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Abstract

In this article, we present a galactic gravitational model of three degrees of freedom (3D), in order to study and reveal
the character of the orbits of the stars, in a binary stellar system composed of a primary quiet or active galaxy and a
small satellite companion galaxy. Our main dynamical analysis will be focused on the behaviour of the primary galaxy.
We investigate in detail the regular or chaotic nature of motion, in two different cases: (i) the time-independent model in
both 2D and 3D dynamical systems and (ii) the time-evolving 3D model. For the description of the structure of the 2D
system, we use the classical method of the Poincaré (x, px), y = 0, py < 0 phase plane. In order to study the structure of
the phase space of the 3D system, we take sections in the plane y = 0 of the 3D orbits, whose initial conditions differ
from the plane parent periodic orbits, only by the z component. The set of the four-dimensional points in the (x, px, z, pz)
phase space is projected on the (z, pz) plane. The maximum Lyapunov characteristic exponent is used in order to make
an estimation of the chaoticity of our galactic system, in both 2D and 3D dynamical models. Our numerical calculations
indicate that the percentage of the chaotic orbits increases when the primary galaxy has a dense and massive nucleus.
The presence of the dense galactic core also increases the stellar velocities near the center of the galaxy. Moreover, for
small values of the distance R between the two bodies, low-energy stars display chaotic motion, near the central region
of the galaxy, while for larger values of the distance R, the motion in active galaxies is entirely regular for low-energy
stars. Our simulations suggest that in galaxies with a satellite companion, the chaotic nature of motion is not only a result
of the galactic interaction between the primary galaxy and its companion, but also a result caused by the presence of the
dense nucleus in the core of the primary galaxy. Theoretical arguments are presented in order to support and interpret the
numerically derived outcomes. Furthermore, we follow the 3D evolution of the primary galaxy, when mass is transported
adiabatically from the disk to the nucleus. Our numerical results are in satisfactory agreement with observational data
obtained from the M51-type binary stellar systems. A comparison between the present research and similar and earlier
work is also made.
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1 INTRODUCTION
It is well known that galaxies are not observed as isolated
entities, but often appear in binary, triple, or multiple stel-
lar systems. On the contrary, just as there are clusters of
stars, there are also clusters of galaxies. This leads to grav-
itational galactic interactions. The Milky Way–Magellanic
Clouds system is a very indicative example of galactic inter-
action (see Gardiner, Sawa, & Fujimoto 1994; Lin, Jones, &
Klemola 1995; Weinberg 1995, 1998; Van der Marel 2001;
Putman et al. 2003; Connors et al. 2004; Bekki & Chiba
2005). Another interesting stellar system of interacting galax-
ies is the Andromeda galaxy M31, with its two smaller com-
panion galaxies M32 and NGC 205. The gravitational effects

of the M32 galaxy on the spiral structure of M31 were stud-
ied by Byrd (1978). This interesting triple stellar system was
also investigated in an earlier work, using a self-consistent
computer simulation code with revealing results (see Vozikis
& Caranicolas 1994).

One of the main reasons for the transition from ordered
to chaotic motion is the presence of massive objects in the
central regions of the galaxies. Stars reaching the galactic
center on highly eccentric redial orbits can be scattered out
of the galactic plane displaying chaotic motion (see Sell-
wood & Moore 1999). Furthermore, a central mass concen-
tration can strongly perturb the stellar box orbits in elliptical
galaxies which become chaotic (Merritt 1996). Observational
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indications suggest the presence of a strong central mass con-
centration by a very sharply rising rotation curve. A second
reason for chaotic behaviour in the galactic motion is the
presence of strong external perturbations (see Zotos 2011c).
Increasing the magnitude of perturbations weakens or de-
stroys the stability of orbits, thereby increasing the percent-
age of the stochasticity in the stellar system. Resonances
are also responsible for chaotic motion (see Contopoulos &
Grosbøl 1986; Cincotta, Giordano, & Perez 2006). Of course,
resonances are responsible not only for the presence of chaos
in galactic stellar systems but also for the chaotic motion in
the solar system (see Wisdom 1987; Henrard & Caranicolas
1990). The reader can find interesting information about the
chaotic motion in galaxies and its connection with observa-
tional data in Grosbøl (2002).

An extended and diffuse stellar halo envelops the Milky
Way. Although only an extremely small fraction of the stars
in the Solar neighborhood belong to this halo, they can be eas-
ily recognised by their extreme kinematics and metallicities.
Stellar populations with these properties can now be followed
to distances in excess of 100 kpc using luminous tracers such
as RR Lyraes, blue horizontal branch stars, metal-poor giants,
and globular clusters (e.g. Oort 1926; Baade 1944; Eggen,
Lynden-Bell, & Sandage 1962; Searle & Zinn 1978; Vivas
& Zinn 2006; Morrison et al. 2009).

Low surface-brightness features seen in projection around
other galaxies aid in the interpretation of the Milky Way’s
stellar halo and vice versa. Diffuse concentric ‘shells’ of stars
on 100 kpc scales around otherwise regular elliptical galax-
ies have been attributed to accretion events (e.g. Schweizer
1980; Quinn 1984). Recent surveys of M31 (e.g. Ferguson
et al. 2002; Kalirai et al. 2006; McConnachie et al. 2009)
have revealed an extensive halo (to �150 kpc) also display-
ing abundant substructure. The surroundings of other nearby
Milky Way analogues are now being targeted by observations
using resolved star counts to reach very low effective surface
brightness limits, although as yet no systematic survey has
been carried out to sufficient depth (e.g. Zibetti & Ferguson
2004; McConnachie et al. 2006; de Jong, Radburn-Smith, &
Sick 2008; Barker et al. 2009; Ibata, Mouhcine, & Rejkuba
2009). A handful of deep observations beyond the Local
Group suggest that stellar halos are ubiquitous and diverse
(e.g. Sackett et al. 1994; Shang et al. 1998; Malin & Hadley
1999; Martı́nez-Delgado et al. 2009; Faúndez-Abans et al.
2009).

Stellar halos formed from the debris of disrupted satel-
lites are a natural byproduct of hierarchical galaxy for-
mation in the � cold dark matter (�CDM) cosmology.
The entire assembly history of a galaxy may be encoded
in the kinematics, metallicities, ages, and spatial distri-
butions of its halo stars. Even though these stars con-
stitute a very small fraction of the total stellar mass,
the prospects are good for recovering such information
from the halos of the Milky Way, M31, and even galaxies
beyond the Local Group (e.g. Johnston, Hernquist, & Bolte
1996; Helmi & White 1999). In this context, theoretical mod-

els can provide useful ‘blueprints’ for interpreting the great
diversity of stellar halos and their various sub-components,
and for relating these components to fundamental properties
of galaxy formation models. Alongside idealised models of
tidal disruption, ab initio stellar halo simulations in realis-
tic cosmological settings are essential for direct comparison
with observational data.

Therefore, it seems very challenging to construct a galactic
gravitational model of three degrees of freedom (3D), in order
to study and reveal the character of the orbits of the stars, in
a binary stellar system composed of a primary quiet or active
galaxy and a small satellite companion galaxy. The aim of
the present paper is to study the character (regular or chaotic)
of motion in the primary galaxy (hereafter the galaxy) under
the perturbation caused by a satellite galaxy and to connect
the degree of chaos with parameters such as the mass of
the nucleus of the galaxy or the distance between the two
galaxies. We shall also study the behaviour of the velocities
near the central region and try to connect this behaviour with
the scale length of the nucleus. Furthermore, we shall deal
with the case where adiabatic mass transfer takes place in the
galaxy, that is, the galaxy evolves with time. In this initial
research, only the case where the two bodies move in circular
orbits about the center of mass of the system is considered,
for simplicity. We plan to study the case of the satellite in
inclined, elliptic orbits in a future work.

In a recent paper (Zotos 2012b), we investigated in detail
and revealed the regular or chaotic character of motion in
a galactic gravitational model of three degrees of freedom
describing a binary quasar system. According to the model,
two quasars are hosted in a pair of interacting disk galaxies.
Here we must emphasise that in the present research the
second body of the binary stellar system, that is, the satellite
companion galaxy, is considered and treated as a point mass.
On the contrary, in Zotos (2012b), we deal with a much more
complicated binary system, since none of the two interacting
disk galaxies can be treated as point mass due to the fact
that both of them are hosting quasars in their cores. Thus,
we may say that Zotos (2012b) is a reasonable extension and
generalization of the present paper. Taking into account that
in both papers we study the properties of motion of the stars
in similar, but in no case identical binary systems, it is natural
and well expected to use the same philosophy regarding the
basic setup of the gravitational models, the handling of the
numerical calculations, and also the same standard methods
of galactic dynamics and celestial mechanics.

The present article is organised as follows. In Section 2,
we present our gravitational dynamical model, which de-
scribes the motion in a binary stellar system. In Section 3,
we provide an analysis of the two degrees of freedom (2D)
system, considering orbits in the galactic plane (z = 0). In
Section 4, we study the character of motion in the 3D sys-
tem, using different kinds of dynamical methods. In Section
5, we present an interesting theoretical analysis in order to
support the numerically obtained results. In Section 6, we use
a 3D time-dependent model in order to follow the evolution
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of orbits as mass is transported adiabatically from the disk
to the nucleus of the primary galaxy. We close this paper
with Section 7, where the conclusion is presented and a com-
parison between the present theoretical results with obser-
vational data is made. In the same section, we include state-
ments concerning the astrophysical relevance of this research
work.

2 PRESENTATION OF THE DYNAMICAL
MODEL

Our gravitational model describes the dynamical properties
of a binary stellar system which is composed of a primary
galaxy and a small satellite companion galaxy. The primary
galaxy (hereafter the galaxy) consists of a disk and a spherical
nucleus and is described by the potential

VP(r, z) = Vd(r, z) + Vn(r, z)

= − GMd√
b2 + r2 + (a + √

h2 + z2)2

− GMn√
r2 + z2 + c2

n

, (1)

where r2 = x2 + y2, Md and Mn is the mass of the disk and
the nucleus of the primary galaxy respectively, a is the disk’s
scale length, h is the disk’s scale height, b is the core radius of
the disk halo, while cn is the scale length of the nucleus. The
disk of the primary galaxy is represented by the well-known
Miyamoto–Nagai model (Miyamoto & Nagai 1975), with
an additional core radius parameter (see Carlberg & Inna-
nen 1987). The additional core radius is used so that the
rotation curve displays high values at large distances from
the galactic center, justifying in a way the presence of dark
matter. The Plummer sphere we choose to describe the nu-
cleus has been used many times in the past, in order to study
the effects of the introduction of a central mass component
in the core of a galaxy (see Hasan & Norman 1990; Hasan
et al. 1993). The satellite galaxy is described by a point-mass
potential

VS(r, z) = −GMs

d
, (2)

where d2 = x2 + y2 + z2, while Ms is the mass of the satellite
galaxy. Therefore, the total gravitational potential describing
the motion in our binary system is VT(r, z) = VP(r, z) +
VS(r, z).

In our study, we shall use the theory of the circular re-
stricted three-body problem. The two bodies move in circular
orbits in an inertial frame OXYZ, with the origin at the center
of mass of the system, with a constant angular frequency
�p < 0, given by Kepler’s third law

�p =
√

GMt

R3
, (3)

where Mt = Md + Mn + Ms is the total mass of the binary
system, while R is the distance between the centers of the
two galaxies. A clockwise, rotating frame Oxyz, is used with
the axis Oz coinciding with the axis OZ and the axis Ox
coinciding with the straight line joining the two bodies. In
this frame, which rotates with angular frequency �p, the two
galactic centers have fixed positions C1(x, y, z) = (x1, 0, 0)
and C2(x, y, z) = (x2, 0, 0), respectively. The total potential
which is responsible for the motion of a star in the dynamical
system of this binary system is

�t(x, y, z) = �P(x, y, z) + �S(x, y, z) + �rot(x, y), (4)

where

�P(x, y, z) = − GMd√
b2 + r2

a1 + (a + √
h2 + z2)2

− GMn√
r2

1 + c2
n

,

(5)

�S(x, y, z) = −GMs

r2

,

�rot(x, y) = −�2
p

2

[
Ms

Mt

r2
a2 + Rsr

2
a1 − R2 Ms

Mt

Rs

]
,

and

r2
a1 = (x − x1)

2 + y2,

r2
a2 = (x − x2)

2 + y2,
(6)

r2
1 = r2

a1 + z2,

r2
2 = r2

a2 + z2,

with

x1 = −Ms

Mt

R,

x2 = R

(
1 − Ms

Mt

)
= R + x1, (7)

Rs = 1 − Ms

Mt

.

The angular frequency �p is calculated as follows. The
two bodies circulate around their common mass center of the
system with angular frequencies �p1 and �p2 given by

�p1 =
√

1

x1

(−dVS(r)

dr

)
r=R

,

(8)

�p2 =
√

1

x2

(
dVP(r)

dr

)
r=R

.

As the primary galaxy cannot be considered as a mass point,
the two angular frequencies are not equal, in general. How-
ever, this issue can easily be resolved. The angular frequen-
cies of the two bodies can become equal under reasonable
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assumptions. This is justified if the final set of the param-
eters has physical meaning and represents satisfactorily the
dynamical system. The equation �p1 = �p2 leads to a four-
fold infinity of solutions in the four unknowns (a, b, h, cn). If
one chooses proper values (representing the dynamical sys-
tem), say, for the three parameters (b, h, cn), then the equation
�p1 = �p2 gives only two values for the parameter a. One
value is positive, while the other is negative and is rejected.
The author would like to make it clear that after choosing
properly the parameters, the deviation between the two an-
gular frequencies is negligible, so that ν = (|�p1 − �p2|)/�p1

is of the order of 10−8 or even smaller and ξ = |�p1 − �p|
or ξ = |�p2 − �p| is of the order of 10−6. Therefore, we
consider the two angular frequencies almost equal, that is
�p1 = �p2 = �p. Moreover, the treatment of large bodies
with spherical symmetry as mass points is very common in
celestial modeling. This method is quite familiar to those
measuring the masses of disk galaxies.

The above setup in the rotating frame has been applied
successfully in several previous papers studying the nature
of binary stellar systems (see Caranicolas & Papadopoulos
2009; Caranicolas & Zotos 2009a; Caranicolas & Innanen
2009; Zotos 2012b). Thus, we may conclude that the dy-
namical model described in Equations (4) and (5) is a good
and also realistic model for a pair of interacting galaxies at
the given mass ratio. Furthermore, in a recent paper (Zotos
2012b), we used the same treatment and setup, in order to
study the dynamical properties in a binary system of two
interacting galaxies. This could be considered a reasonable
extension of the present study, where the second galaxy here
is assumed to be only a satellite companion. The fact that
the primary galaxy is sufficiently apart from its satellite al-
lows us to assume that the tidal phenomena are very small
and therefore negligible. In particular, our numerical calcula-
tions indicate that the tidal phenomena are significant enough
when the distance between the centers of the two galaxies is
R � 0.95. In the present study, we assume that the range of
this distance is 1.5 � R � 3 and, therefore, the tidal forces
can be neglected.

In this rotating frame, the equations of motion are

ẍ = −∂�t

∂x
− 2�pẏ,

ÿ = −∂�t

∂y
+ 2�pẋ, (9)

z̈ = −∂�t

∂z
,

where the dot indicates derivative with respect to the time.
The only integral of motion for the system of differential
equations (9) is the well-known Jacobi integral given by the
equation

J = 1

2

(
p2

x + p2
y + p2

z

)
+ �t(x, y, z) = EJ, (10)

where px, py, and pz are the momenta per unit mass conjugate
to x, y, and z, while EJ is the numerical value of the Jacobi
integral.

All numerical outcomes of the present work are based
on the numerical integration of the equations of motion
(9), which was made using a Bulirsh–Stöer routine in for-
tran77, with double precision in all subroutines (see Numer-
ical Recipes in FORTRAN, 2nd edn, in Press et al. 1992).
The accuracy of the calculations was checked by the consis-
tency of the Jacobi integral (10), which was conserved up to
the 12th significant figure.

In this article, we shall use a system of galactic units
where the unit of length is 20 kpc, the unit of mass is 1.8 ×
1011 M�, and the unit of time is 0.99 × 108 yr. The velocity
unit is 197 km s−1, while G is equal to unity (see Vozikis &
Caranicolas 1992). In these galactic units, we use the values
a = 0.15, b = 0.368, h = 0.00625, cn = 0.0125, and Ms = 0.2.
The values of the above quantities of the dynamical system
remain constant during this research, while the values of Md,
Mn, and R are treated as parameters. The above numerical
values of the constant dynamical quantities of the system
secure positive density everywhere and free of singularities.

Figures 1(a–c) show the contours of the projections of the
isopotential curves �t(x, y, z) = EJ on the (x, y), (x, z) and
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Figure 1. (a–c) Contours of the projections of the isopotential curves �t(x, y, z) = EJ on the (x, y), (x, z), and (y, z) planes.
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Figure 2. Contours of the projections of the isopotential curves �t(x, y,
z) = EJ on the (x, y) plane. The five Lagrange equilibrium points are indicated
as L1, L2, L3, L4, and L5, while C1 and C2 are the centers of the two galaxies
at a distance of R = 1.5.

(y, z) primary planes, respectively. The values of the param-
eters are Md = 2, Mn = 0.08, R = 1.5, and �p = 0.821922.
Lighter colors indicate higher values of EJ. Figure 2 shows
the contours of the isopotential curves �t(x, y, z) = EJ, on
the (x, y) plane, with some additional details regarding the
stability and the structure of the dynamical system. More-
over, L1, L2, L3, L4, and L5 are the five Lagrange equilibrium
points, while C1 and C2 are the centers of the two galaxies at
a distance of R = 1.5. At these equilibrium points, we have

∂�t(x, y, z)

∂x
= ∂�t(x, y, z)

∂y
= ∂�t(x, y, z)

∂z
= 0. (11)

Note that L1, L2, and L3 are the unstable saddle equilibrium
points, while L4 and L5 are the triangular points (see Binney
& Tremaine 2008).

The rotation curve of the primary galaxy when Md = 2
and Mn = 0.08 is shown as the black line in Figure 3. In the
same plot, the red line is the contribution from the spherical
nucleus, while the blue line is the contribution from the disk–
halo component. We observe that at small distances from the
primary galactic center r � 0.1 length units, which equals 2
kpc, dominates the contribution from the spherical nucleus,
while at larger distances r < 2 kpc, the disk–halo contribution
is the dominant factor.

It would be very illuminating to compute the mass density
distribution ρ(x, y, z) of our binary system, derived from the
total potential VT(r, z), using the Poisson’s equation

ρ(x, y, z) = 1

4π
∇2VT(x, y, z)

= 1

4π

(
∂2VT

∂x2
+ ∂2VT

∂y2
+ ∂2VT

∂z2

)
. (12)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
r

0

0.25

0.5

0.75

1

1.25

1.5

θ

Figure 3. The rotation curve of the primary galaxy is shown as the black
line. The red line is the contribution from the spherical nucleus, while the
blue line is the contribution from the disk–halo potential. (Colors available
only in the electronic version of the article).

Figures 4(a–c) show the projections of the isodensity curves
ρ(x, y, z) = const on the (x, y), (x, z), and (y, z) primary
planes, respectively, when Md = 2, Mn = 0.08, R = 1.5,
and �p = 0.821922. In the first two plots, we can observe the
small variations on density distribution, caused by the mass of
the satellite galaxy. Figures 5(a–c) depict the 3D plots of the
values of the total mass density ρ(x, y, z) on the same primary
planes. Once again, we can distinguish the spherical nucleus
at the central region of the primary galaxy, the well-formed
disk structure, and also the abrupt peak of the mass density at
the position of the satellite galaxy (x�1.36). These 3D plots
ensure that the mass density of our binary galactic system
has positive values everywhere. Going one step further, we
present in Figures 6(a–c) the evolution of the mass density
along the x, y, and z axes, respectively. One can observe that
in all cases the mass density obtains high values near the two
galactic centers, while it reduces and tends asymptotically
to zero, as the distance from the centers of the two galaxies
increases. The values of the mass density ρ on the vertical
axis are in M� pc−3.

3 STRUCTURE OF THE 2D HAMILTONIAN
SYSTEM

In this section, we shall investigate the properties of motion
in the Hamiltonian system of two degrees of freedom. This
can be derived from Equation (10) if we set z = pz = 0. Then,
the corresponding Hamiltonian is

J2 = 1

2

(
p2

x + p2
y

)
+ �t(x, y) = EJ2, (13)

where EJ2 is the numerical value of J2. As the dynamical
system is now two-dimensional, we can use the classical,
qualitative method of plotting the successive intersections of
the 2D orbits, using the (x, px), y = 0, py < 0 Poincaré surface
of section (PSS), in order to determine the regular or chaotic
character of motion. This method has been extensively ap-
plied to Hamiltonian systems with two degrees of freedom,
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Figure 4. (a–c) Contours of the projections of the isodensity curves ρ(x, y, z) = const on the (x, y), (x, z), and (y, z) planes.
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Figure 5. (a–c) 3D plots of the distribution of the total mass density ρ(x, y, z) on the (x, y), (x, z), and (y, z) planes.
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Figure 6. (a–c) The evolution of the total mass density along the x, y, and z axes.

as in these systems the PSS is a two-dimensional plane. The
results obtained from the study of the 2D system will be used
to help us understand the structure of the more complicated
phase space of the 3D system, which will be presented in the
following section.

Figures 7(a–b) show the (x, px), y = 0, py < 0 Poincaré
phase plane, for the motion of a star in the primary galaxy,
which obtained by numerical integration of the equations of
motion (9). In this case, the distance between the centers of
the two galaxies is R = 1.5 and �p = 0.821922. The value
of the Jacobi integral is EJ2 = −2.6. This particular value of
the Jacobi integral will remain constant for all our numerical
experiments. In Figure 7(a) we have Md = 2 and Mn = 0.08,
that is, the primary galaxy has a dense and massive nucleus.
We observe a large chaotic area, while the regular region is
mainly confined around the stable retrograde periodic point.
There are also some small islands of invariant curves embed-

ded in the chaotic sea, corresponding to secondary resonant
orbits. Note that near the center of the primary galaxy, the
velocity obtains high values of the order of 900 km s−1. This
results from the presence of the dense nucleus in the core
of the galaxy and it is characteristic of strong galactic activ-
ity. The outermost black solid line defines the zero velocity
curve. Figure 7(b) is similar to Figure 7(a), but when Md =
2.08 and Mn = 0. As the total mass of the system is conserved,
this means that now the disk occupies all the available mass
of the primary galaxy. In this case, the pattern has two main
differences from the pattern shown in Figure 7(a). The first
difference is that the chaotic region is smaller and the second
is that the velocity near the galactic core is smaller, about
470 km s−1, than that of Figure 7(a). Moreover, some sec-
ondary resonances appear in the area of the retrograde orbits.
Some small sticky regions are also present in both cases (ac-
tive or quiet galaxy). Therefore, one can say that the structure
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Figure 7. The (x, px) Poincaré phase plane when R = 1.5 and �p = 0.821922. (a) Md = 2 and Mn = 0.08; (b) Md = 2.08 and Mn = 0.
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Figure 8. (a–b) Similar to Figures 7(a–b) but when R = 2 and �p = 0.533854.

of chaos in galaxies is a result not only of galactic interaction
but also of the nuclear galactic activity. In other words, the
presence of the dense and massive nucleus in the galactic
core of the primary galaxy affects drastically the character of
motion of the stars.

Figure 8(a) is similar to Figure 7(a) but when the distance
between the centers of two the galaxies is R = 2 and �p =
0.533854. The majority of the orbits around the direct and
retrograde periodic point are ordered. There is a significant
chaotic area mainly near the central region of the galaxy. A
high-velocity value is once again observed near the galac-
tic core of the primary galaxy, while some secondary reso-
nances are also present. Figure 8(b) is similar to Figure 8(a),
but when the galaxy is quiet, that is, when Mn = 0. Here,
the secondary resonances look more prominent, while only
a small and confined chaotic layer around the direct periodic
point is present. Furthermore, as the primary galaxy is quiet,
the velocity near the center of the galactic core is smaller
than that observed in Figure 8(a). Figures 9(a–b) are similar
to Figures 8(a–b), but when the distance between the cen-

ters of the two galaxies is R = 2.5 and �p = 0.381995. In
Figure 9(a), we observe that there is a relatively small chaotic
layer confined mainly near the central region of the galaxy,
while the rest of the phase plane is covered by invariant curves
corresponding to regular orbits circulating around the stable
direct and retrograde periodic point. Figure 9(b) is similar to
Figure 9(a) when the galaxy is quiet. All orbits seem to be
regular. Chaotic motion was not observed and, if present, is
negligible. Figures 10(a–b) are similar to Figures 9(a–b) but
when the distance between the centers of the two galaxies is
R = 3 and �p = 0.290593. In Figure 10(a), we observe that
the entire phase plane is covered by invariant curves corre-
sponding to regular orbits circulating around the stable direct
and retrograde periodic point, while there is no indication of
chaotic motion. Figure 10(b) is similar to Figure 10(a), but
when the galaxy is quiet. Once again, all orbits are regular
and chaotic motion was not observed. Therefore, we may
conclude that the primary galaxy, for large separations from
its companion, does not show chaotic motion irrespective of
the presence of the dense and massive nucleus in the galactic
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Figure 9. (a–b) Similar to Figures 7(a–b) but when R = 2.5 and �p = 0.381995.
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Figure 10. (a–b) Similar to Figures 7(a–b) but when R = 3 and �p = 0.290593.

core. The outermost solid curve in the (x, px) phase planes
shown in Figures 7– 10 is the limiting curve in each case.

Figure 11 shows the percentage A% on the (x, px) phase
plane covered by chaotic orbits as a function of the distance
R between the centers of the two galaxies, in two different
cases. In the first case, the primary galaxy is active and the
values of the parameters are Md = 2 and Mn = 0.08, while in
the second case the primary galaxy is quiet and, therefore, the
values of the parameters are Md = 2.08 and Mn = 0. The value
of the angular frequency �p is calculated for each particular
value of the distance R from Equation (3). The range of
the values regarding the distance between the centers of the
two galaxies is 1.5 � R � 3. We observe in Figure 11 that
the chaotic percentage A% decreases exponentially, as the
distance R increases in both cases (active and quiet primary
galaxy). Moreover, both fitting curves converge to zero, when
R = 3. The lower fitting curve, which corresponds to the case
when the primary galaxy is quiet, presents a more rapid
reduction and reaches more quickly (when R � 2.35) to the

zero limit. A more detailed view of Figure 11 reveals that for
each particular value of the distance R, the chaotic percentage
A% is always smaller when the primary galaxy is quiet. We
must point out that the chaotic percentage A% is calculated as
follows: we choose 103 orbits with random initial conditions
(x0, px0) in each phase plane and then divide the number of
those who correspond to chaotic orbits to the total number of
the tested orbits.

To have a better estimation about the degree of chaos in
our dynamical system in every case, we have computed the
average value of the Lyapunov characteristic exponent (LCE;
see Lichtenberg & Lieberman 1992). Figure 12 shows a plot
of the 〈LCE〉 as a function of the distance R between the
centers of the two galaxies, in two different cases. As pre-
viously, in the first case, the primary galaxy is active and
the values of the parameters are Md = 2 and Mn = 0.08,
while in the second case the primary galaxy is quiet and,
therefore, the values of the parameters are Md = 2.08 and
Mn = 0. The value of the angular frequency �p is calculated
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Figure 11. A plot of the area A% of the (x, px) phase plane covered by
chaotic orbits as a function of the distance R, when the primary galaxy is
active or quiet.
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Figure 12. A plot of the average value of the 〈LCE〉 as a function of the
distance R, when the primary galaxy is active or quiet, for the 2D dynamical
system.

for each particular value of the distance R from Equation
(3). The range of values regarding the distance between the
centers of the two galaxies is again 1.5 � R � 3. One can
see in Figure 12 that 〈LCE〉 decreases almost linearly as the
distance R increases when the primary galaxy is active. On
the contrary, when the nucleus is absent, we observe that the
corresponding fitting curve presents a more rapid reduction.
Once again, as pointed out in Figure 11, for each particular
value of the distance R, the average value 〈LCE〉 is always
smaller when the primary galaxy is quiet. Moreover, both fit-
ting curves converge to zero when R = 3. Here we must note
that it is well known that the value of the LCE is different in
each chaotic component (see Saito & Ichimura 1979). As we
have in all cases regular regions and only one unified chaotic
area in each (x, px) phase plane, we calculated the average
value of the LCE by taking 103 orbits with random initial
conditions (x0, px0) in the chaotic area in each case and we
integrated each orbit for a time interval of 105 time units in
order to obtain a reliable value of the LCE regarding the na-
ture of the orbit. Here we have to point out that all calculated

LCEs corresponding to chaotic orbits were different only on
the fifth decimal point in the same chaotic region.

In Figures 13(a–h) we present eight representative orbits
of the 2D dynamical system. Figure 13(a) shows a quasi-
periodic orbit circulating around the primary galaxy, with
initial conditions x0 = 0.167, y0 = 0, and px0 = 0, while
the value of py0 is obtained from the Jacobi integral (13)
for all orbits. The values of all the other parameters are as
in Figure 7(a). Figure 13(b) shows a periodic orbit moving
around the center of the primary galaxy, with initial condi-
tions x0 =−0.1895, y0 = 0, and px0 = 0, while the values of all
other parameters are as in Figure 7(b). This orbit is character-
istic of the 1:2 resonance. In Figure 13(c), a figure-eight type
periodic orbit, characteristic of the 1:3 resonance, is shown.
The initial conditions are x0 = 0.5788, y0 = 0, and px0 = 0,
while the value of all other parameters are as in Figure 8(a).
Figure 13(d) shows a periodic orbit moving around the pri-
mary galaxy with initial conditions x0 = 0.4295, y0 = 0, and
px0 = 0, while the values of all the other parameters are as
in Figure 7(b). This orbit is a characteristic example of the
3:3 resonance. In Figure 13(e), a periodic orbit with initial
conditions x0 = 0.7445, y0 = 0, and px0 = 0 is presented.
This orbit belongs to the family of the 2:3 resonant orbits.
The values of all other parameters are as in Figure 7(a). In
Figure 13(f), we see a periodic orbit with initial conditions
x0 = −0.9854, y0 = 0, and px0 = 0. The values of all other
parameters for this orbit are as in Figure 7(b). Figure 13(g)
shows a complicated resonant periodic orbit of higher mul-
tiplicity, circulating around the primary galaxy, with initial
conditions x0 = 0.673, y0 = 0, and px0 = 0, while the values
of all the other parameters are as in Figure 7(a). This orbit
produces a set of nine tiny islands of invariant curves which
are embedded in the retrograde area of the unified chaotic
domain shown in Figure 7(a). A chaotic orbit with initial
conditions x0 = −0.31, y0 = 0, and px0 = 0 is given in Figure
13(h). The values of all other parameters for this orbit are as
in Figure 7(a). We observe that stars moving in chaotic orbits
pass arbitrarily around the galactic core without getting close
enough. All orbits shown in Figures 13(a–h) were calculated
for a time period of 150 time units.

4 STRUCTURE OF THE 3D HAMILTONIAN
SYSTEM

In this section, we shall investigate the regular or chaotic
nature of motion in the 3D Hamiltonian system described
by Equation (10). In order to keep things simple, we shall
use our experience gained from the study of the 2D dynam-
ical system in order to obtain a clear picture regarding the
properties of motion in the 3D dynamical model. We are
particularly interested in locating the initial conditions in the
3D dynamical system, producing regular or chaotic orbits. A
convenient way to obtain this is to start from the (x, px) phase
planes of the 2D system with the same value of the Jacobi
integral as used in the 2D system and described in the previ-
ous section. Specifically, the regular or chaotic nature of the
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Figure 13. (a–h) Eight representative regular orbits of the 2D dynamical system. The values of the initial
conditions and all the other parameters are given in the text.

PASA, 30, e012 (2013)
doi:10.1017/pasa.2012.012

https://doi.org/10.1017/pasa.2012.012 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2012.012


Order and Chaos in a Galaxy with a Satellite Companion 11

1.5 1.75 2 2.25 2.5 2.75 3
R

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Active

Quiet

〈L
C
E
〉

Figure 14. A plot of the average value of the maximum 〈LCE〉 as a function
of the distance R, when the primary galaxy is active or quiet, for the 3D
dynamical system.

3D orbits is found as follows: we choose initial conditions
(x0, px0, z0), y0 = pz0 = 0, such that (x0, px0) is a point on the
phase planes of the 2D system. The points (x0, px0) lie inside
the limiting curve

1

2
p2

x + �t(x) = EJ2, (14)

which is the limiting curve containing all the invariant curves
of the 2D system. Thus, we take EJ = EJ2. For this purpose,
a large number of orbits (about 103) were computed with
initial conditions (x0, px0, z0), where (x0, px0) is a point in the
chaotic regions of the (x, px) phase planes of Figures 7(a–
b), 8(a–b), 9(a–b), and 10(a–b), with all permissible values
of z0 and pz0 = 0. Remember that as we are on the phase
plane, we have y0 = 0, while in all cases the value of py0 was
obtained from the Jacobi integral (10). All tested orbits were
found to be chaotic. Moreover, it is well known that, usually,
chaotic domains in 2D systems lead to chaotic motion in 3D
space when an additional degree of freedom is added, like a
‘perturbation’. Therefore, one may conclude that orbits with
the initial conditions (x0, px0) be a point in the chaotic regions
of the 2D phase planes and, for all permissible values of z0,
remain chaotic in the 3D system as well.

In Figure 14, we present a plot of the average value of the
LCE of the 3D system, as a function of the distance R between
the centers of the two galaxies, in two different cases. As in
the previous section, in the first case, the primary galaxy is
active and the values of the parameters are Md = 2 and Mn
= 0.08, while in the second case the primary galaxy is quiet
and, therefore, the values of the parameters are Md = 2.08 and
Mn = 0. The value of the angular frequency �p is calculated
for each particular value of the distance R from Equation
(3). The range of values regarding the distance between the
centers of the two galaxies is again 1.5 � R � 3. One can see
in Figure 14 that the 〈LCE〉 decreases almost linearly as the
distance R increases when the primary galaxy is active when
R � 2.25. On the contrary, when the nucleus is absent, we
observe that the corresponding fitting curve presents a more

rapid reduction. Once again, as pointed out in Figure 12
regarding the 2D system, for each particular value of the
distance R, the average value 〈LCE〉 is always smaller when
the primary galaxy is quiet. Moreover, both fitting curves
converge earlier to zero value, than in Figure 12. The method
we used in order to compute the 〈LCE〉 in each case is the
same as described in Figure 12. For all tested chaotic orbits
in the 3D system, the initial value of z0 is common and equal
to 0.1. Here we must point out that if we compare the plot of
the 3D system shown in Figure 14 with that of the 2D system
shown in Figure 12, we observe that in each case (active and
quiet galaxy, respectively) the average values of the LCEs
of the 3D system are smaller than those of the 2D system.
Therefore, we may conclude that the degree of chaos in the
primary galaxy is smaller when the dynamical system has
three degrees of freedom.

Our next step is to study the character of orbits with ini-
tial conditions (x0, px0, z0), y0 = pz0 = 0, such that (x0, px0)
is a point in the regular regions of Figures 7(a–b), 8(a–b),
9(a–b), and 10(a–b). The phase space of a conservative sys-
tem of three degrees of freedom has six dimensions, i.e. in
Cartesian coordinates (x, y, z, ẋ, ẏ, ż). For a given value of
the Jacobi integral, a trajectory lies on a five-dimensional
manifold. In this manifold, the surface of the section is four-
dimensional. This does not allow us to visualise and interpret
directly the structure and the properties of the phase space in
dynamical systems of three degrees of freedom. One way to
overcome this problem is to project the surface of the section
to space with lower dimensions. In fact, here, we will apply
the method introduced by Pfenniger (1984) (see also Revaz
& Pfenniger 2001). We take sections in the plane y = 0,
py < 0 of 3D orbits, whose initial conditions differ from the
plane parent periodic orbits only by the z component. The
set of the resulting four-dimensional points in (x, px, z, pz)
phase space is projected on the (z, pz) plane. If the projected
points lie on a well-defined curve, we call it an ‘invariant
curve’, then the motion is regular, while if not, the motion
is chaotic. The projected points on the (z, pz) plane show
nearly invariant curves around the periodic points at z = 0,
pz = 0, as long as the coupling is weak. When the coupling
is stronger, the corresponding projections in the (z, pz) plane
displays an increasing departure of the plane periodic point,
up to making a direct orbit a retrograde one and vice versa.
Here, we must define what one means by direct and retro-
grade 3D orbit. If consequents in the (z, pz) section of the 3D
orbit drop in one of the two domains of the corresponding
section of 2D orbits at the same value of the Jacobi integral
EJ, we can distinguish between direct and retrograde motion.
Orbits which visit both domains are intermittently direct or
retrograde.

Figures 15(a–b) show two typical (z, pz) sections of 3D or-
bits, starting with initial conditions close to two different sta-
ble periodic points on the (x, px) phase planes of the 2D sys-
tem. In order to obtain the results shown in Figure 15(a), we
have taken the point (x0, px0) = (0.25, 0) representing approx-
imately the position of the retrograde periodic point in the
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Figure 15. (a–b) Projections of the sections of 3D orbits with the plane y = 0 when py < 0. The set of the four-dimensional points (x, px, z, pz) is projected
on the (z, pz) plane.

(x, px) phase plane of Figure 7(a). Similarly, in Figure 15(b)
we can observe the (z, pz) projections near the retrograde
periodic point in the (x, px) phase plane of Figure 7(b). The
position of the periodic point is (x0, px0) = (0.25, 0). Note
that in both cases the numerical results indicate that for small
values of z0 the motion is regular, while for larger values of
z0 the motion becomes chaotic. The integration time for each
‘invariant curve’ shown in Figures 15(a–b) is 3 × 103 time
units. Numerical calculations not given here suggest that the
above method can be applied in all regular regions around
each retrograde or direct stable periodic point of Figures 7(a–
b), 8(a–b), 9(a–b), and 10(a–b).

We must emphasise that the results presented in
Figures 15(a–b) are rather qualitative and can be considered
as an indication that the transition from regularity to chaos
in 3D orbits occurs as the value of z0 increases. In order to
form a more complete and accurate view of the phase space
in the 3D system, we computed a large number of 3D orbits
(approximately 103) near each periodic point of the (x, px)
phase planes of the 2D system, for different initial conditions
(x0, px0) and also for different values of z0. Our target was
to determine the average minimum value of z0 for which the
nature of a 3D orbit changes from regular to chaotic. Table
1 shows the value 〈zmin〉 near the direct and retrograde stable
periodic points of Figures 7(a–b), 8(a–b), 9(a–b), and 10(a–
b), for four different values of distance R between the centers
of the two galaxies. From Table 1 we can induce three impor-
tant results. (i) In every case (active or quiet primary galaxy)
the minimum value of z0 in the regions near the retrograde
stable periodic points is always larger than the corresponding
of the regions of the direct periodic points. (ii) If we compare
each kind of galaxy regarding the nuclear activity, (active
or quiet) for the same distance R, we observe that when the
nucleus is not present at the galactic core (quiet – non-active
primary galaxy), the 3D orbits can approach higher values of
z0 and remain regular. On the other hand, when the nucleus

is present, the value of 〈zmin〉 is smaller. (iii) As the distance
between the centers of the galaxies increases, the minimum
initial value of z0 for which a 3D can remain regular increases
in both cases (active or quiet primary galaxy). This means
that as the two galaxies are at large distances, their mutual in-
teractions are weak enough and, therefore, the majority of the
3D orbits are ordered. Moreover, at large distances, one can
conclude that the main factor responsible for the observed
chaotic motion is the nuclear activity of the nucleus in the
core of the primary galaxy.

So far, we have seen that 3D orbits with initial conditions
(x0, px0, z0), such that (x0, px0) is a point in the chaotic regions
of the 2D system, for all permissible values of z0 are chaotic.
On the other hand, the nature (ordered or chaotic) of 3D orbits
with initial conditions (x0, px0, z0), such that (x0, px0) is a point
in the regular regions around the stable direct or retrograde
periodic points of the 2D system, depends on the particular
value of z0, as we can see in Table 1. We did not feel that it
was necessary to try to define the values of 〈zmin〉 for each
regular region of the 2D system corresponding to secondary
resonances which are represented by sets of multiple small
islands of invariant curves in the (x, px) phase planes shown
in Figures 7(a–b), 8(a–b), 9(a–b), and 10(a–b). Numerical
results indicate that 3D orbits with initial conditions (x0,
px0, z0), such that (x0, px0) is a point in the regular regions
corresponding to secondary resonances of the 2D system,
remain regular for 〈zmin〉�0.052, while for larger values of
z0, they change their character from regular to chaotic.

In Figures 16(a–h) we present eight typical orbits of the
3D dynamical system. Figure 16(a) shows a regular quasi-
periodic orbit circulating around the primary galaxy, with ini-
tial conditions x0 = 0.167, y0 = 0, z0 = 0.01, and px0 = pz0 =
0, while the value of py0 is always found from the Jacobi
integral (10). In Figure 16(b), we observe a 3D periodic orbit
characteristic of the 1:2 resonance. This orbit has initial con-
ditions x0 = −0.1895, y0 = 0, z0 = 0.02, and px0 = pz0 = 0.
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Figure 16. (a–h) Eight representative regular orbits of the 3D dynamical system. The initial conditions and
more details regarding the values of all the other parameters are given in the text.
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Table 1. Average Value of the Minimum z0 Near the Direct and
Retrograde Periodic Points, for Four Different Values of the Dis-
tance R

Distance Case Region 〈zmin〉

R = 1.5 Active Direct –
Retrograde 0.0792

Quiet Direct –
Retrograde 0.0802

R = 2.0 Active Direct 0.0865
Retrograde 0.0912

Quiet Direct 0.0896
Retrograde 0.0964

R = 2.5 Active Direct 0.0983
Retrograde 0.1025

Quiet Direct 0.1012
Retrograde 0.1107

R = 3.0 Active Direct 0.1098
Retrograde 0.1157

Quiet Direct 0.1185
Retrograde 0.1214

Figure 16(c) shows a 3D periodic orbit with initial conditions
x0 = 0.5788, y0 = 0, z0 = 0.01, and px0 = pz0 = 0, circulating
around the center of the primary galaxy. In Figure 16(d), we
see a quasi-periodic orbit, with initial conditions x0 = 0.4295,
y0 = 0, z0 = 0.015, and px0 = pz0 = 0. A 3D resonant orbit
with initial conditions x0 = 0.7445, y0 = 0, z0 = 0.01, and
px0 = pz0 = 0, moving around the galactic center, is shown in
Figure 16(e). In Figure 16(f) we observe a 3D periodic orbit
circulating around the primary galaxy. This orbit has ini-
tial conditions x0 = −0.9854, y0 = 0, z0 = 0.01, andpx0 =
pz0 = 0. In Figure 16(g) we observe a complicated 3D res-
onant periodic orbit with initial conditions x0 = 0.673, y0 =
0, z0 = 0.005, andpx0 = pz0 = 0. Figure 16(h) shows a 3D
chaotic orbit with initial conditions x0 = −0.31, y0 = 0, z0 =
0.1, and px0 = pz0 = 0. This orbit goes arbitrarily close to the
primary galaxy and it is deflected to higher values of z, on
approaching the dense and massive nucleus. We must note
that in all 3D orbits shown in Figures 16(a–h), the initial
conditions (x0, px0) and the values of all the other parameters
(Md, Mn, R) are as in the corresponding 2D orbits shown
in Figures 13(a–h). Moreover, we observe that all regular
3D orbits shown in Figures 16(a– g) stay near the galac-
tic plane and, therefore, support the disk structure of the
primary galaxy. The numerical integration time for all 3D
orbits shown in Figures 16(a–h) is 200 time units.

5 A THEORETICAL APPROACH

In this section, we shall present some theoretical arguments,
together with elementary numerical calculations, in order
to explain the numerically obtained relationships given in
Figures 11, 12, and 14. Moreover, we will quote different
kinds of theoretical techniques in an attempt to explain and
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Figure 17. A plot of the total |Ft | force as a function of the distance R, when
the primary galaxy is active or quiet.

study deeper the dynamical structure of the 2D or 3D Hamil-
tonian system.

Since the potential of the nucleus is integrable with spher-
ical symmetry, the observed chaotic phenomena in our dy-
namical system should derive mainly from the total |Ft| force.
Figure 17 shows a plot of the |Ft| force as a function of the
distance R between the two galaxies at the point Pc(x0, y0,
z0) = (−0.12, 0.02, 0.01). This point is very close to the
center of the primary galaxy, where the chaotic phenomena
are more prominent. One may observe from the plot shown
in Figure 20 that the two curves, which correspond to two
different cases (active and quiet primary galaxy), have al-
most the same pattern. In both cases, the |Ft| force decreases,
tending asymptotically to zero, as the value of the distance
R increases. Here, we must point out that the values of the
|Ft| force are larger when the primary galaxy is active and,
therefore, the corresponding curve is above the one corre-
sponding to the quiet galaxy. Thus, we conclude that when
a massive and dense nucleus is present in the center of the
primary galaxy, the extent of the chaotic orbits is larger than
in the case in which the primary galaxy is quiet. One can
see that the pattern between the |Ft| force and the distance R
shown in Figure 17 and obtained theoretically is very sim-
ilar to those connecting the chaotic percentage A% or the
LCE with the distance R shown in Figures 11, 12, and 14,
respectively, which have been obtained numerically. Thus,
the numerically obtained results given in Figures 11, 12, and
14 regarding the evolution of the chaos with respect to the
distance R can be justified and explained, in a way, theoret-
ically through the relation between the strength of the total
force and the distance R depicted in Figure 17.

Furthermore, it would be of particular interest to study
the structure of the velocity profile that is the plot of the
total velocity of a test particle (star), υ =

√
ẋ2 + ẏ2 + ż2 as a

function of time, for ordered and chaotic motion. Figure 18(a)
shows the velocity profile for a time period of 500 time units
corresponding to the regular 3D orbit shown in Figure 16(a).
Here, the velocity profile is quasi-periodic and the maximum
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Figure 18. (a) The total velocity profile of the 3D orbit shown in Figure 16(a). We observe a nearly periodic pattern. (b) The total velocity profile
for the chaotic 3D orbit shown in Figure 16(h). In this case, there are abrupt changes in the profile’s pattern indicating chaotic motion.
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Figure 19. A plot of the Lz component of the total angular momentum versus time for (a) the regular 3D orbit shown in Figure 16(a) and (b) the
chaotic 3D orbit shown in Figure 16(h).

value of the velocity is about 450 km s−1. This suggests that
the regular 3D motion occurs in small velocities. Figure 18(b)
shows the velocity profile for a time period of 500 time
units corresponding to the chaotic 3D orbit shown in Figure
16(h). In this case, we can discuss two aspects. The first is
that the velocity obtains high values up to 790 km s−1 and
the second is that the velocity profile appears to be highly
asymmetric, displaying abrupt changes and large deviations
between the maxima and also between the minima in the
[υ−t] plot. Therefore, we may conclude that the chaotic 3D
motion occurs in high and abruptly changing velocities.

The physical parameter playing an important role in the
orbital behaviour of the stars is the Lz component of the total
angular momentum. From our previous experience, we know
that on approaching a dense and massive nucleus, low an-
gular momentum stars are scattered off the galactic plane,
displaying chaotic motion (Caranicolas & Innanen 1991;
Caranicolas & Papadopoulos 2003; Caranicolas & Zotos
2010; Zotos 2011a, 2011c). Of course, here in 3D phase
space, things are more complicated than in axially symmet-
ric dynamical models, where the Lz component is conserved.
As the motion takes place in a rotating non-axially symmet-
ric system, the Lz component is not conserved and it is given

by

Lz = xẏ − ẋy − �p(x
2 + y2). (15)

Nevertheless, we can compute numerically its mean value
〈Lz〉 using the formula

〈Lz〉 = 1

n

n∑
i=0

Lzi. (16)

Our numerical calculations suggest that the chaotic orbits
have low values of 〈Lz〉, while regular orbits obtain high val-
ues of 〈Lz〉. Figure 19(a) shows a plot of the evolution of the Lz
component with the time for the regular orbit of Figure 16(a).
In this case, we observe that Lz is nearly a quasi-periodic
function of time, while 〈Lz〉 = −0.12271. Figure 19(b) is
similar to Figure 19(a) but for the chaotic orbit shown in Fig-
ure 16(h). Here one can see abrupt changes in Lz during the
chaotic motion, while for this chaotic orbit we have 〈Lz〉 =
−1.24662. In both cases, the time interval of the numerical
integration is 500 time units, while n = 104.

In what follows we shall present a semi-theoretical analy-
sis, in order to give a more detailed picture of the structure
of the dynamical system and its behaviour. The forces acting
on a test particle along the x and y axes are given by the
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Figure 20. Contours of the Fx = const (elliptic shaped) together with the
contours Fy = const (figure-eight-shaped). Details are given in the text.

equations

Fx = − Mn(x − x1)(
r2

a1 + c2
n

)3/2 − Md(x − x1)[
b2 + r2

a1 + (a + h)2
]3/2

− Ms(x − x2)

r3
a2

+ �2
px − 2�pẏ,

(17)

Fy = − Mny(
r2

a1 + c2
n

)3/2 − Mdy[
b2 + r2

a1 + (a + h)2
]3/2

− Msy

r3
a2

+ �2
py + 2�pẋ.

It is obvious from Equations (17) that the strength of both
forces increases as the mass of the nucleus or the disk in-
creases or their scale lengths decrease. Figure 20 shows the
contours of Fx = const together with the contours Fy = const.
The values of all other parameters are as in Figure 2. The con-
tours of Fx = const look like ellipses, while the contours of
Fy = const have a figure-eight shape. Inside the first ‘ellipse’
we have Fx < 0, while inside the second ‘ellipse’ we have
Fx<0. On the other hand, inside the lower figure-eight curve
we have Fy < 0, while inside the upper figure-eight curve
we have Fy<0. Looking carefully near the galactic center,
we observe that there are areas where Fx is positive and Fy is
negative at the same time and vice versa. There are also areas
where both forces are positive or negative at the same time.
Therefore, we conclude that near the center of the primary
galaxy, there are strong attractive and repulsive forces acting
on the test particle (star). These forces are responsible for the
chaotic scattering of the star near the galactic center, leading
to chaotic motion.

At this point, we can expand the semi-theoretical anal-
ysis described above, in order to give a more detailed and
complete picture of the structure of the 3D dynamical sys-

tem and its behaviour. The force acting on a test particle
along the z axis is given by the equation

Fz = − Mnz(
r2

1 + c2
n

)3/2 − Md(a + rz)z

rz

[
b2 + r2

a1 + (a + rz)
2
]3/2 − Msz

r3
2

,

(18)
where rz = √

h2 + z2. It is obvious from Equation (18) that
the strength of the Fz force increases as the mass of the
nucleus or the disk increases or their scale lengths decrease.
Figure 21(a) shows a 3D plot of the value of the Fz force
on the (x, z) plane. Figure 21(b) depicts the contours of the
projections Fz = const on the (x, z) plane. We observe that
for positive values of z, the Fz force is negative, while for
negative values of z, the value of the Fz is positive, near the
center of the primary galaxy. Therefore, lighter colors on the
lower half part of the (x, z) plane indicate higher values of
the Fz force, while darker colors on the upper half part of
the same plane indicate lower values of the Fz force. One
can observe that near the active galactic core which hosts
a dense and massive nucleus, the test particle experiences
a very strong Fz force. The values of all the parameters in
Figures 21(a–b) are as in Figure 2.

Last but not least, we also investigate the behaviour of
the total velocity near the galactic core as a function of the
distance x. To do that, we consider the limiting curve, that
is, the curve containing all the invariant curves on the (x, px)
phase plane. This can be obtained if we set y = z = py = pz
= 0 in Equation (10), yielding

1

2
p2

x = 1

2
υ2 = EJ − �t(x), (19)

where we have set px = υ because at the limiting curve the
px velocity is the total velocity (see also Papadopoulos &
Caranicolas 2006). In Figure 22, we observe two plots of
the total velocity υ as a function of the distance x, derived
using relation (19). The values of all the parameters are as
in Figure 2. The dashed line corresponds to the case of the
quiet primary galaxy, while the solid line corresponds to the
case when the primary galaxy hosts a nucleus in its core and,
therefore, is active. We see that the velocity is about the same
for all values of x, except near the galactic center, that is when
x�−0.13, where higher velocities correspond to the active
galactic center, hosting massive and dense nucleus.

One of the factors responsible for the chaotic motion and
other resonance phenomena, such as islandic motion corre-
sponding to sets of multiple islands of invariant curves or
invariant tori, are the several inner Lindblad resonances

�p = � − n

m
κ, (20)

where � and κ indicate the circular and the epicycle fre-
quency of the star, respectively, while m and n are integers.
The main resonances for the two cases (active and quiet
primary galaxy) together with the corresponding resonance
radii r1 and r2, when R = 2.35 and �p = 0.419146, are given
in Table 2

PASA, 30, e012 (2013)
doi:10.1017/pasa.2012.012

https://doi.org/10.1017/pasa.2012.012 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2012.012


Order and Chaos in a Galaxy with a Satellite Companion 17

0.16

0.14

0.12

0.1

0.05

0.025

0

0.025

0.05

z

200
100
0
100
200

Fz

0.16

0.14

0.12

0.1

x

0.16 0.14 0.12 0.1
x

0.06

0.04

0.02

0

0.02

0.04

0.06

z

(a) (b)

Figure 21. (a) A 3D plot of the value of the Fz force on the (x, z) plane and (b) contours of the projections Fz = const on the (x, z) plane. Lighter
colors indicate higher values of Fz. For positive values of z the Fz force is negative, while for negative values of z the Fz force is positive.
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Figure 22. A plot of the total velocity υ(x) as a function of the distance x,
for the two cases (active and quiet primary galaxy).

Figure 23(a) shows a plot of the curves � − nκ/m in the
case where the primary galaxy is active, as a function of the
radius r, when R = 2.35. We choose this particular value of
the distance between the two galaxies because at this distance
we can observe a large variety of Lindblad resonances. The
numbers 1, 2, 3, and 4 indicate the curves � − 2κ/3, � −
3κ/4, � − 5κ/8, and � − 7κ/9, respectively. The straight
lines are the curves �p = ±0.419146. The values of all the
other parameters are as in Figure 2. Figure 23(b) is similar
to Figure 23(a) but when the primary galaxy is quiet. Here,
the numbers 1, 2, 3, and 4 indicate the curves � − 2κ/5,
� − 3κ/4, � − 3κ/7, and � − 4κ/9, respectively. As we
can see, there are a considerable number of resonance radii
for both the direct and retrograde orbits in both cases. De-
tails regarding the resonances and the resonance radii can be
obtained from Table 2. In other words, all the Lindblad res-
onances given in Table 2 are also responsible for the chaotic

Table 2. Radii of Lindblad Resonances When R = 2.35 and
�p = 0.419146, for Both Active and Quiet Primary galaxies

Case Resonance Region r1 r2

Active �p = � − 2κ/3 Direct 0.0149 –
Retrograde 0.0142 0.2385

�p = � − 3κ/4 Direct 0.0246 –
Retrograde 0.0217 0.3548

�p = � − 5κ/8 Direct 0.0127 0.3886
Retrograde 0.0122 –

�p = � − 7κ/9 Direct 0.0257 –
Retrograde 0.0238 0.3912

Quiet �p = � − 2κ/5 Direct 0.0123 0.5527
Retrograde 0.0114 0.1342

�p = � − 3κ/4 Direct 0.0120 –
Retrograde 0.0119 0.2351

�p = � − 3κ/7 Direct 0.0095 0.6782
Retrograde 0.0091 –

�p = � − 4κ/9 Direct 0.0207 –
Retrograde 0.0196 0.2608

motion in the primary galaxy. It is also interesting to note
that the above resonances produce large chaotic regions for
small values of the distance R, while for larger values of R
(see Figures 9 a–b) the chaotic regions are extremely small,
although the resonance radii are still present. This means that
in this case the distance between the two galaxies precedes
the Lindblad resonances.

In all cases, the primary galaxy is assumed to have a fixed
value of total mass

MP = Md + Mn = 2.08, (21)

where 0 � Mn � 0.08. For a constant distance R, the Fx, Fy,
and Fz forces, per unit mass, at an arbitrary but fixed point

PASA, 30, e012 (2013)
doi:10.1017/pasa.2012.012

https://doi.org/10.1017/pasa.2012.012 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2012.012


18 Zotos

0.2 0.4 0.6 0.8
r

−2

−1.5

−1

−0.5

0

0.5

� �

�p

− � p
1

2

3

4

0.2 0.4 0.6 0.8
r

−2

−1.5

−1

−0.5

0

0.5
�p

− � p
1

2

3

4

(a) (b)

Figure 23. The curves � − nκ/m versus r, when R = 2.35 and �p = 0.419146, when (a) the primary galaxy is active and (b) the primary galaxy is quiet.

P0(x0, y0, z0) near the center of the primary galaxy are linear
functions of the mass of the nucleus Mn, of the form

Fx = −c1 − k1Mn,

Fy = −c2 − k2Mn,
(22)

Fz = −c3 − k3Mn,

where (c1, c2, c3) and (k1, k2, k3) are positive constants, while
relation (21) has also been taken into account. Figure 24(a)
shows the total |Ft| force as a function of Mn, at P0(x0, y0, z0)
= (−0.12, 0.02, 0.01), when R = 1.5. We observe that the
total force increases rapidly as the mass of the nucleus Mn
increases. The presence of the nucleus increases the velocity
near the center of the primary galaxy. This can be easily
shown if we consider the limiting curve, that is, the curve
enclosing all the invariant curves in the (x, px) phase plane.
This is obtained if we set y = 0 in the Jacobi integral (13).
Thus, we have

p2
y = 2[EJ − �t(x)] − p2

x ≥ 0. (23)

The curve

f (x, px) = 2[EJ − �t(x)] − p2
x = 0 (24)

is a curve on the (x, px) phase plane, called the limiting curve
or the zero velocity curve (ZVC). The velocity υx = px at the
limiting curve is the total velocity υ. At a fixed point x = x0,
the total velocity is

υ =
[

2EJ + const + c4(x0 − x1)
2 + 2Mn(λ1 − λ2)

λ1λ2

]1/2

, (25)

where c4<1 is a constant, while

λ1 =
√

b2 + (x0 − x1)
2 + (a + h)2,

(26)

λ2 =
√

(x0 − x1)
2 + c2

n.

As λ1 < λ2, the maximum value of the velocity is met when
x0 = x1 (see also Figures 7 a–b). It is evident from Equa-
tions (25) and (26) that υ increases as Mn increases or cn
decreases. This indicates that high velocities are expected in

the central regions of galaxies with dense and massive nuclei.
Figure 24(b) shows a plot of υ as a function of Mn when R =
1.5. We see that the velocity increases as the mass of the
nucleus Mn increases. In Figure 24(c) we observe a plot of
the rotational velocity  of the primary galaxy, as a function
of the mass of the nucleus Mn, when r = r0 = 0.01. The exact
function is

(Mn) = r0

√
Mn(

r2
0 + c2

n

)3/2 + Md(
b2 + r2

0 + (a + h)2
)3/2 . (27)

From Figure 24(c) we can derive two basic conclusions. (i) In
galaxies with massive and dense central concentrations, the
rotational velocity has and retains high values near the galac-
tic center. (ii) The more massive and dense the nucleus, the
higher is the value of the rotational velocity . Figure 24(d)
shows the evolution of the mass density ρ of the primary
galaxy, as a function of the mass of the nucleus Mn at the
point P0(x0, y0, z0) = (−0.12, 0.02, 0.01). It is evident that as
the galaxy evolves and a nucleus forms in its center, we have
a constant and rapid increase of the mass density. The rela-
tionships given in Figures 24(a– d) are of great importance
and will prove very useful in the following section, where
we will study the evolution of our galactic system using a
time-dependent model.

6 EVOLUTION OF THE ORBITS IN THE 3D
TIME-DEPENDENT MODEL

Let us now follow the evolution of 3D orbits, as mass is
transported from the disk of the quiet galaxy to its center. By
this procedure, a massive and dense nucleus is developed in
the central regions of the primary galaxy. The mass transport
is linear following the set of equations:

Mnf(t) = Mni + kt,
(28)

Mdf(t) = Mdi − kt,

where Mni = 0 and Mdi = 2.08 are the initial values of the
mass of the nucleus and the disk respectively, while k is a
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Figure 24. (a–d) Evolution of different dynamical quantities of the system as a function of the mass of the nucleus Mn. Details are given in the text.

positive parameter. We assume that the linear rate described
by relations (28) is slow compared to the orbital period of the
binary system and therefore it is adiabatic. This is true be-
cause the mass transportation period is 100 time units, while
the orbital period is about three orders of magnitude smaller.
It is also assumed that the transportation stops when the mass
of the nucleus in the galactic core takes the value Mnf = 0.08.
It is well known that the shape of the 3D orbits sometimes is
inconclusive or even misleading. In order to overcome this
drawback, we have decided to use a more accurate method
such as the LCE. The main advantage of this method is that
it uses certain and objective numerical thresholds, beyond
which we can distinguish between ordered and chaotic mo-
tion. On the other hand, this method is very time-consuming
as it needs time intervals of numerical integration of the order
of 105 time units, in order to provide reliable and definitive
results regarding the nature of a 3D orbit. But this is a ‘price’
we can afford to pay. Additionally, we shall use a fast but
qualitative method, that is the profile’s pattern of the total
velocity, so as to characterise a 3D orbit. In the following,
we present the evolution of four different 3D orbits, as the
total mass distribution of the dynamical system changes with
time, following the set of equations (28). For all orbits shown
in Figures 25–28, the initial value of the Hamiltonian (10),
at t = 0, is EJi = −2.6, while k = 0.0008.

In Figure 25(a) we can see the evolution of the LCE for a
3D orbit and for a time period of 105 time units, as the galaxy

evolves following the set of equations (28). The initial con-
ditions are x0 = 0.12, y0 = 0, z0 = 0.02, px0 = 0, and pz0 =
0, while the value of py0 is found from the Hamiltonian (10)
in all cases. The values of all the other parameters are as in
Figure 7(b). When t = 100 time units, the mass of the devel-
oped nucleus in the core of the galaxy is Mnf = 0.08 and the
evolution stops. The value of the Hamiltonian is now EJf =
−2.60012. The profile of the LCE clearly indicates that this
orbit starts as a regular and remains regular during the galac-
tic evolution. Figure 25(b) shows the velocity profile for the
same 3D orbit for a time period of 200 time units. The pat-
tern is almost quasi-periodic and therefore the orbit remains
regular during the galactic evolution.

On the other hand, things are quite different in
Figure 26(a). This orbit has initial conditions x0 = −0.44,
y0 = 0, z0 = 0.01, px0 = 0, and pz0 = 0. The values of all the
other parameters are as in Figure 7(b). When t = 100 time
units, the mass of the developed nucleus in the core of the
primary galaxy is Mnf = 0.08 and the mass transportation
stops. The value of the Hamiltonian is now EJf = −2.60057.
In this case, the profile of the LCE clearly indicates that this
orbit starts as a chaotic 3D orbit and remains chaotic dur-
ing the galactic evolution. Figure 26(b) shows the velocity
profile for the same 3D orbit, for a time period of 200 time
units. The pattern is highly asymmetric, with a large number
of abrupt peaks, large deviations between the maxima and
also significant deviations between the minima. Therefore,
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Figure 25. (a) Evolution of the LCE of the 3D orbit in the time-dependent model, following relations (28), and (b) the corresponding velocity profile. The
orbit starts as a regular and remains regular during the mass transportation.
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Figure 26. (a) Evolution of the LCE of the 3D orbit in the time-dependent model, following relations (28), and (b) the corresponding velocity profile. The
orbit starts as a chaotic and remains chaotic during the mass transportation.
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Figure 27. (a) Evolution of the LCE of the 3D orbit in the time-dependent model, following relations (28), and (b) the corresponding velocity profile. The
orbit starts as a regular but after 100 time units; when the galactic evolution stops it becomes chaotic.
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Figure 28. (a) Evolution of the LCE of the 3D orbit in the time-dependent model, following relations (28), and (b) the corresponding velocity profile. The
orbit starts as a chaotic but after the galactic evolution, it changes its nature to regular.

we conclude that this orbit remains chaotic during the mass
transportation.

In Figure 27(a) we observe the evolution of the LCE of
a 3D orbit with initial conditions x0 = −0.196, y0 = 0,
z0 = 0.01, px0 = 0, and pz0 = 0. The values of all the other
parameters are as in Figure 7(b). After a time interval of 100
time units the mass of the nucleus in the core of the galaxy is
Mnf = 0.08 and the galactic evolution stops. The Hamiltonian
settled to the value EJf = −2.60034. The profile of the LCE
given in Figure 27(a) shows that the orbit starts as a regular
3D orbit, but after the galactic evolution it becomes chaotic.
It is evident that if mass transport were not present, the orbit
would have remained regular. The presence of the nucleus
in the core of the primary galaxy has changed the character
of the 3D orbit from regular to chaotic. The same result can
be obtained by looking at the profile of the velocity of the
3D orbit, as shown in Figure 27(b). For the first 100 time
units the pattern is quasi-periodic, indicating regular motion,
but after that time interval it becomes highly asymmetric,
leading to the conclusion that the orbit has become chaotic.

Figure 28(a) depicts the evolution of the LCE of a 3D orbit
with initial conditions x0 = 0.74, y0 = 0, z0 = 0.01, px0 =
0, and pz0 = 0. The values of all the other parameters are as
in Figure 7(b). After a time interval of 100 time units, the
mass of the nucleus in the core of the galaxy is Mnf = 0.08
and the mass transportation stops. The Hamiltonian settled
to the value EJf = −2.60021. The profile of the LCE given
in Figure 28(a) indicates that this orbit starts as a chaotic 3D
orbit, but after the galactic evolution it becomes an ordered
one. Therefore, it is evident that if mass transportation were
not present, the orbit this time would have remained chaotic.
In this case, the presence of the nucleus in the core of the
galaxy has changed the nature of the 3D orbit from chaotic
to regular. A similar result can be obtained from the profile
of the velocity of the 3D orbit, as shown in Figure 28(b).
For the first 100 time units the pattern is highly asymmetric,
indicating chaotic motion, but for the rest 100 time units,

it becomes almost quasi-periodic, leading to the conclusion
that the orbit has now become regular.

The above analysis reveals that as the galaxy tends to
create the central nucleus, the character of most 3D regular
orbits, starting near the center of the primary galaxy, changes
their nature from regular to chaotic. At the same time, the
velocity shows significant changes and increases as the mass
of the nucleus increases. In other words, as the quiet galaxy
shows this active face, the nature of motion presents major
alterations. Using the above procedure, we have tested a
large number of 3D orbits (approximately 103) in the time-
dependent model, describing the formation of a massive and
dense nucleus in the core of the primary galaxy, when mass is
transported from the disk. Our numerical results indicate that
the character of the 3D orbits can change either from regular
to chaotic and vice versa or not change at all, as the mass
is transported in order to create the nucleus in the central
region of the disk galaxy. In particular, from the sample of
the 103 tested orbits in the case of the time-dependent model,
we conclude that 61% of the orbits altered their nature from
regular to chaotic, 22% remain chaotic, 15% remain regular,
and only 2% changed their character from chaotic to regular.
Thus, it is evident that the formation of a massive nucleus
leads the majority of the orbits of the 3D system to become
chaotic. Whether the nature of a 3D orbit will change or not
during the galactic evolution described by the set of equations
(28) depends strongly on the initial conditions (x0, px0, z0)
of each orbit. Moreover, as the change of the value of the
Hamiltonian (10) is negligible (�EJ = |EJf − EJi| � 10−4), we
can say that the phase space is transformed to itself during the
galactic evolution and, therefore, the orbits can be considered
isoenergetic. In order to make this statement more clear, we
present an example. If we suppose that the evolving time-
dependent model was describing the 2D system, then as the
change of the Hamiltonian is negligible, we could say that
in the phase plane of the quiet galaxy, shown in Figure 7(b),
chaotic regions would appear in the central area and it would
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be transformed to the phase plane shown in Figure 7(a), as
the nucleus is formed in the core of the primary disk galaxy.

7 DISCUSSION AND CONCLUSIONS

In the present article, we have constructed a 3D gravitational
model, in order to study the character of motion in a binary
galactic system. In particular, we present a dynamical model
which is composed of a primary disk galaxy and a small
satellite companion. The motion of a test particle (star) in
the gravitational field of this galactic system was studied and
various techniques were used to identify regular and chaotic
motion. The galaxies were assumed to be coplanar and or-
biting each other in the same plane on a circular orbit. In
particular, this research is indeed an extension to three di-
mensions of the work of Caranicolas & Innanen (2009), who
studied a similar two-dimensional binary system of interact-
ing galaxies.

A binary system of interacting galaxies is very complex
and, therefore, we need to assume some necessary simplifica-
tions and assumptions, in order to be able to study the orbital
behaviour of such a complicated stellar system. Thus, our
model is simple and contrived, in order to give us the ability
to study different aspects of the dynamical model. Never-
theless, contrived models can provide an insight into more
realistic stellar systems, which unfortunately are very diffi-
cult to be studied if we take into account all the astrophysical
aspects. Here, we must point out the main restrictions and
limitations of our gravitational model: (1) The two galaxies
(the primary and the satellite) are assumed to be coplanar, or-
biting each other in the same plane on circular orbits. (2) Our
dynamical model only deals with the non-dissipative compo-
nents of the galaxies, stars, or possibly dark matter particles.
(3) The potentials we use are rigid and do not respond to the
evolving density distribution in a more realistic way. This is
because our gravitational model that describes the binary sys-
tem of the interacting galaxies is not self-consistent. Thus,
the two galactic centers remain stationary in the rotating
frame chosen. Self-consistent models are usually used when
conducting N-body simulations. Obviously, this is out of the
scope of the present paper. Once again, note that the above
restrictions and limitations of our model are necessary; oth-
erwise it would be extremely difficult, or even impossible, to
apply the extensive and detailed dynamical study presented
in this study. A similar gravitational model with the same
limitations and assumptions was used in Zotos (2012b) in
order to study the motion in a binary system of interacting
galaxies, where the second galaxy is no longer treated as a
point-mass satellite companion. Thus, we may conclude that
the same setup has been successfully applied to describe a
much more complex binary galactic system.

In our study, two different cases were investigated: the
time-independent model and the time-evolving model, that
is the case when mass is transported adiabatically from the
disk of the galaxy to its center, forming a massive and dense
nucleus. Our numerical calculation indicates that there are

several factors responsible for the observed chaotic motion
in the time-independent model: (i) the galactic interaction,
(ii) the galactic activity, that is the presence of the nucleus,
and (iii) the Lindblad resonances. Furthermore, the presence
of the nucleus increases the velocities near the central region
of the primary galaxy. The value of the velocity depends
on the mass of the nucleus and also on the value of its scale
length. Regular motion corresponds to low central velocities,
while chaotic motion is characterised by high velocities. All
the above observations strongly indicate that in the centers of
active galaxies, chaotic motion in high velocities is expected.
On the other hand, it was found that the two interacting
galaxies, for large values of the distance R between their
centers, do not present chaotic motion, when the nucleus is
not present in the core of the primary galaxy. The results of
this work regarding the nature of the orbits and also the factors
that affect it or change it are very similar to the corresponding
outcomes obtained in Zotos (2012b) and, therefore, verify in
a way our previous conclusions.

We have started our investigation from the Hamiltonian
system of two degrees of freedom (2D). Our numerical cal-
culations indicate that in this case, a large part of the phase
plane is covered by chaotic orbits, while the regular regions
are confined mainly near the stable retrograde periodic point.
The chaotic area is larger when the primary galaxy possesses
a dense and massive nucleus or when the distance R between
the two galaxies is small. It was also found that the velocity
near the central region of the galaxy increases significantly
when the nucleus is present. For lower values of the total
energy and small values of the distance R, no chaos is ob-
served when the nucleus is absent, while a small chaotic
region appears in the presence of the nucleus. This means
that low-energy stars are in chaotic orbits near the centers of
active galaxies with a suitable satellite companion in a circu-
lar orbit, while in quiet galaxies they are not. Furthermore,
the velocity near the center rises to high values, even for
smaller values of the energy. The above discussion strongly
indicates that in the centers of active galaxies, chaotic mo-
tion and high velocities are expected. This fact, combined
with outcomes from previous works, shows that the majority
of orbits in galaxies with dense and massive nuclei are in
chaotic orbits (see Caranicolas & Innanen 1991; Caranicolas
& Papadopoulos 2003; Zotos 2012a). This seems reasonable
because theoretical results show that the nuclear force near
the center increases linearly as Mn increases. Furthermore,
the velocity near the galactic center strongly depends on the
scale size of the nucleus cn. The smaller the cn, the higher is
the velocity near the central region of an active galaxy.

To explore and understand the nature of orbits in the 3D
dynamical system, we have used our knowledge obtained
from the study of the 2D system. Of particular interest was
the determination of the regions of initial conditions in the (x,
px, z), py < 0, (y = pz = 0) phase space that produce regular
or chaotic 3D orbits. As the value of py0 was found from the
Jacobi integral (10), we have used the same value of EJ as in
the 2D system and took initial conditions (x0, px0, z0) such
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that (x0, px0) lies in the chaotic regions of the 2D system. It
was found that the motion is chaotic for all permissible values
of z0. On the other hand, when (x0, px0) was inside a regular
region around the direct and retrograde periodic points, the
corresponding 3D orbits are regular for small values of z0,
while for larger values of z0 the orbits become chaotic. The
particular values of z0 for which the transition from regularity
to chaos in 3D orbits occurred were different for each regular
region of the 2D system. Of particular interest are the results
given in Table 1, where we define the average minimum
value of z0 near the direct and retrograde periodic points of
the primary galaxy, where the transition from regularity to
chaos occurs.

In this research, we have used different kinds of theoretical
techniques in an attempt to explain and justify the dynamical
structure of the 2D or 3D Hamiltonian system. An important
role is played by the Lz component of the test particle’s
angular momentum. It was found that the values of 〈Lz〉
for regular 3D orbits are larger than those for chaotic 3D
orbits. Thus, the Lz component of the angular momentum is
a significant dynamical parameter connected with the regular
or chaotic character of orbits in both 2D and 3D dynamical
systems. In order to estimate the degree of chaos in the 2D
as well as in the 3D dynamical system, we have computed
the average value of the LCE for a large number of orbits
with different initial conditions in the chaotic regions in each
case, for a time period of 105 time units. Our numerical results
indicate that the degree of chaos in the 3D binary system of
interacting galaxies is smaller than that in the 2D system.

It was of great interest to follow the evolution of orbits
as nucleus formed in the central region of the primary disk
galaxies. In this procedure, mass was transported from the
disk to the nucleus and therefore the quiet galaxy became
gradually active, following Equation (28). We observed that
the final character of the 3D orbits strongly depends on the
particular initial conditions (x0, px0, z0). Thus, regular or-
bits can change to chaotic and vice versa, or maintain their
character (ordered or chaotic) during the nuclear formation
and since the nucleus has been formed. It was observed that
a number of regular quasi-periodic orbits, starting near the
central region of the primary galaxy, become chaotic. This
can be seen in a total velocity versus time plot, where the
asymmetric profile of the total velocity is in agreement with
observational data (see Grosbøl 2002), where an increase of
the stellar velocity is expected, in regions with significant
chaoticity. Moreover, observations show that an asymmet-
ric velocity profile indicates chaotic motion. An interesting
question is whether interactions are essential in order to trig-
ger the mass transportation and therefore the galactic activity.
This question remains unsolved as astronomers have found
binary systems with disk galaxies (see Letawe et al. 2006)
showing no signs of interaction at all but harboring active
nuclei.

Our theoretical dynamical analysis of the binary galactic
system can now be compared with observational data derived
from the M51-type binary galactic systems. These systems

Figure 29. A real image of the binary galactic system composed of the
primary galaxy NGC 5829 and its small satellite companion IC 4526.

consist of a large, primary disk galaxy and a smaller satellite
companion galaxy moving in a circular orbit around their
common mass center (see Klimanov & Reshetnikov 2001).
We apply our results to the binary system composed of the
primary galaxy NGC 5829 and its small satellite IC 4526.
Figure 29 depicts a real image of this binary system. The pri-
mary galaxy has an absolute magnitude of MV = −20.66. In
order to estimate the disk’s radius, we shall use the empirical
relation

MV = −6 log A + 7.14, (29)

which connects the absolute magnitude to the projected major
axis of the primary galaxy A in pc (see Bowers & Deeming
1984). From relation (29), we obtain the value A = 43 kpc. If
we adopt the values of the parameters given in Figures 7(a–
b), then one should expect a large number of the orbits to
be chaotic in this binary system of interacting galaxies. We
can also observe that the orbit of the satellite is close to the
boundary of the galactic disk. This result is in agreement
with the observational data as well.

When studying galactic dynamics, it is invariably found
that the stellar rotation velocity remains constant, or flat,
with increasing distance away from the galactic center (see
Cantinella, Giovanelli, & Haynes 2006). This result is highly
counterintuitive since, based on Newton’s law of gravity, the
rotational velocity would steadily decrease for stars farther
away from the galactic center. By this particular argument,
the flat rotational curves seem to imply that each galaxy must
be surrounded by significant amounts of dark matter. It has
been postulated and generally accepted that the dark mat-
ter would have to be located in a massive halo enshrouding
each galaxy (see Caranicolas & Zotos 2009b, 2011a, 2011b).
The first real surprise in the study of dark matter lay in the
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outermost parts of galaxies known as galaxy halos. Here,
there is negligible luminosity, yet there are occasional orbit-
ing gas clouds, which allow us to measure rotation velocities
and distances. The rotation velocity was found not to decrease
with increasing distance from the galactic center, implying
that the mass distribution of the galaxy cannot be considered
like the light distribution. The mass must continue to increase
since the rotation velocity satisfies

2 = GM

r
, (30)

where M is the mass within radius r; we infer that M increases
proportionally to r. This rise appears to stop at about 50 kpc,
where halos appear to be truncated. We infer that the mass–
luminosity ratio of the galaxy (M/L), including its disk halo,
is about 5 times larger than estimated for the luminous inner
region or equal to about 50. The rotation curve shown in
Figure 3, corresponding to our disk galaxy, seems to maintain
high values of the angular velocity  for large distances from
the galactic center. Thus, we may say that our dynamical
model can interpret the presence of dark matter.

Forty years ago, galactic activity and interactions between
galaxies were viewed as unusual and rare. Nowadays, they
seem to be segments in the life of many galaxies. From the
astrophysical point of view, in the present work, we have
tried to connect galactic activity and galactic interactions
with the nature of orbits (regular or chaotic) and also with
the behaviour of the velocities of stars in the primary galaxy.
We consider the outcomes of the present research to be an
initial effort, in order to explore the dynamical structure of
the 3D binary stellar system in more detail. As results are
positive, further investigation will be initiated to study all the
available phase spaces, including orbital eccentricity (ellip-
tic orbits) of the small companion galaxy and its inclinations
to the primary galaxy. Moreover, we shall try to use the
outcomes obtained from this initial and simple dynamical
model to conduct computer N-body simulations in a binary
system of interacting galaxies (a primary galaxy with a satel-
lite companion), in order to reveal changes in their orbital
properties through merger processes and tidal effects, which
are obviously out of the scope of this study.

ACKNOWLEDGMENTS

The author would like to express his warmest thanks to the anony-
mous referee for careful reading of the manuscript and for his very
useful and illuminating suggestions and comments that greatly im-
proved the quality and also the clarity of the present article.

REFERENCES

Baade, W. 1944, ApJ, 100, 137
Barker, M. K., Ferguson, A. M. N., Irwin, M., Arimoto, N., &

Jablonka, P. 2009, AJ, 138, 1469
Bekki, K. & Chiba, M. 2005, MNRAS, 356, 680

Binney, J., & Tremaine, Sc. 2008, Galactic Dynamics, Princeton
Series in Astrophysics (2nd edn; Princeton, NJ: Princeton Uni-
versity Press)

Bowers, R. L., & Deeming, T. 1984, Astrophysics II (Boston, MA:
Jones and Bartlett)

Byrd, G. 1978, ApJ, 226, 70
Cantinella, B., Giovanelli, R., & Haynes, M. P. 2006, AJ, 640, 751
Caranicolas, N. D., & Innanen, K. A. 1991, AJ, 102, 1343
Caranicolas, N. D., & Innanen, K. A. 2009, AN, 330, 20
Caranicolas, N. D., & Papadopoulos, N. J. 2003, A&A, 399, 957
Caranicolas, N. D., & Papadopoulos, N. J. 2009, NewA 14, 207
Caranicolas, N. D., & Zotos, E. E. 2009a, Mech. Res. Commun.,

36, 875
Caranicolas, N. D., & Zotos, E. E. 2009b, BaltA, 18, 205
Caranicolas, N. D., & Zotos, E. E. 2010, NewA, 15, 427
Caranicolas, N. D., & Zotos, E. E. 2011a, RAA, 11, 811
Caranicolas, N. D., & Zotos, E. E. 2011b, RAA, 11, 1449
Carlberg, R. G., & Innanen, K. A. 1987, AJ, 94, 666
Cincotta, P. M., Giordano, C. M., & Perez, M. J. 2006, A&A, 455,

499
Connors, T. W., Kawata, D., Maddison, S. T., & Gibson, B. K. 2004,

PASA, 21, 222
Contopoulos, G., & Grosbøl, P. 1986, A&A, 155, 11
de Jong, R. S., Radburn-Smith, D. J., & Sick, J. N. 2008, in ASP

Conf. Ser. Vol. 396, Formation and Evolution of Galaxy Disks,
ed. J. G. Funes & E. M. Corsini (San Francisco, CA: ASP), 187

Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, ApJ, 136,
748

Faúndez-Abans, M., Reshetnikov, V. P., de Oliveira-Abans, M., &
Fernandes, I. F. 2009, AstL, 35, 25

Ferguson, A. M. N., Irwin, M. J., Ibata, R. A., Lewis, G. F., &
Tanvir, N. R. 2002, AJ, 124, 1452

Gardiner, L. T., Sawa, T., & Fujimoto, M. 1994, MNRAS, 278, 191
Grosbøl, P. 2002, SSRv, 102, 73
Hasan, H., & Norman, C. A. 1990, ApJ, 361, 69
Hasan, H., et al. 1993, ApJ, 409, 91
Helmi, A., & White, S. D. M. 1999, MNRAS, 307, 495
Henrard, J., & Caranicolas, N. D. 1990, CeMDA, 47, 99
Ibata, R., Mouhcine, M., & Rejkuba, M. 2009, MNRAS, 395, 126
Johnston, K. V., Hernquist, L., & Bolte, M. 1996, ApJ, 465, 278
Kalirai, J. S., et al. 2006, ApJ, 648, 389
Klimanov, S. A., & Reshetnikov, V. 2001, A&A, 378, 428
Letawe, G., et al. 2006, NewAR, 50, 779
Lichtenberg, A. J., & Lieberman, M. A. 1992, Regular and Chaotic

Dynamics (2nd edn; Springer-Verlag: Berlin Heidelberg )
Lin, D. N. C., Jones, B. F., & Klemola, A. R. 1995, ApJ, 439, 652
Malin, D., & Hadley, B. 1999, in ASP Conf. Ser. Vol. 182, Galaxy

Dynamics: A Rutgers Symposium, ed. D. R. Merritt & M.
Valluri, & J. Sellwood (San Francisco, CA: ASP), 445

Martı́nez-Delgado, D., Pohlen, M., Gabany, R. J., Majewski, S. R.,
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