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Abstract. We build a theory ofA-adic Siegel modular forms related to the Klingen parabolic subgroup

of GSp(4). These correspond to families of cohomology classes of increasing levels whose Hecke
eigenvalues enjoy strong congruence properties. In the spirit of Hida's theory, a control theorem to
relate the family to finite-level members is proved for almost all pripiés particular we show that

the error term appearing in degree one cohomology is killed by the ordinary idempotent.
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0. Introduction

In this article we develop a theory df-adic families of vector-valued Siegel
modular forms. Such a family basically consists of a sequence of modular forms
of varying weights, which are eigenforms for the Hecke algebra and whose Hecke
eigenvalues enjoy strong congruence properties. The direction in the change of
weight one considers corresponds to a choice of (a conjugacy class of) parabolic
subgroups of GS@), and here we deal with the non-standard or Klingen parabolic
subgroup. An analogous program has been carried out for the theory related to the
Borel subgroup of GS@) in [TU1] and [TUZ2], and (by slightly different means)

for the Siegel parabolic subgroup in [Tayl1]. Our work builds on the independence
of weight results proved in our previous paper [B2].

The general strategy of the construction is obviously a routine extension of the
methods of [Hil] and later works of Hida. However, these papers often encounter
problems with the so-called control theorem. Our main contribution is to actually
prove the vanishing of the ordinary part of one of the error terms by an explicit
calculation. In the case of Borel-like congruence subgroups Hida has found a
method to obtain exact control outside a finite set of primes — see [Hi3] Section 7.
To complete our theory, we can employ a similar trick to show that the remaining
error term is also non-ordinary, if we exclude a finite set of primes.

We obtain families as specialisations of elements in an ‘infinite level’ space
of modular forms. Our approach is purely cohomological, so we can only really
talk about systems of Hecke eigenvalues occurring on various cohomology groups,
which may or may not come from genuine modular forms.
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The principal application of such families is to study the properties of the four-
dimensional Galois representations attached to Siegel modular forms in the family.
Here we show how to lift a given system of eigenvalues feadic family, which
is a prerequisite for such applications.

Let us describe our results in a little more det&ilr) is a certain congruence
subgroup in SgZ described in Section 1, with levgl N for p N, whose reduction
modulop” lies in the Klingen parabolic subgroup. LEt, , be the unique irre-
ducible representation of () with highest weightm, n) in the Weyl chamber
corresponding to the standard Borel subgroup. Then there is a Hecke-equivariant
embedding of holomorphic degree two Siegel modular formE ey and of weight
(K1, k2) into H3(T(r), Vi, 3k, 3) (in analogy with the classical Eichler—Shimura
isomorphism). We define a certaiftlattice Ly C Vi. Cohomology with coeffi-
cientsinLy does not correspond directly to modular forms with integer coefficients,
but we have the same Hecke algebra acting on botte hetthe projector onto the
ordinary (with respect to a Hecke operator to be specified) subspace.

Define

WI((),T = eHS(F(T)aLk ® Z/prZ)a Wl? = IILTJ Wl?,r

r

and letWy’ . and W, be the corresponding Pontryagin dual spaces. In Section 1
we explain the action of the Iwasawa algeldra= 7Z,[[1 + pZ,|] = 7Z,[[X]] and

a twisted action of the Hecke operators Wi§. Then it follows from the main
theorem of [B2] thatVy, is essentially independent of the second weight variable
ko.

To make the concept of infinite level a useful one, we require a ‘control theorem’
of the form (Wg)1+P*%r = WX s- When attempting to prove this using a spectral
sequence relating different level cohnomology groups, one encounters several error
terms. Leteg be the idempotent associated to ledxelUnder the assumption

pt#eoH3(D(0), L), forsomek = (m,n) with n>>m >0  (H)

we can prove the control theorem as Theorem 2.3 and Corollary 2.7. The bulk of
our work is in showing thatH(T'(r), Ly ® Q,/Z,) = 0; by an application of
the congruence subgroup property fo(&pthis is reduced to a (slightly lengthy)
calculation in the cohomology of finite groups. We then use the condifibnto
deduce that we also havé/?(T'(r), Ly ® Q,/Z,) = 0. We suggest a condition for
this second error term to vanish for all

The control theorem (2.7) is the basis for studying the spége

Now takeu = 1 + p, a topological generator of % pZ,. Fora € N we have
prime idealsP, = v — (1 + p)* in A. P, is the kernel of the specialisation map
from A to Z,, given by settingX to (1 + p)® — 1; these specialisation maps allow
us to recover finite level spaces of modular forms fraig.

Our main result is
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THEOREM A. Assume hypothesis H. Defitlé = W¢, .. ThenW is finite
and free overA; if m is a fixed even integer, thgwisted Hecke modul&V is

independent af. Furthermore, we have specialisation majgg P, W = W("m o)1

A slightly more general version of Theorem A is proved as Theorem 5.4 in the
text. As already remarked above, most of the proof follows the lines set out in [Hi1],
apart from the vanishing of the degree one error term in the spectral sequence for
the control theorem.

In [TU2] it is shown that the error terms in the control theorem vanish for
complex coefficients, using results of Richard Taylor for the cohomology of the
interior together with a theorem of Schwermer on the boundary cohomology. Hence
the error terms can only be torsion, which gives us a weak version of Theorem 5.4
with finite kernel and cokernel. In the case whBfe) (modp”) actually lies in the
reduction of the Borel subgroup of 3f ), Tilouine and Urban use Hida’s trick to
obtain exact control provideg lies outside a finite set of primes. (See [TU3] for
full details.)

On the other hand, in [Tayl], Taylor studied the Siegel parabolic subgroup,
corresponding to parallel weight changes, where the weight ranges through values
(k1 + A\, k2 + \) for fixed k1 and k,. He obtainedp-adic families simply by
multiplication by suitable scalar-valued Eisenstein series; ordinary eigenforms were
then recovered using boundedness results for the ordinary part ([Tayl] Prop. 2.1;
see [B2] Prop. 5.1).

On applying the going-down theorem from commutative algebra, we deduce
from Theorem A that any given cohomological eigenform can be placediadic
family.

THEOREM B.Suppos® is a system of Hecke eigenvalues occurring on the group

Wy 1. Then there exists a local rirf finite overA, a system of Hecke eigenvalues

© on the universal spac®/ and valued inZ, and an idealo,, of Z lying above
P, such that

©modgp, = 6.

Furthermore, if(m,n’) = (m,n) + A(0,p — 1) is another weight, ang,, is an
ideal of 7 lying aboveP,; withZ /o, = Zj,, then

©modp,, = © (modp).

Theorem B will be proved as Theorem 5.6 at the end of this paper.

The layout of the paper is as follows. In Section 1 we review the cohomological
setup of Siegel modular forms and the relevant theorems proved in [B1] and [B2].
We also define the spac®gy , etc. discussed above together with their lwasawa
and Hecke actions. In Section 2 we prove the control theorem that will allow us
to recover finite level spaces froW, assuming that thél* error term is zero.
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Section 3 is devoted to this vanishing result. In Section 4 we show that/the

error is zero provideg does not lie in the exceptional set of primes. Finally, in
Section 5 we deduce the main theorems; they are simply algebraic consequences
of the control Theorem 2.7.

1. Notation and definitions

We begin by summarising very briefly our notation for vector-valued Siegel mod-
ular forms of degree 2. For more details, see Section 1 of [B2] or the exhaustive
discussion in [God].

Throughout the paper, we fix a prirpeand an integeN prime top. The power
of p occurring in the levely, is usually positive, but at one point we will consider
level prime-top. We define a congruence subgrdup) of level Np™ as follows

e forgt Np, letU, = GSpy(Zy);

e forq | N, we allowlU, C GSp,(Z,) to be any subgroup such thai/;) = 7,
diagp”, p%,p",1) € U,, and whenevety € GSp,(%,) is congruent tol,
moduloN, theny € U, (i.e. basically a congruence subgroup of le¥g}

o for g =p,
*x 0 * %
X ok %k %
Up=q9€GSm(Z) 9= | o _ | (modp), p™lgazp,
0 0O

(heregs» denotes thé4, 2) matrix entry ofg).

LetU = [] U, as an open compact subgroup of @@:}. Then defind'(r) =
U N Sp(Z). In [B2], we similarly define a semigroufd(r) and construct a com-
mutative Hecke algebra,, ,), as theZ-module generated by double cosets
I'(r)gl(r) with ¢ € A(r), acting on weightm,n) modular forms. We do not
repeat the definition ofA(r) here; the important point is that the only Hecke
operator ap is R,» = [['(r) diag(p”, p*", p", 1) T'(r)].

Let Z = {Z € M»(C): Z" = Z, Im(Z) > 0} be the Siegel upper half-
space of degree 2, which comes equipped with the usual action ¢f @BpFor
n>m >0, letX = SynP ™ C? ® det"*" be an(n — m + 1)-dimensional
representation of GI(C). Then the space of Siegel cusp forms of weight n)
consists of holomorphic functions: Z — X satisfying

f(yZ)=(CZ+ D).f(Z) forall v= <g B) el(r), Z€Z,

D

together with a cuspidal condition. We denote it 8y, ,(I'(r)); it is equipped
with an action ofT,, ,,) .. Denote by the projector onto the subspace spanned by
forms on whichR,, acts as a-adic unit.
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Pick the standard Borel subgrop C Sp(4); this fixes a Weyl chamber >
m > 0 in Homug (T(C),C*) = 72 (T being the torus of diagonal matrices).
Recall from the representation theory of Lie groups (see eg. [Hmph]) that there
is a unique irreducible representatity ,, of Sp,(C) with highest weightm, n)
in the given Weyl chambei,, , breaks up as a direct sum of weight spaces,
Vinn = OuyVinh, S0 that diag, 8,1/, 1/8) acts asa”Y on Vh. We give
Vm,n an action of GSp(C) by letting the centre\I, act asA™. By a standard
construction, we can form the group cohomold@y(I'(r), V,,, ) equipped with
an action of Hecke operators (and hence also an action of the idemppt€here
is Ty, n),--€quivariant embedding

Sma(L(r) = H(L(r), Vin-3-3),

(see e.g. [Tayl] Section 2.3), and for the rest of this paper we shall be working
with cohomological systems of eigenvalues. These may not always correspond
to a modular form, but the above embedding allows us, for example, to obtain
boundedness results for spaces of genuine modular forms.

In [B2] we showed how to construct an admissifikattice Ly C Vi using the
action of the universal enveloping algebra of the Lie algepfan Vi. Then the
main theorem of [B2] states that

THEOREM 1.1For 0 < i < 6, we have an isomorphism df(, ) ,-modules
eH'(T(r), Ly © 2./p"2) ® X, "
= eH'(T(r), Linjn 11 ® Z/p'Z) @ x; "%,

Herey, is the character of GSfZ) given by sending a matrix to its bottom
right-hand entry modulp”.
Now we define

Wiir = lim (T (1), D 9 2/,
t

(We will later also consider this limit in degree two, but this is the group we are

really interested in.) Then we haw , = H3(T'(r), Ly ® Q,/Z,); this can be
seen from the short exact sequences

pt

04’Z/10tZ —— @y /Zyp Q/Zp 0
t+1 pttl
O ——Z/p""L — Q/Lp —— Q/Zy 0
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on taking derived functor&l*(I'(r), Ly ® — ), as follows (where we have abbre-
viated H*(I'(r), Ly ® A) to H*(A))

H2(Qy/2,) 2~ H2(Qy/2,) H3(2/p'2) H3(Q,/2,)[p'] ——— 0

| , |

HZ(QP/ZP) L Hz(@p/Zp) - Hg(Z/PHlZ) — HS(QP/ZI,)[le] L0

2 | |

Hz(@p/zp) - Hs(Z/pHZZ) - HS(@p/Zp)[sz] ——0

r 4
| |

ILan(Z/PtZ) Hg(@p/zp)-
t

Diagram-chasing gives the injectivity and surjectivity.
Let Wﬁ, = eWx,, be the ordinary component ¥ ,.. Define the direct limit

WK = ILn? WI?,?" = ILn;] 6H3(F(r)va(QP/Zp))’

r r

where the transition maps are simply restriction morphisms of cohomology groups.

If we also defineVy . = eH3(I'(r), Lk(Z/p"Z)), we have

WL = lim lim e (L (r), Li(2/p'2)) = lim Wi,
r t r

(now the transition maps are restriction composed with embeddjpdz into
7.|p°Z).
We have Pontryagin dual modules
Wy, = Hom(W, ., Q,/Z,)

which behave well with respect to limits

WI? = lln WI?,r = Hom(nga QP /Zp)'

r
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We now discuss giving these objectdanodule structure. Define a new con-
gruence subgrouBy(r) adelically as above, with the same conditions as before at
q | N andgq { Np, but replacing the condition atby

x 0 x %

* * *

Up=149€GSp(Zy):9 = (modp”), p*|gaz

*
o O *

*

0 x

Also, forr > s > 1, let®s =T'(s) NTp(r). So we havd'(r) « &5 C I'(s) and
®;/T(r) = Gs/G, =L /p" L,

where we have writtel,, := (14 p"Zp)*.
AlsoT'(r) <« T'o(r) and

Lo(r)/T(r) = (2/p'Z)"  via
[M] = M4,4 (modp”).

Then we have an action ¢f /p"Z)* on Wy, by lettingd € (Z/p"Z)* act asoq,
whereo is a representative afin I'g(r). Hence there is an action of

lim(z/p'2)* = 73 = (2./p2)* x (1+ pZ,)*

r

onW,. Regarding71 = (1+ pZ,)* as a subgroup ot*, and lettingZ, act simply
by multiplication on the coefficients, we see thef becomes a continuous module
under the lwasawa algebfa= 7,[[G1]].

Pick a topological generatar of G, for exampleuw = 1+ p. ThenA is
isomorphic to the one-variable Iwasawa algebya X || viau <> 1+ X.

There are specialisation maps

sa’ Lp[[X]] = Z,[[G1]] = Zy
1+ X o u— (1+p)* (a €N).
The kernel ofs, is the height one prime ideal df generated by
P,=u—(1+p)® €A
more generally, let
Pos=ul" — (1+p)"".

Let g = diag K, K2, K, 1). We will be referring to the following decompo-
sition of the Hecke operatdk, (see Corollary 2.2.6 of [B1]; note the condition
gp € Uy in the definition).
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LEMMA 1.2. Suppose, s > 0. Then we have a coset decomposition

[C(r)gpsT(r) Hau
where
1 0 0 =z
t 1 2z w
W=Tlo 0 1 —t |9
0 0 0 1

Herez, ¢t run through residue classes modwpfoandw runs through residue classes
modulop® and the representatives are all chosen to be congruent to zero modulo
N. O

It follows from this that the Hecke operators are compatible with restriction maps
between spaces of different levels, so we obtain opera‘[@fsllm T acting on

Wk, by the universal property of inverse limits. We defingo be theA-subalgebra
of the endomorphism ring dfx generated by all these operators. It will be seen
as a consequence of Corollary 2.7 theg ; — W, for r > s, soWk , — Wk
andTy — Tk -

We write Wk (a) for the A-module obtained fromWx by twisting the Hecke
action by theath power of I|m xr, and theA-action by theath power of the

tautological characte/; — Z;‘, Notice that at finite levep”, this induces the
charactery? of Theorem 1.1 (the action dfg(r) on latticesL,, and Ly, »+1
differs by precisely this character). This twisting is essential to our theory, since it
removes differences in the action on different weights. Indeed, Theorem 1.1 now
says that

WEm,nl),r (_nl) = W{m,nz),r (_nZ)

asA-modules and as Hecke modules.
We check that the isomorphism of Theorem 1.1 is compatible with restriction
between different levels. Thus on taking direct limits, we can conclude

COROLLARY 1.3.We haveW("m nl)(_”l) = W("m nz)(—
Hecke algebra

There is aA-action on the dudly in the usual way

(uf)(d) = fud) (v G, €Wk, f € Wi).

Twisted objects have twisted duals: the dualf, (a) is W, (a), and that of
WE (a) is W¢(a). A result analogous to Corollary 1.3 holds for the dual spaces

n2) as modules for the
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We can therefore define an obj&t:= Wy, |, (—n) independent oh. Our aim
is to determine hypotheses under whihis a finite freeA-module, and to recover
the spacesV, , from W, ., for any finite level®.

2. Control theorem

The following identity of double cosets is analogous to Lemma 4.3(i) in [Hil]. We
omit the proof, which is a straightforward matrix calculation (see Lemma 3.2.1 in
[B1]).

LEMMA 2.1. Letr > s > 1. Then®; g *®; = I'(s)g}, *®;. O

To recover finite levels from our direct limit, we first need to compaig, and
W s forall r > s. The first step is given by the next elementary lemma on Hecke
operators, which is modelled on [Hil] Lemma 4.3(ii).

LEMMA 2.2. Letr > s > 1 and0 < ¢ < 6. Then restriction of cocycles induces
an isomorphism of Hecke modules

eHY(T(s), Lk (Qp /Zyp)) = eH (P, L (Qp / Zy))-

Proof. Consider the diagram

res

HYT(s), Lk(Qy /Zp)) — HI(®7, L (Qy /Z)p))

e T e

res

HYT(s), Lk (Qp /Zp)) — H (@7, Lk (Qp /Z)),

where the diagonal arrow is given by the Hecke opergtgs)g,~°®;], and the
horizontal maps are restrictions of cocycles.
In the notation of Lemma 1.2 above, we have

Ry =[L(s)gp°T(s)] = [T ewl'(s).
On the other hand, by Lemma 2.1, we have that
[D(s)gp @3] = [3g) @3]

= Ha@ﬂ)fj
forthe same representatives (This follows fromLemma 1.2, d(s)Ng, =" ®; g, ~*
C %))
Let [¢] € HY(T'(s), Lk(Q,/Zp)). Then for(gs,...,gq) € I'(s)?, choosev; =
v1(u) such thaty, *gia,, € ®F, chooser, = vy(u) such thaty, *goan, € @5, etc,
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up tov, = v,(u). We have
((resg)|[@7g, °T'(s)])(g1, - -, 93)
- Z ay (rese) (a;lglavl, ... ,a;ql_lgqavq)
u
=Y oaudla, rgron, - . ,a;ql_lgqavq)
u

= (¢|R;)_s)(gla s 793)7

i.e. the left-hand triangle commutes. Similarly the right-hand triangle commutes.
Then on the ordinary components, the vertical maps are isomorphisms. Hence
so are the horizontal maps. |

THEOREM 2.3.Suppose thatH*(T'(r), Lk (Q, /Z,) = Ofor all i < g, and for all
r > 1. Thenfors > 1andG,; = (1 + p°Zp)*

G
(tm eHIC ), L(Q/2,))) = eH(D(5), (G /2,)

T>

Proof. Note that it suffices to prove that for> s > 1
qu(F(T)aLk(@p/Zp))GS = qu((I)iaLk(Qp/Zp))-

Indeed, combining this statement with Lemma 2.2 gives H$(I'(r), Lk (Q,/
Z,))% = eHI(T(s), Lx(Q,/Zy)), forr > s. On taking the limit over, we obtain
the theorem.
To prove the above statement, we consider the Serre—Hochschild spectral
sequence

HY(®7/T(r), H (D (r), Li(Qp /) = H™ (97, Li(Qy /Zy))-

By the argument preceeding Theorem 9.1 in [Hi2], the differential maps in the
spectral sequence are compatible with our Hecke operators. A Hecke operator
[@3g®¢] acts onH' (L' (r), Lk (Q, /Z,)) as[['(r)gT(r)], compatibly with the action

of ®7/I'(r). Thus it induces an endomorphism of the cohomology groups at stage
E5’, in other words thed?(®3 /T (r), eH (T(r), Lk (Q,/Z,))), and we get

HY(®: /T (r), eHI (T(r), L (Qy /Z,)))
= €Hi+j(‘biaLk(@p/Zp))-

Thenitis a consequence of the hypotheses that the spectral sequence degenerates

to givee HY(®F, Ly (Q, /Zy)) = eH(T(r), L (Q, /Z,))®+/T (7). On the other hand,

it is easy to see thad;/I'(r) = (1+p°Z,)*/(1+p"Zp)* = Gs/G,, and the

theorem follows. 0
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We will now demonstrate the vanishing conditions of the theorem as far as pos-
sible.
LEMMA 2.4. e HO(I'(r), Ix(Q, /Z,)) = O.
Proof. To examine the effect afon HO(T(r), Lx (Q, /2,))=lim Lx(./p'z)" ",
t

we use the coset decomposition®f given in Lemma 1.2. This gives that for
m € Lx(Z/p'7),

1 0 0 =z
t 1 2z w
m|R = Z gpm
St 0O 0 1 —¢
0O 0 0 1

Now on all but thex, —n) weight spacesii#r,,, »,, g, itself acts by multiplication
by a positive power op. On the other hand, when restricted o« N @, V;, 1) ®
Z/p'Z, each of the above coset representatives acts merely as the identity (cf.
Section 3 in [B2]: one can factorise them into ékp, where thdd/,, are elements
of a Chevalley basis faf,, whose action is easily described). Thus;foe V57",
m| Ry = p*m +m/ with m’ € &,~_, V>, andm has been killed after at most
applications ofR?,,. O

PROPOSITION 2.5¢HY(T'(r), Lk (Q, /Z,)) = O.

This result will be proved in the next section. Here we continue with the proof
of our control theorem.

PROPOSITION 2.6Assume the conditiqi#l ) holds forp. Thene H3(T'(r), L (Q, /
Zp)) =0.

Proposition 2.6 will be proved in Section 4. Note that its proof will in fact rely
on Theorem 2.3 witly = 2, i.e. using Lemma 2.4 and Proposition 2.5.

Remark One might expect the conclusion of Proposition 2.6 to hold for all
primes, if the projector is replaced by something stronger: te§ < Ty, be a
maximal ideal corresponding to a system of eigenvatuds , — Q, (i.e. my =
Ker(6)) occurring on the ordinary componeatl3(I'(r), Lx(Z,)). Let § be the
mod p reduction off. Weissauer has proved (see [W]) that there is an associated
Galois representatiopy: Gal(Q/Q) — GSp(F,) which is unramified outsidg,
and such that the characteristic polynomialgpfFroh,) is equal tof(Q,(X)),
whereQ,(X) is the relevant Hecke polynomial.

Supposé is such thapy isirreducible Then by analogy with the Glcase, itis
reasonable to assume tifladoes not occur onH*(T'(r), Lk (Q, /Z,)) for degrees
i # 3. This would mean that the localisatiefl ?(T'(r), Lk (Q, /Zy)) m, Vanishes.

This is certainly true for the torsion-free case: [Tay2], Proposition 2 says that
any representation coming frof?(I'\ Z2, V., (Q,)) can only have irreducible

comp4173.tex; 15/07/1998; 10:16; v.7; p.11

https://doi.org/10.1023/A:1000575707940 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000575707940

102 KARSTEN BUECKER

constituents of dimension at most two — for any subrepresentation, we can obtain
another one as a suitable twist by the cyclotomic character. However, it is not clear
how to prove an analogous result for torsion coefficients.

As the Hecke algebrél = Ty, is semilocal, there is a projectey,, such that

Cmg H = €my (@ ?—lm) =H

maH

Now H2(Z,) . = (H),,®@uH?Z,), and to require tha# does not occur in

degree two is the same as demandingH?(T'(r), Lx(Q,/Z,)) = 0. This is
clearly weaker than assumirg?(T'(r), Lk (Q, /Z,)) = 0O: e projects onto the
sum of all localisations at maximal ideals which do not confajn whereas.,,
projects onto just one of these (certaitily ¢ mp). SOee, = enye = €n,.

We can now deduce our key result on infinite level cohnomology groups.

COROLLARY 2.7.Suppose the conditioffZ) holds. Then fos > 1 andG, =
(1+p°Zp)",

(WR)%* = eH>(T(s), L(Qy/Zp)).- O

3. Proof of Proposition 2.5

The plan of attack is as follows: first we apply the congruence subgroup property
to reduce the proposition to a statement about the cohomology of finite groups. We
then break this up into pieces on which the actiorRpfis sufficiently simple to
prove our result; first we break off a prime<tgpart, then we split the remainder
into Levi-like and unipotent components.

It suffices to prove thatH*(T'(r), Lk (Z /p'Z)) = 0 for all finite t. Now o, =
Yu-gp (S€€ Lemma 1.2) ang, will act as a factor ofp"™¥ on a weight space
V%Y in L. So without loss of generality, we can replace the coefficiéntsy
L' = ®,(V®»~" N L) whereq,, acts trivially. ' is an Slp-module, but modul@’
it may cease to be irreducible. For the rest of this section, abbrelf@®/p'z) to
L andI'(r) toT. The action ofR,, on a 1-cocycles in H(T', L) is then given by

@180 = 2 b vau),

where for eachu, v is chosen so that;, 1y, € T'. The action off" on L factors
modulop’ ([B2] Lemma 3.2), and also (at least for= t) through the projection

air 0 b1 bp
az ag bz by ap by

mod p") mod p").
c1 0 dl dz ( b ) (Cl dl) ( P )
0 0 0 da
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We first show
LEMMA 3.1. LetI',s be the principal congruence subgroup of lexél Then

HYT,L) = |J infrp, HY /T, L)
p"N|MEN

Proof. Consider a clagg] € H(T, L) and pick a representative cocyele [¢].
Let @ C T be the kernel of, i.e. the sefgeT': ¢(g) = 0}.  has finite index
in " becausd. is finite. Now we appeal to the congruence subgroup property for
the symplectic group — see Satz 10, Corollary 3 in [Menn], or [BMS] for a more
general treatment. Thus there is an integersuch thatl’y;, C Q is a principal
congruence subgroup. Therinduces

¢:T/Ty — L.

Clearly inf(¢) = ¢ and sdinf(¢)] = [¢], even thouglf2 depends on the choice
of ¢. Also asI'y; C I we havep” N | M, by minimality of the levep” N. O

The Hecke action on the mad cohomology groups will be defined compatibly
with inflation. Hence the Hida idempotenassociated td g, I'] will be compatible
with inflation, too.

Supposeé = p°K, K =[], 1, wherec > r andN | K. Write [}, = ', N\T
forn € N. Then

[/Ty =T/T)e x T[Tk

by the Chinese remainder theorem, using Lemma 3.3.2 of [A]: dignh]) on
the right, lift each to SZ) and formX = ga+ hb € My(Z)wherea,b € Ma(Z),
ande =1(p°),a =0(K),b=0(p°),b=1(K).ThenX modM € Sp,(Z/MZ)
has a lifty € Sp,(z) satisfyingy = g (mod p©) andy = h (mod K), soy € U,
forallg | N andy € Uy, i.e.y € T.

Now if g = T (mod p®) theng acts trivially onZ', and so we have a decom-
position of cohomology groups

H(T/Tp, L) 2 HYT /Ty, L) x HY(T /T, L),
¢ = (Blr/r . Sl )y
P < (Y1, ¢2),

wherey () = ¢1(y modp®) + (y modp®, I).4p2(y mod K).
So consided{ }(I' /T, L'x). We will show this is not ordinary. Chooseka
such thatp* = 1 (mod K) and pick representatives, = v,g% for RF such

thaty, = I, (mod K) for eachu. We define the action cﬁ%’g on cocyclesj& €
Z(T /T, L) by

¢|Rk Zau¢ (v €T),
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where the bar denotes reduction mod#loThis is manifestly independent of the
choice of lifty of an element of*/T".

Furthermore, we must check that the action commutes with inflationIfrdrf
toT". So suppose we are givere T'; letv = v(u) be the unique index of the coset
representatives satisfying, 1ya, € T'. Then

((inf @) [ Ry) (v) = D cw(inf ¢) (e, yewy)
= Zau(ﬁ(a;l'yav)

= Zau¢(7)
= (inf (¢| B}))(7).

The third equality above can be seen by considering all the matrices modulo
K; we see that with our choices for the coset representativescand have
o Yya, =y (modl), andg takes the same value on both.

But then

(@R} F) = (Yugpr $(7))-

u

Again, g, will act as a power op unless¢ (%) € V%~ in which casey, acts
as the identity. So as in the proof of Lemma 2.4, repeated applicatié ofill
eventually multiply byp?, and sce kills ¢.

We now turn toHl(F/F;c, LFZC). This group is not preserved ly,; instead

Rp:Hl(F/F;,c,LF;C) — Hl(F/F;C+2,LFpC+2): if 1 is a cocycle theny| R, €

Zl(I‘/I‘;ﬁz, L) is given by

(¥ | Ry)(y modp®*2) = 3~ atp(ay v, modp®).

One can see that the right-hand side is well-defined independently of the choice of
representative foy modulop®*? (the problem is it does depend grmodulop®).
The R,-action is automatically compatible with inflation

Rp

(2

IRy

infl infl
T/, o/

(infy: T — L) 22+ (infy) | R,
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andfory e I’
((inf ) | Rp)( Zau inf ) (e, 'Yav)

= autp(ay My, modp©)

= (| R,)(y modp“*?)
= (inf(y| Rp)) (7).

Recall that the Klingen parabolic subgroup of(&pis the semidirect product
of its normal subgroug/, which consists of matrices of the for@é g) with

EEEE A

GL, x G,,. Motivated by this, we define

A= (i 2) B = (0 *) andD = ((1) ’i) and a Levi component isomorphic to

0
. 0
Sy =Y ESY(Z/pL) vy = 0

O o O 2
o O ® O
o &8 O

~

e

and consider the projection mﬁ;ﬁFQ,CLS,«, given by picking out the correspond-
ing entries from a matrix and reducing modufa This is well-defined as > r
and it is a homomorphism. Its imageSs(say), which is independent of and its
kernel is

*

U =<yel/Tp:y= (mod p")

0
*
1
0

o O O

*
0 1

(Again this is a good definition as> r). N
The idea here is that the actioni@f on L is nearly trivial, whereas o (S, L)
we can define a convenient action/of. We have the inflation-restriction sequence

arising from 0— U, < I'/T. 8§ — 0

inf

0— HY(S,L%) % HYT/T.,L) — HY(U,, L),

which allows us to consider the ‘unipotent’ and ‘Levi-like’ parts separately.
We define the Hecke action d@i'(S, L) by

(| Rp)( Zam ) (p € ZXS,L), vy €8S).
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This is also compatible with inflation: ié%r”c (¢) lies in Zl(F/F;,c,L) and

. o/, . . . N
(infy"** ) | R, lies in ZX(T/T",..,, L); let g be a litt of  to T/T" ., andg a
lift of g toT. Then

(mwn&mnzgpmmwmfmumwﬂ
= Eu:am(ﬂa; o, modp®))
= X oud(n(g modyp"))
= L oud(r(g)
= (inf(¢| Ry)) (9)-

Again, the third equality follows from explicit computation.
So we get

bRy = (Do) =0"0

and as before annihilates all cocycles.

The remaining term i$7%(U,, L). The Hecke action on the image of restriction
in H(U,, L) is inherited from that ot/ (/T c+2, ).

By definition of U,, any cocyclep € Z1(U,, L) is a homomorphism modulo
pie. forz,y € U,

d(zy) = d(z) + d(y) + " (A X50 + uX"50)(y)

for somel, pu, k,1 € Z, whereX, o and X_, g are the two non-diagonal elements
of the Lie algebra of Si(C). Assume for now that we know| Ry = 0 if ¢ is a
homomorphism. Then in general

(@1 Rp)(v) =" Y- (AoX5 + u2X0) $(?) (7 € Uesr)
€Uy

and(¢| R;)(v) = 0in Lk(Z /p'Z).

It remains to verify the above assumption. So take Hom(U,, L) andy € T"a
lift of ¥ € U..2.. SinceL is just an abelian groug, must vanish on the commutator
subgroup of’..

We have

BIR)F) = dlawtyan)
= ¢ (H(O‘El')/av)) .
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Using the fact tha} o, ., 2 is divisible byp", etc., we can compute this product

as
1 0 0 p'x
prx 1 pix % 2
A =: u v) = mod p<").
Mot =| ") o 7y 7, | (mods®)
0O 0 O 1

Now ¢ is trivial modulop®; so we wish to show that differs from a commutator
only by the identity moagh©.
Firstly, the commutator subgroup is quite large

/1 p'§ 0 O 100 1 0 p¥é2 p's
01 0 O 0101 01 pid O
o 0o 1 ol'|looz1o|l|l |00 1 o}
L\0 0 —p§ 1 0 00 00 0 1
r/1 0 O 1 0 00 1 00 O
0101 0 1 00 p’§ 1 0 O
0 01 0]l 0 pd 1 O] [|p%2 01 —pd|’
L\0 0 O p’§ 0 0 1 0 00 1
100 O 10 0§ 100
1|6 1 0 0 0146 0| (0103
2({lo 01 s]”|loo 1o0]| |0OO0OT1oO0
000 1 0 001 0 00

and in each case we can choosketa ensure that these commutators satisfy some

congruence condition modulo the auxiliary levEl of T', and so lie inU,.. So

modulo commutatorsd = I + p?" A;. But the Lie algebrap, is simple; so if

I+ p? A1 € Spy(7) thenA; modp” is a sum of commutators.[a;, b;] in sp,.
Therefore

H I+ pZTAl =1+ er Z[ai, bz] (modp3’")
= H[I—i—prai,f—{—p’"bi] (mod p°")
i.e.(I4+p% A1) (I+p™ A) is a product of commutators. Repeating this process, we
obtain thatA (I + p°A.) is nothing but a product of commutators. Thi(s1) = 0,
hencep| R, = 0.
This completes the proof of the proposition.
4. Proof of Proposition 2.6

The argument runs along the same lines as Section 7 of [Hi3]: we will show that the
error terme H2(T'(r), Ly ® Q,/Z,) is isomorphic to the-torsion in a fixed finite
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group, so that it is zero for almost all The following lemma neatly encapsulates
the calculations on cocycles that are required

LEMMA 4.1 (J[Tayl] Lemma 1.1)Let A be a semi-groupl’; O I'> subgroups

of A; g € Awith [['1:T1 NgT297Y] < oo; My (resp Ma) a module for(T'y, g)

(resp (I'z,g)); and j: My — M3 a (I'2, g) morphism such that: gM; — g M.

Suppose

(1) there exist elements; € T'; such thatT'igT'1 = [[vigT'1 and T'1gT, =
I1vigl'2, and

(2) there exist elements € T'; with T'1gT", = (T'2gI"2) 1T ([ T'20;9T2), and such
that jo,gM71 = 0.

Then there is a map: H?(T'y, M) — H?(I'1, M1) such that o j, = [T'1gT"1]
andj* ol = [Fngz].

We will apply the lemma withA = A(r) as in Section 1I'; = ['o(0) (i.e.
no conditions ap, only atN), I'; = T'o(1) (level Np), M1 = Ly ® Z/pZ, j the
projection fromV to V' = @,V®~", M, = j(L) andg = diag(p, p,p,1). In
[B2] Section 4 we have already seen thiaatisfies the conditions of the lemma,
although there we worked with; = I',. It remains to verify the conditions on
double cosets.

(1) is easy, using Lemma 1.2 and the fact thatn gI'ig~t € 'y N glag7 L,
becausg I'ig N 'y C I>.

Condition (2) is equivalent to the existencejpsuch thatj;gM; = 0 and

Ty =T (T N glog ) 1T (] Tadi (T4 N gTag7Y))

Consider the following representatives for elements of the Weyl group

0 1 0
0 0 1 g\
wy = Iy w2=1 9 o9 0 1|’
-1 0 0 O
0O 0 0 1 1 0 00O
1 0 0O 0O 0 0 1
w3 = Wq = )
0O -1 00 0O 0 1 0
0O 0 1 o0 0 -1 00
and fors = 1 to 4, letw; be any matrix satisfying; = w; (modp) andw; = I
(mod N).

Theninfactl; N gT2g 1 = gT2g * = walaw; L on the other hand we obtain
from the lwasawa decomposition that

4

'y = [[ Tow; B(Z).
i=1
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We claim thatd;, = w; for : = 2, 3,4 will work. Indeed, givemx € I';, we
can writteaws = yw;b with v € T'p, b € B(Z), and thusy = y.wiw‘fl.umb le.
(Herew; wgl differs only by an element df, from one of thav’s.) Moreover, the
effect of elements of the Weyl group on weight spaces is simply given by a
symmetry of the weight diagram; sing&/; C V', we have, for examplepgM; C
Dy, V™Y, which is killed by; provided the highest weight satisfies> m >
0. Thus we have satisfied the conditions of Lemma 4.1.

Let ep be the idempotent associated [itygI';] at level N, ande the one
associated t"»gI';] at levelNp. Theny, induces an isomorphism on the ordinary
components. But we have already seen in [B2], Section 4etH&{I'o(1), L; ®
z/pz) = eH(To(1), Lk ® Z/p7Z).

COROLLARY 4.2.1f k = (m,n) with n > m, the restriction map composed
with the idempotent gives an isomorphism

eoH'(T'0(0), Lk ® Q,/Zy) = eH(I'o(1), Lk @ Q,/Zp).

Proof. Lemma 4.1 together with [B2] Section 4 implies that the top arrow in the
following commutative diagram is an isomorphism

eoH?(To(0), Ly ® 7 /pZ) ———— eH"(T'o(1), Lk ® Z/pZ)

ol (To(0), Lk ® @y /Zp)[p] —= eH"(To(1), Lk ® Qp /Zy)[p]-

Here [p] denotes the part killed by. The restriction map at the bottom is an
injection (becausél'o(0):I'p(1)] is prime top, so the kernel in the inflation-
restriction sequence vanishes). But the vertical maps are surjections, as can be seen
from the long exact sequence associated to the sequence

0 — Zyp/pZy— Qp/Zpi*@p/Zp — 0.

Therefore the bottom map is also a surjection, and the result follows by Nakayama’s
lemma. O

We proceed with the proof of Proposition 2.6.
LetVg, = eH?(T(r), Ik(Q,/7Z,)) andVg = ILn Vi~ We give this a twisted
T

Iwasawa and Hecke action in the same way a¥¥rin Section 1. By Theorem 2.3
and using Lemma 2.4 and Proposition 2.5, we have that

(V) = eH?(T(s), Lk ® Qp/Zy).

Reca" thatpms — ups _ (1 +p)apsl
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LEMMA 4.3. V(=) [Pas] = V2o 11
Proof. V¢ (—n)[Fa,s] = lim Vi . (=n)[Fa,s]. On setting: = n we get

Vi (=n) [Pa,s]
= {¢ € eH*(T(r), Lx(Qy /Zp)) (—n) : (u”" — (14 p)"")(¢) = O}
= {¢ € eH?(T(r), Lk (Qy /Z)) 1w (14 p)"" ($) — (L + )" ¢ = O}
= {¢ € eH?(L(r), Lx(Qy /Z)) 1" & = $}
=
= Vi,
because is a generator fof71, and thelz;-action is continuous. But we have just

seenthaltp% =1y ..
After taking limits overr again, we obtain the result. O

We now show that(—n) = 0 for almost allp. By Corollary 4.2, and using
the fact thatiI'g(1) : I'(1)] = p — 1 to pass fronT'(1) to I'o(1), we seeVy; =
eoH?(T'o(0), Lk ® Q,/Z,).

Consider the exact sequence-® Z, - Q, — Q,/Z, — 0, which yields
(abbreviatingd?(I'o(0), Ly ® A) to H1(A))

H(Q,) — H*(Qy/Zy) — H3(Zyp) — H3(Q).

Now the cohomology with coefficients i@, vanishes: this follows from the
vanishing theorems proved by Schwermer for the boundary cohomology ([Schw2]
Section 4.5) under the condition on the weight that m > 0, and by R. Taylor
for the cohomology of the interior (calculation in Section 1 of [Tay2]), under the
condition thatn > m > O.

Therefore we have tha, ; injects into the-torsion part ofi3(T'y(0), Ly ®Z,).
Sincez,, is flat overz, this is the same ali3(I'(0), L) [p™].

But H3(I'9(0), Ly)™" is a finitely generated torsion abelian group, and hence
is finite. So provideg does not divide its order, thetorsion vanishes and by
Lemma 4.3 (—n)[P,] = O foralla > 0.

By Nakayama’s lemma this is enough to show that{—n) = 0, and hence,
again by the control theorem f@f2 (Lemma 4.3), we obtain

eH2(T(r), Ly ® Qp/Zp) = 0 Y>> m > 0 for almost all p.
The values op that are excluded are precisely the ones not satisfyihg

Now consider another weigkt = (m,n’) with n’ > m > 0. Then the above
argument will show thae H2(To(1), L, ® Q,/Z,) injects into a finitep-group,
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which this time is not a priori zero. However, jistorsion also vanishes: indeed,
by Theorem 2.5 (vanishing efd ), we have

eH?(To(1), iy ® Z/pZ) = eH*(To(1), Ly ® Qy/Zy) [p]-

The left-hand side is independent of the weight by Theorem 1.1, so is zero by the
result already proved for weighkt This implies that we also havg’, ; = 0.

5. A-adic families of Siegel modular forms

Recall that we have defined¥ := Wy, , (—n), and thatA is isomorphic to the
one-variable lwasawa algebfg[[ X]] viau « 1+ X. We also have specialisation
mapss,: A — Z, with kernelsP, = u — (1 + p)* € A.

Letk = (m,n). Then the quotienW (—n)/P,W2(—n) is dual toWg(—n)
[P,], i.e. elements oV (—n) annihilated byP,. The following key lemma is a
consequence of the Control Theorem.

LEMMA 5.1. Assume ConditioH ). ThenWy (—n) [Py s] = Wy ; and dually
Wi (=n)/ Po s Wi (=n) = Wi,
Proof. The proof is the same as that of Lemma 4.3. O

On the other hand, we saw in Section 1 thf, , (—n1) = Wy, (—n2) as
A-modules. Therefore
Wiy (=12) [ Py Wy (—=12) = Wik, ) (=12) [ Py Wi, i, (—102)

— WPe

(m,nz),1

Thus we can recover an entire family of weights from our universal olject
We can now analyse thie-module structure ofV.

LEMMA 5.2. Assume the conditioff?). ThenV .. is p-divisible
Proof. We have a short exact sequence

0—2Zp—Q — Q/Z,—0.
This gives rise to the sequence
eH3(Z,)" — eH3(Q,) — eH3(Q,/Z,) — eH*(Z,)"".

(Again we have writtert/*(A) for H*(T'(r), Lk ® A)). By Pontryagin duality, the
hypothesig H) implieseH*(7,)*" = 0 and we have

Wir C eH3(Qy)/eH>(Zy),
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so we are done. O

Dually, this says tha¥’, ,. is p-torsion free, and hence is free of finite rank ofzgr
(Z,, being a principal ideal domain). We now resort to the following criterion.

LEMMAG.3. Let M be a continuous compastmodule ang; an infinite collection
of height one primes, such thaf /p; is a finite freeZ,-module for eacl. ThenM
is a finite freeA-module
Proof. This is a standard application of Nakayama’s lemma, and can be found
e.g. as [Hil] Lemma 6.3. |

We have seen thaly / P, W is finite and free ovet,. Thus we can apply Lemma5.3
to deduce thatV is finite and free oveA.
Let us summarise our results.

THEOREM 5.4.Assume hypothes(g/). DefineW = Wy, ,(—n), a twistedA-
module. TheW is finite and free ovel; if m is a fixed even integeVy is inde-
pendent of.. Furthermore, ifP, s = u?* — (1+p)®° € A, we have specialisation
mapsW /P, ,W = W("mﬂ)’r.
Now recall the definitions of the Hecke algebfias. andTy from Section 1 as
endomorphisms generated by Hecke operators. We have seen that'in:fadty
is independent of the second weight parameteMAss finite and free we know
thatT — A% is finite and torsion-free, though not necessarily freeA@s not a

PID). We have, by restriction of operators
T/ P T — T
We are interested in systems of eigenvalues in
S° := Homyy(T, A),

where we are demanding ring homomorphisms. (Note that given a complete set of
Hecke eigenvalues at finite level, there may be more than one Siegel modular form
in the corresponding eigenspace).

So suppose we are given a system of eigenvalues occurrilgign

0:Tk1 - O,

with values in the ring of integer® of a finite extension of),. We aim to lift ©
to an element of°.
We have a composite map

T T/P,T - Ty 1 O,

with kernelgp,, < T, say. Therp, is a prime ideal, a® is an integral domain, and
(P,) C pn- Also g, N A is a prime ideal ofA containingP,, but not(p), so by
height considerations, N A = P,A.
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We now appeal to the following version of the Going-down Theorem.

LEMMA 5.5. Let A be an integrally closed domain ari®la ring containingA and
integral overA. Suppose thdl is the only element o which is a divisor of zero
in B. Letp, q be two prime ideals oft such thaty D p, andQ a prime ideal ofB
lying abovey. Then there exists a prime ideglof B lying abovep and such that

QDO P.
Proof.See [Bour] V 2.4. | am grateful to Jacques Tilouine for pointing out this
reference to me. O

LetA=A,B=T,q=(P,),Q = g, andp = 0. Then the Going-down Theorem
clearly appliesA is integrally closed because it is a UFD ([Bour] VII 3.9), and the
second hypothesis is just the torsion-freeness. of

Therefore there exists a prime idgg] C p, with p} N A = (0)

A——->T

(Pn) C ©n
U U
© C e

NowZ = T/} is finite overA (A N g} = 0) and so is a semilocal ring ([Bour]
Il 3.5), i.e. it has only finitely many maximal ideals and is the direct sum of its
localisationsZ = &Z,,. ButZ is also an integral domain; hence it must be a local
ring. Denote its maximal ideal biyiz. Note thatZ is not necessarily integrally
closed. R

Denote byO the natural surjection

O:T - T/p! =T.

Let &, be the image o, in Z. The image ofP, in Z lies in &,,.

THEOREM 5.6.Suppos®: Ty ; — O is a system of eigenvalues occurring on the
group Wy 1, wherek = (m,n). Then there exists a local ring finite overA, a

system of eigenvalués T — 7 on the universal spac®/, and an ideaks, of
lying aboveP,, such that
© modg, = ©.

Furthermore, if k" = k + A(0,p — 1) = (m,n') is another weight, ang, is an
ideal of Z lying aboveP, withZ /g, = Z,,, then

® mod@, = © (modp).
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Proof. Let I andg,, be as before. Laig = ~Ker(@) and letp,, be the kernel of
the mapT — Ty 1. Then forT € Ty 1 with lift T'to T

O(T) = T modpe = T modp, modpe
= T modgp,
= O(T) mod@,.

If we denote maps by their kernels, the picture looks like this

T/P,T
P,
T Pn Ty
©n Pe
on
T on 0.

For the second part, note that bdih &,,) and (p, ¢,,7) generate the unique
maximal idealmz of Z. Thus the images dd modgp,, and® mod p, in F, are
both just the reductions @ modulomz. O

Remarklt is perhaps illuminating to note that in the case whére- A, we
can see the second part of the theorem explicitly, as reductiongnadthen just
evaluation of power series &t = (1+ p)" — 1. Thenifk = k' 4+ p%(0,p — 1), we
see tha® mod P,, = © mod P, (mod p*+1).
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