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MORSE INDEX OF APPROXIMATING PERIODIC
SOLUTIONS FOR THE BILLIARD PROBLEM.
APPLICATION TO EXISTENCE RESULTS

PHILIPPE BOLLE

ABSTRACT. This paper deals with periodic solutions for the billiard problem in a
bounded open set of RN which are limits of regular solutions of Lagrangian systems
with a potential well. We give a precise link between the Morse index of approximate
solutions (regarded as critical points of Lagrangian functionals) and the properties of
the bounce trajectory to which they converge.

1. Introduction. Let Q denote aconnex bounded open subset of RN, such that 9 Q
isaC? hypersurface. A 1-periodic trajectory for the billiard problemin Q isacontinuous
nonconstant map x: S — Q (where S' = R/Z) such that there exists a finite subset
R ={t'.....t°} of S' suchthat ((...) denoting the standard inner product in R"):

(i) xisof classC?in S'\R and satisfiesX(t) = O for any t € SH\R

(ii) foranyt € R, x(t') € Q and x has aright derivative x.(t') and a left derivative
x_(t") at t' which satisfy:
@ % (t) — (>'<+(t‘), n(x(ti)))n(x(ti)) =% _(t) — (x,(ti), n(x(ti)))n(x(ti))
(b) ()'(+(ti), n(x(ti))) = (x,(ti). n(x(ti))) # 0, n(x) denoting the interior unit
normal to 9 Q at x.
tl.....t" arethen called the bounceinstants and x(t%). . . . . X(t") the bounce points
(the number of bounce pointsis p).

Thus abounce periodic trgjectory is acontinuous periodic piecewise linear path, with

corner points only on 9 Q, the usual laws of reflection on the boundary being satisfied.

ReEMARK 1. It may happen that x(t) € 9 Q athough t is not a bounceinstant: x(t) is
then tangent to 0 Q.

REMARK 2. A bounce periodic trajectory has at least two bounce points. For p > 2,
we defineLp: (9 Q)P — R by

Lp(Ml, Cees Mp) =MiMa+ MMz + -+ + Mp_lMp + Mle

(MiM; denoting the Euclidean distance between M; and M;).
If x is a periodic bounce trajectory with bounce instants t*. . . ., tP, (x(tl) ..... x(tp))

is a critical point of L,. Conversely, if My, ..., M, are p points in 9Q such that
Mi # Miyp and My Z Mp, if (Mq,.... Mp) is a critical point of L, and if the segments
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[M1M2], [M2Mg], ..., [MpM1] areincluded in Q, then we can define a periodic bounce
trgjectory containing M1, Mo, . . ., M, and with bounce pointsonly in {M.....M}.

When Q is convex, Remark 2 allows us to prove the existence of bounce periodic
trajectories by considering critical points of L,. Moreover, multiplicity results can be
obtained. For example, in [1] this variational formulation is applied to convex billiards
in R3. We also refer to [6] for the existence of periodic trajectories of special type. We
should recall that the first theorem about multiple periodic trajectories was proved by
Birkhoff for convex hilliards in R? ([4], [8]). When Q is not convex, there still exist
multiple critical points of L, but they do not necessarily correspond to periodic bounce
trajectories because a segment joining two points of VQ may not lie in Q. There are
examples of non-convex billiards in R? for which there is no bounce periodic trajectory
with only two bounce points (see [5], [7]). In [3], V. Benci and F. Giannoni used a
penalization method to achieve a general existence result. Their result states that any
bounded open subset Q of RN of class C? contains at |east one bounce periodic trajectory
with at most N + 1 bounce points (They show in fact a more general result, adding a
smooth potential V; the trajectory then solvesequation X = —VV(X) between two bounce
points).

For convex hilliards, the index of a bounce trajectory with p bounce points (My, . . . ,
Mp) is generally defined asthe Morseindex of (M1, ... . Mp), regarded asacritical point
of L, (see[8] for theinterest of thisindex). If x isa 1-periodic bouncetrajectory of anon-
convex hilliard with p bounce instants t*, . . ., t* (and p bounce points x(t%), .. ., x(t°)),
using Remark 2, we can still define an index for x, which will be denoted by 1(x). We
canin the same way defineanullity for x, m(x), which is the nullity of (x(t).....x(t"))
asacritical point of L.

In [3], approximate bounce trajectories x, are obtained, which converge to a bounce
trgjectory x. The approximate bounce tragjectories are critical points of functionals Jy
which are defined on an open subset of H1(S'; RV). These critical points have finite
Morse index in(Xn) and finite nullities m,(x,). Thefirst aim of this paper isto give exact
links between limn_.«o0 in(Xn), liMp—+00 M(Xs), 1(X) and m(x). Sincein(xn) can generally
be known (or at least estimated) this will lead to a better understanding of the limiting
bounce trgjectory. Moreover we think that this might help to get multiplicity results for
non-convex hilliards in certain cases by the penalization method. We shall provein the
last section aresult of thistype.

Before stating our results we shall give some details on the variational framework
which isused in [3] to get the approximate bounce trajectories x,, (see also [2]).

V. Benci and F. Giannoni consider for ¢ > 0 the equation

(Be): X=—-eVU(X),

where U is a function defined and of class C? on Q, which satisfies U(X) = 1/h?(x)
in a neighbourhood of 9 Q, where h(x) = d(x,9Q) is the Euclidean distance from x
to 4Q. They find 1-periodic solutions x. of (B.) with energy E. = (|2 + eU(x)
bounded independently of ¢, and show that thereis aseguence (x.,) (with e, — 0) which
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convergesin H1(St. Q) to a bounce periodic trajectory; x. is obtained as a critical point
of afunctional J., which is of class C? on the open subset A of H1(S!, RV), where

A ={xeHYS.RY) | xS c Q}.
and is defined by:
J(X) = [51 %|)'((t)|2 — eU(x(t)) dt.
We have, for v,w € HY(SL RVY),
JX)-v= _/g(*= V) — ¢(VU(X). V) dt = ./Sl(—x'— €VU(X). V) dt.
VX -v-w= [31 (1, W) — e V2U(X)V - wlt.

If X, isacritical point of J., we denote by m.(x.) and i.(x.) the nullity and the Morse
index (which are always finite) of x.: m(x.) = dimKer J”(x.); i.(x.) is the dimension of
the linear subspace of HY(S', RN) spanned by the eigenvectors of J”(x.) associated with
the strictly negative eigenvalues.

In this paper, we consider a sequence ., (with limp_.+., €, = 0) Of critical points
of J,, satisfying ¢ < E,, < C, where c and C are strictly positive constants and
Ee, = 3[%,|? + enU(x,,) isthe energy of x,, which convergesin A = H(S'. Q) tox € A,
a 1-periodic bouncetrajectory. Note (see[3]) that

lim E, =E, whereE = |x(t)]?/2.

n—+oo

E istheenergy of the bouncetrajectory. We shall usethe abbreviationsx, = x,, En = E,,
In = ey In(¥n) = i, (%e,)s Ma(Xn) = M, (X,). We assume that liminf oo in(Xn) =1 <
+00. In [3], it is proved that x has at most i bounce points; as the Morse index of the
critical points obtained by V. Benci and G. Giannoni is less than N + 1, this property
implies that their limiting bounce trajectory hasat most N + 1 bounce points.

The Morse index of x, thus gives some important information about the trajectory
obtained when taking limit (an upper bound of the number of bounce points). In this
paper we shall get further information about this bounce trajectory.

Set C(x) = {t € S'| x(t) € 9Q}. We shall assume:

(HL) C(x) isfinite and all the elements of C(x) are bounce instants.

Thuswe have, for al t € C(x), ()’q(t), n(x(t))) > 0 and the case of atrajectory whichis
tangent to 9 Q at some point is excluded.

We recall that t1, . . . tP? denote the bounce instants and that 1(x) and m(x) denote the
Morse index and the nullity of (x(t)..... X(t*)) € (9 Q)P regarded as a critical point of
the function L, defined in Remark 2.

THEOREM 1. Under hypothesis (H1) there existsng € N such that for n > no:
() 1< my(x)) <mM(x) +1

(i) in(*n) =10) +p

(iii) in(Xn) + My(Xn) < 1+M(X) +1(X) +p.
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COROLLARY 1. For all n > ng, 1(X) + p < in(X,) < M(X) +1(X) +p.

If mM(x) = 0then for al n > ng, in(Xn) = 1(X) + p and my(x,) = 1.

Notethat, as J, isinvariant by the St action on A defined by §-x = x(6+.), itisaways
true that my(%,) > 1 (X, € KerJ.). Som(x) = 0 impliesthat for n > ny, the equivariant
nullity of x, is O (the circle {x,(6 +.); 8 € S} is then a critical non-degenerate circle of
Jn)-

REMARK 3. U isassumedto be h—lz (with h(x) = d(x, 0 Q)) in aneighbourhood of 9 Q.
However this hypothesisisuseful only at a precise point of the proof. Elsewherewe shall
just assume that U(x) = g(h(x)) in a neighbourhood of 9 Q, g being a smooth function
from R} to R which satisfies:

gty _ .9’ _
g(h) n-o g'(h)
As an application of Theorem 1 we shall prove the following (we call grazing trajectory
abouncetrajectory which is tangent to 9 Q at some point):

, . _ .
g'(h) <0, h“ﬂ)l g(h) = +oo and hILrQ+

THEOREM 2. Assumethat thereisno grazing periodic bouncetrajectory with at most
N + 1 + 2q bounce instants, where g € N. Then for each k < q there exists a periodic
bounce trajectory x such that N + 1 + 2k — m(xc) < p(x) +2(%) < N+ 1+ 2k, where
the number of bounce instants of x is denoted by p(x).

COROLLARY 2. Assumethat all the periodic bouncetrajectorieswith at most N+1+2q
bounceinstants are non-grazing and correspond to non-degeneratecritical points of L.
Thenfor eachk < q there exists a periodic bounce trajectory x, such that p(x) + () =
N+1+2k.

ReEMARK 4. Of course the bounce trgjectories obtained by Theorem 2 may not be
geometrically distinct: some of them may be iterates of others.

In Section 2 we give some preliminary lemmas concerning the properties of the
approximate trajectories in a neighbourhood of a bounce instant. In Section 3 we prove
Theorem 1 thanks to these lemmas. In Section 4 we give the proof of the preliminary
lemmas. Section 5 is devoted to the proof of Theorem 2.

2. Preliminary lemmas. The proofs of the results which are stated in this section
will be givenin Section 4.

We assume that (H1) holds and we set {t!,....t*°} = {t € St | x(t) € 9Q}. X
converges to x in C(St, RN), hence there exists 61 > 0 such that for n large enough
h(xn) is of class C? in the intervals (t' — 61, t' +81); moreover 6, is chosen such that 254
is smaller than the distance between two distinct bounce instants. We can write: for all
6 € (0,61), there exists as > 0 such that

(2.1) vt e S\ ij(ti —6.t+8) VneN h(x()) > a.
i=1
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In order to simplify notations, we now consider one bounce point of x and we suppose
that the bounceinstant is 0; we set hy(t) = h(Xq(t)).

Lemma 2.1 and Lemma 2.2 describe some elementary properties of the approximate
bounce tragjectory in a neighbourhood of the bounce instant.

LEMMA 2.1. Thereexiste > 0,62 > 0(62 < 61) andn, € N suchthatift € (—b2,02)
and n > n; then 2 (A(1))” + eng(hn(t)) > eand g’ (ha(t)) > 0.

Let t,, for al n > ny, be such that Min{hy(t);t € [—62,82]} = hn(tn); what follows
implies the uniqueness of t, for n large enough.

LEMMA 2.2.
(@) liMmp_so0 th = 0; liMy_ 400 hn(ty) = 0.
(b) Thereexistnz € N (nz > ny) and é3 > 0 (63 < é2) such that, for n > ng,
(i) (tn — b3, tnh +03) C (—62.02);
(if) hy < O0on[t, —d3.ty) and h, > 0on (t,, ty + 63];
(iii) for all 6 € (0,63) liMp_so0 Xn(th +6) = X+(0) and limMp_+o0 Xn(th — ) = % (0).
(c) For nlargeenoughandé < 63, we have

Yt € [th.ta+8] () > a8, N)(t—ty) and Vt € [th—6.t]  ha(t) < (6. N)(t—tp)

with lims_on_+o0 @(8, N) = +00.
(d) There exist two positive constants 8 and v such that (for 6 small enough and n
large enough)

Vte [th—8.t+8] Bl < Ga(®), m)| < V().
where ny = Vh(xa(tn)); furthermore hn(t) and (Xa(t). nn) have the same sign on
[tn _5,tn +5].

Inthesequel, weshall denoteby r (6) (respectively r(n), r(6, n)) any function depending
on 6 (respectively on n; on 4 and n) which satisfies lims_g. r(6) = O (respectively
[iMp_0o F(N) = 0; Iimm@f r(6, n) = 0); we shall denote by s(6, n) any function depending
on é and on n which satisfies: for al fixedd > 0 limy_+, S(6, n) = 0.

We denote by I, theinterval (t, — 8.t +6). The angle ¢ is defined by 6 € [0, 5) and
cosf = ()'(+(O). n(x(O))) (cosf > 0 because of (H1)).

The next lemmas provide estimates which will prove useful to compute the Morse
index of x,.

LEMMA 2.3. Thereisa constant C; such that for all n € N, flb3‘eng’(hn(t))’dt < Cy;
moreover for 0 < 6 < 3, we haveys —eng’(hn(t)) dt = 2v/2Ecosf + r(6) + s(0, n).

LEMMA 2.4.

/Iﬁ eng” (Ma(®) |t — taf2 ct = 1(6. ).

For 0 <6 < &3 liMmp o0 fis eng”(hn(t))hn(t)2 dt = limy 400 Jis eng” (hn(t)) dit = +oo.
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LEMMA 2.5. There exists a constant C, > 0 and, for any 6 € (0, 63), there exists
n(8) > nz suchthat if n > n(s) and if A\ € H1(1; RV) satisfies

8" (he®) MO dt= [, " (ha(®)) Pn(®A®) it =0.

then _ _
[, A= eng” (@) X2 it > Cz [, MO ct.

Thisis the only lemmawhere we use the hypothesisg(h) = h—lz for small h.

We now introduce some notationswhich will be used in the next lemmas. Remember
that N, = Vh(Xa(tn)) (liMn_s00 Ny = N(X(0))).

Let F,, be the linear subspace of RN defined by F, = [n,]* and let F be the linear
subspace of RN defined by F = [n(x(O))}L.

Let C, be the endomorphism of RN defined by C, = V2h(xq(tn)). Note that, since

|Vh(x)|> = 1 for al x (in aneighbourhood of 9 Q), C, - n, = 0and ImC,, C F.
The map n which associates with x € 9Q its interior unit normal n(x) € RN is

differentiable of differential Tn; |m(Tn(x(0))) CF.
Let C be the endomorphism of RN defined by C - n(x(0)) = 0 and Cz = Tn(x(0)).
We havelim,_+-, C, = C.

LEMMA 2.6. For W e F,
/w —enU” (Xa(t))W - Wt = (CoW. W) cos§2v/2E + (r(5. n) + (6. ) ) | W|.

Moreover thereis a constant Cz and for all § € (0,63) there is a sequence (U3) — +oo

such that
/.b —enU” (Xn(t)) i - Mt < —U) + Cs
and -
|, —enl” () W+ o] < [WI(Cs + (6. )/ 18
for all W € F,.

LEMMA 2.7. If A € HY(1; R) satisfies
J, 9/ (@M dt=0. [ g"(m(®)h(®r® dt = 0.

andif u € HY(1%; Fp) satisfies u(t,) = 0, then, setting | = Any + 1, the following estimates
hold:
(i) [ enU” (xal®) t) - p(t) clt] = 1(6. )| uf3;
(i) |Jis enU” (Xa®)) (1) - A Dlt| = (r(6. 1) + (6. ) |pala | Al
(i) |5z eng’(hn() A2(t) dt] = r@)|AL:
(iv) |5 gnu"(xn(t))w. I(t) dt| = (r(s, n) + (5, )) [W| |I]1 for W € Fy,
where [k[Z = J;; k(t)* dt.
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3. Proof of Theorem 1. In the sequel, whenever k is defined on S, |k|; will denote
(Je kety2 dt) 2.

We shall split H(S': RN) into a sum of 3 subspaces. We first introduce further no-
tations. C!, Fi, ni, C', F', ni, ti,, ..., defined in Section 2 correspond now to the i-th
bouncing (of bounceinstantt'); for & € (0, 83), set 110 = (th —&, ., +6). We definethe linear
map 5 RP x FL x - x FR — HY(S, RN) by ¢ (o, - .., ap. Wi, . ..., Wp) = w, where
w is the element of H(S'; RN) (so w is a continuous function on S') which satisfies:

- in 1 w(t) = aiXa(t) + W
- inevery interval of SH\ 7, 119, wislinear (Ww(t) is constant).

i=1 'n
Let 0:RP — HY(SL RN), be the linear map defined by ¢4 (71. ..., Yp) = W where
w(t) =vin}, if t € 1! and wislinear on every interval of SH\ ., Ii.

Set B), = Im(%) and DY, = Im; sodim B, = Np and dim D, = p.
We denoteby N!. the orthogonal projection onto Fi, and by G, the set of w € H(S; RV)
which s_aIisfy_ forl<i<p:
(i) I, w(ty) =0; _
(i) Ji» g”(M(®) (W(O, N,) dt = O;
(i) fo 0" (hn(®) hn(®)(Wt). ) dit = 0.
It is clear that G, is a closed subspace of HY(S'; RV).
LEMMA 3.1. § € (0.63) being fixed, for nlarge enough HY(S'; RN) = B, ® D! & G/,
PROOF. Asone can easily seg, it is enough to prove that for n large enough, the two
equalities '
Vi ./Ihé eng” (hn(t)) dt + o /Ii“b eng” (ha(t)) (Xa(t). ) dt = 0
and _ o
Vi [y eng” ()@ dt + i [, eng” (na(®)) (a(®). 1h) a(®) ot = 0

imply o =7; =0, i.e, that a(n, 5) — b(n, §) # 0, where
a(n.5) = [, eng”(Mn(®) dt [, eng” (Pn(®)o(t) (a(). ) ct

and
b(n, ) = /I end” (n(®)) hn(t) dt. [, eng”((®) (4a(t) ) ot

By Lemma 2.2(d), a(n.6) > 8 eng” (hn(t)) dt fjs eng”(hn(t))hn(t)2 dt and, by
Lemma2.4, limy_.+ a(n, ) = +oo.

By Lemmas 22, 24, and the Cauchy-Schwarz inequality,
‘flka end” (Mn(®)) (%a(). ) dt] < v a(n. 5)%. Moreover,

o end (o) o0t = g ((ty +6)) — o (ot — )

From (21) liMysoend (hn(ty = 6)) = 0. So we have (5 being fixed)
limn .+ b(n, 8) /a(n, 5)% = 0. Hence limp_+ &(n,6) — b(n,0) = +oo, which proves
Lemma3.1.
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We now consider the restriction of J; to BY.

We recall that throughout this paper r(6, n) (resp. r(n), r(6)) denotes any function of
b, n (resp. of n, of ) whichtendsto 0 asn — +oco and$ — 0; (resp. n — +oo, 6 — 0,).
In addition s(é, n) denotesany function of § and n whichtendsto O whenn — +o0,6 > 0

being fixed.
From now we shall often use that
(31) A\ Uip=1 10 CnU”(Xn(t))V]_(t)Vz(t) dt= S(n. 6)|V_‘]_||_2 |V2|L2,

which is an obvious consequenceof (2.1), since U” is bounded away from 9 Q.
For 1 < i < p—1,set X = %(t) = 3 (t"); Xo1 = %(tP) = x_(tY). For
aceRPx FLx - x FPset

Q@) = I, (%) - ¢i(@) - ¥

P ) .
Qs -y g Wi, ... . W) = 2v/2ED(C'Wi, W) cos 6!
i=1

i) Xijs1 + Wi — W|?
ti"'l _ ti

+ Zp: |(Q’i+1 -
i=1

+ (1B +(6.) 302 + WD)
i=1

(here, wheni = p, i + 1isidentified with 1).
PROOF. Setw = ¢i(a. ..., o, W, ... W,). We have

= th(w) + (W),

where
q(w) = ilflﬁ (D) — enl"” (Xa(t) ) WCO)-W(E) .

Go(W) = 1 [ dt + (6. ) /51 lw(t)|2dt, from (3.1).

s\Uk

Since [%a| is bounded, fg [w(t)|? dt < K(ZL, |oi|? + |Wi[?), whereK is some constant.
In addition, from the definition of w,

. P |w(tHt — &) — w(tl, +6)|?
2 _ 2 - n_ i n .
(3:2) o 1O D
Now, from Lemma 2.2(iii), liMy oo Xo(tit — &) = X (t*) = Xu and

liMp o0 Xn(t), +6) = X (t') = X j+1; thus we have

(3.3) Wt — &) —wW(t! +6) = (irs — )X i1+ (Wis1 — WE) + S(6, N)(|cxina| + |cti]).
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Moreover, sincelimy ., th =t
1 1
g -2 i "
Combining (3.2), (3.3) and (3.4), we get

(3.4)

P |(ctisr — @) Xiis1 + Wieg — WE|?
qZ(W) — Zl| i+ i ti:—r-_ - i+ ||
i=

(10 + 00.00) S + (WD)
For g1 we have

G = [, (%O = enl” (Xa(D) (crkal®) + Wh). (ea(®) + W) it

= ./IL"’ —enU"(Xn('[))VVi.Wi dt + o ‘/I‘nj’ |%a(1)]% — enU"(xn(t)))'(n(t)j(n(t) dt

— 2enai /. U” (Xn(t) ) n(t). W ct.
We denote by A, B and C the three terms of this sum. By Lemma 2.6
A = (CaWi. W) cos'2/2E + (r (5, n) + (5, n) ) Wi |2
= (C'Wi. W) cos6'2v/2E + (r(6. 1) + (3, n)) Wi |2
because limy .+, C} =C'.
Kn(t) = —enU” (Xn(t) ) ¥n(t), hence
B= a?(t:”j; Xa()]? + (Zn(t). Xn(t)) dit
= o[ (Xa(ty +8). Xa(th +6)) — (%a(ty — 8). Xa(th, —8)) |-
and i
C=2a [::( Zn(). W) dt = 20 (Sa(t + 6) — %a(th — 6). W).

505

[Xa|oo is bounded and from (2.1) %u(t; £ 8) = —enVU(Xa(th £ 8)) = (6. n). Hence

B = (6, n)o? and C = (8, n)|oxi | [Wi|. We get

ch(w) = 2\/2_Ei(CiV\Ii,V\/i)cosei +(r(6.n) + (6. n)) i o] ? + W2,
i=1 i=1

and Lemma 3.2 is proved.
A conseguenceof Lemma3.2is

LEMMA 3.3. There exist a positive constant C4 and, for all n > nz, two linear
subspaces of RP x F! x --- x FR, Al and A2, which satisfy: for § > 0 small enough,
there is n'(5)(n'(6) > ng) such that if n > n'(5) then vy € AJQi(y) > Calyl?, Wy €

AZQN(Y) < ~Calyl? and dim A = Np — (i(x) + M(x) + 1), dim AZ = i(x).
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PrOOF. Let TT':F — Fi be the restriction to Fi of the orthogonal projection onto
FL. Sincelimg o N =1,

(3.5) [V = V| =rm)V|
and for n large enough ﬁ,: is an isomorphism. L
Let Q) be the quadratic form defined on RP X Flx - xFPbyQ =Q,oP,
with Pp(o.....0p.Vi.....Vp) = (01.....0p. (V). ... TIh(Vp)). From (3.5) and
Lemma3.2
(3.6) Qi) =) + (r@. n) +s(e.m) |y,
where
P .
(o, -y 0ps Via ., V) = 2/ ZEZ(C'Vi.Vi)cose'
|(ctie1 — o)X+ + Vieg — Vi|
Z il —ti '
Let ¢ betheisomorphismof R x F! x --- x FP defined by:
A0 Vi V) = (Bre e Bpa Ve Vi),
with 8 = o5 + (M, X 52 = o+ (Vi ><"*1) (index 0 and index p are identified). Note that,
foralie{1..... p} |Xi.i+1|2 = 2E, and the laws of reflection at thei-th bouncing imply

(Vi~ Xifl,i) = (Vi x|.|+1) for Vi e FI-
Setq =qo ¢~ let P41 bethe orthogonal projection onto the hyperplane [Xi j+1]*-

We have
! (ﬂl+1 )
(3.7 [o (T Bps Vi, .ns Vp) To(Vi, .- .. Y/ ) + Z L
i=1
where g is the quadratic form definedon F x --- x FP by
P . PP i (Vier — V|2
To(Vi, - -+ Vp) = 2V2ED (C'Vi, Vi) cosf +° P lt(m' : . il
i=1 i=1 -
Remember that (x(t). ... x(t")) isacritical point of Lp; F' isthe tangent spaceto 9 Q at
x(t).
A quick calculation shows that daLp(X(t). ... . (1)) = ﬁ%. Hence the index and

the nullity of the quadratic form T are respectively 1(x) and mM(x). We derive from
(3.7) that § has index 1(x) and nullity m(x) + 1 (dimKer@ = dimKergp + 1 because
Kerg = {(,31, coesBpa Vi, ,Vp) | V1,...s Vp) ceKerggand By =--- =ﬂp}).
Thusq = @ o ¢ hasindex 1(x) and nullity m(x) + 1. Hencethereexist aconstant K; > 0
and two linear subspacesof RP x F! x --- x FP, Al and A?, of respective dimensions
— (1¥) +M(x) + 1) and 1(x), such that

vy e ALg(y) > Koy and Vye A%q(y) < —Kuly]
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Set Al = Py(Al), AZ = Py(A2?) and C4 = . Lemma 3.3 is now an immediate conse-
guence of (3.5) and (3.6).

Set B1Y = 9 (Al), B2? = 0 (A2). In the two next lemmas we shall prove that J//(x,)
is negative definite on B2 & DY, and positive definite on BL? & G).

LeEMMA 3.4. Foré € (0, 63) small enough, thereexistsn”($) suchthat, for n > n”(f),
the restriction of J//(x) to B2 @ D?, is negative definite.

PROOF. Leta € B2, a = ¢f(y) withy = (o, ..., 0op. Wi, .... W) € RP x Fi x

- x FP Letd € D}, d = ¢)(v) withy = (V1..... Yp) € RP.
I a)(@+d) - (a+d) = Quy) + Iy (xn)d - d + 237 (xo)a - d.
By Lemma3.3, Q)(Yy) < —Cuy|? (for 6 € (0, 63) small enough and n > 1'(§)).

P .
I (X)d - d =372 /M —enU”(xn(t))n'n.n'n dt+R,
i=1 n
where 0| - I
_ ryi+lnn+ — VMg o

S e T AU
From (3.1) |R| can bebounded by C;|7|? (Cs depending only on ). Hence, by Lemma?2.6,
J/(%a)d - d < [7[2(C} — ). Setq(a. d) = I/ (x.) a.d = gu(a. d) + gp(a. d), with

enU” (Xa(t))d - d cit.

ql(a‘ d) = i /li.ﬁ _enU/l(Xn(t))a -ddt (d(t) =0in |in“$),

i=1"'n

oe(a.d) = i (& d) — enU” (xa(t))a- dott.

Using (3.1), it is easy to see that |ga(a, d)| < C/[7|lyl.

qi(a.d) = éyi /u'b —enU” (Xa(t)) (W + cia(t)) ., it
By Lemma 2.6,

|/I —enU” (Xa(t)) WY, dt} < W[ (Ca + (6. ).

/N —enU” (a(0)) Fa® iy dlt = [ (%))l

th+5

[(X ni”)]tin—é

—en( VU (Xalth +6)) = VU(xalth = ). ).

Hencefrom (2.1) J;is —enU” (¥a(t))%n(t)-nh dit = S(n. 6). We get

. d) < i W] [35][Cs + (8. M)/ + 56 n)é o i
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and -
la(a. d)| < [Cf +r(e. n)y/ui ][] Iyl
Finally, we get
I1(x) (@ +d).(a+d) < —Caly? +(C; — W)Y +2[CY +r(5.n)y/ui 7] yl-

We can choose 4 € (0, 83) such that V6 € (0,84), limsup,_,, r(6.n) < 4/Cs/2. Then
for fixed & € (0,64), since limy_+o, W, = +oo, there exist n”(5) such that if n > n”(9)
then [C} +1(8, n),/u]? + C4(C} — 1) < 0. Soif n > n(6) then the restriction of J;/(xn)
to B2? @ DY, is negative definite.

LEMMA 3.5. Foré € (0, 63) small enough, thereexistsn”’(§) such that for n > n"’(§)
the restriction of J//(x,) to B & G) is positive definite.

PROOF. Letb € BLY, b = ¢f(y) withy = (o, ..., 0p. Wi, .... W) € RP x FL x

X B let] € Gi. Let i € HY(I;R), i € HY({; Fi)) be such that for t & I,
I(t) = Ai(®n!, + ui(t); sincel € G}, we have
(38) pi(ty) =0
(3.9) /. L g (ha(®)Ai(t) dt = /. L 9" (ha(®)h®i () ct = .

Notethatsinceg” (hn(t)) > 0inl}?, \; vanishesat somepoint of 1%, and, since yi; vanishes

at t, there exists a constant K, € R such that l], = supg [I(t)] < Kz(Js |'I(t)|2dt)%.We
have
I10)-(b+1).(b+1) = Q(y) + I (x).L| + 23 (x).bl.

By Lemma 3.3, Q)(y) > Caly|*

(%) ) = é(/lé (N2 + @] dt + & + b’ + Ci)
+ [5} Y 1O — enl” (xa(0))11).1(1) ct.
where
a = /. —enAi (02U (Xa(®)) 1.1 i,
b = /. —2en\i(OU” (X (t) ) - 1) it
¢ = /ﬂnﬂ —enU” (Xa(t) ) i (t)-p2i (£) ct.
By Lemma2.7,b' = (r(s,n) + (6. m)|I[f and ¢' = r(5, n)|I[. Moreover,
d = [, —ead” ((®) N0 (VN(xe(0)- nin)zdt
o [, et (400) N (V2h(a(®) i) it
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As V?h is bounded in Q (for 9Q is of class C?), by Lemma 2.7, the last term can
be written as r(8)|I|2. Since furthermore ‘Vh(xn(t)).n‘n‘ < 1, we get (using (3.1)

p .
) 1l > ;(_/,.nﬁ A = eng” (o) N (02 )
(3.10) + /. @2 dt

* o, TOOP + (1670 + 6. ) 1.

i=1'n

By Lemma2.5 Jji, Ni(t)2 — eng” (h(t)) Ai(B)? dt > Cp Jis Xi(t)2 dt for n > n(s), hence
(3.11) I (%)-LI > (min(Cy. 1) + (6. n) +s(6.n)) [1]3.

We must estimate J/(x,).b.l. On every interval (t, + 8.t — 6),b(t) = b'#*1, where
b+l = mﬂ{]—ﬂ%ﬁ*—‘” Sinceb = @) (y), weget b*1 < Ka|y|, where K3 is a constant. We
have

fo g (BO-T®) 8= 3B —0) — 16+ ).

i=1'n i=1

1
2

Since \; and y; vanish somewherein I3, sups [1(t)] < v/25(J;is [I(t)|? dt)?. Hence

o (B0 TC0) = O 1.
Also from (3.1)

o s €U (xa(®))B(0)-1(D) dt = S(6. M) bluo 1] = S(E. MY {111

i=1'n

sy

Thereremainsto estimated' = Jj. (b i(t)) — enU” (Xn(t) ) b(0).1(t) dit: b(t) = aiXn(t) + Wi
in 1575 Kn(t) = —enU” (Xa(t) ) %n(t), hence

d = /I oi (%a(0). 100) + (Xn(D). 1(0)) |t + /I —enU” (%n(t) ) Wi.I 1) dlt.

From Lemma2.7, the latter term in this sum can be written (r (8. n) + s(&. n))|y| |l]2. The

former is equal to o[ (Xa(t). I(t)) }:fé Since Xn(th £ 8) = —en VU (Xa(th £ 6)) = (6.1)

(from (2.1)), it can be written as a;i|l|-,S(6, n), or |y| [1]15(6, n); hence d' = (r(é. n) +
S(6. 1)) Iy| 1] Finally 3 (x,)-b.l = (r(8, n) + (5. ) |y| |I]2 and we get

I (%)-(b+1).(b+1) > Cy4 |y|2+(min(1, Co)+r(6, n)+s(5. n)) |I|§+(r(§. n) +s(é, n))|y| 11,

which concludes the proof of Lemma 3.5.
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PROOF OF THE THEOREM. Firstly, X, € KerJ/(x,) hence m (x,) > 1. Let
6 € (0,63) be small enough so that Lemmas 3.3 and 3.4 can be applied. Let np >
max(n(5), n”'(5).n"”(6)) be large enough so that Lemma 3.1 can be applied. By
Lemma3.4, for n > ng, i. (X.) > dimBz® + dimD?, hence

(3.12) i, (%) > (X) +p.
By Lemma3.5, for n > ng, i., (%) + M., (X,) < codim(B%® & GJ). Now
codim(BL’ @ G)) = dimD? +dimB}, — dimB%’  (by Lemma3.1)
= p+Np— (Np— [ux) +mM(x) +1]).
Thus
(3.13) i, (%) + M. (%) < (X) +p+M(x) +1

From (3.12) and (3.13) we derive m. (x,) < mM(x) + 1, which completesthe proof of the
theorem.

4. Proof of the preliminary lemmas.
PROOF OF LEMMA 2.1.
- For nlarge enough, hn(t) = h(xq(t)) is of class C? on (=61, 61), and
[ha®)] < X < V2Eq < Ka,

where E; is the energy 3[%(t)|> + enU(xn(t)) and Ky is a constant. Hence, for
te (—51,51),

@.1) hn(®) < n(0) +Kalt

limn_o %%1 = —oo and ¢g’(h) < 0 on R} hence there exists > 0 such that if
0 < h<ntheng’(h) > 0.

From (4.1), since limp_.+o, hn(0) = 0, it is clear that there exist §, € (0,6;) and
Mz € Nsuchthatif t € (—82,62) andn > Mz thenhy(t) < n, andthusg” (ha(t)) > O.

- Fort € (—61,61), Set Zy(t) = X (t) — (xn(t). Vh(xn(t)))Vh(xn(t)). We have hy(t) =

()'(n(t). Vh(xn('f))) and | Vh(x)| = 1 hence [%,(t)|2 = [hn(t)|? + | z(t)|?; z1 is Of class
Clin (—51.51), and
20(0) = %(®) — (%(0): VN(a(0) ) VI(:(0)
42) — (%) V2N(xa()¥a(0)) VR(a(0)
= (3. V(xa(0) ) V(a0 (0.

%a(t) = —en VU (Xa(t)) = —€ng’ (hn(t)) Vh(Xa(t)) hence
5al®) = (%00, Th(xa(0) ) VH(x:(0)) =
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Now, sinced Q isof classC?, |V2h| isboundedin Q; since [%,(t)| < Kg, (4.2) implies
the existence of aconstant Ks such that for all t € (—é1,61) |z.(t)| < Ks; S0 z, converges
uniformly in the interval (—é1,61) to z, defined by

2t) = X(0) — (%0 Vh(x®) ) Vh(x(®)

(Vh can be continuously extended to Q: for x € Q Vh(X) = n(x), interior unit normal
t0 9 Q at X).
We have assumed that <X+(0), n(x(O))) > 0 (there is a “genuine bouncing” at the
instant 0 with bounce point x(0)). Hence |z(0)| < |x + (0)| and E — 1|z(0)|? > O,
= 1|xi (0)|? being the energy of x. As zis continuousin (—é1., 61), there existé, >0
(W|th 8> < 6,) and a positive constant ey such that for t € (—65,62), E — |z(t)|2 > €p;
sete = %; sincelim,_., E, = E and z, convergesuniformly to zin (—62. 62) there exists
ng € N (np > my) suchthat if n > n, then E,, — |zn(t)|2 > eforalt € (—62,62). Now,
En — 3[za(0)[? = 3|ha())]? + eng(hn(t)) Thus Lemma2 1is proved.

PROOF OF LEMMA 2.2. (a) 1iMy_.oo n(0) = h(x(0)) = 0 hence limy_., hn(tn) = 0
From (2.1), thisimplies that limp_+x th = 0.

(b) (i) is a trivial consequence of limn_..»tn = 0. For n large enough, t, €
(—b2,62) and hn(tn) = 0; h, is a function of class C? in (—é2.62), and, since hn(t) =

(%0 H(x00)) ). B®) = —€n/((®) + (300 T2N(0(0)%:0))-

Hence there exists a constant Kg such that
(4.3 VtE (—02.82)  [Mn(® + end (Mn(D))| < K.
On the other hand
(4. Shn(0? + engn(0) > e

From (4.3) and (4.4), if ha(t) = 0 (With t € (—6,.65)) then

(4.5) o(h() >
and
. g (h(®)
4.6 ha(t) > — — Ke.
(4.6) S YO

Since limy_o — 8 = +00, there exists ho such that if hy(t) = 0 and hn(t) < ho then
hn(t) > 0. Now, since (4.5) holds, for n large enough, t € (—é,. 6,) and hn(t) = 0imply
hn(t) < ho. Hence there exists n; € N (ng > n2) such that if n > ng, t € (—62,62)
and hn(t) = 0 then hy(t) > 0. As a consequence hn can vanish only at t, in the interval
(—b2. 62); since h, has aminimum at t,, hn < 0on (62, t,], and hn > 0on [ty 62). This

proves (ii) (63 is chosen such that (t, — 63, tn +63) C (—02,62) for any n > ng).
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Let &' € (0,62); there exists ag > 0 such that for all t € (5'.62) and for all n € N
|hn(t)| > as. Hence —enU”(xn(t)) convergesuniformly to Ointheinterval (8, 62). Since
Xn(t) = —enU”(xn(t)) (and x, isconvergentto x), we caninfer that x, convergesuniformly
to x (constant function equal to x.(0)) in theinterval (¢’ 6,).

Since limp_, t, = 0, it isnow clear that for al 6 € (0, 63) limp_o Xa(th +6) = X+(0);
in the same way we get limy ., Xa(tn — &) = Xx_(0); (iii) is proved.

(c) If assertion (c) does not hold, then (possibly considering a subsequence), we
can assume that for n > ng, thereis s, € (O, 53) and a constant K > 0 such that
hn(tn + sn) < Ks,, with limp_+50 8, = 0. Since hn(tn) = 0, it follows from (4.3) that
Ksh > hn(th +S0) > J§ —end'(hn(tn +9)) ds — Kesn. Hence

@7 | —end (Pt +9)) ds < (Ko + K)sh,

We derive from Lemmas 2.1 and 2.2(b) (ii) that the function s+— —eng’(hn(tn + s)) is
decreasing on (0, 63), hence (4.7) implies

(4.8) 0< _Eng,(hn(tn + Sn)) < (Ks +K).

Now, by Lemma 2.1,

(4.9) eng(oltn + ) > [e— Lt +

1
> le— ZK2s.2| .
_{e 2Ksn}

Hencelimy.o, g(hn(ta+n)) = +00 andlimn—... ha(ta+sy) = 0. Sincelimy,_o S = 0, we
can derive from (4.8) that limy_.o, end(hn(tn + 1)) = 0, which contradiicts (4.9) (because
liMp—o0 K25,2 = 0). So assertion (c) holds.

(d) We have

(410)  [n(®) = (%®- )| = | (3a(0): Vh(xe(0)) = Vh(xa(t)) )| < Krlt = to-

where K7 is an upper bound of (supg | V2h|)|Xn|-. Hence, from (c), there exist 3 > 0
and v > 0 such that, provided that n is large enough and ¢ is small enough, for any
t € [tn.th +6), () < (Rn(). M) < Yha(t). We get similar estimates for (%n(t). nn)
whent € (t, — 6. t].

PROOF OF LEMMA 2.3. Sinceg/(h) < 0, |eng'(hn(t))| = —€ng’(hn(t)). From (4.3) we
get —eng (hn(t)) < hn(t) +Ke and hencef%‘ fng/(hn(t))‘ dt < hin(tn +03) — hn(th — 63) +
2Kgb3.

We have: |hn(t)] < [%(t)] < +/2En. Hence there exists a constant C; such that
fég\eng ha(t))|dt < Cy.

From (4.3)

[, —end(Mn(®) dt = Ra(tn +8) — P(ta — 8) + ()

= (Jaltn +6). VN(Xoltn +6)) ) = (Sltn = ). VN(e(tn = 6)) ) +1(6).
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By Lemma2.2, limy_. Xn(th16) = X+ (0). X, convergesuniformly toxandlimy_, tn = 0,
therefore limy,_.., Vh(xa(t % 8)) = Vh(x(£6)); hence

/. —eng(hn(t)) clt = (x+(0), Vh(x(&))) - (x_(O), Vh(x(—5))) +1(5) + (6. n).
Now, lims_o Vh(x(£6)) = n(x(0)), hence

J, —end(Pn(®) dt = (:(0) =5 (0. n(x(@) ) + (6. 1) +1(?)

= 2v2Ecosf + (6, n) + 1 (5),
becauise X + (0)| = v/2E and cosf = %-Q-HO,

PROOF OF LEMMA 2.4. Set 1(5.n) = [ eng”(hn(t))(t — tn)?dit (6 € (0.83) and
n > ng). By Lemma 2.2(d) (and sinceg”(hy(t)) > 0 by Lemma2.1),

€n

o9 (OOt — o).
Integrating by parts and using the fact that g’ < 0 we get

em < [" o5 () at.

n+o
og|(5.n)§/t”

Hence, by Lemma 2.3,
C
a(d,n)’
so (5, n) = r(6, n) because lims_gn_+00 @(8,N) = +00. In the same way we can prove
that " ; eng” (hn(t)) (t — ta)? dt = r(5. ).
We now prove the second point of the lemma. For 0 < d <4, set

Ko@) = [ eng” (Pe(®) P2 ot

o<I@,n <

By Lemma2.1, Kn(6) > Kn(d). Since limy_o- £8 = —o0 and lim 4o SUPy, e N =0,
we obtain

Ko@) = Lo(@) [ —end! () (0ot

withlim ¢ Lp(d) = +o0. Hence, from (4.3),

K@) = L@ [ o002t — Kl
We get, for all d € (0, 0),
@) [ e (l0) ) ot > Ke(e) > En@[flta + 0 — .

with lim a0 Ly(d) = +o0o. Moreover, d being fixed, by Lemma 2.1, for n large
n—+oo
enough hp(ty, + d) > /e So it is not difficult to check that (4.11) implies

limn—co Jis €ng” (Mn()) In(t)2 dt = +00. Since |hy| (s is bounded, we conclude that
im0 Jis €ng” (n(t)) dt = +00, which completes the proof of Lemma 2.4,
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PROOF OF LEMMA 2.5.

ReEMARK. Thefact that g(h) = % near 9 Q isused only in this proof.
In order to simplify notations, We assume without loss of generality that for any n,
t, = 0: thus19 = I = (—5,5), and hy(0) = 0. We have already seen that for t € I% hy(t) =

—eng'(n(1)) +ra(t) = (2 + n(t), where rn(t) = (xn(t). V2h(xa(t) )% (t)), r(®)] < Ke.
Set far = €ng(hn(0)) = en; asin the proof of Lemma 2.1, we readily verify that

liMn_+00 €0 = € > 0, Where e = %(x+(0). n(x(O))) Set ho(t) = \/a( BL); f,, satisfies

0 if'n(s)=%+eésq(s) forse%l :
412) (i) }.0)=0;
(iii) f,(0) = L.

Here we have set §,(s) = rn(ﬁgs)e,?%; |Sh(s)| < Kg, where Kg is a constant.
AS || ) is bounded, | o] is bounded. Set

Ho = {A e H (15 RY) | / (ha(®)A(t) lt = / " (hn(®)) Pa@®A(®) dt = }

For A € HY set
(4.13) ) =1 <i\/€_tn> . ) = /m A(t)? — eng” (ha(t)) A(t) dit.

We get: i, A(t)? dt = 0y I(s)2dsand of,(\) = S8, where

e

6 — _°N 48 P — [ (a2 2
X = ﬁ' and &) /ng(s) f()4l(s) ds.
Let H = {l € HAIRY) | fy, 78 ds = Jy, f(S)Atl(s) ds = 0}. A € H) iff | defined

by (4.13) belongsto H,!. So we haveto prove that there exists a constant C, such that if
I € HY then&(1) > C |13

Let f bethefunction definedon R by f(s) = /22 + 1. Notethat f satisfiesf(s) = %
f(0)=0,f(0) = 1. Let

E= {l € HL(R; R) ’ [ li@2ds< +oo}.

I(s) f(s)
E‘/Rf(SS)A' Rf(s)4|()ds 0}.

Notethat all | € E setisfies Jy {3, ds < +oo, because|I(9)] < [I(0)]+/Is] (f I(592ds) "%,

andthat f € E.
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LEMMA 4.1. Thereexistsa constant C, > O suchthat, for all | € H ,

. 6l(s)? _ .
/Rl(s)z— f(f))‘l ds > CZ./RI(S)st.

Before proving Lemma 4.1 we shall explain how we can derive Lemma 3.5 from it.
SetC, = 922 Leté € (0,63); we suppose that there does not exist n(6) such that n > n(5)
andl € H? imply &,(1) > C,|l|2, and we seek a contradiction.

Then (up to asubsequence), we may supposethat thereexists, foranyn € N, I, € H?
which satisfies §(In) < Cy|In|2, and fy f(s)4 * ds = 1. The functionsf, and I, are deflned
onJ = (— 36‘1 f) sinceliMmp_+0 % = +00, Unen 3 = R. Inaddition, by Lemma2.2,
for t € 19, hn(t) > hn(0); hencefor s € J), fu(s) > 1. It follows by (4.12) that | fy| () is
bounded independently of n.

So every subsequence of (f,,) has a subsequence which convergesin C(1) for any
bounded interval | of R (this makes sense because f,, is defi ned on | when n is large
enough). Now, from (4.12) alimit F must satisfy: I'f(s) = F(S)3 forall se R, F(0) = 0and
F(0) = 1. Hence F = f. We can concludethat f , convergesto f in CL (R).

Moreover &(In) < Ca|ln|2 hence (1 — Co)|In|2 < [y 6%(537 ds< 6.

The constant C, defined in Lemma4 1 clearly is smaller than 1, so C, < %; hence
|In|2 is bounded; moreover, since th e )4 * dsis bounded, and since f, convergesto f in

Cle(R), for any bounded interval 1, J; In(s)? dsis bounded. As a consequence||ln|| is
bounded for any bounded interval | of R (I,, iswell defined on | for large n). We infer
that there exists | € HL (R) such that (I,) (or a subsequence) converges uniformly to |
on | for any bounded interval | of R; I, convergesweakly to | in HL (R) hence, for any
bounded interval I,

()2 P WA
./Il(s) dsglmgfflm(s) ds< =

Therefore

: 6
(4.14). /R|(s)2dsg o

We next provethat limp .+, J. ¥ f (5)4 (9 g = Jr fi(—s))q ds. For this purpose, further information
about f,, isrequired: we know that f, (as hy) is hon-decreasing on [0, %] and that

(4.15) (9 > —/enKa.

The following hold: limy .o fn(2) = £(2) > 2; liMy_s00 Ta(2) = £(2) > 1. Hence for
n large enough fn(2) > 2 and fn(2) > 1, and for any s e J st s> 2 by (415),
fa(s) > fn(2) — /enKes > 1 — \/enKss. Let s, = Z\FK A~ whense Y and2 <s<s,
fo(s) > 1 T and f(s) > fn(2) + %2 > £ (for nlarge enough).
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Furthermore, since f,, is non-decreasing on J¢, if 576} > sy thenfors, < s < %
fa(s) > 3. Hence, since f/ign é is bounded by a constant independent of 6 and n, thereis
aconstant Ko > 0 such that (provided n is large enough), for s > 2 and s € J5,

(4.16) fa(s) > sKo.

Moreover, for 0 < s < 5‘“« Ia@®)] < [100)] + S [1n(u)| du < Kio + /S|ln|1. Therefore

(4.17) ||n(S)| < Kp+ \/5

1-GC
For M > 0 set a(M) = sup,-p, ( I3\ (—ooM] % ds). From (4.16) and (4.17), we derive
liMp—+00 @(M) = 0.

Inthe sameway, setting b(M) = sup,,, ( T Mroo) 53 ds) ,weget limy_+., b(M) =
0.

Since I, and f,, converge uniformly to | and f on every bounded interval (and since 1
is alower bound of f,, on J%), we conclude that

I(S)2 : In(s)?
e 9= . [y e 9=
Hence, from (4.14),
(4.18) /R i(9?2 — f(( ))4 ds < 2./R i(92ds.

Sinceln € HY, Jy ﬁgz ds = Jy ffn(glln(s) ds = 0. Using inequalities (4.16) and (4.17),
and the fact that In, fn, f converge respectively to |, f, f, uniformly on every bounded
interval (note that f(s) = \/— and that || f, |~ is bounded), we can easily check that

I(S) . n(s) f() _ £:(9)
/ f(5)4 n—»+oo /,Jb f (5)4 / f( )4|(S)dS llm R ( )4|(S)ds 0.

Hence | € H, and inequality (4.18) contradicts Lemma 4.1, since C; < C, and
Jr1(s)?ds > 0.
We now prove Lemma4.1: E isareal Hilbert space endowed with the scalar product

Let ||I]|2 = (1. 1)e. Let K be the endomorphism of E defined by:

X(s)Y(s)
YX.Y) B2 (KX, Y)g = / T

We can easily check that K is compact symmetric, has norm one (if X is aconstant map,
KX = X). AsE is separable, it admits a base composed of eigenvectors of K.

https://doi.org/10.4153/CJM-1998-027-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-027-6

APPROXIMATING PERIODIC SOLUTIONS FOR THE BILLIARD PROBLEM 517

The eigenvalues Ay, ..., Ap ... of K (al are of finite multiplicity) form a strictly
decreasing convergent to 0 sequence of positivereals. Wedenote by E,, thecorresponding
eigenspaces; it is obviousthat A1 = 1 and E,, is the set of constant functions.

We shall prove that

(%) Ao = % and E,, isspanned by (f).

Once () is proved, we shall be able to write that H = (E,, ¢ E,,)*¢ and hence for all
XeH (KX, X)e < As||X||2 with A3 < 3. We shall get for X € H

6 X9 4 < o [ X2+ 6X(9)° ds).

f(s)* f(s)*
hence 6X(97?
20e S (2
/X()d /f()4 _( )/X(s)ds.
SetC, = 1 5 |mpl|esC2 > 0, and Lemma 4.1 will be proved.

We now prove (x). Let E={XeE]| [§ds =0} = EF We have ), =
supje<1xcE(KX X, and B, = {X € E | (KX.X)e = X2||X[|g}. E,, is the set of
X € E which satisfy equation

X(s)

(Py,)- X(s) = 6 (1 - —) o

Let X € E,,; define X(s) = X(0) + Y(s). We get: J X(s)? ds = J Y(s)?dsand

X(s)? Y(s)2 X(O)2 (X(0. Y(S)
J g 9= hwgr S b T 2 T

Y
= ot 95 XO" g

because [ %S% ds=0.
Letv(s) = f(s) = \/F : notethat, sincef (s) = (3)3,v(s) = %)% AsX satisfies(P,,),
itisof classC> on R, aswell as'Y and we can write Y(s) = v(s)z(s), with z of class C>

on R (because Y(0) = 0). Let M € R}. We have:

MY .
/ M f((ss))4 ds = L  (SV(9Z(s) ds,

i “:A V(92 ds = /_ | (S + USAS + UML) .
We get

A “:A (9?2 — Gf\gf ds= [ “:A w2 ds+ [ “:A dﬂs (UM9ZS?) ds

= “:A V(92 ds+ [UIv9x9?]"
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We havez(s)? = Y& < 13 (Jx IY(9)[?). Hence

~ V2 = v(3)?
M 2
IV(M)| (2M2 +1)2

[MVM)ZMY?] < ( [ V(s ds)

Since liMy_ioo V(M) = /2, liMy_so V(M)V(M)Z(M)2 = 0. In the same way
liMy_+00 (—M)V(—M)Z(—M)? = 0. Finally, we get

: 6X(s)? . d
[ X2 - : (Sz ds= [ V(925 ds+6X(0)? | @
Thisleadsto
(4.19) VX EE,, [IX|2—2(KX,X)e>0

and the equality holdsiff X = uvwith i € R.
(4.19) implies that X\, < 3; sincev € E and (Kv.V)e = 3|v|2, X\, =  and E,, is
spanned by v. This completesthe proof of (x), and of Lemma4.1.

PROOF OF LEMMA 2.6. We have U”(x(t)W.W = g/(ha(t)) V2h(xa(t))W.W
+g’(h(t)) (Vh(xn(t)). w)z.
‘/m —enU” (3a(t)) W.Welt = ( [, end (Pa(®)) dt) (CaW, W)

In

(4.20) + /|5 fng”(hn(t)) (Vh(xn(t)) W) 2 dt
+ [ g () (V2(xa(®)) — Ca )Wl

V2h, definedin QNV , whereV isaclosed neighbourhood of 4 Q, can be continuously
extendedto Q NV, and henceis uniformly continuous; since C,, = Vzh(xn(tn)), the last
term of the sum in (4.20) is bounded by s en|g’ (Ma(t)) [ ([IXn() — Xa(ta)I] ) IWI?, with
lims_o- n(s) = 0; from Lemma 2.3 fi; en|g/ (n(t))| dt < Cy; |[%a|L~ is bounded and
[1%2(8) — Xn(t)|| < ||%nlloo [t — tn] hencethe last term of the sum in (4.20) can be written
asr(6)|W)2.

We have (Vh(xn(t)). W) = (Vh(xn(t)) — Vh(Xa(tn))- W) (sinceW € Fy). Thus we

can write ' (Vh(xn(t)),w)' < Kyt — to| [W] (K11 being a constant). Hence
‘ /w eng”(hn(t))(Vh(xn(t)),w)zdt‘ < KZ WP /m eng” (a(®) |t — tof? clt.

By Lemma 2.4, this term can be written as r(§, n)| W|?. Finally, by Lemma 2.3 we can
conclude

/ —enU” (Xa(t))W.W = (CoW. W) cos 2v/2E + (r(5. 1) + (6. n)) W2,
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L et us now prove the second point of the lemma; we have

4.21) /Ig —enU//(xn(t)) Nn.Npdt = /lg —eng”(hn(t)) (Vh(Xn(t))_ nn)z "
| + /I —end'(Mn(t)) V2 (Xn(t) ) n.Nn it

By Lemma2.3, the second term of the sum (4.21) isbounded by aconstant. Sincen, =
2
Vh(%(ts)) and [%|-o is bounded, the following inequality holds: (Vh(xn(t)), nn) >

1— Kaa|t — to| > 1/2when [t — ty| < 1/(2Kq2). Setting U}, = 3 fis eng” (hn(t)) dt and
using (2.1) we get

[ —end”(P(®) (Vh(x0). nn)2 dt < —u) + Kas.

Hence we have: i —enU” (Xa(t))Mn.nn dt < —U, + Cs, where Cs is a constant (by
Lemma2.4, limp_+o0 U, = +00).

/l(% —enU” (Xa(t))W.nn dit = /m —end (Ma(®) V2h(xn(t) ). Wt
(4.22) + ,—end”(n(0) (VR(a(0). W) (Vh((0). o) ct.

By Lemma 2.3, thefirst term of the sumin (4.22) is bounded by K;4|W| (K14 being a
constant).

We have already seen that, sinceW € Fy,,

(Vh(xn(t)).W)} < Kyt —ta] [W]. Hence

‘/m —enuu(xn(t))w.nn dt}

< Kua|W| + Ky ./I” eng” (hn(t)) [t — to] dit| W]
<|W| (K14 #Kaa( [, eng” ()¢~ 02 ) ( [, eng” (D) ) )
< W|(Cs +r(6. n)y/up).

by Lemma 2.4 (provided C3 has been chosen large enough).

NI

PROOF OF LEMMA 2.7. (i) pu(ts) = O hence |u()| < \/|t—tn|<f|ap(t)2dt) <
V|t — ta| |1£]1. Hence, by Lemma 2.3,

/I end’ (Mn(t)) V2 (Xa(t)) (). 1) dt\ < Ca(sup [V2hl) |ul3-

(Vh(xn(tn)). u(t)) =0 (sinceforall t € I® u(t) € Fr) and hence

(Vh(xa): 1) | < (TS0t = ol [0
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2
(Vh(xn(t)).p(t)) < Kis|t — tn[3| 3. Hence, by Lemma 2.4,

(4.23) . en’ () (VH(0)- 19) e = 6.0

which proves (i).

(ii) Since fi; g”(hn(t)) A(t) dt = 0and g”(h) > 0. A vanishessomewherein I} (because
A is continuous), hence || s < v/26|Al1 (we also have |ui]o < v/& |ul1). Hence by
Lemma 2.3, |fi; end'(hn(t)) V2(Xa(t)) 2(t)-nA(t) dt| can be written as r(8)|u|y |A|1; on
the other hand

/I% Eng”(hn(t))‘ (Vh(xn(t)), ,u(t)) H (Vh(xn(t))_ nn)
< (/w end” (Mn(t)) (Vh(xn(t)). u(t)) 2 dt) 1/2 (/lb e ()AD? dt) 12

IA(D)| dt

From (4.23) and Lemma 2.5, we get estimate (ii) (we must add s(6, n) in the estimate to
take into account the fact that the inequality in Lemma 2.5 holdswhen n > n(¢)).

(iii) followsimmediately from Lemma2.3 and the inequality |A\|2, < 25|A[2.

(iv) Wehave: [Ao < v/25|A|1 and |p]oe < v/8|p|1, hence

(4.24) 1o < V25 1|5

Jis —enU” ()W dt = A+ B, with A = fi; —eng’(hn(t)) V2h(xa(t) ) W.I(t) dt and

B = Jiy —eng” (Mn(®)) (VN(xi(®), W) (Vh(a(0)). 1)) clt.
It follows from (4.24) and Lemma 2.3 that A = r(5)|W||l|s. Moreover,
we previousy saw that |(Vh(xn(t)),W>| < Kult — t3||W|. Hence |B] <

K1 f|¢‘ Eng//(hn(t))|t - tnl

(Vh(a(®)-10) | dtjwi. In addition

[(Fh(e®)-10)| < |(T(a0). 10) |+ 1AO] < Vs It—tal2luls + A

Therefore, by Lemma 24, |B] < r@.n)|W||pjs + D|W|, with D =
Ka1 fis €ng” (Mn(®)) [t — ta] [A(D)] dit.

Asin the proof of (ii), using the Cauchy-Schwarz inequality and Lemma 2.5, we get
D =r(6. n)+s(6. n)|Al1. Asaconclusion B| = (r(8, n)+s(6. n)) |W/ [I|, which provesiv).

5. Proof of Theorem2. Weshall assumethat 0 € Q andthat U € C?(Q. R) satisfies
U >0, U = 0inaneighbourhood of 0 and U = 1/h? near d Q. Let e € (0. 1) befixed.

LEMMA 5.1. Thereisa > 0andfor all k € N thereis 3¢ independent of e such that
J. has at least one critical point x of Morse index i (x) and nullity m (x¢) satisfying
N+1+2k— (m () — 1) <i(x) <N+1+2k
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We first prove that Lemma 5.1 implies Theorem 2. Let k € [0,g] N N. Let X be the
critical point given by Lemma5.1. J.(x¥) is bounded hence, by aresultin [3], thereis a
seguencee,, converging to 0 such that x'jn convergesin A\ to abouncetrajectory X with at
most N + 1+ 2k < N+ 1+ 2q bounce points. Hence X¢ is not agrazing trajectory, and we
can apply Theorem 1. For nlarge enoughi, (x€ ) + (M, (<€) — 1) < i(x) +M(x<) + p(x¥)
and i, (X< ) > T(x¥) + p(x¥), where p(x¥) is the number of bounce instants of x*. Hence
T(X) + p(X) < N+ 1+ 2k <i(xK) +m(x<) + p(x) and the proof of Theorem 2 is over.

Before proving Lemma 5.1 we enumerate some useful properties of J.. We shall use
the notations E for H(S;; RN) and || || for the H! norm. We have:

(P1) J. isinvariant by the S'-action defined on E by 6.x = x(# + .). We shall denote
by Eg the set of the fixed points for this action: thisis an N-dimensional subspace of E.
Let F = Ej.

(P2) Therearep > 0and o > 0 (both independent of €) suchthat S={x € F | ||x|| =
p} C ANandInfsd. > a.

We shall denote by (Fy)k>1 some sequence of subspacesof F suchthat Fy C Fy.1, Fy
is St-invariant and dim F,, = 2k. Let E, = Fy + Eq.

(P3) For al k € N thereis 8 independent of e such that on Ey.; NA J. < k.

(P4) If x, € Aand Xy — x € A then J.(Xn) — —oo0.

(P5) J. satisfiesthe Palais-Smale condition on A.

(P2), (P4), and (P5) are provedin [3]. Since A isboundedin L, A isbounded in Ey.1
because Ey.; is finite dimensional. (P3) is now a consequenceof J.(X) < 1/2||x||2.

We shall use S' equivariant conomology over rational coefficients. Let S° — CP>
denote the universal principal S'-bundle. If A C E and B C A are S'-invariant we set
Hg (A B) = H*((A x $7) /S (B x §¥)/S).

From now we shall abbreviate J. = J. By Sard’s|lemma we can assumethat o and 3¢
given by (P2) and (P3) are not critical valuesof J. Let J° = {x € A|J(X) < c}. We have:

LEMMA 5.2. HE2(3%, J*) # 0.

ProOF. We shall use the following facts which are proved in [10] (S is defined
in (P2)):
- The projection p: (S x $*)/S' — CP> induces an isomorphism p*: H*(CP>) —
H% (S), where H*(CP*) isthe polynomial algebraover Q generated by w of degree
two. We set w = p*(w).
- Let S = Frer N Sand i: Serp — Sdenote the inclusion map. Then i (%) # 0in
Héll((s({l_)
Following [3] we set A® = J°U (E\A) (of course A° is St-invariant). By (P4) E\A C
int(A°) hence, by the excision property, HY™*2 (3%, J*) = HY+2(A%, A).
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Let Rbelarge enoughsothat Vx € ANExq [|X|| <R LetD ={x€ E| ||x| =R; or
(X € Eo and [|x|| < R)} and D1 = D M Byt

Let j;: H (D. Eo N D) — Hg (Dks1. Eo N D) and j3: Hy (E\S. Eo) — H (D. Eo N D)
be induced by the inclusions Dy.; C D C E\S. We shall prove

(5.1) T € HF?(E\S Eo) j10i300) #0.

First it is easy to define a continuous map H: [0, 1] x (E\S) — E\Swith the following
properties: (i) H(0,.) = Id; (ii) H([0, 1] x Egp) C Eq; (iii) H(t,.) is S--equivariant for all
t; (iv) H(t, )p = Idp; (v) H(1,E\S C D.

Hencej3 isan isomorphism. Now let§ > Obesmall. LetG = {xo+y € (Eo+F)ND |
Iyl =6}andD = {xo+y € (Eo+F)ND | |ly|| > &}.We denote Ey+1 N D by Dy+1. Using
the excision property we can easily check that there is a commutative diagram

HY(D. Eg M D) — HY?(Diy. Eo N D)
(5.2) a| b
HY%([B,6) 2 HY2(Dy. GN Dy

where a and b are isomorphisms.

Let By = {x € Eg | ||%0]|> < R? — 6%} and g: D — By x Sbedefined by g(xo +y) =
(%o, py/ |IYI})- 1t is clear that g is a St-equivariant homeomorphism (the St-action being
defined on By x Sby 6.(X.Y) = (Xo.6.y)). Moreover g(G) = 9By x Sand g(Dys1) =
By X Ser1. Hence we have the following commutative diagram:

(5.3)
HN(Bu. 9 By) @ H2(9) HY 2By x SaByx 9 L HY(D,0)

1,y J J i J

HN(B. 0 Bn) © HE(Scr1) ~ HY (BN X Ser1. 9By X Sert) 2% H§1+2k(f)k+1- GNEy1)

1

where g* is an isomorphism. Let oy generate HN(By. 9 By). (1d i) (on @ &) = on @
i () # 0. Hence combining (5.2) and (5.3), givesthe existenceof 3 € HY"%(D, EoMD)
suchthat j;(8) # 0. Sincej} isan isomorphism we derive (5.1). Now R was chosen such
that Dy.q C A®. Moreover A* C E\S Let

+ ) + a s +
HY(E\S Eo) — HY(A, Eg) —— HY(D. Eo N D)
be induced by these inclusions. Set ¥ = r*(7). Since s* o r* = i o j3, we must have

s'(7) £0.
We now consider the exact sequence
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Hgl+2k(A‘3k- Eo) L} Hg‘l+2k(Aa, Eo) i, HgﬁZkﬂ(Aﬁk,A“)

and we prove that d(Y) # O, which obviously implies Lemma 5.2. Arguing by con-
tradiction we assume that ¥ € Kerd = Imi*. Then we can write ¥ = i*() with
n € HYA%, Ep). We have (i o 5)*(n) = s*(Y) # O, where i o s is the inclusion
map (Dy+1, Eo N D) C (A%, Ep). Now we have (Dy+1. Eg N D) C (Exs1. Eo) C (A%, Ep),
with Hg (Ex+1, Eo) = 0. Henceit is clear that (i o s)* = 0, acontradiction. This completes
the proof of Lemma5.2.

We now explain why Lemmab.2 implies Lemma5.1. We have assumed that o and 3
are not critical valuesof J. Let K denote the set of critical points of J in J%\J%. Since J
satisfies (PS), K is compact; moreover supy J < Sk andinfx J > o. We could also easily
check that J”(x) is Fredholm for al x € J%\J*. Using the Marino-Prodi perturbation
method ([11]) and a result stated in [12] we derive that there are 6, > 0 — 0 and a
sequence (gn) of S'-equivariant and C? functionals defined on A such that:

(i) gn(¥) = J(x) outside K’ = {x € A | d(x,K) <én};

(ii) |gn — Jlez — O

(iii) the critical St-orbits of g, in J%\J* are non-degenerate;

(iv) gn satisfies (PS);

(v) OnK o < gn < Bk (hence {x € A | gn(X) < c} = J¢for c= aror ¢ = f).

Since HY#*1({g < B«}. {g < a}) = HY2*1(J%, J") # 0, by S-equivariant Morse
theory (see for example[9] or [12] for more detéils), gn has at |east one non-degenerate
critical S'-orbit (x( +.)) in 3%\J* of Morseindex N + 1 + 2k. From (i) and (i), since
K is compact there is a subsequence of x" which convergesto x € J%\J%, critical point
of J of Morseindex satisfying the desired estimates.
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