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Abstract. We build a theory of�-adic Siegel modular forms related to the Klingen parabolic subgroup
of GSp(4). These correspond to families of cohomology classes of increasing levels whose Hecke
eigenvalues enjoy strong congruence properties. In the spirit of Hida’s theory, a control theorem to
relate the family to finite-level members is proved for almost all primesp; in particular we show that
the error term appearing in degree one cohomology is killed by the ordinary idempotent.
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0. Introduction

In this article we develop a theory of�-adic families of vector-valued Siegel
modular forms. Such a family basically consists of a sequence of modular forms
of varying weights, which are eigenforms for the Hecke algebra and whose Hecke
eigenvalues enjoy strong congruence properties. The direction in the change of
weight one considers corresponds to a choice of (a conjugacy class of) parabolic
subgroups of GSp(4), and here we deal with the non-standard or Klingen parabolic
subgroup. An analogous program has been carried out for the theory related to the
Borel subgroup of GSp(4) in [TU1] and [TU2], and (by slightly different means)
for the Siegel parabolic subgroup in [Tay1]. Our work builds on the independence
of weight results proved in our previous paper [B2].

The general strategy of the construction is obviously a routine extension of the
methods of [Hi1] and later works of Hida. However, these papers often encounter
problems with the so-called control theorem. Our main contribution is to actually
prove the vanishing of the ordinary part of one of the error terms by an explicit
calculation. In the case of Borel-like congruence subgroups Hida has found a
method to obtain exact control outside a finite set of primes – see [Hi3] Section 7.
To complete our theory, we can employ a similar trick to show that the remaining
error term is also non-ordinary, if we exclude a finite set of primes.

We obtain families as specialisations of elements in an ‘infinite level’ space
of modular forms. Our approach is purely cohomological, so we can only really
talk about systems of Hecke eigenvalues occurring on various cohomology groups,
which may or may not come from genuine modular forms.
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92 KARSTEN BUECKER

The principal application of such families is to study the properties of the four-
dimensional Galois representations attached to Siegel modular forms in the family.
Here we show how to lift a given system of eigenvalues to a�-adic family, which
is a prerequisite for such applications.

Let us describe our results in a little more detail.�(r) is a certain congruence
subgroup in Sp4Zdescribed in Section 1, with levelprN for p - N , whose reduction
modulopr lies in the Klingen parabolic subgroup. LetVm;n be the unique irre-
ducible representation of Sp4(C ) with highest weight(m;n) in the Weyl chamber
corresponding to the standard Borel subgroup. Then there is a Hecke-equivariant
embedding of holomorphic degree two Siegel modular forms for�(r)and of weight
(k1; k2) intoH3(�(r); Vk1�3;k2�3) (in analogy with the classical Eichler–Shimura
isomorphism). We define a certainZ-latticeLk � Vk . Cohomology with coeffi-
cients inLk does not correspond directly to modular forms with integer coefficients,
but we have the same Hecke algebra acting on both. Lete be the projector onto the
ordinary (with respect to a Hecke operator to be specified) subspace.

Define

W�k;r = eH3(�(r); Lk 
 Z=prZ); W�k = lim
�!
r

W�k;r

and letW �k;r andW �k be the corresponding Pontryagin dual spaces. In Section 1
we explain the action of the Iwasawa algebra� = Zp[[1+ pZp]] �= Zp[[X]] and
a twisted action of the Hecke operators onW�k . Then it follows from the main
theorem of [B2] thatW�k is essentially independent of the second weight variable
k2.

To make the concept of infinite level a useful one, we require a ‘control theorem’
of the form(W�k )

1+psZp = W�k;s. When attempting to prove this using a spectral
sequence relating different level cohomology groups, one encounters several error
terms. Lete0 be the idempotent associated to levelN . Under the assumption

p - #e0H
3(�(0); Lk)

tor; for some k = (m;n) with n� m� 0 (H)

we can prove the control theorem as Theorem 2.3 and Corollary 2.7. The bulk of
our work is in showing thateH1(�(r); Lk 
 Qp=Zp) = 0; by an application of
the congruence subgroup property for Sp(4), this is reduced to a (slightly lengthy)
calculation in the cohomology of finite groups. We then use the condition(H) to
deduce that we also haveeH2(�(r); Lk 
Qp=Zp) = 0. We suggest a condition for
this second error term to vanish for allp.

The control theorem (2.7) is the basis for studying the spaceW�k .
Now takeu = 1+ p, a topological generator of 1+ pZp. Fora 2 N we have

prime idealsPa = u � (1+ p)a in �. Pa is the kernel of the specialisation map
from � to Zp given by settingX to (1+ p)a � 1; these specialisation maps allow
us to recover finite level spaces of modular forms fromW�k .

Our main result is
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THEOREM A. Assume hypothesis H. DefineW = W �(m;n). ThenW is finite
and free over�; if m is a fixed even integer, the(twisted) Hecke moduleW is
independent ofn. Furthermore, we have specialisation mapsW=PaW �=W �(m;a);1.

A slightly more general version of Theorem A is proved as Theorem 5.4 in the
text. As already remarked above, most of the proof follows the lines set out in [Hi1],
apart from the vanishing of the degree one error term in the spectral sequence for
the control theorem.

In [TU2] it is shown that the error terms in the control theorem vanish for
complex coefficients, using results of Richard Taylor for the cohomology of the
interior together with a theorem of Schwermer on the boundary cohomology. Hence
the error terms can only be torsion, which gives us a weak version of Theorem 5.4
with finite kernel and cokernel. In the case where�(r) (modpr) actually lies in the
reduction of the Borel subgroup of Sp4(Z), Tilouine and Urban use Hida’s trick to
obtain exact control providedp lies outside a finite set of primes. (See [TU3] for
full details.)

On the other hand, in [Tay1], Taylor studied the Siegel parabolic subgroup,
corresponding to parallel weight changes, where the weight ranges through values
(k1 + �; k2 + �) for fixed k1 and k2. He obtainedp-adic families simply by
multiplication by suitable scalar-valued Eisenstein series; ordinary eigenforms were
then recovered using boundedness results for the ordinary part ([Tay1] Prop. 2.1;
see [B2] Prop. 5.1).

On applying the going-down theorem from commutative algebra, we deduce
from Theorem A that any given cohomological eigenform can be placed in a�-adic
family.

THEOREM B.Suppose� is a system of Hecke eigenvalues occurring on the group
W �k;1. Then there exists a local ringI finite over�, a system of Hecke eigenvaluesb� on the universal spaceW and valued inI, and an ideal}n of I lying above
Pn, such that

b�mod}n = �:

Furthermore, if(m;n0) = (m;n) + �(0; p � 1) is another weight, and}n0 is an
ideal of I lying abovePn0 with I=}n0 �= Zp , then

b�mod}n0 � � (modp):

Theorem B will be proved as Theorem 5.6 at the end of this paper.
The layout of the paper is as follows. In Section 1 we review the cohomological

setup of Siegel modular forms and the relevant theorems proved in [B1] and [B2].
We also define the spacesWk;r etc. discussed above together with their Iwasawa
and Hecke actions. In Section 2 we prove the control theorem that will allow us
to recover finite level spaces fromW, assuming that theH1 error term is zero.
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94 KARSTEN BUECKER

Section 3 is devoted to this vanishing result. In Section 4 we show that theH2

error is zero providedp does not lie in the exceptional set of primes. Finally, in
Section 5 we deduce the main theorems; they are simply algebraic consequences
of the control Theorem 2.7.

1. Notation and definitions

We begin by summarising very briefly our notation for vector-valued Siegel mod-
ular forms of degree 2. For more details, see Section 1 of [B2] or the exhaustive
discussion in [God].

Throughout the paper, we fix a primep, and an integerN prime top. The power
of p occurring in the level,r, is usually positive, but at one point we will consider
level prime-to-p. We define a congruence subgroup�(r) of levelNpr as follows

� for q - Np; letUq = GSp4(Zq);
� for q j N; we allowUq � GSp4(Zq) to be any subgroup such that�(Uq) = Z�q,

diag(pr; p2r; pr;1) 2 Uq, and whenever
 2 GSp4(Zq) is congruent toI4

moduloN , then
 2 Uq (i.e. basically a congruence subgroup of levelN );
� for q = p,

Up =

8>>><
>>>:
g 2 GSp4(Zp) : g �

0
BBB@
� 0 � �

� � � �

� 0 � �

0 0 0 1

1
CCCA (modpr); p2rjg42

9>>>=
>>>;
;

(hereg42 denotes the(4;2) matrix entry ofg).
Let U =

Q
Ul as an open compact subgroup of GSp4(

bZ). Then define�(r) =
U \ Sp4(Z). In [B2], we similarly define a semigroup�(r) and construct a com-
mutative Hecke algebraT(m;n);r as theZ-module generated by double cosets
�(r)g�(r) with g 2 �(r), acting on weight(m;n) modular forms. We do not
repeat the definition of�(r) here; the important point is that the only Hecke
operator atp isRpr = [�(r)diag(pr; p2r; pr;1) �(r)].

Let Z = fZ 2 M2(C ) : ZT = Z; Im(Z) > 0g be the Siegel upper half-
space of degree 2, which comes equipped with the usual action of GSp+

4 (Q). For
n > m > 0, let X = Symn�m C 2 
 detm+n be an(n � m + 1)-dimensional
representation of GL2(C ). Then the space of Siegel cusp forms of weight(m;n)
consists of holomorphic functionsF :Z ! X satisfying

f(
Z) = (CZ +D):f(Z) for all 
 =

 
A B

C D

!
2 �(r); Z 2 Z;

together with a cuspidal condition. We denote it bySm;n(�(r)); it is equipped
with an action ofT(m;n);r. Denote bye the projector onto the subspace spanned by
forms on whichRp acts as ap-adic unit.
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ON THE CONTROL THEOREM FOR THE SYMPLECTIC GROUP 95

Pick the standard Borel subgroupB � Sp(4); this fixes a Weyl chambern >
m > 0 in Homalg (T (C ); C

�) �= Z2 (T being the torus of diagonal matrices).
Recall from the representation theory of Lie groups (see eg. [Hmph]) that there
is a unique irreducible representationVm;n of Sp4(C ) with highest weight(m;n)
in the given Weyl chamber.Vm;n breaks up as a direct sum of weight spaces,
Vm;n = �x;yV

x;y
m;n, so that diag(�; �;1=�;1=�) acts as�x�y on V x;y

m;n. We give
Vm;n an action of GSp4(C ) by letting the centre�I4 act as�n. By a standard
construction, we can form the group cohomologyH�(�(r); Vm;n) equipped with
an action of Hecke operators (and hence also an action of the idempotente). There
is aT(m;n);r-equivariant embedding

Sm;n(�(r)) ,!H3(�(r); Vm�3;n�3);

(see e.g. [Tay1] Section 2.3), and for the rest of this paper we shall be working
with cohomological systems of eigenvalues. These may not always correspond
to a modular form, but the above embedding allows us, for example, to obtain
boundedness results for spaces of genuine modular forms.

In [B2] we showed how to construct an admissibleZ-latticeLk � Vk using the
action of the universal enveloping algebra of the Lie algebrasp4 on Vk . Then the
main theorem of [B2] states that

THEOREM 1.1.For 0 6 i 6 6, we have an isomorphism ofT(m;n);r-modules

eHi(�(r); Lm;n 
 Z=prZ)
 ��nr

�= eHi(�(r); Lm;n+1
 Z=prZ)
 ��n�1
r :

Here�r is the character of GSp4(Z) given by sending a matrix to its bottom
right-hand entry modulopr.

Now we define

Wk;r := lim
�!
t

H3(�(r); Lk 
 Z=ptZ):

(We will later also consider this limit in degree two, but this is the group we are
really interested in.) Then we haveWk;r = H3(�(r); Lk 
 Qp=Zp); this can be
seen from the short exact sequences

0 - Z=ptZ � - Qp=Zp
pt- Qp=Zp - 0

0 - Z=pt+1Z

?
� - Qp=Zp

wwwwww
pt+1
- Qp=Zp

?
p

- 0
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96 KARSTEN BUECKER

on taking derived functorsH�( �(r); Lk 
� ), as follows (where we have abbre-
viatedH�(�(r); Lk 
A) toH�(A))

H2(Qp=Zp)
pt- H2(Qp=Zp) - H3(Z=ptZ) - H3(Qp=Zp)[p

t] - 0

H2(Qp=Zp)

wwwww
pt+1
- H2(Qp=Zp)

?
p

- H3(Z=pt+1Z)

?
- H3(Qp=Zp)[p

t+1]

?
- 0

H2(Qp=Zp)

?
p

- H3(Z=pt+2Z)

?
- H3(Qp=Zp)[p

t+2]

?
- 0

...

?
...

?

lim
�!
t

H3(Z=ptZ)

?
- H3(Qp=Zp):

?

Diagram-chasing gives the injectivity and surjectivity.
LetW�k;r = eWk;r be the ordinary component ofWk;r. Define the direct limit

W�k = lim
�!
r

W�k;r = lim
�!
r

eH3(�(r); Lk(Qp=Zp));

where the transition maps are simply restriction morphisms of cohomology groups.
If we also defineW 0k;r = eH3(�(r); Lk(Z=p

rZ)), we have

W�k = lim
�!
r

lim
�!
t

eH3(�(r); Lk(Z=p
tZ)) = lim

�!
r

W 0k;r;

(now the transition maps are restriction composed with embeddingZ=prZ into
Z=psZ).

We have Pontryagin dual modules

W �k;r = Hom(W�k;r;Qp=Zp )

which behave well with respect to limits

W �k = lim
 �
r

W �k;r
�= Hom(W�k ;Qp=Zp):
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ON THE CONTROL THEOREM FOR THE SYMPLECTIC GROUP 97

We now discuss giving these objects a�-module structure. Define a new con-
gruence subgroup�0(r) adelically as above, with the same conditions as before at
q j N andq - Np, but replacing the condition atp by

Up =

8>>>><
>>>>:
g 2 GSp4(Zp) : g �

0
BBBB@
� 0 � �

� � � �

� 0 � �

0 0 0 �

1
CCCCA (modpr); p2rjg42

9>>>>=
>>>>;
:

Also, for r > s > 1, let�s
r = �(s) \ �0(r). So we have�(r) / �s

r � �(s) and

�s
r=�(r)

�= Gs=Gr
�= Z=pr�sZ;

where we have writtenGn := (1+ pnZp)
�.

Also�(r) / �0(r) and

�0(r)=�(r) �= (Z=prZ)� via

[M ] 7!M4;4 (modpr):

Then we have an action of(Z=prZ)� onWk;r by lettingd 2 (Z=prZ)� act as�d,
where�d is a representative ofd in �0(r). Hence there is an action of

lim
 �
r

(Z=prZ)� �= Z�p
�= (Z=pZ)� � (1+ pZp)

�

onW�k . RegardingG1 = (1+ pZp)� as a subgroup ofZ�p, and lettingZp act simply
by multiplication on the coefficients, we see thatW�k becomes a continuous module
under the Iwasawa algebra� = Zp[[G1]].

Pick a topological generatoru of G1, for exampleu = 1 + p. Then� is
isomorphic to the one-variable Iwasawa algebraZp[[X]] via u$ 1+X.

There are specialisation maps

sa:Zp[[X]] �= Zp[[G1]]! Zp

1+X $ u 7! (1+ p)a (a 2 N):

The kernel ofsa is the height one prime ideal of� generated by

Pa = u� (1+ p)a 2 �;

more generally, let

Pa;s = up
s

� (1+ p)ap
s

:

Let gK = diag(K;K2;K;1). We will be referring to the following decompo-
sition of the Hecke operatorRp (see Corollary 2.2.6 of [B1]; note the condition
gp 2 Uq in the definition).
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98 KARSTEN BUECKER

LEMMA 1.2. Supposer; s > 0. Then we have a coset decomposition

[�(r)gps�(r)] =
a

�u�(r);

where

�u =

0
BBBB@

1 0 0 z

t 1 z w

0 0 1 �t

0 0 0 1

1
CCCCA gps :

Herez; t run through residue classes modulops andw runs through residue classes
modulop2s and the representatives are all chosen to be congruent to zero modulo
N . 2

It follows from this that the Hecke operators are compatible with restriction maps
between spaces of different levels, so we obtain operatorsT = lim

 �r
T (r) acting on

Wk , by the universal property of inverse limits. We defineTk to be the�-subalgebra
of the endomorphism ring ofWk generated by all these operators. It will be seen
as a consequence of Corollary 2.7 thatWk;s ,! Wk;r for r > s, soWk;r ,! Wk
andTk � Tk;r.

We writeWk(a) for the�-module obtained fromWk by twisting the Hecke
action by theath power of lim

 �r
�r, and the�-action by theath power of the

tautological characterG1 ! Z�p. Notice that at finite levelpr, this induces the
character�ar of Theorem 1.1 (the action of�0(r) on latticesLm;n andLm;n+1

differs by precisely this character). This twisting is essential to our theory, since it
removes differences in the action on different weights. Indeed, Theorem 1.1 now
says that

W 0(m;n1);r
(�n1) �=W

0
(m;n2);r

(�n2)

as�-modules and as Hecke modules.
We check that the isomorphism of Theorem 1.1 is compatible with restriction

between different levels. Thus on taking direct limits, we can conclude

COROLLARY 1.3.We haveW�(m;n1)
(�n1) �= W

�
(m;n2)

(�n2) as modules for the
Hecke algebra.

There is a�-action on the dualWk in the usual way

(uf)(�) = f(u�) (u 2 G1; � 2 Wk ; f 2Wk):

Twisted objects have twisted duals: the dual ofW�k;r(a) is W �k;r(a), and that of
W�k (a) is W �k (a). A result analogous to Corollary 1.3 holds for the dual spaces
W �k (�n).
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ON THE CONTROL THEOREM FOR THE SYMPLECTIC GROUP 99

We can therefore define an objectW :=W �m;n(�n) independent ofn. Our aim
is to determine hypotheses under whichW is a finite free�-module, and to recover
the spacesW�k;s fromW �(m;n) for any finite levelps.

2. Control theorem

The following identity of double cosets is analogous to Lemma 4.3(i) in [Hi1]. We
omit the proof, which is a straightforward matrix calculation (see Lemma 3.2.1 in
[B1]).

LEMMA 2.1. Letr > s > 1. Then�s
r g

r�s
p �s

r = �(s)gr�sp �s
r. 2

To recover finite levels from our direct limit, we first need to compareW�k;r and
W�k;s for all r > s. The first step is given by the next elementary lemma on Hecke
operators, which is modelled on [Hi1] Lemma 4.3(ii).

LEMMA 2.2. Let r > s > 1 and0 6 q 6 6. Then restriction of cocycles induces
an isomorphism of Hecke modules

eHq(�(s); Lk(Qp=Zp)) = eHq(�s
r; Lk(Qp=Zp)):

Proof. Consider the diagram

Hq(�(s); Lk(Qp=Zp))
res- Hq(�s

r; Lk(Qp=Zp))

+��
��
�

Hq(�(s); Lk(Qp=Zp))
?
Rr�s
p

res- Hq(�s
r; Lk(Qp=Zp));

?
Rr�s
p

where the diagonal arrow is given by the Hecke operator[�(s)gr�sp �s
r], and the

horizontal maps are restrictions of cocycles.
In the notation of Lemma 1.2 above, we have

Rr�s
p = [�(s)gr�sp �(s)] =

a
u

�u�(s):

On the other hand, by Lemma 2.1, we have that

[�(s)gr�sp �s
r] = [�s

rg
r�s
p �s

r]

=
a

�u�
s
r

for the same representatives�u. (This follows from Lemma 1.2, as�(s)\gs�rp �s
rg

r�s
p

� �s
r.)

Let [�] 2 Hq(�(s); Lk(Qp=Zp)): Then for(g1; : : : ; gq) 2 �(s)q, choosev1 =
v1(u) such that��1

u g1�v1 2 �
s
r, choosev2 = v2(u) such that��1

v1
g2�v2 2 �

s
r, etc,
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100 KARSTEN BUECKER

up tovq = vq(u). We have

((res�)j[�s
rg

r�s
p �(s)])(g1; : : : ; g3)

=
X
u

�u(res�)(��1
u g1�v1; : : : ; �

�1
vq�1

gq�vq )

=
X
u

�u�(�
�1
u g1�v1; : : : ; �

�1
vq�1

gq�vq )

= (�jRr�s
p )(g1; : : : ; g3);

i.e. the left-hand triangle commutes. Similarly the right-hand triangle commutes.
Then on the ordinary components, the vertical maps are isomorphisms. Hence

so are the horizontal maps. 2

THEOREM 2.3.Suppose thateHi(�(r); Lk(Qp=Zp) = 0 for all i < q, and for all
r > 1. Then fors > 1 andGs = (1+ psZp)

�

�
lim
�!r

eHq(�(r); Lk(Qp=Zp))

�Gs

= eHq(�(s); Lk(Qp=Zp)):

Proof. Note that it suffices to prove that forr > s > 1

eHq( �(r); Lk(Qp=Zp))
Gs = eHq(�s

r; Lk(Qp=Zp)):

Indeed, combining this statement with Lemma 2.2 gives useHq(�(r); Lk(Qp=
Zp))

Gs = eHq( �(s); Lk(Qp=Zp)), for r > s. On taking the limit overr, we obtain
the theorem.

To prove the above statement, we consider the Serre–Hochschild spectral
sequence

Hi(�s
r=�(r);H

j(�(r); Lk(Qp=Zp)))) Hi+j(�s
r; Lk(Qp=Zp)):

By the argument preceeding Theorem 9.1 in [Hi2], the differential maps in the
spectral sequence are compatible with our Hecke operators. A Hecke operator
[�s

rg�
s
r] acts onHi(�(r); Lk(Qp=Zp)) as[�(r)g�(r)], compatibly with the action

of �s
r=�(r). Thus it induces an endomorphism of the cohomology groups at stage

E
i;j
2 , in other words theHi(�s

r=�(r), eH
j(�(r); Lk(Qp=Zp))), and we get

Hi(�s
r=�(r); eH

j(�(r); Lk(Qp=Zp)))

) eHi+j(�s
r; Lk(Qp=Zp)):

Then it is a consequence of the hypotheses that the spectral sequence degenerates
to giveeHq(�s

r; Lk(Qp=Zp)) �= eHq(�(r); Lk(Qp=Zp))
�sr=�(r). On the other hand,

it is easy to see that�s
r=�(r)

�= (1+ psZp)
�=(1+ prZp)

� = Gs=Gr; and the
theorem follows. 2
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ON THE CONTROL THEOREM FOR THE SYMPLECTIC GROUP 101

We will now demonstrate the vanishing conditions of the theorem as far as pos-
sible.

LEMMA 2.4. eH0(�(r); Lk(Qp=Zp)) = 0:

Proof. To examine the effect ofe onH0(�(r); Lk(Qp=Zp))=lim
�!t

Lk(Z=p
tZ)

�(r)
,

we use the coset decomposition ofRp given in Lemma 1.2. This gives that for
m 2 Lk(Z=p

tZ),

m jRp =
X
z;w;t

0
BBB@

1 0 0 z

t 1 z w

0 0 1 �t

0 0 0 1

1
CCCA gpm:

Now on all but the(�;�n)weight spaces inVm;n, gp itself acts by multiplication
by a positive power ofp. On the other hand, when restricted to(Lk \�xVx;�n)

Z=ptZ, each of the above coset representatives acts merely as the identity (cf.
Section 3 in [B2]: one can factorise them into expW�, where theW� are elements
of a Chevalley basis forsp4, whose action is easily described). Thus, form 2 V �;�nm;n ,
m jRp = p4m+m0 with m0 2 �y>�nV x;y, andm has been killed after at mostt
applications ofRp. 2

PROPOSITION 2.5.eH1(�(r); Lk(Qp=Zp)) = 0.

This result will be proved in the next section. Here we continue with the proof
of our control theorem.

PROPOSITION 2.6.Assume the condition(H)holds forp. TheneH2(�(r); Lk(Qp=
Zp)) = 0:

Proposition 2.6 will be proved in Section 4. Note that its proof will in fact rely
on Theorem 2.3 withq = 2, i.e. using Lemma 2.4 and Proposition 2.5.

Remark. One might expect the conclusion of Proposition 2.6 to hold for all
primes, if the projectore is replaced by something stronger: letm� / Tk;r be a
maximal ideal corresponding to a system of eigenvalues�:Tk;r!Qp (i.e. m� =
Ker(�)) occurring on the ordinary componenteH3(�(r); Lk(Zp)). Let � be the
modp reduction of�. Weissauer has proved (see [W]) that there is an associated
Galois representation��: Gal(Q=Q) ! GSp4(Fp) which is unramified outsidep,
and such that the characteristic polynomial of��(Frobq) is equal to�(Qq(X)),
whereQq(X) is the relevant Hecke polynomial.

Suppose� is such that�� is irreducible. Then by analogy with the GL2 case, it is
reasonable to assume that� does not occur oneHi(�(r); Lk(Qp=Zp)) for degrees
i 6= 3. This would mean that the localisationeH2(�(r); Lk(Qp=Zp))m� vanishes.

This is certainly true for the torsion-free case: [Tay2], Proposition 2 says that
any representation coming fromH2(�nZ2;Vm;n(Qp)) can only have irreducible
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102 KARSTEN BUECKER

constituents of dimension at most two – for any subrepresentation, we can obtain
another one as a suitable twist by the cyclotomic character. However, it is not clear
how to prove an analogous result for torsion coefficients.

As the Hecke algebraH = Tk;r is semilocal, there is a projectorem� such that

em� H = em�

 M
m/7 H

Hm

!
= Hm� :

Now H2(Zp)
m�

= (H)
m�

HH

2(Zp), and to require that� does not occur in

degree two is the same as demandingem�H
2(�(r); Lk(Qp=Zp)) = 0: This is

clearly weaker than assumingeH2(�(r); Lk(Qp=Zp)) = 0: e projects onto the
sum of all localisations at maximal ideals which do not containRp, whereasem�
projects onto just one of these (certainlyRp =2 m�). Soeem� = em�e = em� .

We can now deduce our key result on infinite level cohomology groups.

COROLLARY 2.7.Suppose the condition(H) holds. Then fors > 1 andGs =
(1+ psZp)

�,

(W�k )
Gs = eH3( �(s); Lk(Qp=Zp)): 2

3. Proof of Proposition 2.5

The plan of attack is as follows: first we apply the congruence subgroup property
to reduce the proposition to a statement about the cohomology of finite groups. We
then break this up into pieces on which the action ofRp is sufficiently simple to
prove our result; first we break off a prime-to-p part, then we split the remainder
into Levi-like and unipotent components.

It suffices to prove thateH1(�(r); Lk(Z=p
tZ)) = 0 for all finite t. Now�u =


u:gp (see Lemma 1.2) andgp will act as a factor ofpn+y on a weight space
V x;y in L. So without loss of generality, we can replace the coefficientsL by
L0 = �x(V

x;�n \ L) where�u acts trivially.L0 is an SL2-module, but modulopt

it may cease to be irreducible. For the rest of this section, abbreviateL0k(Z=p
tZ) to

L and�(r) to �. The action ofRp on a 1-cocycle� in H1(�; L) is then given by

(� jRp)(
) =
X
u

�(��1
u 
�v);

where for eachu, v is chosen so that��1
u 
�v 2 �. The action of� onL factors

modulopt ([B2] Lemma 3.2), and also (at least forr > t) through the projection
0
BBB@
a1 0 b1 b2

a3 a4 b3 b4

c1 0 d1 d2

0 0 0 d4

1
CCCA (mod pr) 7!

 
a1 b1

c1 d1

!
(mod pr):
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We first show

LEMMA 3.1. Let�M be the principal congruence subgroup of levelM . Then

H1(�; L) =
[

prN jM2N

inf��=�M H1(�=�M ; L
�M ):

Proof. Consider a class[�]2H1(�; L) and pick a representative cocycle�2 [�].
Let 
 � � be the kernel of�, i.e. the setfg 2� :�(g) = 0g. 
 has finite index
in � becauseL is finite. Now we appeal to the congruence subgroup property for
the symplectic group – see Satz 10, Corollary 3 in [Menn], or [BMS] for a more
general treatment. Thus there is an integerM such that�M � 
 is a principal
congruence subgroup. Then� induces

� : �=�M ! L:

Clearly inf(�) = � and so[inf(�)] = [�], even though
 depends on the choice
of �. Also as�M � � we haveprN jM , by minimality of the levelprN . 2

The Hecke action on the modM cohomology groups will be defined compatibly
with inflation. Hence the Hida idempotente associated to[�gp�]will be compatible
with inflation, too.

SupposeM = pcK,K =
Q
l 6=p l

cl , wherec > r andN jK. Write�0n = �n\�
for n 2 N . Then

�=�M �= �=�0pc � �=�
0
K

by the Chinese remainder theorem, using Lemma 3.3.2 of [A]: given([g]; [h]) on
the right, lift each to Sp4(Z)and formX = ga+hb 2M4(Z)wherea; b 2M4(Z),
anda � 1 (pc); a � 0 (K); b � 0 (pc); b � 1 (K). ThenX modM 2 Sp4(Z=MZ)
has a lift
 2 Sp4(Z) satisfying
 � g (mod pc) and
 � h (modK), so
 2 Uq
for all q j N and
 2 Up, i.e.
 2 �.

Now if g � I (mod pc) theng acts trivially onL�M , and so we have a decom-
position of cohomology groups

H1(�=�M ; L
�M ) �= H1(�=�0pc ; L

�pc )�H1(�=�0K ; L
�K );

� 7! (�j�=�0
pc
; �j�=�0

K
);

  7 ( 1;  2);

where (
) =  1(
 modpc) + (
 modpc; I): 2(
 modK).
So considerH1(�=�0K ; L

�K ). We will show this is not ordinary. Choose ak
such thatpk � 1 (modK) and pick representatives�u = 
ug

k
p for Rk

p such
that 
u � I4 (modK) for eachu. We define the action ofRk

p on cocycles� 2
Z1(�=�0K ; L) by

(� jRk
p)(
) =

X
�u�(
) (
 2 �);
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104 KARSTEN BUECKER

where the bar denotes reduction moduloK. This is manifestly independent of the
choice of lift
 of an element of�=�0K .

Furthermore, we must check that the action commutes with inflation from�=�0K
to�. So suppose we are given
 2 �; let v = v(u) be the unique index of the coset
representatives satisfying��1

u 
�v 2 �. Then

((inf �) jRk
p

�
(
) =

X
u

�u(inf �)(��1
u 
�v)

=
X
u

�u�(�
�1
u 
�v)

=
X
u

�u�(
)

= (inf (� jRk
p))(
):

The third equality above can be seen by considering all the matrices modulo
K; we see that with our choices for the coset representatives andk we have
��1
u 
�v � 
 (mod l), and� takes the same value on both.

But then

(� jRk
p)(
) =

X
u

(
ugpk�(
)):

Again, gpk will act as a power ofp unless�(
) 2 V ?;�n, in which case
u acts
as the identity. So as in the proof of Lemma 2.4, repeated application ofRp will
eventually multiply bypt, and soe kills �.

We now turn toH1(�=�0pc ; L
�0
pc ). This group is not preserved byRp; instead

Rp:H1(�=�0pc ; L
�0
pc ) ! H1(�=�0

pc+2; L
�0
pc+2): if  is a cocycle then jRp 2

Z1(�=�0
pc+2; L) is given by

( jRp)(
 modpc+2) =
X

�u (�
�1
u 
�v modpc):

One can see that the right-hand side is well-defined independently of the choice of
representative for
 modulopc+2 (the problem is it does depend on
 modulopc).
TheRp-action is automatically compatible with inflation

 
Rp -  jRp

(inf  :�! L)
?

inf�
�=�0

pc

Rp- (inf  ) jRp

?

inf�
�=�0

pc+2
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and for
 2 �

((inf  ) jRp)(
) =
X
u

�u(inf  )(��1
u 
�v)

=
X
u

�u (�
�1
u 
�v modpc)

= ( jRp)(
 modpc+2)

= (inf( jRp))(
):

Recall that the Klingen parabolic subgroup of Sp(4) is the semidirect product

of its normal subgroupU , which consists of matrices of the form
�
A
0

B
D

�
with

A =
�

1
�

0
1

�
, B =

�
0
�
�
�

�
, andD =

�
1
0
�
1

�
, and a Levi component isomorphic to

GL2� Gm . Motivated by this, we define

Sr =

8>>><
>>>:

 2 Sp4(Z=p

rZ) : 
 =

0
BBB@
a 0 b 0

0 e 0 0

c 0 d 0

0 0 0 e0

1
CCCA
9>>>=
>>>;

and consider the projection map�=�0pc
�
�!Sr, given by picking out the correspond-

ing entries from a matrix and reducing modulopr. This is well-defined asc > r,
and it is a homomorphism. Its image iseS (say), which is independent ofc, and its
kernel is

Uc =

8>>><
>>>:

 2 �=�0pc : 
 �

0
BBB@

1 0 0 �

� 1 � �

0 0 1 �

0 0 0 1

1
CCCA (mod pr)

9>>>=
>>>;
:

(Again this is a good definition asc > r).
The idea here is that the action ofUc onL is nearly trivial, whereas onH1( eS;L)

we can define a convenient action ofRp. We have the inflation-restriction sequence
arising from 0! Uc ,! �=�0pc

�
�! eS ! 0

0! H1( eS;LUc) inf
�!H1(�=�0pc ; L)! H1(Uc; L);

which allows us to consider the ‘unipotent’ and ‘Levi-like’ parts separately.
We define the Hecke action onH1( eS;L) by

(� jRp)(
) =
X
u

�u�(
) (� 2 Z
1( eS;L); 
 2 eS):
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106 KARSTEN BUECKER

This is also compatible with inflation: inf
�=�0

pc

~S
(�) lies in Z1(�=�0pc ; L) and

(inf
�=�0

pc

~S
�) jRp lies in Z1(�=�0

pc+2; L); let g be a lift of 
 to �=�0
pc+2 andbg a

lift of g to �. Then

((inf �) jRp)(g) =
X
u

�u(inf �)(��1
u bg�v modpc)

=
X
u

�u�(�(�
�1
u bg�v modpc))

=
X
u

�u�(�(bg modpc))

=
X
u

�u�(�(g))

= (inf(� jRp)) (g):

Again, the third equality follows from explicit computation.
So we get

� jRp =
�X

�u
�
� = p?�

and as beforee annihilates all cocycles.
The remaining term isH1(Uc; L). The Hecke action on the image of restriction

in H1(Uc; L) is inherited from that onH1(�=�pc+2; L).
By definition ofUc, any cocycle� 2 Z1(Uc; L) is a homomorphism modulo

pr, i.e. forx; y 2 Uc

�(xy) = �(x) + �(y) + pr(�Xk
2;0 + �X l

�2;0)�(y)

for some�; �; k; l 2 Z, whereX2;0 andX�2;0 are the two non-diagonal elements
of the Lie algebra of SL2(C ). Assume for now that we know� jRr

p = 0 if � is a
homomorphism. Then in general

(� jRr
p)(
) = pr

X
?2Uu

(�?X
k?
2;0 + �?X

l?
�2;0) �(?) (
 2 Uc+2r)

and(� jRrt
p )(
) = 0 inLk(Z=p

tZ).
It remains to verify the above assumption. So take� 2 Hom(Uc; L) and
 2 � a

lift of 
 2 Uc+2r. SinceL is just an abelian group,�must vanish on the commutator
subgroup ofUc.

We have

(� jRr
p)(
) =

X
�(��1

u 
�v)

= �
�Y

(��1
u 
�v)

�
:
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Using the fact that
P

06z<pr z is divisible bypr, etc., we can compute this product
as

A =:
Y
u

(��1
u 
�v) �

0
BBB@

1 0 0 pr�

pr� 1 pr� �

0 0 1 pr�

0 0 0 1

1
CCCA (mod p2r):

Now� is trivial modulopc; so we wish to show thatA differs from a commutator
only by the identity modpc.

Firstly, the commutator subgroup is quite large2
6664
0
BBB@

1 pr� 0 0

0 1 0 0

0 0 1 0

0 0 �pr� 1

1
CCCA ;

0
BBB@

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

1
CCCA
3
7775 =

0
BBB@

1 0 p2r�2 pr�

0 1 pr� 0

0 0 1 0

0 0 0 1

1
CCCA ;

2
6664
0
BBB@

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

1
CCCA ;

0
BBB@

1 0 0 0

0 1 0 0

0 pr� 1 0

pr� 0 0 1

1
CCCA
3
7775 =

0
BBB@

1 0 0 0

pr� 1 0 0

p2r�2 0 1 �pr�

0 0 0 1

1
CCCA ;

1
2

2
6664
0
BBB@

1 0 0 0

� 1 0 0

0 0 1 ��

0 0 0 1

1
CCCA ;

0
BBB@

1 0 0 �

0 1 � 0

0 0 1 0

0 0 0 1

1
CCCA
3
7775 =

0
BBB@

1 0 0 0

0 1 0 �

0 0 1 0

0 0 0 1

1
CCCA

and in each case we can choose a� to ensure that these commutators satisfy some
congruence condition modulo the auxiliary levelN of �, and so lie inUc. So
modulo commutators,A = I + p2rA1. But the Lie algebrasp4 is simple; so if
I + p2rA1 2 Sp4(Z) thenA1 modpr is a sum of commutators

P
[ai; bi] in sp4.

ThereforeY
I + p2rA1 � I + p2r

X
[ai; bi] (mod p3r)

�
Y
[I + prai; I + prbi] (mod p3r)

i.e.(I+p2rA1)(I+p
3rA2) is a product of commutators. Repeating this process, we

obtain thatA(I + pcAc) is nothing but a product of commutators. Thus�(A) = 0,
hence� jRr

p = 0.
This completes the proof of the proposition.

4. Proof of Proposition 2.6

The argument runs along the same lines as Section 7 of [Hi3]: we will show that the
error termeH2(�(r); Lk 
 Qp=Zp) is isomorphic to thep-torsion in a fixed finite
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108 KARSTEN BUECKER

group, so that it is zero for almost allp. The following lemma neatly encapsulates
the calculations on cocycles that are required

LEMMA 4.1 ([Tay1] Lemma 1.1).Let� be a semi-group; �1 � �2 subgroups
of �; g 2 � with [�1 :�1 \ g�2g

�1] < 1; M1 (resp. M2) a module forh�1; gi
(resp. h�2; gi); andj:M1 ! M2 a h�2; gi morphism such thatj: gM1

�
�! gM2.

Suppose

(1) there exist elements
i 2 �1 such that�1g�1 =
`

ig�1 and �1g�2 =`


ig�2, and
(2) there exist elements�i 2 �1 with �1g�2 = (�2g�2)q (

`
�2�ig�2), and such

that j�igM1 = 0.

Then there is a mapI:Hq(�2;M2)! Hq(�1;M1) such thatI � j� = [�1g�1]
andj� � I = [�2g�2].

We will apply the lemma with� = �(r) as in Section 1,�1 = �0(0) (i.e.
no conditions atp, only atN ), �2 = �0(1) (levelNp), M1 = Lk 
 Z=pZ, j the
projection fromV to V 0 = �xV x;�n, M2 = j(L) andg = diag(p; p2; p;1). In
[B2] Section 4 we have already seen thatj satisfies the conditions of the lemma,
although there we worked with�1 = �2. It remains to verify the conditions on
double cosets.

(1) is easy, using Lemma 1.2 and the fact that�1 \ g�1g
�1 � �1 \ g�2g

�1,
becauseg�1�1g \ �1 � �2.

Condition (2) is equivalent to the existence of�i such thatj�igM1 = 0 and

�1 = �2 (�1 \ g�2g
�1) q

�a
�2�i (�1 \ g�2g

�1)
�
:

Consider the following representatives for elements of the Weyl group

w1 = I4 w2 =

0
BBB@

0 1 0 0

0 0 1 0

0 0 0 1

�1 0 0 0

1
CCCA ;

w3 =

0
BBB@

0 0 0 1

1 0 0 0

0 �1 0 0

0 0 1 0

1
CCCA w4 =

0
BBB@

1 0 0 0

0 0 0 1

0 0 1 0

0 �1 0 0

1
CCCA ;

and fori = 1 to 4, let!i be any matrix satisfying!i � wi (mod p) and!i � I4

(modN).
Then in fact�1 \ g�2g

�1 = g�2g
�1 = !4�2!

�1
4 ; on the other hand we obtain

from the Iwasawa decomposition that

�1
�=

4a
i=1

�2!iB(Z):
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We claim that�i = !i for i = 2;3;4 will work. Indeed, given� 2 �1, we
can write�!4 = 
!ib with 
 2 �2, b 2 B(Z), and thus� = 
: !i!

�1
4 : !4b !

�1
4 .

(Here!i !
�1
4 differs only by an element of�2 from one of the!’s.) Moreover, the

effect of elements of the Weyl group on weight spaces is simply given by a
symmetry of the weight diagram; sincegM1 � V

0, we have, for example,!2gM1 �
�my=�mV

�n;y, which is killed byj provided the highest weight satisfiesn > m >

0. Thus we have satisfied the conditions of Lemma 4.1.
Let e0 be the idempotent associated to[�1g�1] at levelN , and e the one

associated to[�2g�2] at levelNp. Thenj� induces an isomorphism on the ordinary
components. But we have already seen in [B2], Section 4 thateHq(�0(1); L0k 

Z=pZ) �= eHq(�0(1); Lk 
 Z=pZ).

COROLLARY 4.2. If k = (m;n) with n > m, the restriction map composed
with the idempotente gives an isomorphism

e0H
q(�0(0); Lk 
 Qp=Zp) �= eHq(�0(1); Lk 
 Qp=Zp):

Proof. Lemma 4.1 together with [B2] Section 4 implies that the top arrow in the
following commutative diagram is an isomorphism

e0H
q(�0(0); Lk 
 Z=pZ)

� - eHq(�0(1); Lk 
 Z=pZ)

e0H
q(�0(0); Lk 
 Qp=Zp)[p]

?
- eHq(�0(1); Lk 
 Qp=Zp)[p]:

?

Here [p] denotes the part killed byp. The restriction map at the bottom is an
injection (because[�0(0) :�0(1)] is prime to p, so the kernel in the inflation-
restriction sequence vanishes). But the vertical maps are surjections, as can be seen
from the long exact sequence associated to the sequence

0! Zp=pZp! Qp=Zp
p
�!Qp=Zp! 0:

Therefore the bottom map is also a surjection, and the result follows by Nakayama’s
lemma. 2

We proceed with the proof of Proposition 2.6.
Let V�k;r = eH2(�(r); Lk(Qp=Zp)) andV�k = lim

�!r
V�k;r. We give this a twisted

Iwasawa and Hecke action in the same way as forW�k in Section 1. By Theorem 2.3
and using Lemma 2.4 and Proposition 2.5, we have that

(V�k )
Gs = eH2(�(s); Lk 
 Qp=Zp):

Recall thatPa;s = up
s
� (1+ p)ap

s
.
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LEMMA 4.3. V�k (�n) [Pn;s] = V
�
k;s+1.

Proof. V�k (�n)[Pa;s] = lim
�!r
V�k;r(�n)[Pa;s]. On settinga = n we get

V�k;r(�n) [Pn;s]

= f� 2 eH2(�(r); Lk(Qp=Zp))(�n) : (up
s

� (1+ p)np
s

)(�) = 0g

= f� 2 eH2(�(r); Lk(Qp=Zp)) : up
s

(1+ p)np
s

(�) � (1+ p)np
s

� = 0g

= f� 2 eH2(�(r); Lk(Qp=Zp)) : up
s

� = �g

= V�k;r
up

s

= V�k;r
Gs+1;

becauseu is a generator forG1, and theG1-action is continuous. But we have just

seen thatV�k;r
Gs = V�k;s.

After taking limits overr again, we obtain the result. 2

We now show thatV�k (�n) = 0 for almost allp. By Corollary 4.2, and using
the fact that[�0(1) :�(1)] = p � 1 to pass from�(1) to �0(1), we seeV�k;1 �=
e0H

2(�0(0); Lk 
 Qp=Zp).
Consider the exact sequence 0! Zp ! Qp ! Qp=Zp ! 0, which yields

(abbreviatingHq(�0(0); Lk 
A) toHq(A))

H2(Qp)! H2(Qp=Zp)! H3(Zp)! H3(Qp):

Now the cohomology with coefficients inQp vanishes: this follows from the
vanishing theorems proved by Schwermer for the boundary cohomology ([Schw2]
Section 4.5) under the condition on the weight thatn� m� 0, and by R. Taylor
for the cohomology of the interior (calculation in Section 1 of [Tay2]), under the
condition thatn > m > 0.

Therefore we have thatV�k;1 injects into thep-torsion part ofH3(�0(0); Lk
Zp).
SinceZp is flat overZ, this is the same asH3(�0(0); Lk) [p

1].
But H3(�0(0); Lk)

tor is a finitely generated torsion abelian group, and hence
is finite. So providedp does not divide its order, thep-torsion vanishes and by
Lemma 4.3V�k (�n)[Pa] = 0 for all a� 0.

By Nakayama’s lemma this is enough to show thatV�k (�n) = 0, and hence,
again by the control theorem forH2 (Lemma 4.3), we obtain

eH2(�(r); Lm;n 
 Qp=Zp) = 0 8n� m� 0 for almost all p:

The values ofp that are excluded are precisely the ones not satisfying(H).
Now consider another weightk0 = (m;n0) with n0 � m� 0. Then the above

argument will show thateH2(�0(1); Lk0 
 Qp=Zp) injects into a finitep-group,
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which this time is not a priori zero. However, itsp-torsion also vanishes: indeed,
by Theorem 2.5 (vanishing ofeH1), we have

eH2(�0(1); Lk0 
 Z=pZ)�= eH2(�0(1); Lk0 
 Qp=Zp) [p]:

The left-hand side is independent of the weight by Theorem 1.1, so is zero by the
result already proved for weightk. This implies that we also haveV�k0;1 = 0.

5. �-adic families of Siegel modular forms

Recall that we have definedW := W �m;n(�n), and that� is isomorphic to the
one-variable Iwasawa algebraZp[[X]] viau$ 1+X. We also have specialisation
mapssa:�! Zp with kernelsPa = u� (1+ p)a 2 �.

Let k = (m;n). Then the quotientW �k (�n)=PaW
�
k (�n) is dual toW�k (�n)

[Pa], i.e. elements ofW�k (�n) annihilated byPa. The following key lemma is a
consequence of the Control Theorem.

LEMMA 5.1. Assume Condition(H). ThenW�k (�n) [Pn;s] =W
�
k;s and dually

W �k (�n)=Pn;sW
�
k (�n) =W �k;s:

Proof. The proof is the same as that of Lemma 4.3. 2

On the other hand, we saw in Section 1 thatW �m;n1
(�n1) �= W �m;n2

(�n2) as
�-modules. Therefore

W �m;n1
(�n1)=Pn2W

�
m;n1

(�n1) �= W �m;n2
(�n2)=Pn2W

�
m;n2

(�n2)

= W �(m;n2);1:

Thus we can recover an entire family of weights from our universal objectW.
We can now analyse the�-module structure ofW.

LEMMA 5.2. Assume the condition(H). ThenW�k;r is p-divisible.
Proof. We have a short exact sequence

0! Zp! Qp ! Qp=Zp! 0:

This gives rise to the sequence

eH3(Zp)
tf ! eH3(Qp)! eH3(Qp=Zp)! eH4(Zp)

tor:

(Again we have writtenH�(A) for H�(�(r); Lk 
A)). By Pontryagin duality, the
hypothesis(H) implieseH4(Zp)

tor = 0 and we have

W�k;r � eH
3(Qp)=eH

3(Zp);
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so we are done. 2

Dually, this says thatW �k;r is p-torsion free, and hence is free of finite rank overZp
(Zp being a principal ideal domain). We now resort to the following criterion.

LEMMA 5.3. LetM be a continuous compact�-module andpian infinite collection
of height one primes, such thatM=pi is a finite freeZp-module for eachi. ThenM
is a finite free�-module.

Proof. This is a standard application of Nakayama’s lemma, and can be found
e.g. as [Hi1] Lemma 6.3. 2

We have seen thatW=PaW is finite and free overZp. Thus we can apply Lemma 5.3
to deduce thatW is finite and free over�.

Let us summarise our results.

THEOREM 5.4.Assume hypothesis(H). DefineW = W �m;n(�n), a twisted�-
module. ThenW is finite and free over�; if m is a fixed even integer,W is inde-
pendent ofn. Furthermore, ifPa;s = up

s
� (1+ p)ap

s
2�, we have specialisation

mapsW=Pa;rW �=W �(m;a);r.
Now recall the definitions of the Hecke algebrasTk;r andTk from Section 1 as

endomorphisms generated by Hecke operators. We have seen that in fact,T := Tk
is independent of the second weight parameter. AsW is finite and free we know
thatT ,! �a

2
is finite and torsion-free, though not necessarily free (as� is not a

PID). We have, by restriction of operators

T=Pk;rT� Tk;r:

We are interested in systems of eigenvalues in

S� := Homalg(T;�);

where we are demanding ring homomorphisms. (Note that given a complete set of
Hecke eigenvalues at finite level, there may be more than one Siegel modular form
in the corresponding eigenspace).

So suppose we are given a system of eigenvalues occurring onW�k;1

�:Tk;1 � O;

with values in the ring of integersO of a finite extension ofQp . We aim to lift�
to an element ofS�.

We have a composite map

T
sn�!T=PnT � T(m;n);1

�
�!O;

with kernel}n / T, say. Then}n is a prime ideal, asO is an integral domain, and
(Pn) � }n. Also }n \ � is a prime ideal of� containingPn but not(p), so by
height considerations}n \ � = Pn�.
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We now appeal to the following version of the Going-down Theorem.

LEMMA 5.5. LetA be an integrally closed domain andB a ring containingA and
integral overA. Suppose that0 is the only element ofA which is a divisor of zero
in B. Letp; q be two prime ideals ofA such thatq � p, andQ a prime ideal ofB
lying aboveq. Then there exists a prime idealP ofB lying abovep and such that
Q � P.

Proof.See [Bour] V 2.4. I am grateful to Jacques Tilouine for pointing out this
reference to me. 2

LetA = �,B = T, q = (Pn),Q = }n andp = 0. Then the Going-down Theorem
clearly applies.� is integrally closed because it is a UFD ([Bour] VII 3.9), and the
second hypothesis is just the torsion-freeness ofT.

Therefore there exists a prime ideal}�n � }n with }�n \ � = (0)

� � - T

(Pn) � }n[ [
(0) � }�n:

NowI = T=}�n is finite over� (�\}�n = 0) and so is a semilocal ring ([Bour]
II 3.5), i.e. it has only finitely many maximal ideals and is the direct sum of its
localisations:I = �Im. ButI is also an integral domain; hence it must be a local
ring. Denote its maximal ideal bymI . Note thatI is not necessarily integrally
closed.

Denote byb� the natural surjection

b�:T � T=}�n = I:

Let e}n be the image of}n in I. The image ofPn in I lies in e}n.

THEOREM 5.6.Suppose�:Tk;1! O is a system of eigenvalues occurring on the
groupWk;1, wherek = (m;n). Then there exists a local ringI finite over�, a
system of eigenvaluesb�:T! I on the universal spaceW, and an ideale}n of I
lying abovePn, such that

b� mod e}n = �:

Furthermore, if k0 = k + �(0; p� 1) = (m;n0) is another weight, ande}n0 is an
ideal of I lying abovePn0 with I= e}n0 �= Zp , then

b� mod e}n0 � � (mod p):
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Proof. Let I and e}n be as before. Letp� = Ker(�) and letepn be the kernel of
the mapT! Tk;1. Then forT 2 Tk;1 with lift eT to T

�(T ) = T modp� = eT mod epn modp�

= eT mod}n

= b�( eT ) mod e}n:
If we denote maps by their kernels, the picture looks like this

T=PnT

�
�
�
�
�

Pn

� @
@
@
@
@R

T
~pn - Tk;1

@
@
@
@
@

}n
R

I
?

}�n

~}n - O:
?

p�

For the second part, note that both(p; e}n) and (p; e}n0) generate the unique
maximal idealmI of I. Thus the images ofb�mod}n and b� mod}n0 in Fp are
both just the reductions ofb� modulomI . 2

Remark.It is perhaps illuminating to note that in the case whereI = �, we
can see the second part of the theorem explicitly, as reduction mod}n is then just
evaluation of power series atX = (1+ p)n�1. Then ifk = k0+ pa(0; p� 1), we
see thatb� modPn �= b� modPn0 (mod pa+1).
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