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Abstract
We describe here a notion of diffusion similarity, a method for defining similarity between vertices in
a given graph using the properties of random walks on the graph to model the relationships between
vertices. Using the approach of graph vertex embedding, we characterize a vertex vi by considering two
types of diffusion patterns: the ways in which random walks emanate from the vertex vi to the remaining
graph and how they converge to the vertex vi from the graph. We define the similarity of two vertices vi
and vj as the average of the cosine similarity of the vectors characterizing vi and vj. We obtain these vectors
by modifying the solution to a differential equation describing a type of continuous time random walk.
This method can be applied to any dataset that can be assigned a graph structure that is weighted or

unweighted, directed or undirected. It can be used to represent similarity of vertices within community
structures of a network while at the same time representing similarity of vertices within layered substruc-
tures (e.g., bipartite subgraphs) of the network. To validate the performance of our method, we apply it to
synthetic data as well as the neural connectome of the C. elegansworm and a connectome of neurons in the
mouse retina. A tool developed to characterize the accuracy of the similarity values in detecting commu-
nity structures, the uncertainty index, is introduced in this paper as a measure of the quality of similarity
methods.
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1. Introduction
The notion that patterns of diffusion across a network reflect structural features embedded in
its connectivity is ubiquitous in the field of computational network science. Katz’s status index
based on random walks was the first sophisticated way to measure the relative importance of a
given network vertex (Katz, 1953), now often referred to as centrality. The same form of random
walk used by Katz is the basis of the PageRank algorithm, arguably the most important diffusion
method in network theory as it led to the organization of the modern internet (Page et al., 1999).
More recently, Markov stability (Delvenne et al., 2013) has been shown to generalize the concept
of community structure using the induced bottleneck effect of diffusion, and the InfoMapmethod
(Rosvall & Bergstrom, 2008) based on the map equation (Rosvall et al., 2009) has been shown
to capture community structure encoded by random walkers’ pathways. These are only a few
examples, but they illustrate the diverse ways that diffusion has shaped our understanding of what
it means to have organized structure in a network. A useful review of many other examples of
diffusion in networks is found in (Masuda et al., 2017).
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The work presented in this paper approaches the question of network organization and its rela-
tion to diffusion through the concept of similarity of network vertices. The notion of similarity is
prevalent in data science (Frey & Dueck, 2007; Shirkhorshidi et al., 2015). Clustering and clas-
sification, for example, are fundamental tasks that rely on similarity or dissimilarity between
individual data points to identify group structure in data. For the application of such methods
in the context of network structures, methods to quantify vertex similarity are extremely useful.
We might expect a network with organized structure to have groups of vertices which are more
similar within a group but less similar between groups. Many methods have been explored to
address the question of vertex similarity, some directly using methods such as kernels (Jaccard,
1901; Salton & McGill, 1983; Leicht et al., 2006; Kondor & Lafferty, 2002; Smola & Kondor, 2003;
Cooper & Barahona, 2010; Fouss et al., 2006), and some indirectly via graph distances or embed-
ding techniques such as graph Laplacian embedding (Lenart, 1998; Fiedler, 1989; Chan et al., 1994;
Shi & Malik, 2000; Meila & Shi, 2001; Perrault-joncas & Meila, 2011; Luo et al., 2009; Fouss et al.,
2007; Bai et al., 2005; Ghawalby & Hancock, 2015; Huang et al., 2015; Cheng et al., 2019), or infer-
ence approaches such as link prediction (Liben-Nowell & Kleinberg, 2007; Zhou et al., 2009; Lü
& Zhou, 2011; Pech et al., 2019; Zhou et al., 2021). Indeed, the position of vertices in networks
can be generalized into approaches that identify deeper mathematical properties related to vertex
configurations as in (Brandes, 2016), which provides a general framework for the theoretical idea
of vertex similarity. Importantly, many proposed definitions have relied on different interpreta-
tions of diffusion (Leicht et al., 2006; Kondor & Lafferty, 2002; Smola & Kondor, 2003; Bai et al.,
2005; Cooper & Barahona, 2010; Estrada & Silver, 2017; Fouss et al., 2006; Meila & Shi, 2001;
Cheng et al., 2019; Thiel & Berthold, 2010; Fouss et al., 2007; Ghawalby & Hancock, 2015; Huang
et al., 2015). All of these techniques have important applications ranging from the identification
of important elements of social networks (Lü et al., 2011; Qi et al., 2013) to providing insight into
complex biological structures (Kovács et al., 2019; Qi et al., 2011).

An early work that provides flexibility for generalizing the notion of diffusion similarity is the
diffusion kernel (Kondor & Lafferty, 2002; Smola & Kondor, 2003). A review of several types
of diffusion-related kernel similarities and non-kernel similarities for network vertices is found
in (Avrachenkov et al., 2019). Kernels are a widely used technique for quantifying similarity
between data points in general, since a kernel function generates an implicit embedding of the
data in a Hilbert space where similarity is the inner product of the embedded vectors and thus has
convenient mathematical properties (Genton, 2002; Shawe-Taylor & Cristianini, 2004).

It is important to note, however, that when employing a kernel method, the inner product
property is not by itself enough to ensure that a given kernel similarity is useful since the implied
embedding is not automatically guaranteed to relate to the features of the data we might wish
to represent. In many diffusion-related similarities for network vertices, the heuristic explana-
tion providing the relevance of the kernel embedding is that the i, j entry of the similarity matrix
is related to a scaled sum over i, j random walks of various lengths (Avrachenkov et al., 2019).
In particular, the heat kernel similarity (Kondor & Lafferty, 2002) yields a matrix where the i, j
entry is the amount of heat at vertex i after time t given that one unit of heat was initialized
at vertex j. Thus, in the case of the heat kernel, there is a useful physical interpretation for the
way that this similarity captures the organizational properties of a given network: vertices closer
in walking distance would share more heat than those further away and, importantly, we would
expect dense communities separated by sparse connectivity to trap heat. This bottlenecking effect
when heat diffusion occurs in a network with community structure is mathematically expressed,
at the global level, by the eigenmode corresponding to the second smallest eigenvalue of the graph
Laplacian matrix (Ghawalby & Hancock, 2015; Fiedler, 1989). For recent results on this property
and a discussion of related work, see (Cheng et al., 2019).

In this work, we define a specific diffusion profile similarity and develop a framework wherein a
given similarity measure can be studied in terms of its ability to represent various models of orga-
nized structure. Using our experimental framework, we assess the behavior of our diffusion profile
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similarity as it relates to changes in basic structured network model parameters. Specifically, our
similarity method assigns each vertex to the diffusion pattern it generates in a model of diffusion
that has been explored in the literature as heat kernel pagerank (Chung, 2007) of a vertex in a graph
and also through unbiased and continuous time randomwalks (Delvenne et al., 2013;Masuda et al.,
2017; Petit et al., 2019; Angstmann et al., 2013) beginning at a vertex. Beginning from several of the
principles in these prior works, we adapt the solution to the relevant ordinary differential equation
to model diffusion on a network in a way that detects both the properties of the neighborhood of
vertices in a community and layered or parallel structures in a network within the diffusion pat-
terns into and out of the vertex. We then compute the similarity of two vertices as the normalized
inner product (vector cosine) of their diffusion patterns. The strategy of defining vertex similar-
ity in terms of dispersion patterns represented by diffusion vectors has precedent, for example,
see (Thiel & Berthold, 2010; Cooper & Barahona, 2010; Huang et al., 2015). While the design of
our similarity relies on a combination ofmethods that have been applied in a number of other ana-
lytic works, we find through experimentation that the specific details of the approach presented
here such as the choice of diffusionmodel, fixed choice of time parameter, and other modifications
make a significant difference in terms of performance with respect to structuremodels. To demon-
strate the efficacy of this method, we apply it to two synthetic datasets as well as to sequences of
stochastic block model graphs (SBMs) with parameterized characteristics. We then apply it to the
neural connectome of the C. elegans nematode and use it to identify structures within this bio-
logical network. Finally, we apply our method to the mouse retina connectome dataset e2006 and
identify modules of relative high similarity that correspond to functional biological modules there.

2. Notation and terminology
We follow the graph theory notation and terminology from standard textbooks, such as, (Bondy
& Murty, 2008), (Diestel, 2017), and (West, 2001). An undirected or directed graph G consists of
a pair of sets, the vertex set V , and the edge set or directed edge (arc) set E(G) (sometimes we may
write simply E). It is denoted by G= (V , E). For a vertex v of an undirected graph, a neighbor u
of v is a vertex adjacent to v. The set of all neighbors of v is denoted by N(v). For a vertex v of a
directed graph, an out-neighbor (or in-neighbor) u of v is a vertex dominated by v (dominating
v). The set of all out-neighbors (in-neighbors) of v is denoted by N+(v) (or, N−(v), respectively).

For a weighted, undirected graph G with n vertices, the adjacency matrix A is an (n× n)-
matrix where the (i, j) entry A[i, j] is the weight of the edge between vi and vj (if G is unweighted,
A[i, j]= 1 if vivj ∈ E(G) and= 0 otherwise). If the graph is directed then A[i, j] �= 0 means, the arc
vivj is in the direction from vi to vj.

A walk from a vertex x to a vertex y in a graphG is a collection of edges {ei} from the vertex x to
the vertex y identified by a vertex sequence v0v1v2 · · · v� where vivi+1 = ei ∈ E(G). � is the length
of the walk.

Let M be an (n× n)-matrix. The (i, j)-term of M is denoted by M[i, j]. The i-th row (or i-th
column) of the matrixM is denoted by �Mrow(i) (or �Mcol(i), respectively).

3. Diffusion profile similarity method
3.1 Algorithm
Here we state precisely our chosen method of calculating diffusion profile similarity. Details
and mathematical relevance of each step will be further discussed in the next subsections. The
algorithm proceeds as shown in Figure 1.

Input. The algorithm takes as its input an adjacency matrix A of an input graph G where the (i, j)-
entryA[i, j] is the weight of the (possibly) directed edge vi→ vj and n= |V(G)|. (IfG is undirected,
A is symmetric; if G is unweighted, A[i, j]= 0 or 1.)
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Figure 1. Flowchart of Algorithm from Section 3.1: from adjacency matrix A to similarity matrix S.

Output. The result is a diffusion similarity matrix S where the (i, j)-entry S[i, j] is the similarity
between the vertices vi and vj.

NOTE: The completion of Step 1 is in general recommended for any directed graph input in order
to avoid the additional computation time of directly checking the graph to see if it is strongly
connected.

Step 1. If G is strongly connected, then go to Step 2. Otherwise, let vn+1 be a new vertex, and

V(G)←V(G)∪ {vn+1},
E(G)← E(G)∪ {vi→ vn+1 : i= 1, · · · , n} ∪ {vn+1→ vi: i= 1, · · · , n}

and for every i= 1, · · · , n,
A[i, n+ 1]=A[n+ 1, i] = 10%min{A[i, j] :A[i, j]> 0, ∀i, j= 1, · · · , n}

then go to Step 2.

Step 2. ConstructW where the (i, j)-entry

W[i, j] := A[i, j]∑
∀μ A[i,μ]

(1)

Step 3. Construct

K :=
∞∑
k=1

(≈ 1.63)k

k! Wk (2)

Step 4. If |V(G)| = n+ 1 (that is, Step 1 was taken), then deleting the (n+ 1)st-row and
(n+ 1)st-column from K. And go to Step 5.

If |V(G)| = n, then go to Step 5.
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Step 5. Let �Krow(i) be the i-th-row of K and �Kcol(i) be the i-th-column of K. Construct the output
S where the (i, j)-entry

S[i, j] := cos (�Kcol(i), �Kcol(j)) + cos (�Krow(i), �Krow(j))
2

(3)

where cos (�α, �β) is the cosine of the angle between vectors �α and �β . END.

3.2 Relation of this method to notions of diffusion on networks
3.2.1 Relation to Markov Processes
The transition probability matrix (Markov transition operator) W (defined in Equation (1)) is
the basis of diffusion in the PageRank algorithm (Page et al., 1999) as well as Markov Stability
optimization (Delvenne et al., 2013) and the “heat kernel pagerank” method (Chung, 2007). In
its general form W[i, j]= A[i,j]∑

∀μ A[i,μ] , it induces a step in a simple random walk (discrete time
diffusion) on a weighted/unweighted, directed/undirected network via the operation:

pt+1 =WTpt (4)

where pt ∈R|V| (n× 1 vector) is the probability distribution on the vertices at step t (Lovász,
1993). Hence, W[i, j] is the probability of reaching vj directly from vi (i.e., in one step). Wk

computes the random walk distribution at step k and so Wk[i, j] is equal to the following
probability,

P( the random walk of length k ended at vj | the random walk of length k started at vi ).
The i, j entry of K Equation (2) then is a scaled sum of arrival probabilities from i to j at various
step lengths that favors shorter walks. Edge weights in a weighted network augment the transition
probabilities at each step. Rows and columns of K, Equation (2), are encodings (embeddings)
representing the way vi and vj (respectively) relate to the rest of the network via random walk
interaction. We can expect that such encodings would reflect models of organized structure in a
network, for example, in a network with dense block (community) structure it is understood that
there will be similarity between the encodings (embeddings) of vi and vj when they aremembers of
the same community as long as the edge set connecting the community to the rest of the network
is sufficiently sparse.

The technique of encoding relationships between vertices by a scaled sum over random walks
of all lengths is a heuristic that dates back to the earliest work in this field (Katz, 1953) as well
as more recent proposals for vertex similarity (Leicht et al., 2006). In this work, we add to this
approach by recognizing that the columns and rows of matrix K Equation (2) are diffusion pat-
terns that can be understood through the relationship of K to the Markov transition operator of
a random walk process known as active, node-centric continuous time random walk (Petit et al.,
2019; Masuda et al., 2017). In this process, a random walker at vertex i takes a step to vertex j with
probability A[i,j]∑

∀μ A[i,μ] and that event occurs after a waiting time t which is an exponentially dis-
tributed random variable. Equation (5) is known as the master equation of this continuous time
random walk (Petit et al., 2019; Angstmann et al., 2013) where the (n× 1) function of time y is the
probability distribution on vertex set V , sometimes referred to as the residence probabilities (Petit
et al., 2019):

d
dt
y = − (I −WT)y (5)

The matrix �(t) of Equation (6) is the fundamental solution (Brauer & Nohel, 1969) to the first-
order linear system in Equation (5) and computes the residence probability distribution y at time
t via the operation y=�(t)y0 where y0 is the distribution at t= 0, hence�(t) is a continuous time
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Markov transition operator:

�(t) = e−(I−WT)t = e−t
∞∑
k=0

tk

k! (W
T)k (6)

Column j of �(t) is the distribution at time t given that the walk began at vertex j (at t= 0) and
row i of �(t) are the residence probabilities of vertex i at time t for each of the possible starting
vertices.

As the coefficient e−t is a scalar, Equation (6) is equivalent to K, Equation (2), in the approach
presented here with two exceptions. First, the matrix is transposed but this has no effect on our
method due to Step 5, Equation (3). Second, and perhaps most importantly, the start term of the
series in Equation (6) is k= 0, while the series in Equation (2) begins at k= 1 . This choice of
start term turns out to be advantageous and is discussed below. By the above observations, our
diffusion profile similarity method is a similarity of the dispersion profiles of continuous time
random walk except for a “reduced” diagonal on account of our start term k= 1.

3.2.2 Continuous Time RandomWalk vs Heat Diffusion
The phrase “heat kernel”(Kondor & Lafferty, 2002; Smola & Kondor, 2003) is derived from the
classical study of heat flows. An early use of the dynamical system Equation (5) is found in (Chung,
2007) in which the solution matrix (6) is used in much the same way as the PageRank (Page et al.,
1999) matrix to find local clusters around a vertex in a graph. In that work (Chung, 2007), the
local Cheeger constant (Mohar, 1989) is used to prove that information about local clustering is
encoded in the columns of 6. As a part of that development, Equation (6) is referred to as “heat
kernel pagerank” since the base matrix I −W of PageRank (Page et al., 1999) is instead employed
in a matrix exponential, a technique commonly referred to as a kernel.

It is important to note two things however. First, Equation (6) is not a true kernel matrix
(positive semi-definite matrix) (Avrachenkov et al., 2019) as I −W is not symmetric unless the
graph G is degree regular. Also Equation (6) is not generally symmetric. Second, the diffusion
defined by Equation (5) does not have the “temperature/electrical model property” described in
(Kondor & Lafferty, 2002). It is, however, easy to see that given diagonal degree matrix D we
have D1/2(I −W)D−1/2 =L , where L is the normalized graph Laplacian (Chung, 1997), and
so (I −W) and L are similar matrices and share the same eigenvaules. If w is an eigenvector
of L , then u=D−1/2w is an eigenvector of (I −W). While the resulting set of eigenvectors of
(I −W) are not othonormal, they are linearly independent. Hence, there is an easily stated rela-
tionship between the solution matrix Equation (6) and the matrix e−L t which was studied as an
eigenvector embedding method in (Bai et al., 2005).

Perhapsmost importantly, we prefer the diffusionmodel defined by Equation (5) for the following
reasons:

(1) This diffusion has been proven to represent community structure through bottle neck
properties under the frameworks described in (Chung, 2007) and (Delvenne et al., 2013).

(2) We have a heuristic by which to “fix” t as discussed below that performs well, whereas
we were not able to achieve such a suitable fixed t or stable performance across various
network structuremodels when we used the “heat kernel” (Kondor & Lafferty, 2002; Smola
& Kondor, 2003) diffusion model.

3.3 Some remarks on the properties of the algorithm
In this section, we provide some remarks concerning different aspects of the method for
computing S.
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3.3.1 Motivation for k= 1 but not k= 0 in Equation (2)
As discussed in Section 3.2.1, in our method, K Equation (2) is equivalent to the matrix described
in Equation (6), except that the k= 0 term which gives I = (tW)0

0! has been removed from the
summation. We found that for our use with cosine of vector angles as the similarity measure
on columns and rows of K, this “reduced diagonal” diffusion matrix outperformed the similarity
obtained if we do not reduce the diagonal.

When the diagonal is reduced, the first neighborhood walk terms K[i, j] and K[j, i] are scaled
down in the computations of the inner products �Kcol(i) · �Kcol(j) and �Krow(i) · �Krow(j). This has the
effect of increasing the emphasis on the comparison of diffusion flow from vertex vi to vertices in
V \ {vi, vj} with the diffusion flow from vertex vj to vertices in V \ {vi, vj}. In this way, S captures
a better picture of the relationship between vertices vi and vj relative to the rest of the graph since
a high flow between vertices vi and vj will not dominate the sum. This reveals information about
their flows to other vertices and how the two patterns relate. We have confirmed experimentally
that the choice of k= 1 as a start value of the sum improves the ability of the similarity method to
reflect bipartite substructures and appears to reduce the influence of between-community edges
in the detection of community structures.

3.3.2 The Choice of the Parameter t≈ 1.63
For the diffusion matrix K in Equation (2), we propose that we should be able to encode informa-
tion about community structure models as well as common neighborhoodmodels, which focus on
first neighborhoods of vertices, as long as the parameter t is chosen to emphasize walks of lengths
1, 2, 3 properly. Let βk(t)= tk

k! be the coefficient of the k-th term of Equation (2). The value of βk(t)
indicates the emphasizing level of the walks of length k in the sum

∑∞
k=1 tk

k!W
k. The following is

the argument for this selection:

(1) The walks of length 2 cannot be more emphasized than walks of length 1. Hence, t
1! =

β1(t)≥ β2(t)= t2
2! . That is, t≤ 2 is an upper bound.

(2) The first decrease β1(t)− β2(t) should not be greater than the second decrease β2(t)−
β3(t) for otherwise the second term β2(t) is not sufficiently emphasized. That is,

t
1! −

t2

2! = β1(t)− β2(t)≤ β2(t)− β3(t)= t2

2! −
t3

3!
and, therefore, t is bounded below by 3−√3.

As a result, we choose the average of the upper and lower bounds:

t ≈ 1.63 ≈ 2+ (3−√3)
2

Experimentally, we have found that t values near to 1.63 work very well in all types of graph
data we have tested, whether the graph is large or small, directed or undirected, weighted or
unweighted. To provide an even further level of confidence to the heuristic choice of t described
here, we also performed “experiment 1” (see Section 4.3.1) repeatedly with t values in the entire
interval (3−√3, 2) and found that the curves relating uncertainty score to between-community
edge density were identical. Therefore, given the demonstrated success in the wide range of
graph types tested, we are confident that t can safely be treated as a constant instead of a free
parameter.
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3.3.3 S is Positive Semi-definite.
The matrix S of Equation (3) is positive semi-definite since it is the sum of a pair positive-
semidefinite matrices, namely KT

c Kc and KrKT
r , where Kc is the matrix obtained by multiplying

each column of K from Equation (2) by the reciprocal of its norm and Kr is the matrix obtained
by multiplying each row of K from Equation (2) by the reciprocal of its norm.

3.3.4 Behavior in the Bipartite Case
Assume that the input graph G contains an induced bipartite subgraph H with high density. One
would expect a higher similarity between vertices from the same part of H, and lower similar-
ity for vertices from distinct parts of H. Consider a special case that vi, vj have the same set of
out-neighbors and the same set of in-neighbors. Then, since vi and vj are isomorphic, we have
�Krow(i)≈ �Krow(j) and �Kcol(i)≈ �Kcol(j) (we write “≈” since for each of these pairs of vectors the i-th
terms are not equal and j-th terms are not equal, however, equality holds for all other terms). In
this way, the similarity S provides a solution to one of the challenges mentioned in the introduc-
tion, namely, the representation of various models of organized structures in networks as opposed
to representing only dense community structures in these networks.

3.3.5 A Universal Sink/Source
Step 1 of the algorithm is a technical step used to resolve the case where the dynamical system
in Equation (5) has degenerate solutions. If a directed graph G has sinks or sources or an undi-
rected graphG has isolated vertices, the matricesW and K will have some all-zero rows or all-zero
columns. This will result in zeroes in the denominators in Equation (3) (in the calculation of
cosine). A newly added vertex vn+1 will avoid the all-zero rows inW and K and therefore resolves
this problem. In Step 1 of the algorithm, we state “if G is not strongly connected” because it gener-
alizes both of the degenerate cases described in this section. This technique of adding a universal
sink/source has been independently applied by other authors, such as (Lü et al., 2011).

4. Application to synthetic data: Analysis and the uncertainty index
In this section, we consider a number of synthetic graphs and analyze the performance of the sim-
ilarity matrix S in representing various structures within those networks. First, we present several
types of these graphs and then follow this with a developed measure of performance. We then
demonstrate the ability of this measure to quantify relationships between accuracy of similarity
with respect to planted community structures and parameters of the community model such as
edge density.

4.1 Synthetic data case studies
4.1.1 An Example Network with Multiple Subgraph Structures
We present here a small example graph with several key features representing structural prop-
erties we wish to detect and then investigate whether diffusion similarity captures these features
accurately. This example provides a convenient way to visualize the performance of our simi-
larity measure and to understand the role played by the various components of our calculation.
Additionally, we compare the resulting similarity matrix side by side with other options for com-
puting similarities, including cosine similarity and the Leicht–Holme–Newman method (Leicht
et al., 2006), in order to verify that our proposed method (the diffusion similarity) does indeed
perform at least as well as the other proposed methods examined here.

The synthetic example graph G is illustrated in Figure 2(a) and is the union of two spanning
subgraphs G1 and G2 as shown in Figure 2(b) and (c). Figure 2(d) is the adjacency matrix of the
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Figure 2. Example: an illustrated graph.

graphG. The spanning subgraphG1 in Figure 2(b) indicates four parts of the graphG, three cliques
(with some small overlaps), and one complete bipartite graph. The edges of another spanning
subgraph G2 illustrated in Figure 2(c) are crossing edges joining these four parts of G1.

Vertices of Figure 2(a) are color-coded to indicate the designed ground truth output commu-
nities of G. The matrix of the diffusion similarity for the graph is seen in Figure 2(e).

1. Functional modules and bipartite subgraphs
In this example, the bipartite subgraph appears in the lower right corner of the adjacencymatrix

in Figure 2(d). Bipartite structures play an important role in the analysis of networks of neurons,
also known as connectomes, as some sets of cells can be described as layered networks. A layer is
a set of cells that may have relatively few interconnections but have a common out or in neigh-
borhood of cells forming another layer, and cells in a given layer should be identified as similar.
This phenomenon can be seen in various real-world examples such as the functional modules in
retinal/visual systems and cochlear/auditory systems. The opposite motif, densely interconnected
sets separated by sparse connectivity, also appears in key roles for example as in star amacrine
cells in the retina where ON and OFF sets form distinct dense groups. However, most existing
similarity methods may not be able to detect bipartite and dense block structures simultaneously.
For example, Figure 2(g) is the similarity matrix SLHN produced by Newman method with the
bipartite groupings still boxed, but we see that this method shows no community structure for
them.

2. The application and effects of the cosine-step
As outlined in Subsection 3.1 and 3.2, our proposed method consists of three steps:

A → W → K →cos S
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One of the most notable steps is K →cos S (the cosine-step). As discussed in Subsection 3.2.1,Krow(i)
is a vector characterizing the diffusion out of a give vertex vi, whileKcol(i) is a vector characterizing
the diffusion arriving at a given vertex vi. The diffusion similarity S[i, j] between vi and vj is defined
in Equation (3) to be the average of the cosine similarity of diffusion out-flow distributions and
the cosine similarity of diffusion in-flow distributions. The cosine-step plays an important role in
the detection of “bipartite functional modules”.

If we add the cosine-step to Leicht–Holme–Newman’s method (Leicht et al., 2006), that is,

A → SLHN →cos S∗

we are able to improve output (see Figure 2(h)) over the usual SLHN (Leicht et al., 2006) (see
Figure 2(g)).

Furthermore, if we apply the cosine-step directly to the adjacency matrix A, that is,

A →cos S∗∗

we are also able to detect the layers in the planted bipartite structures as indicated by the blue and
orange vertex subsets (see Figure 2(f)). Due to the computational costs of power series of matrices
or inverse of matrix, this simplified processing S∗∗ (although not as good as Figures 2(e) and (h))
is practically useful if one prefers speed to accuracy in certain applications (such as surveillance
monitoring). However, as we shall see, these improvements still do not provide better structure
detection than S.

3. Multimembership and Hierarchical Structure
The graph G also has two vertices with multi-community membership. As shown in Figure 2

(e), (h), and (f), each of the three presented computations are able to detect such features with
similar quality. However, single column/row bands indicate the hierarchical structure of the clus-
tering, and one of the most noticeable clusters is the bipartite subgraph which would appear on
the second lowest level of a hierarchical diagram for the graph. In this sense, S outperforms both
S∗ and S∗∗ by delineating the bipartite structure as well as the other multi-community features,
while the other two miss significant numbers of vertex to vertex similarity across communities.

4.1.2 A Strictly Directed Example
In this section, we present a directed graph G whose structure is shown in Figure 3 in order to
demonstrate that the diffusion-based similarity calculation can reflect organized structures that
are independent of models of edge density or sparseness of inter-community connectivity. The
adjacency matrix of G is seen in Figure 3(b) and shows the construction of the graph. Within
each of the color-labeled groups (blue, red, and green), each pair of vertices is connected by one
directed edge going in each direction.

• For any pair of vertices vi in blue vj in green, there are exactly two directed edges from vi blue
to vj green.

• For any pair of vertices vi in blue vj in red, there are exactly two directed edges from vi blue
to vj red.

• For any pair of vertices vi in green vj in red, there are exactly two directed edges from vi green
to vj red.

Thus, each color group is a strongly connected component and for any pair of vertices with one
vertex in one group and the other in a different group, the connection goes only in one direc-
tion. The specific construction is such that if we ignore edge direction, the graph is precisely an
undirected, unweighted complete graph (since a complete graph with all equal edge weights is
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Figure 3. Example: a directed graph with strongly connected components.

equivalent to an unweighted complete graph) and hence has no group structure. The similar-
ity data calculated using Equation (3) are seen in Figure 3(c). This example demonstrates that
the diffusion profile similarity is able to represent organized network structure that is embedded
strictly in the edge direction with no relationship to edge density. While it is easy to prove that
the similarity matrix will be essentially as seen in Figure 3(c) given the isomorphic property of
vertices within a color group of G (and given the diffusion method described in Section 3.2.1), it is
nonetheless useful to see the effectiveness of the similarity computation as shown in this example.
When considered along with the example in Section 4.1.1, the two together illustrate how well the
diffusion profile similarity method can represent different models of organized structure: directed
or undirected, block models or bipartite models. All these structural properties have been revealed
by the same calculation in Equation (3).

4.1.3 Similarity within Graphs generated by Stochastic Block Models
As noted above, a key objective for the diffusion similarity measure S (Equation (3)) is to be able
to represent community structures within graphs. Graphs generated by SBMs provide a collection
of communities of vertices that possess connectivity inside communities defined by a likelihood
of connection between vertices within those communities and between-community connectivity
modeled by a usually different probabilistic distribution of edges between these communities. As
such, they are increasingly becoming the standard model for community structure and an ideal
candidate for synthetic data structures on which to test algorithms for community detection.

Here, we designed an experimental framework to test our similarity measure’s performance
on these types of synthetic graphs constructed with stochastic blocks. By the strict definition of
an SBM graph, each block Bi is constructed by placing an edge between vertices inside the block
individually as a Bernoulli trial with probability pi. Random walk behavior in a graph is controlled
by the edges created by that process and not by the likelihood of the existence of the edges, so in
order to create sets of graphs with comparable properties we must use a fixed edge density model
(Frieze & Karoński, 2016) for both the internal and the between-block edge structures. SBM graph
blocks are internally an Erdős–Rényi (ER) model (Erdős & Rényi, 1959, 1960), with parameters
ni and pi, the number of vertices (of the block) and the probability of an edge, respectively. The
expected number of edges in a block is

(ni
2
)
pi. The edge density of a graph is defined as μ= |E|

(n2)
,

https://doi.org/10.1017/nws.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.11


Network Science 339

where |E| is the number of edges in the graph. Therefore, a fixed edge ER graphmodel is themodel
where a random graph generated with parameters n and p has precisely the number of edges as
the expected number in a standard ER graph model.

We may then state the fixed edge SBM model as the model where each block has a number of
internal edges given by

(ni
2
)
μi and between any pair of blocks Bi and Bj, the number of edges is

ninjηi,j where ηi,j is the edge density parameter for edges between blocks Bi and Bj. In order to
design experiments that may compare a set of graphs with a varying parameter, we must further
refine our model so that for a given graph the parameter ηi,j is the same value for each pair Bi and
Bj. It will be clear in the experimental design why this choice is necessary in order to allow graphs
to be comparable (see Subsection 4.3).

Formally, each model graph G that we generate on which we apply our similarity measure
has input parameters as follows: block size parameters n1, ..., nk where k is the number of blocks,
inside-block edge density parameters μ1, ...,μk and between-block edge density parameter η.

4.2 The uncertainty index: Measuring the quality of similarity methods
In order to measure how effectively the diffusion similarity function represents the blocks of a
graphG generated with a given set of parameter values as described above, we propose to measure
the uncertainty of the similarity matrix with respect to the set of blocks. In Figure 4, we provide
two example graphs to motivate and illustrate the measure of uncertainty. The adjacency matrices
of the two graphs, which we refer to as Ga and Gb, are seen in Figures 4(a) and (b), respectively.
Graphs Ga and Gb both have 600 vertices, inside-block edge density 75%, and between-block edge
density 10%. Ga has three blocks, while Gb has 30 blocks. The diffusion similarity matrix of Ga
is seen in Figure 4(c) and the diffusion similarity matrix of Gb is seen in Figure 4(d). Figure 4(e)
shows two histograms describing the similarity matrix of Ga with the top indicating the diffusion
similarity data measured within blocks and the bottom showing similarity data between blocks.
The same histograms for Gb are seen in Figure 4(f). The similarity matrix of Ga represents its
blocks more distinctly than Gb in the sense that the inside- and between-block similarity distri-
butions do not overlap. That is, the possible similarity values between two vertices in a block is a
different set of values than the possible similarity values for two vertices in different blocks. We
can say that the similarity matrix of Gb is less certain than that of Ga, since the distributions of
inside- and between-block similarities overlap. That is, for a vertex pair vi, vj such that S[i, j] is
in the overlapping range, the similarity measure does not distinguish whether the pair are in the
same block or different blocks. It follows naturally that if there were only a small number of ver-
tex pairs with similarity in the overlapping range, then clustering algorithms relying on similarity
might more accurately detect the intended blocks, and in that sense the similarity would be more
certain with respect to the block structure. To quantify the uncertainty of a similarity measure
when there are values in the overlapping range, we measure the overlap of the distributions of
inside-block and between-block similarities.

We can estimate the probability density function (pdf) of each distribution using the method
of kernel density estimation. Let the two pdf curves be the functions ρins and ρbetw so that for a
given similarity value s, the value ρins(s) is the probability of the value s being a similarity value
of two vertices within the same block of the graph G. In the same way, we also have the cor-
responding definition for ρbetw(s) for vertices located between blocks. The product of the two
functions ρins and ρbetw is a curve such that the area under it varies with the overlap of the two
distributions. That is, the more likely that similarity values lie within the overlapping range, the
higher the uncertainty of the similarity matrix with respect to the embedded block structure.
Figure 4(g) and (h) show these curves for graphs Ga and Gb, respectively. The red curve is the
pdf function ρbetw, the blue curve is the pdf function ρins, and the yellow curve is their prod-
uct. Observe that this uncertainty measure well represents the similarity matrices in Figures 4(c)
and (d). The yellow curve in Figure 4(g) shows that the similarity matrix in Figure 4(c) has zero

https://doi.org/10.1017/nws.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.11


340 S. Payne et al.

Figure 4. Measuring uncertainty with respect to blocks.

https://doi.org/10.1017/nws.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.11


Network Science 341

uncertainty, while the yellow curve in Figure 4(h) shows that the similarity matrix in d has positive
uncertainty. In this way, we define the candidate measure of uncertainty is as follows:

∫ 1

0
ρins(s) ∗ ρbetw(s) ds (7)

The issue that arises with this measure is that it is sensitive to the width of the distributions in a
way that affects the maximum value it can achieve. Specifically, when the two distributions are the
same (corresponding to maximum uncertainty), the area described by Equation (7) may change
with the distribution width. The easy fix for this is to recognize that our measurement is the inner
product of the pdfs ρins and ρbetw. Since these are stored as discrete arrays computationally, we
can measure uncertainty as the cosine of the vector angle between the two pdfs which is just their
inner product normalized by the product of their norms. This way the maximum uncertainty case
will always have value 1 and minimum will be 0, and these will each be achieved when there is
100% and 0% overlap, respectively. We will refer to the following computation as the uncertainty
score for the similarity matrix S with respect to the blocks:

uncertainty(S, Blocks) := 〈ρins, ρbetw〉
||ρins|| ∗ ||ρbetw|| (8)

where 〈�α, �β〉 is the inner product of the vectors �α and �β .

4.3 Experimental design and results
A key observation about the uncertainty scores of the graphsGa andGb (from Section 4.2) informs
our experimental design. The graphs have the same number of vertices and same parameters for
inside-block edge density and between-block edge density, yet the similarity matrix of Ga has an
uncertainty score 0%, while the similarity matrix of Gb has an uncertainty score 7.9%. In this
controlled example, we see that the similarity matrix becomes more uncertain as the number of
blocks (clusters) goes up for a graph with a fixed number of vertices. Intuitively, this is due to
the relative number of connections within a block that are possible compared to the number of
between-block connections possible. As the block size decreases but the number of blocks goes up,
the ratio of inside-block connections to between-block connections globally decreases, moving the
two relevant pdfs closer together. In addition, we note that heuristically uncertainty will increase as
the between-block edge density increases in general, since the graph would become more similar
to an ER graph where random walks would be fully arbitrary and not be constrained by any block
structure. These two principles guide the explorations below.

4.3.1 Experiment 1. The Uncertainty Index with Variable Between-Density
For Experiment 1, we fix the number of vertices at 600 and inside-block edge density at ≈ 74.8%
and vary the between-block edge density over a range from 5% to 74%. We perform this test
three times, in the first test the graphs generated have 3 blocks, in the second 12 blocks, and in
the third 30 blocks. For a given structure type, the block sizes are all the same. For example, in
a three-block graph, each block has 200 vertices since the total vertices is 600 for every graph in
Experiment 1. We test 200 graphs of each structure type, so the total number of graphs tested in
Experiment 1 is 600. Also, note that for each structure type and between-block edge density value,
we tested five such graphs in order to study the consistency of the uncertainty measure for a given
graph type.

The results are shown in Figure 5(a). Uncertainty increases with between-block edge den-
sity and also with the number of blocks. Interestingly, it appears that for each structure type,
there is some range where uncertainty grows extremely slowly as between-block edge density
increases. For example, graphs with three blocks appear to have uncertainty approximately 0% for
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Figure 5. Testing in block model graphs.

all between-block edge density values up to roughly 35%. This would appear to suggest that even
when a graph has a large number of blocks, there might be some threshold value of between-block
edge density for which the uncertainty of similarity is within some acceptable range.

The diagrams at the right of Figure 5(a) show pairs of graphs having the same uncertainty score.
For example, the top square of the four diagrams represents two graphs, one with 12 blocks and
one with 3. For each square, the left diagram is the diffusion similarity matrix S (Equation (3)) and
the right is the adjacency matrix A. The top two graphs both have uncertainty ≈ 25%, the middle
two ≈ 2%, and the bottom two 0%. Although we cannot establish a proven threshold for which
uncertainty would be “acceptable” for data mining tasks in general, visually the diagrams seem to
indicate that uncertainty scores higher than 25% might be undesirable. Comparing the six graphs
shown, it appears that the uncertainty measure we use performs well in representing the quality of
a given similarity matrix with respect to the blocks. We can also use these six graphs to establish
an expectation for “good performance” of similarity relative to between-block edge density. Note
that one might initially interpret the results of Experiment 1 as showing limited usefulness of
similarity, since low uncertainty scores are achieved only for sparse between-block edge density.
However, taking the 12 cluster graph in the middle square as an example, we can see that in this
graph the average number of edges a vertex has within its block is 36, while the average number
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of edges a vertex has to vertices outside its block is 95. In fact, the average ratio of between-block
degree over inside-block degree is 2.6 and the minimum for that ratio is 1.8 and 98% of vertices
have that ratio as at least 2. Since each block has far more external edges than internal edges, we
feel that the uncertainty score of 2% actually represents quite good performance of the diffusion
similarity measure S (Equation (3)).

4.3.2 Experiments 2 and 3. The Uncertainty Index with a Variable Number of Vertices
Experiments 2 and 3 test the behavior of diffusion similarity relative to the number of vertices in
the graph. We fix the number of blocks, inside-block and between-block densities, and generate
a sequence of graphs by varying the size of the blocks. Thus, each graph in a sequence has the
same structural and density properties, but varying number of vertices. We test three structure
types: 20 blocks, 35 blocks, and 50 blocks. For Experiment 2, inside-block edge density is 85%
and between-block edge density is 15%. For Experiment 3, inside-block edge density is 85% and
between-block edge density is 8%. As in Experiment 1, for each combination of parameter values,
we tested several graphs (in this case 14). The results of Experiment 2 are seen in Figure 5(b) and
results of Experiment 3 are seen in Figure 5(c). Experiments 2 and 3 demonstrate that increasing
graph size actually improves the quality of the similarity measure for a given structure type and
edge density parameters. Also, the experiments demonstrate that a dramatic improvement in sim-
ilarity performance is achieved when between-block edge density is within a favorable range (as
in Experiment 3). Interpreting the results of Experiments 1, 2, and 3 together, it appears that the
similarity measure might be able to well represent even very large numbers of blocks embedded
in very large graphs provided that edge density and block size parameters are “reasonable.’. This
conjecture motivates Experiment 4.

4.3.3 Experiment 4. The Uncertainty Index for a Large Number of Blocks
Experiment 4 follows the same general design as Experiment 1, but here using parameters that
test the ability to represent very large numbers of blocks within large graphs. We tested a set of
40 graphs each with 10, 000 vertices. In the first subset of 20 graphs, each has 1, 000 blocks, and
in the second subset of 20 graphs, each has 500 blocks. Each sequence of 20 graphs represents 20
different between-block edge density values ranging from 0.5% to 5%. For all blocks, the inside-
block edge density is 90%. As in Experiment 1, all blocks for a structure type (e.g., 1,000 blocks)
have the same size. The results are shown in Figure 5(d). We see that the diffusion similarity
measure is able to represent 1, 000 blocks with uncertainty level below 25% as long as between-
block edge density is less than about 2.9%.

Figure 5(e) shows the diffusion similarity matrix of a graph with 1, 000 blocks. The between-
block edge density is 1.45%. The uncertainty score is 0.43%. The average number of edges a vertex
has within its block is 8, while the average number of edges a vertex has to vertices outside its
block is 144. The average ratio of between-block degree over inside-block degree is 18.3 and
the minimum for that ratio is 11.8. The zoomed inset upper right shows the diffusion similar-
ity of a subgraph consisting of 20 blocks. Figure 5(f) shows the inside-block similarity histogram
(top) and between-block similarity histogram (bottom). Figure 5(g) shows the estimated pdf of
between-block similarity (red), the estimated pdf of inside-block similarity (blue), and their prod-
uct function (yellow). We note that the method of measuring uncertainty appears to be working
accurately even in the conditions of the large number of values in a 10, 000× 10, 000-matrix,
so the results seem to be consistent across graphs of wide ranging block generation parame-
ters. Importantly, when density parameters are favorable, the similarity measure is able to reflect
planted blocks even in graphs with a very large number of blocks that are very small relative to the
size of the graph. This ability is a valuable feature for the study of neuron connectomes which can
be highly complex and might not be easily described by simple block models.
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5. Vertex similarity in neural connectomes
Connectomics is the study of the networks of connections found between neurons in the nervous
systems of a variety of organisms. Viewing the cell body of a neuron, the soma, as the vertex in a
graph and the axon extending from neuron to neuron as an edge in a graph, the synaptic connec-
tions between these cells create vastly complex networks. In this section, we apply the similarity
matrix construction to two examples. First, we consider the complete connectome of the nema-
tode Caenorhabditis elegans (C. elegans). We then turn to an analysis of a portion of the retinal
connectome of a mouse.

5.1 Application to the central nervous system of C.elegans
C.elegans is a small roundworm, about 1 mm in length, that lives in soil in many regions of the
world, and feeds on bacteria (Corsi et al., 2015; Eisenmann, 2005). It was proposed as a model
organism by Sydney Brenner (Brenner, 1973), and it has proven useful in many experiments that
relate genetics and physiology to animal behavior (Emmons, 2015). C.elegans was the first mul-
ticellular organism to have its whole genome sequenced and was the first organism to have its
entire connectome mapped (White et al., 1986; White, 2013; Jabr, 2012). Recent advances in vol-
ume electron microscopy have provided additional connectomes for study (Ohyama et al., 2015;
Ryan et al., 2016; Zheng et al., 2018; Ryan et al., 2016; Bock et al., 2011; Briggman et al., 2011;
Takemura et al., 2017), increasing the need for tools to identify structure within these compli-
cated networks. In this section, we illustrate our methodology by its application to a subset of the
C.elegans connectome.

5.1.1 The Dataset and Adjacency Matrix
For this study, we use the complete set of chemical synapse data for this animal as found in
(Varshney et al., n.d.) (also see (Chen et al., 2006; Chen, 2007; Varshney et al., 2011)). The data
are structured as a weighted, directed graph G with 279 vertices (neurons), and total weight 6, 394
in which the weight of each arc (directed edge) from a vertex i to another vertex j is the number of
chemical synapses from the neuron i to the neuron j. The induced adjacency matrix A is created
in which each A[i, j] is the weight of the arc (directed edge) from i to j.

To simplify this presentation, we apply our methods to subnetworks surrounding two pairs
of interneurons, AVBL, AVBR, and AVEL, AVER. These neurons are highly connected to much
of the rest of the network and are referred to as command interneurons due to their extensive
connections with sensory and motor neurons (Varshney et al., 2011; Towlson et al., 2013; Cook
et al., 2019). Lesion studies demonstrate their importance in coordinated motor movement, and
from that perspective they are functionally similar (Gray et al., 2005). However, more specifically
[AVBL, AVBR] are integral to forward movement and [AVEL, AVER] are integral to backward
movement, and these movements can be induced by sensory input to the tail and head regions,
respectively (Chalfie et al., 1985). Hence, we might expect the similarity measure also to differenti-
ate between AVB and AVE. Importantly, there is relatively little connectivity within the set [AVBL,
AVBR, AVEL, AVER] and so the set represents an instructive example on which to test the ability
of our similarity measure to reflect functional layers in a real-world neuron connectome.

These sets of connections are seen in the graphical layout (Figure 6), which employs themethod
from (Varshney et al., 2011) to place vertices. Blue connections depict the AVBL, AVBR network,
and purple connections depict the AVEL, AVER network. Generally, sensory neurons are in the
upper half of the diagram and motor neurons are in the lower left. For each connection, direction
is indicated as darker color for presynaptic and lighter color for postsynaptic neurons. Hence,
the [AVBL, AVBR] and [AVEL, AVER] pairs are primarily presynaptic to neurons at the left.
Pictorially, these neuron pairs have generally similar layouts in terms of numbers and locations
of inputs and outputs. Neurons within pairs share some inputs and outputs, yet few connections
connect [AVB] and [AVE] pairs.

https://doi.org/10.1017/nws.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.11


Network Science 345

Figure 6. C.elegans chemical synapse connectome, displaying in- and out-neighbor connections to AVB pair (blue) and AVE
pair (purple). The dark end of each connector is the presynaptic source and the light end of the synaptic contact. So edge
direction is from dark to light.

We have ordered the neurons in the induced adjacency matrix A[i, j] to cluster the inputs and
outputs of these neuron pairs. The larger blue and purple squares at upper left (Figure 7(c)) enclose
the in-neighbors to AVB and AVE pairs, respectively, and the overlap of the squares indicates
shared inputs. The smaller blue and purple squares indicate the out-neighbors of the AVB and
AVE pairs, colored for each pair, and the overlap indicates common outputs. The small red square
indicates neurons that are both in- and out-neighbors of any of AVBL, AVBR and AVEL, AVER.
Note that in combination, AVBL, AVBR and AVEL, AVER directly contact a large fraction of
neurons in the C.elegans nervous system.

5.1.2 Diffusion Similarities Within and Between Pairs
These commonalities and differences in function and network structure should be differentially
manifested in the computation of similarity within and across neuron pairs. We illustrate, for each
of these four neurons, the diffusion profile vectors used in the similarity calculation. Diffusion
profiles for in-flows and out-flows are shown in Figure 7(a) and b, respectively, scaled to the color
code at the right of these panels and aligned with the induced adjacency matrix A[i, j]. In the
diffusion profile images, vertical alignment of colored cells contributes positively to the similarity
calculation (yellow bars are the diffusion input vertices, and their contribution is minimized by
the algorithm as per the choice k= 1, see Section 3.3.1) between neurons. Note that meaningful
contributions to similarity can be made by neurons that are not directly connected to AVB or AVE
pairs.

Closer views of the in-neighbor and out-neighbor subgraphs of A[i, j] reveal details of the
diffusion profile vectors as seen in Figure 8. For the AVB pair, for example, diffusion flow between
AVBL and RIFL and also between AVBR and RIFR is large and asymmetric, reflecting neuron
laterality (Figure 8(a)). The contribution of this vertex to similarity between AVBL and AVBR
is scaled by diffusion flow to the contralateral neuron (between AVBL and RIFR and between
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Figure 7. Top two pictures: Diffusion profile vectors used to calculate similarity between neurons. Each row is the vector
for each of the four neurons in [AVB, AVE] pairs. a. In-flow diffusion profiles. Yellow bars indicate diffusion injection sites.
b. Out-flow diffusion profiles. c. Sorted chemical synapse adjacency matrix displaying weights as gray scale. Sorting for all
panels proceeds in order of [AVB, AVE] in-neighbors (large blue and purple boxes, respectively), the four neurons AVBL, AVBR,
AVEL, AVER , neurons that are both in- and out-neighbors (red box), and neurons that are [AVB, AVE] out-neighbors.

AVBR and RIFL) and is matched by common diffusion flow into other vertices (e.g., AVM) from
both AVBL and AVBR. AVM is a low threshold touch receptor that projects broadly to command
interneurons for forward and backward movement (Chalfie & Sulston, 1981; Leifer et al., 2011;
Pirri &Alkema, 2012).Within the AVE pair, contributions to similarity also arise from asymmetric
(RIGL and RIGR) and common diffusion flows (e.g., ALA and RIS). ALA is a high threshold
mechanoreceptor, induces lethargy, and inhibits the AVE pair (Sanders et al., 2013; Van Buskirk
& Sternberg, 2007; Altun et al., n.d.). ALA and AVM are representative of unpaired neurons that
can interact with both elements of paired neurons, (in the case of ALA via bifurcating processes)
and multiple pairs, and thereby contribute to similarity measures within pairs. Parallel diffusion
flow patterns can be identified in the out-flow diffusion vectors (Figure 8(b)).

Diffusion similarity between the elements of the [AVB] pair and the [AVE] pair derive largely
from shared inputs, and these can be contralaterally (e.g., in-neighbor AVJR diffusion flow from
AVBL and AVER, Figure 8(a)) or ipsilaterally matched (e.g., out-neighbor VA02 diffusion flow
from AVBL and AVEL). The vertices most consistently linked to all four neurons of the [AVB,
AVE] pair are the [AVAL, AVAR] pair, which not surprisingly, because of their role as command
interneurons for locomotion (Chalfie et al., 1985), are both in- and out-neighbors (red box in
Figures 7(c) and 8(b)). Importantly, other contributions to between pair similarity arise from
vertices not directly connected to any of these four neurons (see Figure 7).

The diffusion similarity matrices quantify these observations of features of the diffusion profile
vectors (Figure 8(c) and (d)). Note the strong similarity within [AVB, AVE] pairs that is matched
in value among the in-neighbors [RIML, RIMR] and [AVAL, AVAR] pairs (Figure 8(c)) as well as
among the out-neighbors [SABVL, SABVR], [DA03, DA04] and [ASA07, ASA09) motor neuron
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Figure 8. Zoomed in views of Figure 7, showing a. in-neighbor and b. out-neighbor components of the diffusion vectors
and subsets of the induced adjacency matrix. Note the relative lack of connectivity within and between [AVB AVE] pairs. c.
Corresponding submatrix of the similarity matrix S to the induced adjacency matrices in panel a. d. Similar correspondence
to panel b.

pairs (Figure 8(d)). The [AVB, AVE] pairs show strong similarity to each other and also to the
[AVA] pair, which coincides with their associated functions as command interneurons mediating
locomotion. Dynamic analysis of population neural activity during behavioral pirouettes (short
reversal, change in, and resumption of original direction) showed synchronized [ABA, AVE] pair
activity and anticorrelated [AVB] pair activity consistent with their original association of move-
ment direction through lesion studies (Kato et al., 2015; Chalfie et al., 1985). Although the [AVA]
pair, like the [AVE] pair, functions in controlling backward movement, the [AVA, AVB] pairs, but
not the [AVE] pair, extend the length of the ventral cord. This similar structure appears to be
reflected in the slightly higher similarity index between the [AVA, AVB] pairs than between the
[AVA, AVE] pairs (see Figures 8(c) and (d)).

Neurons outside of those directly projecting to any of the [AVB, AVE] pairs (see Figure 7) can
contribute to similarity, primarily within pairs. Among the vertices contributing to the in-flow
diffusion pattern for the [AVB,AVE] pairs, these can be sensory, as in the mechanosensitive neu-
rons [PDEL, PDER] that mediate locomotion based on fed state (Sawin et al., 2000), interneurons
[SAADL, SAADR], or motor, as in the ring motorneuron RMED which innervates dorsal muscles
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of the head (White et al., 1986; Cook et al., 2019) and HSNL, which contributes to coordination
of egg-laying and locomotion (Schafer, 2005; Eisenmann, 2005). Diffusion out-flow contributions
include, not surprisingly, dorsal and ventral inhibitory neurons [DD, VD], which are key elements
of an integrated motor control network for locomotion (Schuske et al., 2004).

The application of the diffusion method provides a framework for the exploration of the quan-
titative relationships between neurons and the larger scale relationships among neuron pairs and
groups. Insights into indirect neuron interactions can be gained by studying diffusion profile
vectors. But moreover, the similarity measure is able to effectively capture both similarities and
differences between the AVB and AVE pairs studied here.

5.2 Similarity within the inner plexiform layer of the mouse retina
In order to test our similarity method in a real-world dataset of larger size and complexity,
we selected the mouse retinal neuron connectome data known as e2006 (Briggman et al., 2011;
Helmstaedter et al., 2013). The dataset includes a weighted undirected network on 903 neurons
(bipolar, horizontal, amacrine, and ganglion cells) and 173 glial cells. In that network, the edge
weight between neuron i and j is the area of contact (μm2) between neuron i and j which was
revealed to be a good predictor of the existence and weight of synapses, although imaging did
not permit description as a directed network. For our analysis of the behavior of our similarity
method with respect to organized structure in the mouse retina network, we adopt a ground truth
approach. We propose that certain groups of neurons may be treated as modules of function-
ally relevant connectivity based on their known connectivity patterns and well-studied biological
function. We then verify that our similarity measure reflects these modules in a quantitative way.

Neuron to neuron synaptic activity in the mouse retina takes place in neuropil regions known
as the outer and inner plexiform layers (OPL and IPL) (Kolb, 2011). We focus on the processes
of bipolar, amacrine, and ganglion cells that make contact primarily in the IPL. In particular, we
investigated the neural circuits driven by rod photoreceptors to map visual space under low light
conditions (scotopic vision). A narrow field amacrine cell, called A2, plays a key role in this pro-
cess by collecting input from rod bipolar cells (mostly ON type defined by activity in light) and
must suppress activity in cone OFF bipolar cells, which are more active in decreasing light inten-
sity (Marc et al., 2014). The ON and OFF sublaminae occupy the inner and outer layers of the IPL,
respectively.

A2 cell arbors form a tiling across the retinal plane, hence each A2 cell dominates a local region
of rod and OFF cone bipolar cells. It is this expectation of translation invariant “functional mod-
ules” (Jonas & Kording, 2015) that motivates our approach here to use local modules of A2, OFF
cone bipolar, and rod bipolar cells as a ground truth for modular structure that would imply vertex
similarity within that structure. That is, each of the 35 A2 cells and their associated modules in the
dataset should have relatively higher similarity within module than between modules.

In order to test this hypothesis, we first computed the 1, 076× 1, 076 similarity matrix S from
the weighted adjacency data of 1, 076 neuronal and glial cells. We assembled ground truth mod-
ules based around A2 cells as follows. For visual simplicity, we restricted our study of OFF cone
bipolar cells to the type CBC1 as it has the largest amount of connectivity with A2 in this dataset.
This together with A2 and rod bipolar cells yielded a subgroup of 195 neurons. Each CBC1 and rod
bipolar cell was grouped with the A2 cell with which it has the highest contact area, so eachmodule
has the same internal connectivity motif. A view looking “down” at the retinal plane illustrates the
modules by colors and numeric labels (Figure 9(f)). Four examples of the modules seen with their
neuron processes projecting down through the OFF and ON sublamina of the IPL are shown in
Figure 9(e) (OFF and ON sublaminae are bottom two layers). The adjacency and similarity sub-
matrices have the neurons ordered identically (Figure 9(c) and (d)), revealing the connectivity
motif of dominance by local A2 cells. Note that CBC1 and rod cells can have contact with more
than one A2 cell and so there is connectivity between modules governed by proximity within the
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Figure 9. a. Histograms of similarity values over pairs of neurons within modules and pairs of neurons between modules,
respectively b. Distance in nanometers in the XY (retinal) plane between neuron i and j plotted against their similarity, blue
are ij pairs where the neurons are in different modules, red are ij pairs of neurons in the same module, observations above
24, 500 nmare shown translucent, and the overlay pdfs are in units of probability density c. Adjacency data of the 195neurons
of interest, the ordering is module 1, module 2, . . . and so on, within eachmodule the first neuron is the A2, followed by CBC1
followed by rod d. Similarity matrix of the 195 neurons of interest, the ordering matched the adjacency data above it e. Side
view of four example modules indicated by color, the colors and labels match the annotated subsets of the adjacency data
seen to the left f. view looking “down” through the retinal plane, colors and numeric labels indicate the modules and match
those in Figures c,d, and e.

retinal plane. The cells examined in these submatrices can have connectivity with other cells in
the dataset, which likely influences the cell to cell similarity values we computed. Nonetheless,
the extensive mutual contact within this submatrix and also their known biological functional
relationships are likely driving factors in the high similarity according to our calculation S.

The adjacency matrix reveals intra-module and, for some modules, between-module connec-
tivity (example pairs 22–23 and 24–25) that is reflected in similarity between modules 22 and 23
but not between either of these modules andmodules 24 and 25 (Figure 9(c) and (d)). These mod-
ule pairs are each neighbors with some shared connectivity (Figure 9(c), (e), and (f)) and illustrate
the tendency of neurons to be less similar with distance across the retinal sheet and more similar
when they are neighbors. Basic statistics of the within-module and between-module distributions
of similarity reveal that similarity within modules tends higher (46± 16% (sd)) than between-
module pairs (8± 9% (sd)), representing a correlation between our similarity measure and the
ground truth modules. Histograms of these distributions are seen in Figure 9(a). We computed
the uncertainty score (Section 4.2) of the similarity with respect to the ground truth modules and
found it to be 0.11, a value indicating that the modules are fairly well represented as internally
similar and less similar between modules.

The decrease in similarity with distance between cell bodies was best fit by a degree one ratio-
nal function S= 3646

d+3035 (r2 = 0.6056; Figure 9(b)) of the distance d between neurons. The tail of
this distribution reveals that all observed similarities (except for one outlier) of at least 50% are
between pairs at a proximity of 24.5 μm or less, a distance which excludes only six in-module
pairs. This distance is slightly larger than the diameter of modules when viewed in the retinal
plane (Figure 9(f)), reflecting high similarity within modules or between adjacent modules.
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We next focused on pairs closer than the 24.5 μm threshold and used the kernel density
estimator method to compute pdfs separately for in-module observations and between-module
observations of both similarity and distance (Figure 9(b), solid red and blue lines, respectively,
in lower right box aligned with the distance axis). We then inferred distributions of similarity
(red and blue dashed lines, respectively, in Figure 9(b)) that would be expected based on the
observed distributions of distance given the rational function fit relating similarity and distance.
The observed between-module distribution was similar in shape and peak location, although
broader than the predicted distribution (solid and dashed blue lines, respectively, in Figure 9(b)).
In contrast, the observed in-module similarities have a significant rightward skew relative to the
predicted distribution (peak value 60% vs prominent modes at about 25% and 40%). It is in that
sense that the within-module similarity values reflect the property of being in the same functional
module beyond what can be accounted for by close proximity and seem to be distinguished from
between-module similarity values. In this way, the similarity matrix derived from the adjacency
data for this volume of neurons in the mouse retina can be used to identify modular structures.
This can be used to either confirm existing biological information or to reveal unknown structures
such as members of these modules that may not have been previously known or repetition of these
modules in other areas of the connectome once these data are available.

6. Conclusions
In this work, we have presented a method for developing a measure of similarity between network
vertices derived from the patterns of diffusion found in the network in which they are situated.
The method can be applied to a variety of graphical structures, and the resulting similarity matrix
reveals not only similarity properties within the local neighborhood of a vertex but also identi-
fies collections of similar vertices that exist in parallel or layered structures within the network
such as those found in neural connectomes. We applied this methodology to the study of a num-
ber of synthetic networks and demonstrate its ability to identify communities of vertices as well
as parallel substructures. We then applied the process to the study of the C.elegans connectome
and identified parallel information processing networks within that connectome that share simi-
lar properties but that are not directly interconnected. We then performed the same analysis on
a section of the IPL of the mouse retina and again identified similar structures based on this ver-
tex similarity. This type of structure detection is essential to the study of large, complex networks
like connectomes, since higher-order neural functions such as stimulus response rely on parallel
processing pathways to filter and distinguish different phenomena. Future work will use this sim-
ilarity data as the basis for a community detection algorithm, and we will apply this combination
to enhance the discovery of biological functional structures. Specifically, since intra-module func-
tional relations may be better represented in the similarity matrix, community structures related
to this similarity data would in principle collect these modular structures in communities and
allow for the efficient detection of these structures in the large networks being identified by ongo-
ing nanoscale connectomics research. For these applications, where future datasets will contain
many more nodes and have greater incidence of long distance connectivity, community detec-
tion methodologies based on a similarity measure as presented here could be used to identify
either unknown structures or to verify the existence of known processes, such as the modules
found in the mouse retina, in other areas of the neural structures being studied. Another potential
application will be to the validation of some portions of the synaptic connectivity derived from
new image volumes in this work as expected connectivities can be compared to those observed
once the patterns have been identified in validated datasets. More generally, in combination with
efficient community detection algorithms, this work can be applied in a variety of other con-
texts as well to identify structure in large, complex networks in ways that complement existing
methods.
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