and the theoretical
heritability calculated from the genotypic variance. The reahzed and theoretical

3-83
000
0-86

3-70
1-60
0-43
0-43

3-92
- 0 0 8
-0-77

3-64
1-54
0-42
0-43
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heritabilites are in good agreement, which shows that CL is to be regarded as
a contribution to the additive genetic variance, as postulated elsewhere (Bulmer,
19716).

6. DISCUSSION
The purpose of this paper has been to illustrate and to validate some previous

theoretical work on the effect of selection on genetic variability. The main con-
clusions can be summarized as follows: (1) It is important to distinguish changes
in the genotypic variance due to changes in gene frequencies from those due to
linkage disequilibrium (and possibly to departures from Hardy-Weinberg
equilibrium). To this end it is convenient to partition the genotypic variance into
three components representing these three factors (equation 1). (2) Under random
mating in finite populations considerable fluctuation may occur in the genotypic
variance due mainly to random departures from linkage equilibrium (§3).
(3) Equations have been derived previously by classical stability analysis (see (9))
which describe approximately the behaviour of gene frequencies under non-
directional selection. These equations are qualitatively correct but they are
quantitatively inaccurate since they ignore the effect of linkage disequilibrium
(§4). (4) An equation has also been derived previously (see (13)) which predicts
the amount of linkage disequilibrium which will be generated under selection. This
equation seems to give reasonably accurate predictions (§5).

The above results have applications under both artificial and natural selection.
In artificial experiments on stabilizing and disruptive selection the population
size is often very small, so that random fluctuations in the genotypic variance due
to randomly generated linkage disequilibrium may obscure any changes in the
mean level of the variance. For example, Falconer (1957) has reported an experi-
ment on stabilizing selection on abdominal bristle number in Drosophila
melanogaster, and he concluded that in the second experiment 'the selection of
intermediates produced no detectable effect on the variance'. This experiment has
been re-analysed, and the results are shown in Table 10. The quantities shown are
the variance of the sum (cr%) and of the difference (trf)) of the numbers of bristles
on the two sides of the body; cr£> is a measure of environmental variance and
(a | — Op) of genetic variance. These variances have been averaged over both
sexes, over two replicate lines and over 6 generations in order to eliminate as much
random error as possible. There seems to be good evidence of a reduction in the
genetic variance in the selected lines. With an initial heritability of 0-5, with 50 %
nearest the mean selected, and with a harmonic mean recombination fraction of
0-07 (which is the median prediction for Drosophila given by Bulmer, 19746), it is
predicted from (13) that the phenotypic variance should be reduced to 60 % of its
initial value under selection; this is in good agreement with the observed reduction
in the variance.

In artificial experiments it seems likely that the effects of linkage disequilibrium
will be more important than the slower and less dramatic effects due to changes in
gene frequencies. It must be remembered, however, that many important factors
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(such as natural selection against extreme deviants and factors connected with
developmental flexibility and genetic homeostasis) have been ignored in the
models considered here. The theory presented here should be interpreted as
a prediction of what will happen to the genetic variance under the simplest possible
model in the absence of any disturbing factors; it is analogous to the standard
theory of the response of the genetic mean under directional selection in the
absence of disturbing factors.

Under the longer time scale of natural selection it may well be that changes in
gene frequencies under the forces described in § 4 will attain a greater importance.
In particular it was shown that genetic variability is maintained under
disruptive selection (/? > 0) whereas it is eliminated under stabilizing selection
(/? < 0). Under some types of selection ft may be negative when the phenotypic
variance is large and positive when it is small; in particular this is likely to happen
if selection for an optimal value is balanced by differential competition between

Table 10. Re-analysis of Falconer's (1957) data on stabilizing selection for
abdominal bristle number in Drosophila melanogaster

Generations 0-6
Generations 14-19

Control
lines

101
10-4

Selected
lines

9-2
6-5

Control
lines

4-8
3-9

Selected
lines

4-8
4-2

individuals through resource specialization. This model is considered in more
detail elsewhere (Bulmer, 1974a). Under these circumstances variability will be
eliminated when the variance is high, but there is an opportunity for fresh genetic
variability to be created when the variance is low. Thus the population will tend
to evolve by shifting its variance until /? ~ 0, that is to say until the direct effect
of selection on the phenotypic variance is minimized.

It is tentatively concluded that a population will at first respond to a change in
the intensity of selection by a change in the linkage disequilibrium component,
CL, but that this will gradually be replaced by a change in the genie variance, Vg.
It should be noted that Roughgarden's (1972) model of the evolution of niche width
in sexual populations (see also Slatkin, 1970) deals only with changes in variance
due to linkage disequilibrium. Furthermore, the results of these authors are valid
only in the special case when the heritability is 1 and when there is no linkage,
though their treatment can be generalized to an arbitrary heritability without
difficulty.
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