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Abstract

Continuous-time autoregressive moving average (CARMA) processes with a nonnegative
kernel and driven by a nondecreasing Lévy process constitute a very general class of
stationary, nonnegative continuous-time processes. In financial econometrics a stationary
Ornstein–Uhlenbeck (or CAR(1)) process, driven by a nondecreasing Lévy process, was
introduced by Barndorff-Nielsen and Shephard (2001) as a model for stochastic volatility
to allow for a wide variety of possible marginal distributions and the possibility of jumps.
For such processes, we take advantage of the nonnegativity of the increments of the
driving Lévy process to study the properties of a highly efficient estimation procedure
for the parameters when observations are available of the CAR(1) process at uniformly
spaced times 0, h, . . . , Nh. We also show how to reconstruct the background driving
Lévy process from a continuously observed realization of the process and use this result to
estimate the increments of the Lévy process itself when h is small. Asymptotic properties
of the coefficient estimator are derived and the results illustrated using a simulated gamma-
driven Ornstein–Uhlenbeck process.
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1. Introduction

This paper is concerned with estimation of the parameters of a nonnegative Lévy-driven
Ornstein–Uhlenbeck process and of the parameters of the background driving Lévy process,
based on observations made at uniformly and closely-spaced times. We investigate the asymp-
totic properties of the estimator of the CAR(1) coefficient obtained by applying the method of
Davis and McCormick (1989) to the estimation of the corresponding coefficient of the sampled
AR(1) process. (The weak consistency of this estimator was shown by Jongbloed et al. (2005).)
The estimator is then used to estimate the corresponding realization of the driving Lévy process.
The exact recovery of the driving Lévy process requires continuous observation of the Ornstein–
Uhlenbeck process. The integral expressions determining the driving Lévy process are therefore
replaced by approximating sums using the available discrete-time observations.
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In Section 2 we define the Lévy-driven CAR(1) process, {Y (t), t ≥ 0}. In Section 3 we
characterize the sampled AR(1) process, {Y (h)

n = Y (nh), n = 0, 1, 2, . . .}, and the distribution
of its driving white noise sequence in terms of the parameters of the underlying CAR(1) process
and its driving Lévy process. The autoregressive coefficient of the sampled process is then
estimated using the method of Davis and McCormick (1989). From the relation between the
sampled and continuous-time processes, we then obtain corresponding parameter estimates
for the CAR(1) process. The idea of using the sampled process to estimate the parameters of
the underlying continuous-time process was first used by Phillips (1959), but in our case the
nondecreasing property of the driving Lévy process and the nonnegativity of the corresponding
discrete-time increments permits a very large efficiency gain. In Section 4 we show how to
recover the driving Lévy process under the assumption that the process is observed continuously,
and then approximate the results using closely-spaced discrete observations. In Section 5 we
derive the asymptotic distribution of the coefficient estimator when the driving Lévy process is
a gamma process, and illustrate with a simulated example the performance of the estimators of
both the CAR(1) parameters and the driving Lévy process. When the continuously observed
process is available, the autoregression coefficient can be identified with probability 1. This is
discussed in Section 6.

2. Stationary Lévy-driven Ornstein–Uhlenbeck processes

In order to define the stationary Lévy-driven Ornstein–Uhlenbeck (or CAR(1)) process,
we first record a few essential facts concerning Lévy processes. (For a detailed account of
integration with respect to Lévy processes, see Protter (2004).) Suppose that we are given a
filtered probability space (�, F , (Ft )0≤t≤∞, P), where F0 contains all the P-null sets of F
and (Ft ) is right-continuous.

Definition 2.1. (Lévy process.) We have {L(t), t ≥ 0} is an (Ft )-adapted Lévy process if
L(t) ∈ Ft for all t ≥ 0, L(0) = 0 almost surely (a.s.), L(t) − L(s) is independent of Fs ,
0 ≤ s < t < ∞, L(t) − L(s) has the same distribution as L(t − s), and L(t) is continuous in
probability.

Every Lévy process has a unique modification which is càdlàg (right continuous with left lim-
its) and which is also a Lévy process. We shall therefore assume that our Lévy process has these
properties. For nondecreasing Lévy processes, the Laplace transform f̃L(t)(s) := E(e−sL(t))

has the form
f̃L(t)(s) = e−t�(s), Re(s) ≥ 0,

where

�(s) = m +
∫

(0,∞)

(1 − e−sx)ν(dx),

with m ≥ 0 and ν a measure on the Borel subsets of (0, ∞) satisfying∫
(0,∞)

u

1 + u
ν(du) < ∞.

The measure ν is called the Lévy measure of the process L, and m is called the drift. There
exists a wealth of possible marginal distributions for L(t), attainable by a suitable choice of
m and ν; see, for example, Barndorff-Nielsen and Shephard (2001). For second-order Lévy
processes, E(L(1))2 < ∞, and there exist real constants µ and σ such that

E L(t) = µt and var(L(t)) = σ 2t for t ≥ 0.
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To avoid problems of parameter identifiability in the CAR(1) process defined below, we assume
throughout that L is scaled so that var(L(1)) = 1. Then var(L(t)) = t for t ≥ 0, and we shall
refer to the process L as a standardized second-order Lévy process. Throughout this paper,
we shall be concerned with CAR(1) (or stationary Ornstein–Uhlenbeck) processes driven by
standardized second-order nondecreasing Lévy processes. The Lévy-driven CAR(1) process is
defined as follows.

Definition 2.2. (Lévy-driven CAR(1) process.) A CAR(1) process driven by the Lévy process
{L(t), t ≥ 0} with parameters a ∈ R and σ > 0, is defined to be a strictly stationary solution
to the stochastic differential equation

dY (t) + aY (t) dt = σ dL(t). (2.1)

For the special case in which {L(t)} is a Brownian motion, (2.1) is interpreted as an Itô
equation with solution {Y (t), t ≥ 0} satisfying

Y (t) = e−atY (0) + σ

∫ t

0
e−a(t−u) dL(u), (2.2)

where the integral is defined as the L2 limit of approximating Riemann–Stieltjes sums. For
any second-order driving Lévy process {L(t)}, the process {Y (t)} can be defined in the same
way, and if {L(t)} is nondecreasing (and hence of bounded variation on compact intervals) then
{Y (t)} can also be defined pathwise as a Riemann–Stieltjes integral by (2.2). We can also write

Y (t) = e−a(t−s)Y (s) + σ

∫ t

s

e−a(t−u) dL(u) for all t > s ≥ 0, (2.3)

showing, by independence of the increments of {L(t)}, that {Y (t)} is Markov. (For a general
theory of integration with respect to semimartingales, and in particular with respect to Lévy
processes, see Protter (2004).) Proposition 2.1, below, gives necessary and sufficient
conditions for stationarity of {Y (t)}. For a proof, see Brockwell and Marquardt (2005).

Proposition 2.1. If Y (0) is independent of {L(t), t ≥ 0} and E(L(1)2) < ∞ then Y (t) is
strictly stationary if and only if a > 0 and Y (0) has the distribution of σ

∫ ∞
0 e−au dL(u).

Remark 2.1. By introducing a second Lévy process {M(t), 0 ≤ t < ∞}, independent of
L and with the same distribution, we can extend {Y (t), t ≥ 0} to a process with index set
(−∞, ∞). We define the following extension of L:

L∗(t) = L(t) 1[0,∞)(t) − M(−t−) 1(−∞,0](t), −∞ < t < ∞.

Then, provided that a > 0, the process {Y (t)} defined by

Y (t) = σ

∫ t

−∞
e−a(t−u) dL∗(u), (2.4)

is a strictly stationary process satisfying (2.3) (with L replaced by L∗) for all t > s and
s ∈ (−∞, ∞). Henceforth, we refer to L∗ as the background driving Lévy process and denote
it by L for simplicity.
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Remark 2.2. From (2.4) we have the relation

Y (t) = e−a(t−s)Y (s) + σ

∫ t

s

e−a(t−u) dL(u), t ≥ s > −∞. (2.5)

Taking s = 0 and using the pathwise interpretation of the integral in (2.5), we can also write

Y (t) = e−atY (0) + σL(t) − aσ

∫ t

0
e−a(t−u)L(u) du, t ≥ 0, (2.6)

where the last integral is a Riemann integral and the equality holds for all finite t ≥ 0 with
probability 1.

3. Parameter estimation via the sampled process

Setting t = nh and s = (n − 1)h in (2.5), we see at once that, for any h > 0, the sampled
process {Y (h)

n , n = 0, 1, 2, . . .} is the discrete-time AR(1) process satisfying

Y (h)
n = φY

(h)
n−1 + Zn, n = 0, 1, 2, . . . , (3.1)

where
φ = e−ah (3.2)

and

Zn = σ

∫ nh

(n−1)h

e−a(nh−u) dL(u).

The noise sequence {Zn} is independent and identically distributed (i.i.d.) and positive since L

has stationary, independent, and positive increments.
If the process {Y (t), 0 ≤ t ≤ T } is observed at times 0, h, 2h, . . . , Nh, where N = �T/h�

(here �·� denotes the integer part function), then, since the innovations Zn of the process {Y (h)
n }

are nonnegative and 0 < φ < 1, we can use the highly efficient Davis–McCormick estimator
for φ, namely

φ̂
(h)
N = min

1≤n≤N

Y
(h)
n

Y
(h)
n−1

. (3.3)

This estimator was proposed by Jongbloed et al. (2005), who showed the weak consistency of
the estimator as N tends to ∞ with h fixed. To obtain the asymptotic distribution of φ̂

(h)
N , we

shall suppose that the distribution function F of Zn satisfies F(0) = 0 and that F is regularly
varying at 0 with exponent α, i.e. that there exists α > 0 such that

lim
t↓0

F(tx)

F (t)
= xα for all x > 0.

(These conditions are satisfied by the gamma-driven CAR(1) process, as we show in Section 5.)
Under these conditions on F , the results of Davis and McCormick (1989) imply that φ̂

(h)
N → φ

a.s. as N → ∞ with h fixed and that

lim
N→∞ P[k−1

N (φ̂
(h)
N − φ)cα ≤ x] = Gα(x), (3.4)
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where kN = F−1(N−1), cα = (E Y
(h)α
1 )1/α , and Gα is the Weibull distribution function,

Gα(x) =
{

1 − exp{−xα} if x ≥ 0,

0 if x < 0.
(3.5)

From the observations {Y (h)
n , n = 0, 1 . . . , N} we thus obtain the estimator φ̂

(h)
N and,

from (3.2), the corresponding estimator,

â
(h)
N = −h−1 log φ̂

(h)
N , (3.6)

of the CAR(1) coefficient a. Provided that the distribution function F of the noise terms
Zn in the discrete-time sampled process satisfies the conditions indicated above, we can also
determine the asymptotic distributions of this estimator. In particular, using a Taylor series
approximation, we find that

lim
N→∞ P[(−h)e−ahcαk−1

N (â
(h)
N − a) ≤ x] = Gα(x),

where Gα is given in (3.5). Since var(Y (h)) = σ 2/2a, we use the estimator

σ̂ 2
N = 2â

(h)
N

N

N∑
i=0

(Y
(h)
i − Y

(h)

N )2, (3.7)

where Y
(h)

N = ∑N
i=0 Y

(h)
I /(N + 1), to estimate σ 2.

4. Estimating the Lévy increments

So far, we have made no assumptions about the driving Lévy process except for nonnegativity
and existence of E(L(1)2). In order to suggest an appropriate parametric model for L and to
estimate the parameters, it is important to recover an approximation to L from the observed
data. If the CAR(1) process is continuously observed on [0, T ] then the integrated form of
(2.1) immediately gives

L(t) = σ−1
(

Y (t) − Y (0) + a

∫ t

0
Y (s) ds

)
. (4.1)

From (4.1), the increment of the driving Lévy process on the interval ((n−1)h, nh] is given by

�L(h)
n := L(nh) − L((n − 1)h) = σ−1

(
Y (nh) − Y ((n − 1)h) + a

∫ nh

(n−1)h

Y (u) du

)
.

Replacing the CAR(1) parameters by their estimators and the integral by a trapezoidal approx-
imation, we obtain the estimated increments

�L̂(h)
n = σ̂−1

N

(
Y (h)

n − Y
(h)
n−1 + â

(h)
N h(Y

(h)
n + Y

(h)
n−1)

2

)
. (4.2)

5. The gamma-driven CAR(1) process

In this section we illustrate the preceding estimating procedure for the case in which L is
a standardized gamma process. Thus, L(t) has the gamma density fL(t) with exponent γ t ,
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scale-parameter γ −1/2, mean γ 1/2t , and variance t . The Laplace transform of L(t) is

f̃L(t)(s) := E e−sL(t) = e−t�(s), Re(s) ≥ 0, (5.1)

where �(s) = γ log(1 + βs), β = γ −1/2, and γ > 0.
Based on the h-spaced observations {Y (h)

n , n = 0, 1, . . . , N}, we estimate the discrete-time
autoregression coefficient φ and the CAR(1) parameters a and σ 2 using (3.3), (3.6), and (3.7),
respectively. We then estimate the Lévy increments as in (4.2) and use them to estimate the
parameter γ of the standardized gamma process L. To obtain the asymptotic distributions of
φ

(h)
N and â

(h)
N as N tends to ∞ with h fixed, we first show that the distribution function F of

Zn in (3.1) is regularly varying at 0 with exponent γ h, and then determine the coefficients
kN = F−1(N−1) and cα = (E Y

(h)α
1 )1/α in (3.4). To do so, we use the Laplace transform (5.1)

to investigate the behavior of the density of Z1 = σ
∫ h

0 e−a(h−t) dL(t) near 0.
Define Wh := Z1/σ . The Laplace transform of Wh is

f̃Wh
(s) = exp

(
−

∫ h

0
�(se−at ) dt

)

= exp

(
−

∫ h

0
γ log(1 + βse−at ) dt

)
. (5.2)

The exponent in (5.2) has the power series expansion

−
∫ h

0
γ log(1 + βse−at ) dt = −γ

∫ h

0
log

(
sβe−at

(
1 + 1

βse−at

))
dt

≈ log(sβ)−γ h + 1

2
γ ah2

+ γ

(
1

βsa
(1 − eah) − 1

4β2s2a
(1 − e2ah) + · · ·

)

as s → ∞. Hence, f̃Wh
(s) has the corresponding expansion

f̃Wh
(s) ≈ β−γ h

sγh
exp

(
1

2
γ ah2

)
+ C1

sγ h+1 + C2

sγ h+2 + · · · ,

where C1, C2, . . . are constants depending on γ , β, h, and a. Since f̃Z1(s) = f̃Wh
(σ s),

sγ hf̃Z1(s) → (σβ)−γ h exp
( 1

2γ ah2) as s → ∞.

By Theorem 30.2 of Doetsch (1974), the density fZ1 of Z1 has the following expansion, in a
neighborhood of 0:

fZ1(x) = (σβ)−γ hxγh−1


(γ h)
exp

(
1

2
γ ah2

)
+ (σx)γhC1

σ
(γ h + 1)
+ (σx)γh+1C2

σ
(γ h + 2)
+ · · · .

So
fZ1(x)

xγh−1 → (σβ)−γ h exp( 1
2γ ah2)


(γ h)
as x → 0,
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and

FZ1(x) ∼ xγh(σβ)−γ h exp( 1
2γ ah2)


(γ h + 1)
as x → 0. (5.3)

Thus, the distribution F of Zn is regularly varying at 0 with exponent γ h.
From the definition of kN in (3.4) we have 1/N = ∫ kN

0 FZ1(du). This equation, together
with (5.3), gives

k−1
N ∼ (σβ)−1(
(γ h + 1))−1/(γ h) exp

( 1
2ah

)
N1/(γ h) as N → ∞. (5.4)

In order to calculate cγh we need to find E [Y (h)
n ]γ h

, where Y
(h)
n = ∑∞

j=0 φjZn−j . The
Laplace transform of Y

(h)
n is

f̃
Y

(h)
n

(s) = E exp(−sY (h)
n ) =

∞∏
j=0

E exp(−sφjZn−j ).

So

log f̃
Y

(h)
n

(s) =
∞∑

j=0

log f̃Z1(sφ
j )

=
∞∑

j=0

log f̃Wh
(sσφj )

= −γ

∞∑
j=0

∫ h

0
log(1 + βsσφj e−ay) dy;

hence,

f̃
Y

(h)
n

(s) = exp

(
γ

a

∞∑
j=0

(dilog(1 + βsσφj ) − dilog(1 + βsσφj e−ah))

)

= exp

(
γ

a
dilog(1 + βsσ)

)
,

where dilog is the dilogarithm function,

dilog(x) =
∫ x

1

log(u)

1 − u
du.

Using Theorem 2.1 of Brockwell and Brown (1978), we find, for γ h < 1, that

E [Y (h)
n ]γ h = 1


(1 − γ h)

∫ ∞

0
s−γ h|Df̃

Y
(h)
n

(s)| ds

= γ

a
(1 − γ h)

∫ ∞

0
s−γ h−1 exp

(
γ

a
dilog(1 + βsσ)

)
log(1 + βsσ) ds, (5.5)

where Df denotes the derivative of f . Then cγh = (E [Y (h)
n ]γ h

)1/(γ h) can be numerically
evaluated from (5.5) for fixed h. Theorem 2.1 also covers the case in which γ h ≥ 1, but our
prime concern here is with small values of h.
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Theorem 5.1. For a sequence of observations {Y (h)
n , n = 0, 1, . . . , N} from a gamma-driven

CAR(1) process, we have â
(h)
N → a a.s. and

lim
N→∞ P[(−h)e−ahk−1

N (â
(h)
N − a)cα ≤ x] = Gα(x),

where Gα is given in (3.5), α = γ h, â
(h)
N is defined in (3.6), k−1

N is given in (5.4), and cα is
evaluated through (5.5).

Proof. At the beginning of Section 3 we showed that Y (h)
n is a stationary discrete-time AR(1)

with autoregression coefficient φ ∈ (0, 1) and driven by i.i.d. noise {Zn}. According to (5.3),
the distribution function F of Zn is regularly varying at 0 with exponent α = γ h and satisfies
the condition F(0) = 0. Since 0 ≤ Zn ≤ σ(L(nh) − L((n − 1)h),

∫
uξF (du) < ∞ for

all ξ > 0. By Corollary 2.4 of Davis and McCormick (1989), we have φ̂
(h)
N → φ a.s., which

implies that â
(h)
N → a a.s. From the same corollary, we also conclude that

lim
N→∞ P[k−1

N (φ̂
(h)
N − φ)cγh ≤ x] = Gγh(x),

where φ̂
(h)
N and k−1

N are given in (3.3) and (5.4), respectively, and cγh is evaluated through (5.5).
Using a Taylor series expansion, from this result we find that

lim
N→∞ P[(−h)e−ahk−1

N (â
(h)
N − a)cγh ≤ x] = Gγh(x).

Theorem 5.1 gives the limiting distribution of φ
(h)
N for fixed h as N tends to ∞. It is of

interest also to consider the behavior of the estimator as h also goes to 0. For any nonnegative
random variable Y with density function f (u), we have

[E Y s]1/s =
(∫ ∞

0
usf (u) du

)1/s

=
(

1 + s

∫ ∞

0
us−1f (u) du

)1/s

→ exp

(∫ ∞

0
u−1f (u) du

)
= exp(E Y−1) as s → 0,

as long as E Y−1 is finite. Applying this result to Y
(h)
n , recalling the stationarity of the sequence

{Y (h)
n }, and using Theorem 2.1 of Brockwell and Brown (1978), we obtain

lim
h→0

cγh = exp(E(Y (h)
n )−1)

= exp

(∫ ∞

0
f̃

Y
(h)
n

(s) ds

)

= exp

(∫ ∞

0
exp

(
γ

a
dilog(1 + βsσ)

)
ds

)
. (5.6)

The behavior of k−1
N , defined in (5.4), is more complicated. Using l’Hôpital’s rule, we have

lim
s→0

− log 
(s + 1)

s
= − lim

s→0


′(s + 1)


(s + 1)
= −
′(1) = γE,
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where γE is the Euler–Mascheroni constant, with numerical value 0.5772. . . . Hence,
limh→0[
(γ h + 1)]−1/(γ h) = exp(γE) and

lim
h→0

lim
N→∞ N−1/(γ h)k−1

N = (σβ)−1 exp(γE). (5.7)

When h is small, k−1
N and cγh can be well approximated by (5.6) and (5.7). Since the rate

of convergence in Theorem 5.1, as indicated by k−1
N , increases as h decreases and since the

limiting distribution Gγh becomes degenerate as h tends to 0, this suggests the possibility of
superconvergence of â

(h)
N to a as N tends to ∞ and h tends to 0. In fact, in Section 6 we show

that for any fixed T > 0, â
(h)
T /h → a a.s. as h → 0.

Example 5.1. We now illustrate the estimation procedure with a simulated example. We
simulated the gamma-driven CAR(1) process defined by

dY (t) + 0.6Y (t) dt = σ dL(t), t ∈ [0, 5000], (5.8)

at times 0, 0.001, 0.002, . . . , 5000, using an Euler approximation. We set the parameter γ

of the standardized gamma process as 2. We then sampled the process at intervals h = 0.01,
h = 0.1, and h = 1 by selecting every 10th, 100th and 1000th value, respectively. We generated
100 such realizations of the process and applied the above estimation procedure to generate 100
independent estimates, for each h, of the parameters a and σ . The sample means and standard
deviations of these estimators are shown in Table 1, which illustrates the remarkable accuracy
of the estimators.

To estimate the parameter γ of the driving standardized gamma process, we used the
following procedure. For each h and each realization, we used the estimated CAR(1) parameters
in (4.2) to generate the estimated increments �L

(h)
n , n = 1, . . . , 5000/h. We then added these

in blocks of length 1/h to obtain 5000 independent estimated increments of L in one time unit.
The histogram of the increments for one realization with h = 0.01 is shown, together with the
true probability density of L(1), in Figure 1. Even if we did not know that the background
driving Lévy process is a gamma process, the histogram strongly suggests that this is the case.
For each h and for each realization of the process, we then used the sample mean γ̂ of the
estimated increments per unit time to estimate the parameter γ of the driving standardized

Table 1: Estimated parameters based on 100 replicates on [0, 5000] of the gamma-
driven CAR(1) process (5.8) with γ = 2, observed at times nh, n = 0, . . . , �T/h�.

Gamma increments

Sample mean Sample standard
h Parameter

of estimators deviation of estimators

1 a 0.592 69 0.003 81
σ 0.997 96 0.015 87

0.1 a 0.599 99 0.000 00
σ 1.000 11 0.012 81

0.01 a 0.600 00 0.000 00
σ 0.999 90 0.011 75

https://doi.org/10.1239/jap/1197908818 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908818


986 P. J. BROCKWELL ET AL.

0 1 2 3 4 5 6 7 8 9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

�L

Figure 1: The probability density of the increments per unit time of the standardized Lévy
process with γ = 2 and the histogram of the estimated increments from a realization of the
CAR(1) process (5.8), obtained by computing �L

(.01)
n , n = 1, . . . , 500 000, from (4.2) and

adding successive values in blocks of 100 to give estimated increments per unit time.

Table 2: Estimated parameter of the standardized driving Lévy process.

Sample mean Sample standard
h Parameter of estimators deviation of estimators

1 γ 1.995 98 0.054 16
0.1 γ 2.005 29 0.032 26
0.01 γ 2.005 47 0.027 62

Lévy process, giving a set of 100 independent estimates of γ for each h. The sample means
and standard deviations of these estimators are shown in Table 2.

6. Estimation for the continuously observed process

It is interesting to note that, from a continuously observed realization on [0, T ] of a CAR(1)
process driven by a nondecreasing Lévy process with drift m = 0, the value of a can be identified
exactly with probability 1. This contrasts strongly with the case of a Gaussian CAR(1) process.
The result is a corollary of the following theorem.

Theorem 6.1. If the CAR(1) process {Y (t), t ≥ 0} defined by (2.1) is driven by a nondecreasing
Lévy process L with drift m and Lévy measure ν then, for each fixed t ,

Y (t + h) − Y (t)

h
+ aY (t) → mσ a.s. as h ↓ 0.

https://doi.org/10.1239/jap/1197908818 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908818


Nonnegative Lévy-driven Ornstein–Uhlenbeck processes 987

Proof. From (2.6) we find that

Y (t + h) − Y (t) = Y (0)(e−a(t+h) − e−at ) + σ(L(t + h) − L(t))

− aσ

∫ t

0
e−a(t−u)(e−ah − 1)L(u) du − aσ

∫ t+h

t

e−a(t+h−u)L(u) du.

Dividing each side by h, letting h ↓ 0, and using the fact that limh↓0(L(t + h) − L(t))/h = m

(see Shtatland (1965)), we see that

Y (t + h) − Y (t)

h
→ mσ − aY (0)e−at + a2σ

∫ t

0
e−a(t−u)L(u) du − aσL(t) = mσ − aY (t).

Corollary 6.1. If m = 0 in Theorem 6.1 (this is the case if the point 0 belongs to the closure
of the support of L(1)) then, for each fixed t , with probability 1,

a = lim
h↓0

log Y (t) − log Y (t + h)

h
. (6.1)

For each fixed T > 0, a is also expressible, with probability 1, as

a = sup
0≤s<t≤T

log Y (s) − log Y (t)

t − s
. (6.2)

Proof. By setting L(t) = 0 for all t in the defining equation (2.1) we obtain the inequality

log Y (s) − log Y (t) ≤ a(t − s)

for all s and t such that 0 ≤ s < t ≤ T , from which it follows that

a ≥ sup
0≤s<t≤T

log Y (s) − log Y (t)

t − s
. (6.3)

From Theorem 6.1 with m = 0, we find that

Y (t) − Y (t + h)

hY (t)
→ a as h ↓ 0.

From the inequalities in (6.3) and 1 − x ≤ − log x for 0 < x ≤ 1, we obtain the inequalities

Y (t) − Y (t + h)

hY (t)
≤ log Y (t) − log Y (t + h)

h
≤ a,

and letting h ↓ 0 gives (6.1). But this implies that

a ≤ sup
0≤s<t≤T

log Y (s) − log Y (t)

t − s
,

which, with (6.3), gives (6.2).

Remark 6.1. If observations are available only at times {nh : n = 0, 1, 2, . . . , �T/h�}, and if
the driving Lévy process has zero drift, Corollary 6.1 suggests the following estimator:

â
(h)
T = sup

0≤n<�T/h�
log Y (nh) − log Y ((n + 1)h)

h
.
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This estimator is precisely the same as the estimator (3.6). Its remarkable accuracy has already
been illustrated in Table 1. The analogous estimator, based on closely but irregularly spaced
observations at times t1, t2, . . . , tN such that 0 ≤ t1 < t2 < · · · < tN ≤ T , is

âT = sup
n

log Y (tn) − log Y (tn+1)

tn+1 − tn
.

By Corollary 6.1, both estimators converge almost surely to a as the maximum spacing between
successive observations converges to 0.

7. Conclusions

Under the conditions specified in Section 3, we have examined the asymptotic properties
of a highly efficient method, using observations at times 0, h, 2h, . . . , Nh, for estimating the
parameters of a stationary Ornstein–Uhlenbeck process {Y (t)} driven by a nondecreasing Lévy
process {L(t)}. For smallh, we used a discrete approximation to the exact integral representation
of L(t) in terms of {Y (s), s ≤ t} to estimate the increments of the driving Lévy process and,
hence, to estimate the parameters of the Lévy process. Under the specified conditions, we
obtained the asymptotic distribution of the estimator of the CAR(1) coefficient as N tended to
∞ with h fixed. The accuracy of the procedure was illustrated with a simulated example of
a gamma-driven process. We also showed that the CAR(1) coefficient a is determined almost
surely by a continuously observed realization of Y on any interval [0, T ]. The expression
for a suggests an estimator based on discrete observations of Y which, for uniformly spaced
observations, is the same as the estimator developed in Section 3.

In Section 6 we found that if L has zero drift, the estimator â
(h)
T based on h-spaced

observations on [0, T ] is almost surely consistent as h tended to 0 for any fixed T > 0.
The asymptotic distribution, as T tended to ∞ with h fixed, was computed explicitly in
Section 5 for the case in which L is a gamma process. The critical step was the establishment
of the regular variation of the distribution function of

∫ h

0 e−au dL(u) at 0. More generally,
if E e−sL(t) = e−t�(s), where �(s) = c log(s) + ∑∞

j=0 cj s
−j for |s| > R, then the same

argument as in Section 5 shows that the distribution of the integral is again regularly varying
at 0 and that the exponent is ch. In fact, the regular variation (RV) condition depends only on
the behavior of the Lévy measure ν near 0. This can be shown as follows. For any given ε > 0,
the process L(t) can be written as the sum of two independent Lévy processes

L(t) = S(t) + B(t),

where S has Lévy measure ν((0, ε] ∩ ·) and B has the finite Lévy measure ν([ε, ∞) ∩ ·).
Provided that x < εe−ah, the distribution function of

∫ h

0 e−au dL(u) can then be expressed as

F(x) = P

(∫ h

0
e−au dL(u) ≤ x

)
= P

(∫ h

0
e−au dS(u) ≤ x

)
e−hν((ε,∞)).

This shows that F(cx)/F (x)is independent of ν((ε, ∞) ∩ ·) for x < εe−ah. If, in particular,
the Lévy density coincides with that of the gamma process (γ x−1e−βx) on some interval (0, ε]
then the RV condition is satisfied. This leads to the conjecture that a Lévy density of the form
γ x−1(1 + o(x)) ensures satisfaction of the RV condition with exponent γ h.

If the Lévy density of L has the form γ x−1−β , with γ > 0 and 0 < β < 1, then L(h)

and Z1 := σ
∫ h

0 e−a(h−t) dL(t) are both positive stable random variables with exponent β and
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the RV condition is not satisfied. This is readily seen when β = 1
2 , in which case the density

of Z1 has the form f (x) = √
c/(2π)x−1.5e−c/2x . (For the general case, there is no concise

explicit form of the density function, but a series expansion can be found in Brockwell and
Brown (1978).) The density f (x) approaches 0 at a much faster rate as x tends to 0 than in the
gamma case, and since the success of our estimator depends upon the existence of an interval
of length h with a very small increment in L, it should be less efficient in this case than in the
gamma case.

If, on the other hand, the Lévy density of L is less than or equal to γ x−1−β , with β < 0, in
some neighborhood of 0, then L has finite Lévy measure and the distributions of L(h) and Z1
both have positive mass at 0. Hence, with probability 1, min{n > 0 : Y (nh) = e−ahY ((n−1)h)}
is finite for any fixed h > 0, and the estimator â

(h)
T is equal to a for sufficiently large T .

The generalization of the procedure to nonnegative Lévy-driven continuous-time ARMA
processes is currently in progress.
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