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Abstract

Let f and g be 1-bounded multiplicative functions for which f ∗ g = 1.=1. The Bombieri–
Vinogradov theorem holds for both f and g if and only if the Siegel–Walfisz criterion holds for
both f and g, and the Bombieri–Vinogradov theorem holds for f restricted to the primes.
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1. Introduction

1.1. Background and the main result. Given an arithmetic function f , we
define, whenever (a, q) = 1,

∆( f, x; q, a) :=
∑
n6x

n≡a (mod q)

f (n)−
1

ϕ(q)

∑
n6x

(n,q)=1

f (n),

which, as a varies, indicates how well f (.) is distributed in the arithmetic
progressions mod q . In many examples it is difficult to obtain a strong bound
on ∆( f, x; q, a) for arithmetic progressions modulo a particular q but one can
perhaps do better on ‘average’. We therefore define the following:
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The Bombieri–Vinogradov hypothesis for f : For any given A > 0 there exists
a constant B = B(A) such that∑

q6
√

x/(log x)B

max
a: (a,q)=1

|∆( f, x; q, a)| �A
x

(log x)A
(1.1)

for all x > 2.
The Bombieri–Vinogradov hypothesis for f formulates the idea that f is well

distributed, on ‘average’, in arithmetic progressions with moduli q almost as large
as
√

x . It also directly implies that f is well distributed in arithmetic progressions
with small moduli. In particular the following is an immediate consequence:

The Siegel–Walfisz criterion for f : For any given A > 0, any x > 2, and any
(a, q) = 1 we have

|∆( f, x; q, a)| �A
x

(log x)A
. (1.2)

In this article we focus on 1-bounded multiplicative functions f ; that is, those
f for which | f (n)| 6 1 for all n > 1. We define

F(s) =
∞∑

n=1

f (n)
ns

and −
F ′(s)
F(s)

=

∞∑
n=2

Λ f (n)
ns

,

for Re(s) > 1. The functionΛ f (.) is supported only on prime powers; we restrict
attention to the class C of multiplicative functions f for which

|Λ f (n)| 6 Λ(n) for all n > 1.

This includes most 1-bounded multiplicative functions of interest, including all 1-
bounded completely multiplicative functions. Two key observations are that if
f ∈ C then each | f (n)| 6 1, and if f ∈ C and F(s)G(s) = 1 then the
multiplicative function g whose Dirichlet series is G also lies in C. Here g is
the convolution inverse of f ; that is, ( f ∗ g)(n) = 1 if n = 1, and 0 otherwise.

Define P to be the set of primes, so that the arithmetic function f · 1P is the
function f but supported only on the primes. The classical Bombieri–Vinogradov
theorem is, in our language, the Bombieri–Vinogradov hypothesis for 1P .
The Bombieri–Vinogradov hypothesis holds trivially for the corresponding
multiplicative function 1(.). Many of the proofs of the Bombieri–Vinogradov
theorem (for example, those going through Vaughan’s identity) relate the
distribution of 1P in arithmetic progressions to the distribution of µ(.) in
arithmetic progressions; here µ denotes the Möbius function, the convolution
inverse of the multiplicative function 1. This is the prototypical example of the
phenomenon we discuss in this article.
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Our main question here is to address for what f does the Bombieri–Vinogradov
hypothesis hold? Evidently the Siegel–Walfisz criterion must hold for f , but what
else is necessary? In [4, Proposition 1.4], we exhibited an f ∈ C for which the
Siegel–Walfisz criterion holds, and yet (1.1) fails for any A > 1 and any B.
The key feature in our construction of f was that the Bombieri–Vinogradov
hypothesis did not hold for f · 1P . As we now see in our main result, this is
also a necessary condition:

THEOREM 1.1. Suppose that f, g ∈ C with F(s)G(s) = 1.

(a) If the Bombieri–Vinogradov hypothesis holds for both f and g then the
Bombieri–Vinogradov hypothesis holds for f · 1P ; and

(b) If the Bombieri–Vinogradov hypothesis holds for f ·1P and the Siegel–Walfisz
criterion holds for f then the Bombieri–Vinogradov hypothesis holds for f .

Since g · 1P = − f · 1P , this can all be expressed more succinctly as follows:

Suppose that f, g ∈ C with f ∗ g = 1.=1. Then

The Bombieri–Vinogradov hypothesis holds for both f and g
if and only if

The Bombieri–Vinogradov hypothesis holds for f · 1P , and
the Siegel–Walfisz criterion holds for both f and g.

This kind of ‘if and only if’ result in the theory of multiplicative functions bears
some similarity to (and inspiration from) (1.4) and Theorem 1.2 of [6], and much
of the discussion there.

2. More explicit results

Theorem 1.1 is not as powerful as it looks at first sight since it is of little use if
one wishes to prove (1.1) for a function f whose definition depends on a particular
x (as the hypothesis of Theorem 1.1 makes assumptions for all x). In this section
we will give uniform versions of both parts of Theorem 1.1.

The Bombieri–Vinogradov hypothesis for f ∈ C fails if f is a character of
small conductor (for example f (n)= (n/3)), or ‘correlates’ with such a character;
that is, the sum

S f (x, χ) :=
∑
n6x

f (n)χ(n)

is ‘large’. We can take such characters into account as follows: Given any finite set
of primitive characters, Ξ , let Ξq be the set of characters mod q that are induced
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by the characters in Ξ , and then define

∆Ξ ( f, x; q, a) :=
∑
n6x

n≡a (mod q)

f (n)−
1

ϕ(q)

∑
χ∈Ξq

χ(a)S f (x, χ).

Note that ∆( f, x; q, a) = ∆{1}( f, x; q, a).

2.1. Precise statement of Theorem 1.1(b) and B–V for smooth-supported f .
Our uniform version of Theorem 1.1(b) is the following result, from which
Theorem 1.1(b) immediately follows.

THEOREM 2.1. Fix A > 0, B > A + 5, ε > 0, and set γ = 2A + 6 + ε. Given
x > 2, let Q = x1/2/(log x)B and y = x/(log x)γ . Suppose that f ∈ C, and
assume that ∑

q6Q

max
a: (a,q)=1

|∆( f · 1P , X; q, a)| �
X

(log x)A log(x/y)
(2.1)

for all X in the range y 6 X 6 x; and that

|∆( f, X; q, a)| �
X

(log x)A+2B
,

whenever (a, q) = 1, for all X in the range x1/2 6 X 6 x. Then∑
q6Q

max
(a,q)=1

|∆( f, x; q, a)| �
x

(log x)A−1
.

Remark. Theorem 2.1 is stronger the larger we can take y (and thus the smaller
we can take γ ), since that reduces the assumptions made of the form (2.1). We
have been able to take any γ > 2A + 6 in Theorem 2.1. In Section 8, we will
show that we must have γ > A − 3. It would be interesting to know the optimal
power, γ , of log x that one can take in the definition of y.

An integer n is y-smooth if all of its prime factors are 6y. In [4] we proved
the Bombieri–Vinogradov hypothesis for y-smooth-supported f ∈ C satisfying
the Siegel–Walfisz criterion, provided y 6 x1/2−o(1). For arbitrary f ∈ C, we may
therefore use this result to obtain the Bombieri–Vinogradov hypothesis for the
f -values restricted to y-smooth n, and need a different approach for those n that
have a large prime factor (that is, a prime factor >y). See also [2] for similar
results that are nontrivial for much smaller values of y.

First though, we have been able to develop a rather different method based on
ideas of Harper [5] to significantly extend our range for y.
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THEOREM 2.2. Fix A > 0, ε > 0, and set B = A + 5 + ε, γ = 2A + 6 + ε.
Given x > 2, let Q = x1/2/(log x)B and y = x/(log x)γ . Let A be the set of all
primitive characters of conductor at most (log x)B . If f ∈ C is supported only on
the y-smooth integers then∑

q6Q

max
(a,q)=1

|∆A( f, x; q, a)| �
x

(log x)A
.

Proving this result takes up the bulk of this paper, and occupies Sections 5 and 6.
In Section 7 we deduce Theorem 2.1 from Theorem 2.2.

2.2. Precise statement of Theorem 1.1(a). It is considerably easier to prove
the converse result, since one can easily express f · 1P in terms of a suitably
weighted convolution of f and g. Theorem 1.1(a) follows from the next result,
taking Ξ = {1}.

THEOREM 2.3. Given f ∈ C, define g ∈ C to be that multiplicative function
for which F(s)G(s) = 1. Fix A,C > 0 and ε > 0. Let x be large, let 2 6
Q 6 x1/2/(log x)5A/2+5C/4+7/2 and let Ξ be a set of at most (log x)C primitive
characters. Suppose that the following properties hold for both h = f and h = g:
(i) If (a, q) = 1 then

∆Ξ (h, X; q, a)�
X

(log x)14A+7C+35

for all X in the range x0.4 6 X 6 x; (ii) The B–V type result∑
q6Q

max
a: (a,q)=1

|∆Ξ (h, X; q, a)| �
X

(log x)A+C/2+ε

holds for all X in the range x/(log x)6A+7C/2+10+ε 6 X 6 x. Then∑
q6Q

max
a: (a,q)=1

|∆Ξ ( f · 1P , x; q, a)| �
x

(log x)A
; (2.2)

and the same holds with f · 1P replaced by g · 1P .

The range x0.4 6 X 6 x appearing in property (i) above can be reduced to
x1/2/(log x)15A+15C/2+36 6 X 6 x , but we are not concerned about this detail. We
will prove Theorem 2.3 at the end of Section 4, after establishing a result about
convolutions in Section 3.

3. The algebra of the Bombieri–Vinogradov hypothesis

We will establish the next main result using ideas from [3, Section 9.8] (which
has its roots in [1, Theorem 0]). We will sketch a proof of a modification of [3,
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Theorem 9.17], being a little more precise and correcting a couple of minor errors.
We assume that f and g are arithmetic functions, with | f (n)|, |g(n)| 6 1 for all
n, but not necessarily multiplicative. Let Ξ be a set of primitive characters. For
h ∈ { f, g} we assume that if (a, q) = 1 then

∆Ξ (h, N ; q, a)�
H(N )N 1/2

(log N )A
(3.1)

for some A > 0, where H(N ) := (
∑

n6N |h(n)|
2)1/2. In [3] they have Ξ = {1}

throughout but the modifications for arbitraryΞ are straightforward. The first key
step is (9.73) in [3]. One can be a bit more precise (for example, by choosing C
there more precisely) and show that if ψ is a character mod q with q 6 (log N )A,
but ψ 6∈ Ξq , and if (3.1) holds, then for any positive integer m we have∑

n6N
(n,m)=1

h(n)ψ(n)� q1/3τ(m)
H(N )N 1/2

(log N )A/3
. (3.2)

Now for M, N > 2 let fM(m) = f (m) if m 6 M and fM(m) = 0 if m > M ,
and define gN similarly. Assume that M 6 N and that (3.1) holds for h = gN .
Theorem 9.16 of [3] then becomes, (Note that in the statement of Theorem 9.16
of [3], the authors claim to have obtained a power of log M N in the denominator
of the third term of the upper bound whereas we only claim a power of log N , as
in their proof. This makes no difference here since we added the hypothesis that
N > M , but they did not have this hypothesis in [3].)∑

q6Q

max
a: (a,q)=1

|∆Ξ ( fM ∗ gN ,M N ; q, a)|

�

(
Q +
√

N (log Q)2 +

√
M N (log Q)2

(log N )A/7

)
F(M)G(N ), (3.3)

after replacing (9.73) in [3] by our (3.2) and choosing the parameter F in their
argument to be F = (log N )A/7.

We now assume that (3.1) holds (In [3, Theorem 9.17], the authors only assume
(3.1) for h = g. This is because of their overoptimistic error term in Theorem 9.16.
The correction seems to force one to assume that (3.1) holds for h = f as well.)
for both h = f and h = g for any N in the range

√
x 6 N 6 x and some A > 35.

For C > 0 define

( f ∗ g)C(r) :=
∑
mn=r

m,n6x/(log x)C

f (m)g(n).

Our version of [3, Theorem 9.17] states the following:
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LEMMA 3.1. Let the notations and assumptions be as above. Let A > 35, B =
A/7− 2 and C = 2B + 2. Then

∑
q6Q

max
a: (a,q)=1

|∆Ξ (( f ∗ g)C , x; q, a)| � (1+ |Ξ |)1/2
x

(log x)D
(3.4)

for Q =
√

x/(log x)B with D = (B − 3)/2.

Proof. The proof involves how to partition the values of m, n in the sum defining
( f ∗g)C , so as to apply (3.3). Using the trivial bounds F(M) 6

√
M and G(N ) 6√

N , (3.3) now reads

∑
q6Q

max
a: (a,q)=1

|∆Ξ ( fM ∗ gN ,M N ; q, a)| �
√

N x(log x)2 +
x

(log x)B
(3.5)

when
√

x 6 N 6 x , M 6 N , and M N � x . Let ∆ = (1 + |Ξ |)−1/2(log x)−D−2.
With two applications of (3.5), we obtain (3.5) with fM replaced by fM − f(1−∆)M :

∑
q6Q

max
a: (a,q)=1

|∆Ξ (( fM − f(1−∆)M) ∗ gN ,M N ; q, a)| �
√

N x(log x)2 +
x

(log x)B

(3.6)
when

√
x 6 N 6 x , M 6 N , and M N � x .

We apply (3.5) and (3.6) as follows for those m 6
√

x (an analogous
construction works for those n 6

√
x , as well as for any overlap). For j > 0, set

M j = (log x)C(1−∆)− j and N j = x/M j . Let J be the minimal integer for which
M j >

√
x so that J � (log x)/∆. We apply (3.5) with M = M0, N = N0, and

apply (3.6) with M = M j , N = N j for 1 6 j 6 J . The total contribution here is

�

J∑
j=0

(
(1−∆) j/2 x

(log x)C/2−2
+

x
(log x)B

)
�

x
∆(log x)B−1

� (1+ |Ξ |1/2)
x

(log x)D
,

where the last inequality follows from our choice of D and ∆.
For each integer m ∈ ((1 − ∆)M j ,M j ] we have missed out the values of n in

the range (N j , x/m]. There are 6 N j∆/(1 − ∆) such values of n, for each of
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the 6 ∆M j values of m in the interval, a total of� ∆2x pairs for each j . Using
the identity

∆Ξ (( f ∗ g)C , x; q, a) =
∑

mn6x
m,n6x/(log x)C
mn≡a (mod q)

f (m)g(n)

−
1

ϕ(q)

∑
χ∈Ξq

χ(a)
∑

mn6x
m,n6x/(log x)C

f (m)g(n)χ(m)χ(n),

we see that the total contributions to the left hand side of (3.4) from those
m ∈ ((1−∆)M j ,M j ] and n ∈ (N j , x/m] are bounded by

�

∑
q6Q

(
max

a : (a,q)=1

∑
(1−∆)M j<m6M j

N j<n6x/m
mn≡a (mod q)

1+
|Ξq |

ϕ(q)

∑
(1−∆)M j<m6M j

N j<n6x/m

1
)

�

∑
q6Q

[
∆M j

(
1+

∆N j

q

)
+
|Ξq |

ϕ(q)
∆2x

]
.

�∆M j Q +
∑
q6Q

∆2x
(

1
q
+
|Ξq |

ϕ(q)

)
� ∆M j Q + (1+ |Ξ |)∆2x log x .

Summing over 0 6 j 6 J , we see that the total contribution from the mixed pairs
m, n is

� ∆Q
∑

06 j6J

M j + J (1+ |Ξ |)∆2x log x � Qx1/2
+ (1+ |Ξ |)∆x(log x)2

� (1+ |Ξ |1/2)
x

(log x)D
,

by the choice of D and ∆. This completes the proof of Lemma 3.1.

Of course we are really interested in f ∗ g not ( f ∗ g)C , so now we study the
difference: For y = x/(log x)C we have

∆Ξ ( f ∗ g, x; q, a)−∆Ξ (( f ∗ g)C , x; q, a)

=

∑
m6(log x)C
(m,q)=1

f (m)(∆Ξ (g, x/m; q, a/m)−∆Ξ (g, y; q, a/m))

+

∑
n6(log x)C
(n,q)=1

g(n)(∆Ξ ( f, x/n; q, a/n)−∆Ξ ( f, y; q, a/n)),
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and so∑
q6Q

max
a: (a,q)=1

|∆Ξ ( f ∗ g, x; q, a)| 6
∑
q6Q

max
b: (b,q)=1

|∆Ξ (( f ∗ g)C , x; q, b)|

+

∑
m6(log x)C

∑
q6Q

max
c: (c,q)=1

|∆Ξ (g, x/m; q, c)|

+

∑
m6(log x)C

∑
q6Q

max
d: (d,q)=1

|∆Ξ (g, y; q, d)|

+

∑
n6(log x)C

∑
q6Q

max
e: (e,q)=1

|∆Ξ ( f, x/n; q, e)|

+

∑
n6(log x)C

∑
q6Q

max
k: (k,q)=1

|∆Ξ ( f, y; q, k)|.

The first term above is handled by Lemma 3.1. We assume that for h = f and
h = g we have∑

q6Q

max
a: (a,q)=1

|∆Ξ (h, X; q, a)| �
X

(log x)D log log x

for all X in the range y 6 X 6 x , so the above becomes

� (1+ |Ξ |)1/2
x

(log x)D
+

∑
m6(log x)C

x/m
(log x)D log log x

� (1+ |Ξ |)1/2
x

(log x)D
.

We now summarize what we have proved.

PROPOSITION 3.2. Fix D > 0 and let A = 14D + 35, B = 2D + 3 and C =
4D + 8. Let x be large and let Ξ be a set of primitive characters. Let f and g be
given arithmetic functions with the following properties: Taking h = f or h = g
we have that (i) Each |h(n)| 6 1; (ii) If (a, q) = 1 then

∆Ξ (h, X; q, a)�
X

(log x)A

for all X in the range x1/2 6 X 6 x; (iii) The B–V type result∑
q6Q

max
a: (a,q)=1

|∆Ξ (h, X; q, a)| �
X

(log x)D log log x

holds for all X in the range x/(log x)C 6 X 6 x, where 2 6 Q 6
√

x/(log x)B .
Then ∑

q6Q

max
a: (a,q)=1

|∆Ξ ( f ∗ g, x; q, a)| � (1+ |Ξ |)1/2
x

(log x)D
.
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4. Proof of the uniform version of Theorem 1.1(a)

In this section we deduce Theorem 2.3 from Proposition 3.2, using the identity
Λ f = g ∗ f log. We start with two lemmas passing between f and f log.

LEMMA 4.1. Fix A > 0. Let f be a given 1-bounded arithmetic function, let
(a, q) = 1, and suppose we are given a set of primitive characters Ξ . If

∆Ξ ( f, X; q, a)�
X

(log X)A
(4.1)

for all X in the range x/(log x)A 6 X 6 x, then

∆Ξ ( f log, X; q, a)�
X

(log X)A−1
(4.2)

for X = x. Conversely if (4.2) holds for all X in the range x/(log x)A 6 X 6 x,
then (4.1) holds for X = x.

Proof. Let F(n; q, a) = 1n≡a (mod q) − (1/ϕ(q))
∑

χ∈Ξq
χ(an), so that we have

∆Ξ ( f, x; q, a) =
∑

n6x f (n)F(n; q, a). Moreover

∆Ξ ( f log, x; q, a) =
∑
n6x

f (n)F(n; q, a) log n =
∫ x

1
log t d∆Ξ ( f, t; q, a),

by the usual technique of partial summation, so that

∆Ξ ( f log, x; q, a)−∆Ξ ( f log, X; q, a) = ∆Ξ ( f, x; q, a) log x

−∆Ξ ( f, X; q, a) log X −
∫ x

X
∆Ξ ( f, t; q, a)

dt
t
, (4.3)

where X = x/(log x)A. By (4.1) the three terms on the right hand side above are
all�x/(log x)A−1. By trivially bounding each | f (n)| by 1, we obtain

|∆Ξ ( f log, X; q, a)| 6
1

ϕ(q)

∑
χ (mod q)
χ /∈Ξq

∣∣∣∣∑
n6X

f (n)(log n)χ(n)
∣∣∣∣

6 X log x 6
x

(log x)A−1
.

This yields the first part of the lemma. For the second part we begin with the
analogous identity

∆Ξ ( f, x; q, a) =
∫ x

2

1
log t

d∆Ξ ( f log, t; q, a),

and the proof proceeds entirely analogously.
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LEMMA 4.2. Fix A,C > 0. Let f be a given 1-bounded arithmetic function,
2 6 Q 6 x/(log x)A+C/2+1, and suppose we are given a set of primitive characters,
Ξ , containing 6 (log x)C elements. If

∑
q6Q

max
a: (a,q)=1

|∆Ξ ( f, X; q, a)| �
X

(log X)A
(4.4)

for all X in the range x/(log x)A+C/2+1 6 X 6 x then

∑
q6Q

max
a: (a,q)=1

|∆Ξ ( f log, X; q, a)| �
X

(log X)A−1
(4.5)

for X = x. Conversely if (4.5) holds for all X in the range x/(log x)A+C/2+1 6
X 6 x then (4.4) holds for X = x.

Proof. As before we use (4.3) but now with X = x/(log x)A+C/2+1. This implies
that∑

q6Q

max
a: (a,q)=1

|∆Ξ ( f log, x; q, a)| 6
∑
q6Q

max
b: (b,q)=1

|∆Ξ ( f log, X; q, b)|

+

∑
q6Q

max
c: (c,q)=1

|∆Ξ ( f, x; q, c)| log x +
∑
q6Q

max
d: (d,q)=1

|∆Ξ ( f, X; q, d)| log X

+

∫ x

X

∑
q6Q

max
e: (e,q)=1

|∆Ξ ( f, t; q, e)|
dt
t
.

By (4.4) the last three terms are

�A
x

(log x)A−1
+

∫ x

X

dt
(log t)A

�A
x

(log x)A−1
.

Now, by trivially bounding each | f (n)| by 1, we obtain

|∆Ξ ( f log, X; q, b)| 6
∑
n6X

n≡b (mod q)

log n +
1

ϕ(q)

∑
χ∈Ξq

∑
n6X
(n,q)=1

log n

� (1+ |Ξq |)
X log X

q
,
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and so∑
q6Q

max
b: (b,q)=1

|∆Ξ ( f log, X; q, b)| 6
∑
q6Q

(1+ |Ξq |)
X log X

q

� X (log x)2 +
∑

χ (mod r)∈Ξ

∑
q6Q
r |q

X log X
q

�

(
1+

∑
χ (mod r)∈Ξ

1
r

)
X (log x)2 � X (log x)C/2+2

�A
x

(log x)A−1
.

which yields the first part of the lemma. The proof of the second part is again
analogous.

Proof of Theorem 2.3. Let (log x)−1 f log denote the function n →

(log x)−1 f (n) log n. By the B–V type assumption on f , the first part of
Lemma 4.2 (with A replaced by A + C/2+ ε) implies that∑

q6Q

max
a: (a,q)=1

|∆Ξ ((log x)−1 f log, X; q, a)| �
X

(log X)A+C/2+ε
,

for all X in the range x/(log x)5A+5C/2+9 6 X 6 x . The same holds with
(log x)−1 f log above replaced by g by hypothesis.

By the S–W type assumption on f , the first part of Lemma 4.1 (with A replaced
by 14A + 7C + 35) implies that if (a, q) = 1 then

∆Ξ ((log x)−1 f log, X; q, a)�
X

(log X)14A+7C+35
,

for all X in the range x0.45 6 X 6 x . The same holds with (log x)−1 f log above
replaced by g by hypothesis.

The coefficients of −F ′(s)/F(s) = G(s) · (−F ′(s)) yield the identity Λ f =

g ∗ f log. Therefore by Proposition 3.2 applied to the 1-bounded functions g and
(log x)−1 f log (with D replaced by A + C/2), we obtain∑

q6Q

max
a: (a,q)=1

|∆Ξ (Λ f , X; q, a)| �
X

(log X)A+C/2
(1+ |Ξ |)1/2 �

X
(log X)A

,

for all X in the range x/(log x)A+C/2+1 6 X 6 x .
The contribution of the prime powers pk with k > 2 does not come close to the

upper bound, and so∑
q6Q

max
a: (a,q)=1

|∆Ξ (( f · 1P) log, X; q, a)| �
X

(log X)A
,
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for all X in the range x/(log x)A+C/2+1 6 X 6 x . Finally the second part of
Lemma 4.2 implies (2.2).

5. Factorizing smooth numbers and using the large sieve

We develop an idea of Harper [5] to prove the following result, which will yield
rich consequences in the next section.

PROPOSITION 5.1. Let 2 6 y 6 x be large. Let completely multiplicative f ∈ C
be supported on y-smooth integers. Let 2 6 D, Q 6 x. Then∑
q6Q

1
ϕ(q)

∑
χ (mod q)
cond(χ)>D

|S f (x, χ)| �
(

Qx1/2
+ x7/8

+
x
D

)
(log x)5 + (xy)1/2(log x)3.

To prove this we begin by proving a marginally weaker result (weaker in the
sense that one only saves (x/y)1/4 from the trivial bound instead of potentially
saving (x/y)1/2 in Proposition 5.1).

PROPOSITION 5.2. Let 2 6 y 6 x be large. Let completely multiplicative f ∈ C
be supported on y-smooth integers. Let 2 6 D, Q 6 x. Then∑

q6Q

1
ϕ(q)

∑
χ (mod q)
cond(χ)>D

|S f (x, χ)| � x1/2

(
Q + (xy)1/4 +

x1/2

D

)
(log x)5.

The extra assumption of complete multiplicativity in Propositions 5.1 and 5.2
allows us to easily separate variables in a double sum (see (5.5) below).

Proof. Suppose that χ (mod q) is induced by ψ (mod r). Let h(.) be the
multiplicative function which is supported only on powers of the primes p which
divide q but not r , and then let h(pk) = (gψ)(pk) where g is the convolution
inverse of f . Then f χ = h ∗ fψ and so

S f (x, χ) =
∑
m>1

h(m)S f (x/m, ψ).

As each |h(m)| 6 1 we deduce that

|S f (x, χ)| 6
∑
m>1
M |q

(M,r)=1

|S f (x/m, ψ)|,
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where M =
∏

p|m p. Now, we wish to bound

∑
q6Q

1
ϕ(q)

∑
r |q

r>D

∑
ψ (mod r) primitive
χ induced by ψ

|S f (x, χ)|

which, writing q = r Mn, is

6
∑

D<r6Q

∑
ψ (mod r)
ψ primitive

∑
m>1

(M,r)=1

|S f (x/m, ψ)|
∑

r Mn6Q

1
ϕ(r Mn)

;

and this is

� (log Q)
∑
m6x

1
ϕ(M)

∑
D<r6Q

1
ϕ(r)

∑
ψ (mod r)
ψ primitive

|S f (x/m, ψ)|. (5.1)

Let us first dispose of large values of m. For fixed m, the sum over r and ψ can
be bounded using Cauchy–Schwarz by(∑

r6Q

∑
ψ (mod r)
ψ primitive

1
rϕ(r)

)1/2(∑
r6Q

r
ϕ(r)

∑
ψ (mod r)
ψ primitive

|S f (x/m, ψ)|2
)1/2

.

The sum in the first bracket is � log Q, and the sum in the second bracket is
�(x/m + Q2)(x/m) by the large sieve. Thus the contributions to (5.1) from
those m > M0, where M0 = x/y, is

� (log Q)3/2
∑

M06m6x

1
ϕ(M)

(
x
m
+

Qx1/2

m1/2

)

� x1/2

(
x1/2

M0.9
0

+
Q

M0.4
0

)
(log Q)3/2 � (x0.1 y0.9

+ Qx0.1 y0.4)(log Q)3/2,

where the second line follows from the first by using Rankin’s trick and the
convergence of the Dirichlet series

∑
m 1/(ϕ(M)mσ ) for any σ > 0. This

contribution is acceptable.
Now fix m 6 M0, and write X = x/m so that X > x/M0 = y. Set V0 =

(X/y)1/2 so that V0 > 1. For every y-smooth integer V0 < n 6 X , we have a
unique factorization n = uv with the properties that

P+(u) 6 P−(v), v > V0, v/P−(v) 6 V0.

https://doi.org/10.1017/fms.2018.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.14


When does Bombieri–Vinogradov hold for a given multiplicative function? 15

This can be achieved by putting prime factors of n into v in descending order,
until the size of v exceeds V0 for the first time. Thus

S f (X, ψ) = S f (V0, ψ)+
∑

V0<v6yV0
v/P−(v)6V0

∑
u6X/v

P+(u)6P−(v)

f (uv)ψ(uv). (5.2)

The u-summation has length at least X/yV0 = V0, which explains the choice of
V0.

Each |S f (V0, ψ)| 6 V0, and so the contribution of these terms to (5.1) is�QV0

for fixed m, giving in total

� Q log Q
∑

m6M0

1
ϕ(M)

(
x/m

y

)1/2

�
Qx1/2 log Q

y1/2
,

since
∑

m 1/(ϕ(M)m1/2)� 1. This is again acceptable.
To analyze the double sum over u, v, we first dyadically divide the ranges of

u, v, P+(u), P−(v). For parameters U, V, P+, P− (which can all be taken to be
powers of 2) satisfying

U, V 6 X/V0, V > V0, U V 6 X, 2 6 P+, P− 6 y, P+ < 2P−, (5.3)

consider the double sum ∑
V0<v6yV0
V6v<2V
v/P−(v)6V0

P−6P−(v)<2P−

∑
u6X/v

U6u<2U
P+(u)6P−(v)

P+6P+(u)<2P+

f (uv)ψ(uv). (5.4)

For the moment, let us pretend that the ‘cross conditions’ uv 6 X and P+(u) 6
P−(v) are not there (for example when 4U V 6 X and 2P+ 6 P−), so that the
variables u, v are completely separated and (5.4) takes the form( ∑

U6u<2U

a(u)ψ(u)
)( ∑

V6v<2V

b(v)ψ(v)
)
, (5.5)

for some |a(u)| 6 1 and |b(v)| 6 1 (which depend on f but not on ψ). By
Cauchy–Schwarz and then the large sieve inequality, we obtain∑

R<r62R

1
ϕ(r)

∑
ψ (mod r)
ψ primitive

∣∣∣∣ ∑
U6u<2U

a(u)ψ(u)
∣∣∣∣∣∣∣∣ ∑

V6v<2V

b(v)ψ(v)
∣∣∣∣

�
1
R
(U 1/2

+ R)(V 1/2
+ R)(U V )1/2. (5.6)

https://doi.org/10.1017/fms.2018.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.14


A. Granville and X. Shao 16

Summing this up over R’s in the interval [D, Q] and the various possibilities
given by (5.3), we get

�

(
X log X

D
+

X

V 1/2
0

log Q + Q X 1/2 log X
)
(log y)2

�

(
X log X

D
+ X 3/4 y1/4 log Q + Q X 1/2 log X

)
(log y)2.

Taking X = x/m, and summing this over m weighted by 1/ϕ(M), we have a
contribution

�

(
x
D
+ x3/4 y1/4

+ Qx1/2

)
(log x)4,

to (5.1), as Q, y 6 x , which is again acceptable.
To deal with the restrictions uv 6 X and P+(u) 6 P−(v) (when necessary), we

use Perron’s formula in the form

1uv6X =
1

2π i

∫ 1/2+iT

1/2−iT

X̃ s1

us1vs1
·

ds1

s1
+ O(x−4)

with X̃ = bXc + 1/2 and T = x5; and

1P+(u)6P−(v) =
1

2π i

∫ 1/2+iT

1/2−iT

(P−(v)+ 1/2)s2

P+(u)s2
·

ds2

s2
+ O(x−4).

For example, when U V � X and P+ � P−, we can write (5.4) using the above
applications of Perron’s formula as∫ 1/2+iT

1/2−iT

∫ 1/2+iT

1/2−iT

( ∑
U6u<2U

a(s1, s2; u)ψ(u)
)( ∑

V6v<2V

b(s1, s2; v)ψ(v)

)
ds1ds2

s1s2

+ O(x−3), (5.7)

where a(s1, s2; u) is supported on those u with P+ 6 P+(u) < 2P+ and takes the
form

a(s1, s2; u) = f (u) ·
U s1

us1
·

P s2
+

P+(u)s2
,

and b(s1, s2; v) is supported on those v with V0 < v 6 yV0, v/P−(v) 6 V0, P− 6
P−(v) < 2P− and takes the form

b(s1, s2; v) = f (v) ·
X̃ s1

U s1vs1
·
(P−(v)+ 1/2)s2

P s2
+

.
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Note that |a(s1, s2; u)| � 1 and |b(s1, s2; v)| � 1. Thus we can treat the integrand
of (5.7) just as we did (5.5). We have two extra powers of log T which come from
integrating ds1ds2/|s1s2|, and we can absorb the errors coming from the O(x−3)

in (5.7) since they are negligible. We have only one power of log y arising from
the dyadic dissection of P− and P+. We therefore obtain the upper bound

�

(
X
D
+ X 3/4 y1/4

+ Q X 1/2

)
(log X)(log T )2 log y

in total for a given m. Summing over m gives a similar contribution to last time
(but now with an extra factor of log x), which is equally acceptable.

Finally we have to account for the cases where 4U V < X and P+ � P−, and
where U V � X and 2P+ < P−. Following the same methods precisely we obtain
the same bounds. This completes the proof.

Proof of Proposition 5.1. Let g be the completely multiplicative function for
which g(p) = f (p) when p 6 2

√
x , and g(p) = 0 for p > 2

√
x . We apply

Proposition 5.2 to obtain∑
q6Q

1
ϕ(q)

∑
χ (mod q)
cond(χ)>D

|Sg(x, χ)| �
(

Qx1/2
+ x7/8

+
x
D

)
(log x)5,

an acceptable bound. We may clearly assume that y > 2
√

x since otherwise
f = g.

Now S f (x, χ) = Sg(x, χ)+ Sh(x, χ) where h(n) := f (n)− g(n). If h(n) 6= 0
then n = up for some prime p in the range 2

√
x < p 6 y, and integer u < 1

2

√
x ,

so that h(n)= f (u) f (p). We proceed analogously to the proof of Proposition 5.2,
though now U and V are restricted to the range U 6 1

4

√
x and 2

√
x < V 6 y/2,

while P+ and P− are irrelevant and removed from the argument, so things are
significantly simpler. We therefore obtain, for an element of our dyadic partition,
the same upper bound (5.6). Summing now over our range for U and V with
U V < X/4 we obtain the upper bound

�
X log X

D
+ X 1/2 y1/2

+ X x−1/4
+ Q X 1/2 log X.

Finally summing up over m with X = x/m gives an upper bound of

�
x(log x)2

D
+ x1/2 y1/2 log x + Qx1/2(log x)2.

For the cases in which U V � X we obtain the same upper bound times
(log T )2 � (log x)2. Our claimed result follows.
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6. Consequences of Proposition 5.1

In this section we deduce Theorem 2.2. First we establish a version of
Proposition 5.1 for f ∈ C that may not be completely multiplicative.

COROLLARY 6.1. Let 2 6 y 6 x be large. Let f ∈ C be supported on the y-
smooth integers. Let D 6 x1/3 and Q 6 x/D2. Then∑

q6Q

1
ϕ(q)

∑
χ (mod q)
cond(χ)>D

|S f (x, χ)|

�

((
Qx1/2

+ x7/8
+

x
D

)
(log x)5 + (xy)1/2(log x)3

)
(log D)2.

Proof. Let f ∗ be the completely multiplicative function obtained by taking
f ∗(p) = f (p). Let g(pk) = f (pk) − f (p) f (pk−1), so that g is supported only
on powerful integers, and f = g ∗ f ∗. We deduce that

S f (x, χ) =
∑
n6x

g(n)χ(n)S f ∗(x/n, χ),

and so
|S f (x, χ)| 6

∑
n6x

|g(n)| |S f ∗(x/n, χ)|.

Summing over all q 6 Q we obtain∑
q6Q

1
ϕ(q)

∑
χ (mod q)
cond(χ)>D

|S f (x, χ)| 6
∑
n6x

|g(n)|
∑
q6Q

1
ϕ(q)

∑
χ (mod q)
cond(χ)>D

|S f ∗(x/n, χ)|.

Set N = D2. For the sum over n 6 N we use Proposition 5.1, as D, Q 6 x/N ,
to obtain the upper bound

�

∑
n6N

|g(n)|
√

n

((
Qx1/2

+ x7/8
+

x
D

)
(log x)5 + (xy)1/2(log x)3

)
.

Since each |g(pk)| 6 2 and g is only supported on the powerful, we deduce that

∑
n6N

|g(n)|
√

n
6

∏
p6
√

N

(
1+

2
p
+

2
p3/2
+ · · ·

)
� (log N )2.
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It remains to deal with n > N : The argument near the beginning of the proof
of Proposition 5.2 which gave a bound for m > M0 can be adjusted here to give a
bound when m > 1, so that∑

q6Q

1
ϕ(q)

∑
χ (mod q)
cond(χ)>D

|S f ∗(x, χ)| � (x + Qx1/2)(log Q)3/2.

Therefore the sum over n > N is

�

∑
N<n6x

|g(n)|
(

x
n
+ Q

(
x
n

)1/2)
(log Q)3/2

�
x
√

N
(log N )(log x)3/2 + Qx1/2(log x)7/2.

Taking N = D2 we obtain the claimed result.

Proof of Theorem 2.2. We take D = (log x)B in Corollary 6.1, noting that

|∆A( f, x; q, a)| 6
1

ϕ(q)

∑
χ (mod q)
cond(χ)>D

|S f (x, χ)|

by the definition of A. Thus Corollary 6.1 implies that the quantity above is

�

(
x

(log x)B−5
+

x
(log x)γ /2−3

)
(log D)2.

This is�x/(log x)A since B > A + 5 and γ > 2A + 6.

7. Proof of the uniform version of Theorem 1.1(b)

In the section we deduce Theorem 2.1 from Theorem 2.2. We begin by
extending Theorem 2.2 to all f ∈ C.

COROLLARY 7.1. Fix A > 0, B > A + 5 and γ > 2A + 6. Given x, let Q =
x1/2/(log x)B and y = x/(log x)γ . Let A be the set of all primitive characters of
conductor at most (log x)B . Suppose that f ∈ C, and assume that∑

q6Q

max
a: (a,q)=1

|∆A( f · 1P , X; q, a)| �
X

(log x)A log(x/y)

for all X in the range y 6 X 6 x. Then∑
q6Q

max
(a,q)=1

|∆A( f, x; q, a)| �
x

(log x)A
.
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Proof. Let fy(pk) = f (pk) if p 6 y, and fy(pk) = 0 otherwise. If f (n) 6= 0 but
fy(n) = 0 where n 6 x , then n has a prime factor p > y, which can only appear
in n to the power one, and so we can write n = mp with f (n) = f (m) f (p).
Moreover m = n/p < x/y. Therefore

∆A( f − fy, x; q, a) =
∑

m6x/y
(m,q)=1

f (m)
( ∑

y<p6x/m
p≡am (mod q)

f (p)

−
1

ϕ(q)

∑
χ∈Ξq

χ(a)χ(m)
∑

y<p6x/m
(p,q)=1

( f χ)(p)
)

=

∑
m6x/y
(m,q)=1

f (m)(∆A( f · 1P , x/m; q, am)

− ∆A( f · 1P , y; q, am)).

Summing this up over q 6 Q, and as each | f (m)| 6 1, we deduce that∑
q6Q

max
(a,q)=1

|∆A( f, x; q, a)| 6
∑
q6Q

max
(b,q)=1

|∆A( fy, x; q, b)|

+

∑
m6x/y

∑
q6Q
(q,m)=1

max
(c,q)=1

|∆A( f · 1P , x/m; q, c)|

+

∑
m6x/y

∑
q6Q
(q,m)=1

max
(d,q)=1

|∆A( f · 1P , y; q, d)|.

We bound the first term by using Theorem 2.2, and the other terms using the
hypothesis to get an upper bound

�
x

(log x)A
+

∑
m6x/y

x/m
(log x)A log(x/y)

�
x

(log x)A
,

as claimed.

To use Corollary 7.1 we need the following result, which follows immediately
from the proof of Proposition 3.4 of [4].

LEMMA 7.2. Fix A,C > 0. Let f ∈ C be such that

|∆( f, X; q, a)| �
X

(log x)A+C
,
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whenever (a, q) = 1 for all X in the range x1/2 < X 6 x. Suppose that Ξ is a
set of primitive characters, containing� (log x)C elements. Let Q 6 x, and for
each Q < q 6 2Q let aq (mod q) be a residue class with (aq, q) = 1. Then∑

Q<q62Q

|∆Ξ ( f, x; q, aq)| �
x

(log x)A

if and only if ∑
Q<q62Q

|∆( f, x; q, aq)| �
x

(log x)A
.

Proof of Theorem 2.1. The hypothesis of Corollary 7.1 holds, and so∑
q6Q

max
(a,q)=1

|∆A( f, x; q, a)| �
x

(log x)A
.

Note that |A| � (log x)2B so we may take C = 2B in Lemma 7.2 for each dyadic
range of q to deduce our result.

8. f which satisfy the Siegel–Walfisz criterion but not the
Bombieri–Vinogradov hypothesis

In this section we justify the remark following the statement of Theorem 2.1.
The proof of Theorem 2.1 allows us to replace (2.1) in the hypothesis by∑

q6Q

max
a: (a,q)=1

|∆( f · 1P , X; q, a)−∆( f · 1P , y; q, a)| �
X

(log x)A
(8.1)

for all X in the range y 6 X 6 x .
The construction we shall give is similar as the one from [4], and to verify

that this example satisfies the Siegel–Walfisz hypothesis we need to assume (1.5)
of [4]), which is an (unknown) uniform form of the prime number theorem in
arithmetic progressions. Let y = x/(log x)γ and select any Q in the range x1/3 <

Q 6 x2/5. Let P be the set of primes p in the range y/2 < p 6 y for which there
exists a prime q ∈ (Q, 2Q] that divides p− 1. We will work with the completely
multiplicative function f , defined as follows:

f (p) =


0 if p 6 2(log x)γ or y < p 6 x;
−1 if p ∈ P;
1 otherwise.
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Since f is supported only on y-smooth integers, (8.1) trivially holds for all X in
the range y 6 X 6 x . From now on we follow the arguments of section 8.2 of [4],
and assume the conjecture (1.5) of [4]. First we may deduce that f satisfies the
Siegel–Walfisz criterion in the hypothesis of Theorem 2.1. Now note that

f (n) = | f (n)| − 2 · 1P(n)

for each n 6 x . Thus

∆( f, x; q, 1) = ∆(| f |, x; q, 1)− 2∆(1P , x; q, 1).

Note that | f | is the indicator function of the set of y-smooth integers with no
prime factors 62(log x)γ . It is straightforward to establish that this set has level
of distribution x1/2−ε. Thus∑

Q<q62Q

|∆( f, x; q, 1)| > 2
∑

Q<q62Q

|∆(1P , x; q, 1)| − O
(

x
(log x)γ+3

)
.

On the other hand, we have

∆(1P , x; q, 1) =
∑

y/2<p6y
p≡1 (mod q)

1−
#P
ϕ(q)

,

for prime q ∈ (Q, 2Q], where, by the definition of P , we are able to extend
the range for the first summation from p ∈ P to all primes in (y/2, y]. By the
Brun–Titchmarsh inequality, we have #P � y/(log x)2. Thus

|∆(1P , x; q, 1)| �
y

ϕ(q) log x
− O

(
y

ϕ(q)(log x)2

)
�

y
ϕ(q) log x

.

Summing this over all primes q ∈ (Q, 2Q], we obtain

∑
Q<q62Q

|∆( f, x; q, 1)| �
y

(log x)2
− O

(
x

(log x)γ+3

)
�

x
(log x)γ+2

.

Therefore if this is� x/(log x)A−1, we must have γ > A − 3, as claimed in the
remarks following Theorem 2.1. In fact, since our example f is supported only
on y-smooth integers, the same remark regarding the dependence of the optimal
γ on A applies to Theorem 2.2 as well.
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9. Further thoughts

Arguably the most intriguing issue is to try to improve the exponent, γ , of the
logarithm in the definition of y in Theorem 2.1. We have shown that A − 3 6
γ (A) 6 2A + 6 + ε; one might guess that the optimal exponent has γ (A) =
κA + O(1) for all A > 0.

The bound κ 6 2 on the coefficient κ is a consequence of the (xy)1/2(log x)O(1)-
term in the upper bound in Proposition 5.1. If one can replace this term
by y(log x)O(1) then κ = 1 follows. Extending the idea in the proofs of
Propositions 5.1 and 5.2, one can restrict attention to a much smaller class of
f : Those completely multiplicative f ∈ C that are supported only on the primes
6 2(log x)γ , and the primes in (y/2, y].
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