
CLASSES OF FUNCTIONS ON ALGEBRAS 
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1. Introduction. Let 31 be a finite-dimensional linear associative algebra 
over the real field R or the complex field C and let F be a function with domain 
and range in SI. 

Several classes of functions on 31 have been discussed in the literature, and 
it is the purpose of this paper to discuss the relationships between these classes 
and to present some interesting examples. First we shall list the definitions 
of the classes we wish to consider here. 

DEFINITION 1.1. Let f{z) be a single-valued function of the complex variable z, 
and 31 an algebra over C. Let PL (E 31 be an element the zeros of whose minimum 
polynomial lie in the domain of f{z), with the repeated zeros being points of analy-
ticity off(z). Let these zeros be\i, . . . ,\t with respective multiplicities si, . . . , st. 
Let Lf(z) be the unique polynomial of degree less than the degree of the minimum 
polynomial of a such that 

d'L^/dzX^ = /(0(Xi)f i = 0, . . . , Sj - 1, j = 1, . . . , L 

Then F (a) is defined to be Lf(a) and we shall call F the primary function with 
stem function f. 

Lf(z) is the so-called Lagrange-Hermite interpolation polynomial and is 
given explicitly by 

eu) Lf(Z) = i{u(z-^yiSf:h 
xe[^/n<2-«"L,<'-x'»*}-

The above definition can be applied to algebras over R by extending the 
ground field to Cand computing F (a) as in Definition 1,1. If F(a) is an element 
of the original algebra, then F is said to be defined at a with value F(a). A 
necessary and sufficient condition for this to occur is that f(z) = / (s) ,a t the 
zeros of the minimum polynomial of a (5). , 

DEFINITION 1.2. Let 12 be any automorphism or anti-automorphism of 31 that 
leaves the ground field invariant. F is intrinsic on 3Ï if whenever a is in the domain 
of F, so is iïa and further F(tia) = UF(a). 
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We shall denote the set of all n X n matrices with elements from K by Kn. 
I t is easy to see that F is intrinsic on Rn (or Cn) if and only if F (A 0 = F (A)1 

and FCP-MP) = P~lF(A)P for all non-singular P in Rn (or Cn). 
The study of intrinsic functions on 31 was introduced and motivated by 

Rinehart (5) and has led for 21 = Cn or Rn to the third class of functions we wish 
to consider. 

DEFINITION 1.3. Let F(z, ah . . . , <rn-i) be a function from C1 (complex n-space) 
to C. For a 6 21 = Cni with characteristic polynomial 

xn - criM*1-1 + . . . + ( - l î - V ^ i M * + (-l)Vn[«L 

define fa(z) = f(z, <ri[a],. . . , <rw_i[a]). The function F defined by F(a) = /«(a), 
where fa (a) is computed from fa(z) as in Definition 1.1, is called the n-ary function 
with stem function f(z, <n,. . . , <rn_i). 

If 21 = Rm we need to make the same type of comment made following 
Definition 1.1. In this case the necessary and sufficient conditions are that 
/a(X<) = fafii) for each eigenvalue X* of a (6). 

Q, the algebra of real quaternions, is the four-dimensional division algebra 
over R with basis elements 1, i, j , k = ij and with multiplication determined by 
ij = —ji and i2 = j 2 = — 1. For A G Qn, Wiegmann (7) shows that one can 
always find a non-singular P € Qn such that P~lAP has elements all in a fixed 
complex plane of (?, e.g. which are ail of the form a + bi where a, b £ R. In (1) 
this result was used to define w-ary functions on Qn by using the relationship 
F (A) = PF(P-lAP)P~1 and computing F(P~lAP) as in Definition 1.3. 

The study of the fourth and final class of functions we wish to consider here 
was again motivated by the study of intrinsic functions. 

DEFINITION 1.4. F is a poly-function on 21 if, for every a in the domain of 
F y F (a) is a polynomial in a with coefficients from the ground field of 21. 

I t is not meant that F is a polynomial function» In general the coefficients 
will depend on a. 

It is known that every primary function on 21 is intrinsic and that the converse 
is not true in general. However, for the algebra Q of real quaternions, the classes 
of intrinsic functions and primary functions are identical (5). For Rn, Cnj and 
Qn, every w-ary function is intrinsic and every appropriately continuous intrinsic 
function is an w-ary function (6; 1). I t is clear that every primary function is a 
special w-ary function and that for algebras over C all n-ary functions are 
poly-functions. In (1), there is given the first example of an intrinsic function 
that is not a poly-function. The example involves C2 or Q2l as algebras over R. 

2. Examples. The four classes of functions are related as shown in Figure 1. 
We shall first give examples of each type of function. 
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FIGURE 1 

Example 2.1. Intrinsic, n-ary, primary, poly-function. Let 21 = C» and 
consider the primary function F\ with stem function f(z) = cos z. It is 
immediate from Definition 1.1 that the resulting primary function F\ is a 
poly-function. 

Example 2.2. Intrinsic, n-ary, non-primary, poly-function. Let 21 = Cn and 
define F2{A) = tr(^4)/ = a\[A]'I for A in Cn. From the remark following 
Definition 1.2 it follows easily that F2 is intrinsic on 21 and it is clear that Fz is 
2-ary with stem function /(z, <n) = a\. That F2 is not primary follows directly 
from Portmann's result (4) that if A is diagonal, then a necessary condition 
that F2 be primary is that F2(A) {t be a function only of A u. It is clear that F* 
is a poly-function (but not a polynomial function). 

Example 2.3. Intrinsic, »-ary, non-primary, non-poly-function. On the algebra 
21 = C2, as an algebra over R, consider the function Fz(A) — tr(A)-I = 
<Ti[A]-I. Now 

'•&ï]-« + o[iï] 
is not a real polynomial in 

[»?]• 
so F8 is not a poly-function. Clearly F$ is 2-ary with stem function/(«, <n) = <r\ 
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and hence is intrinsic and non-primary. (We wish to thank the referee for 
suggesting this example, which is much simpler than the one given in (1).) 

Example 2.4. Intrinsic, non-w-ary, non-primary, poly-function. For 21 = i^2 

define 
if det 4̂ is rational, .M) - {J 4 ̂ ; * T if det A is irrational. 

I t follows from the remark after Definition 1.2 that FA is intrinsic on 21 and it is 
clear that it is a poly-function. 

Assume now that Ft is a 2-ary function with stem function fA (z) = f(z, a\[A ]). 
Consider 

I o _ L o 2 J € 21 

so that F4 (-4,,) = 0. 
Now define 

where em is irrational and 

A _[2+Vtm 1 1 

^ - " L 0 2-VeJ 

lim em = 0. 
m-$co 

Now F(Am) = I for all m, since det Am = 4 — em, which is irrational, but 
tr Am = <ri[Am] = 4 so that fAm (z) =/^0(JS)- By (6,Theorem 2.2), the stem 
function/^0(z) maps the roots of A0 into the roots of FA(A0), SO we must have 
fAo(2) = / ( 2 , 4 ) = 0 and also 

fAm(2 - Vem) = / ( 2 - Vew ,4) = 1. 

Thus 
lim/(2 - Vew, 4) = 1 ^ 0 = / (2 , 4), 

contradicting the required continuity of f(z, 4) at the repeated root 2 of the 
minimum polynomial of A 0 (see Definition 1.1). 

Example 2.5. Intrinsic, non-primary, non-w-ary, non-poly-function. Consider 
2Ï = Ci as an algebra over R and define 

F ( A\ _ )aiil if det 4̂ = ai + a2, i, where ai and a2 are rational, 
/ Y 5 ^ ; " | 0 otherwise. 

By the remark following Definition 1.2, it is clear that Fb is indeed an intrinsic 
function on 21. To see that Ft is not 2-ary with stem function/(s, <n) we proceed 
as in Example 2.4 using 

^ - [ \ p ' x i J . and the sequence ^ = [ 1 + i + ^ ^ - ^ J 
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where em is irrational and 

lim em = 0. 

To see that F^ is not a poly-function consider 

' - G °] 
so that F$(J) = i-I. F$ is not a poly-function since no real polynomial in 7 can 
yield i = Fh(J)\,i in the 1,1 position. 

Example 2.6. Non-intrinsic, non-w-ary, non-primary, poly-function. For 
21 = R2 define, for 

. = ["an a i2 

[_a21 #22 

^6^4) — a\\A + ai2^42. Clearly F6 is a poly-function. If FQ is to be intrinsic 
on 21, we must have FQ(A ') = F§(A) *. However, 

F,{Al) - FMV = (*« - a»)WO2 * 0 

for non-symmetric 4̂ such that ^42 F^ 0; so F$ is not intrinsic and hence non-w­
ary and non-primary. 

3. Poly-functions. The examples given above and the results cited in §1 
justify the relative partitioning of the four classes of functions as shown in 
Figure 1 with the exception of the block representing the poly-functions. 

THEOREM 3.1. A primary function Fon% is a poly-function. 

Proof. If the ground field is C, then the assertion is immediate from Defini­
tion 1.1 and (1.1). 

Consider a G 21 with minimum polynomial of degree m and assume that the 
ground field of 21 is R. From (1.1) we know that 

m—1 

F(a) =^ ak a
k, where the ak are from C. 

Taking imaginary parts we have, since F (a) is in 21, 
m— 1 

0 = lm(F(a)) = £lm(a*)a*, 
A:=0 

which yields a contradiction to the fact that the degree of the minimum poly­
nomial is m unless Im (ak) = 0 for k = 0, 1, . . . , m — 1. Thus F is a poly­
function on 21 and the proof is completed. 

• 
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A second proof of the real case of Theorem 3.1 is of interest since it will be 
referred to later. For the complex field C it is well known that if B € Cn 

commutes with every matrix that commutes with A, then B is a polynomial 
in A with coefficients from C. This result also holds for any subfield K of C 
(3, p. 113). 

Consider 9ft C Rm, the first regular matrix representation of 81, where a 6 81 
corresponds to 0(a) = A Ç 9ft. The isomorphism <j> induces a function G on 9ft 
defined by 

GU) = *(F(*-lW))) = *(*(«)). 

Let / be the stem function of F so that f(a) = Lf(a) where Lf(z) is the poly­
nomial (1.1). Since Fis primary on 81, it is clear that G is a primary function on 
9ft with stem function/and that G (A) = Lf(A). Thus we see that G could have 
been obtained as the restriction to 9ft of the primary extension of / to i?m. 
Since G is primary on Rmi it is also intrinsic on Rm> and we have 

GiB-'AB) = B-*G(A)B 

for all non-singular B in Rm. Clearly, if G is a poly-function, then so is F. 
We now consider any B that commutes with A and show that B commutes 

with G (A). By the above result, this will show that G (A) is a real polynomial 
in A. There are two cases : B singular and B non-singular. 

In the first case AB = BA implies that A = BAB~* and 

G(A) = G(B~lAB) = B~1G(A)B 

since G is intrinsic on 9ft. Thus G(A)B = BG(A), as desired. 
If B is singular, then we can find e such that B + el is non-singular. The first 

case then applies and we see at once that G (A )B = BG (A ). 
We now turn our attention to necessary and sufficient conditions that w-ary 

and intrinsic functions be poly-functions. 
iV-ary functions are well defined for Rni Cn, and Qn. Since n-ary function values 

on Rn and Cn are computed as primary function values on these algebras, we 
have, as a consequence of Definition 1.3 and Theorem 3.1, the following 
theorem. 

THEOREM 3.2. All n-ary functions on the total matrix algebras RH and Cn are 
poly-functions. 

Example 2.3 shows that not all n-ary functions on Qn (or on C» as an algebra 
over R) are poly-functions and further that not all intrinsic functions on Qn 

are poly-functions. Our next theorem provides some insight into this situation. 

THEOREM 3.3. Let F be an n-ary function on Qn with stem function 

f(z, < r i , . . . , <rn_i) 

https://doi.org/10.4153/CJM-1966-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-018-2


CLASSES OF FUNCTIONS ON ALGEBRAS 145 

and consider J in the domain of F. F(J) is a real polynomial in J if and only if 
fj (z) is an intrinsic function of the complex variable z at the roots of the real mini-
mum polynomial of J. 

Proof. By Wiegmann's result, which we mentioned following Definition 1.3, 
it suffices to consider J £ Cn (more precisely in that subspace of Qn whose 
elements have all their entries of the form a + bi). By definition, F{J) is the 
primary function value oifj(z) = f(z, <n[J],..., <rn_i[J]) at J. 

Now let 211 C Rm be an algebra of real matrices isomorphic to Qn, in which J 
corresponds to J i , and let G be the primary extension of fj(z) to Rm. Now 
F(J) = pi(J) and G(Ji) = P2V1) where pi(z) and pi{z) are polynomials in z. 
Since the minimum polynomial of J (possibly with complex coefficients) divides 
the real minimum polynomial of J i , it follows (2, Theorem 2.1) that 
pi(J) = p%(J) and hence that F(J) and G(Ji) correspond under the above 
isomorphism. 

Now G(Ji) is an element of 2li, and hence by Theorem 3.1 a real polynomial 
in Ji, if and only iifj(z) is an intrinsic function of z(fj(z) = fj(z)) at the zeros 
of the real minimum polynomial of J\. Our result now follows since J and 7i 
have the same real minimum polynomial, and by isomorphism G(Ji) is a real 
polynomial in J i if and only if F(J) is a real polynomial in J. 

We shall now consider the special case in which % is simple, and determine 
under what conditions an intrinsic function is a poly-function. 

Suppose Wl is an algebra isomorphic to 21 under a mapping <t> and that for a 
given function F on 31 we define a function G on 3D? by 

G(A) = *• Ffo-M) = 4>-F(a) 

where A = 0(a). The following lemma is immediate. 

LEMMA. / / F is intrinsic on 21, then G is intrinsic on 9W. 

I t is well known that 21 simple over C implies 21 is isomorphic to Cn. The 
lemma and an argument like that of the second proof of Theorem 3.1 yields the 
following theorem. 

THEOREM 3.4. / / 21 is simple over C, then every intrinsic function on 21 is a 
poly-function. 

It is also well known that 21 simple over R implies 21 is isomorphic to Rm Cn, 
or Qn. Using the lemma and Theorem 3.3 we have the following theorem. 

THEOREM 3.5. Let 21 be simple over R and let F be an intrinsic function on 21. 
If % = Rny then F is a poly-function on 21. / / 21 = C„ or Qn and the induced 
function G, of the lemma, is n-ary with its stem function satisfying the conditions 
of Theorem 3.3, then Fis a poly-function on 21. 

https://doi.org/10.4153/CJM-1966-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-018-2


146 C. G. CULLEN AND C. A. HALL 
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