ON UNITARY AND SYMMETRIC MATRICES WITH REAL
QUATERNION ELEMENTS

N. A. WIEGMANN

1. Introduction. In general when symmetric matrices are considered,
the elements of the matrix are taken at least in a principal ideal ring. It is
interesting to determine what can be attained when the elements are not,
in general, commutative and, to this end, the following is concerned with
symmetric matrices with elements in the non-commutative field of real
quaternions. At the same time some properties of real quaternion unitary
matrices are obtained which involve symmetric matrices.

If A has complex elements, a necessary and sufficient condition that 4 be
symmetric is that there exists a unitary matrix U such that UAUT = D is a
real diagonal matrix where UT denotes the transpose of U. (See the principal
result of (2).) One of the properties of complex matrices importantly involved
here is that the transpose of a product of two matrices is the product of their
transposes taken in reverse order. For real quaternion matrices this property
does not hold in general. The following topics are considered: first, if U is
unitary and quaternion, necessary and sufficient conditions that U™ be unitary
are determined; next, another proof of the above-mentioned theorem for the
complex case is given; then, by paralleling this proof, necessary and sufficient
conditions are determined that a quaternion matrix have the form UD U™ where
D is quaternion diagonal and U is real orthogonal (and UDUT is, of course,
symmetric); finally, another canonical form for another set of quaternion
symmetric matrices is found. (For relevant material on quaternion matrices

see (1) and (4).)

2. The transpose of a unitary matrix. If U is a unitary matrix (i.e.,
UUCT = I where UCT denotes the conjugate transpose of U), it does not
follow that U7 is unitary (as in the complex case). Theorems 1 and 2 supply
necessary and sufficient conditions for this, the latter being expressed in terms
of symmetric matrices.

TuEOREM 1. If V is a unitary quaternion matrix, a necessary and sufficient
condition that VT be unitary is that there exist real orthogonal matrices U and W
suchthat UVW = D 1s a diagonal quaternion matrix.

Proof. Let V = Vy+ jV,, where V; and V; are complex matrices, and let
Vi=T,+ 14T, and Vy, = Wy + «W, where T, T,, Wy, and W, are real

matrices.
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Let VT be unitary. Since VVCT = VOTV = [, the following relations
result:

ViCTVy 4 VTV, = I, ViViCT 4 Vo,CV,T = I,
V1TV2 = V2TV1, Vz‘VlCT = V10V2T-
Similarly, since VTVC = VCVT = J,'
chT Vi + V2TV2C = I, VlVlCT + V2V20T
V2TV10 = VICTV2; V2V1T = V1V2T-

I,

Since VICT Vl + 'V2CT Vz = V1CT V1 + VzT Vzc and Vl VICT + Vzc V2T =
V1V10T + VZVQCT, 1t fOHOWS that V2CT V2 = V2T V2C and V20V2T = V2V2CT.
In a similar manner, V,°TV; = V,TV,% and V1V:°T = V,°V,T since I = I7.
Consider the following relations:

VotV = ViV, V"V = VO, VeVt =T, VT, VoV,°T = VeV,
VoCTVy = VoTV,0, Vo VoOT = V,O0VeT, VitV = V4TV, ViV T = V,© Vit

Since Vi = T+ iTe and Vy, = Wy 4 W, it follows from the first pair of
relations that W,*T; = T,"W, for ¢« = 1,2; j = 1,2. From the next pair it
follows that W,T',® = T,W.T, for i = 1,2; j = 1,2. From the next pair it
follows that W T™W, = W,™W; and W,W, T = W, W,T, and from the last
pair that T',"T, = T5™T; and T272T = T17,". Therefore the set of real
matrices {T1, Ts, W1, Wy} is such that if X and ¥ are any two matrices of the
set, then XVT and ¥Y*X are real symmetric. Now the following holds by a
known theorem (3): if 4, is an arbitrary set of non-zero complex matrices,
there exist unitary matrices U and W such that UA;W = D, where D, is
diagonal and real if and only if 4,4,°" = 4,4,°T and 4,°T4,; = A,°"4, for
all 7 and j. In our case the matrices are all real and it is easily seen that the
U and W will be real orthogonal matrices. Then since V = T, + 4T + j(W;+
iWs,), therefore UVW = UT\W + «UT W + j(UWW + :UW,W) = D, +
1Dy + j (D3 4 iD,) is a diagonal quaternion matrix.

Conversely, let 7 be unitary such that real orthogonal matrices U and W
exist so that UVW = D is quaternion and diagonal. Then V = UTDWT,
and since UT and W7 are real, it is true that VT = (UTDW™)T = WDU and
so VT (VHCT = (WDU)(WDU)®T = WDU-UTD®WT™ = I, since D-DCT =
UVW-WTVCTUT = I,and so V" is unitary.

CoroOLLARY 1.1. If V is a complex unitary matrix, there exist real orthogonal
matrices U and W such that UVW = D is a diagonal mairix with complex
elements.

This follows since in this case V7T is always unitary.

Let us define a unitary quaternion matrix U to be T-unitary if UT is
unitary.
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CoroLLARY 1.2, A T-unitary matrix V is symmetric if and only if there exists
a real orthogonal matrix U such that UVUT = D is a quaternion diagonal
matrix.

For if 1V is T-unitary and symmetric, then in the above proof T, = T,%,
W;= W,T for < = 1,2, and the set of matrices {T1, T2 Wi, W,} are real,
symmetric, and commutative in pairs and consequently can be diagonalized
by a single real orthogonal similarity transformation. The converse is evident.

The following may also be noted:

THEOREM 2. If V is unitary, then VT is unitary if and only if VVT and VTV
are symmetric.

If V and V7 are unitary, by the preceding theorem there exist real orthogonal
matrices U and W such that V' = UDW where D is quaternion and diagonal.
Then VT = WTDUT and VVT = UD?*UT and VTV = WTD?W are symmetric.

Conversely, let V' be unitary and let VTV and VV7T be symmetric. Let
V=V, 4 jV, where V; and V, are complex; then

VIT = ViViT = VOVt 4 j(Va Vi A+ ViCTAT)
ViViT = VaVaCT 4 (Vi V2T 4 Vo V,O7)

VlT V1 - I/QCT Vz +](V2T Vl + VICT V2)
= VTV, — VTR0 + j(ViTV, + VT Vi©).

Il

VTy

From this it follows that

VoV, = VaVoOF, VoTVe® = Vo0l Vs, Vol T 4 ViCVT = ViVLT + Ve Vi,
VoTVy 4+ ViCTVe = VTV, + VLTI C

The latter two relations may be rewritten as

VICV2T - VlecT = Vl V2T - VleT,
VTV — VTV, = VTV, © — VOV,
Now VVCT = | = VTV andso:
I =V V,CT 4+ VoCV,T 4 j(V,V,°T — V,CV,7T)
= VTV + VoOTVy + j(—= VTV 4+ VTV,

ViV T 4 VoV 4 (V2 CV,T — V,V,97)
ViTVIC 4+ VTVl + j(—= VTV, + VTV,

IT

It

i

This means that

Vlc V1T + V2V2CT =1 VlT V1C + VzT Vzcy
ViCV,T — VoViT =0 = — VTV, + V,TV..
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Substituting the relations obtained above in these expressions, it follows
that
ViCVT + VoVt =T = V,TV1C + Vo,CTV,,
VleT - V2V1T = O = VzTV1C - VlcTV2.

But this means that V°VT = I = VTV and so V7 is unitary.

It may be noted that if the matrices in the above Theorem are all complex,
the result holds since then V7T is always unitary and VVT and VTV are
always symmetric.

It is known (1) that a matrix 4 is normal if and only if there exists a unitary
matrix U such that UA UCT = D is a complex diagonal matrix. It is of interest
to determine what characterizes normal matrices which can be brought into
diagonal form by T-unitary matrices.

TuHEOREM 3. A normal quaternion matrix A can be brought into complex
diagonal form by means of a T-unitary similarity transformation if and only if A
is unitarily similar to a complex symmetric matrix S (i.e., U AUCT = S)
under a matrix of the form U, = DW, where W1 1is real orthogonal and D 1is a
unitary quaternion diagonal matrix.

If A = U°™D,U where U is T-unitary and D, is diagonal and complex,
there exist real orthogonal matrices ¥V and W such that VUW = D is a
quaternion diagonal unitary matrix. Then

WTAW = WTUCTVTVD,V*VUW = DC*SD

where S = VD, V7 is complex symmetric and normal. Therefore DWTAWDCT
= Swhere U; = DW?7is unitary and of the above form.

If there exists a U; = DWT of the type described such that U4 U,¢T = S
is complex symmetric and normal, then there exists a real orthogonal matrix
V'such that VSV = D;and so

A = WDCTVD,VTDWT = UCTD, U,
where U is T-unitary.
CoroLLaRY 3.1. IfA = ACT, Sisreal symmetric.
CoROLLARY 3.2. IfA = — ACT,S = «T, where T is real symmeltric.
CoroLLARY 3.3. IfA-ACT = I, S is unitary symmetric.
3. Matrices of the form UDU", U real orthogonal and D quaternion

and diagonal. Let us consider first the following proof of the above-
mentioned theorem:

THEOREM 4. If A = AT has complex elements, there exists a complex unitary
matrix U such that UAUT = D is a real diagonal matrix. (The converse is
obvious.)
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Let A = HV = VK (where H, K are hermitian and V is unitary) be the
polar form of A. (If 4 is non-singular, H, V, and K are uniquely determined
(6); if 4 is singular (5), some arbitrariness is involved in VV.) Then 4 = HV =
VK = VTHT™ = K™V" and so H = KT. If 4 is non-singular, V = VT;if{ 4 is
singular, this can also be attained by means of a proper choice of 7 as the
tollowing will show.

Let UHU®T = D = D, 4+ 0 where D, is diagonal and real with like roots
arranged together along the diagonal. Let UVUCT = W, UVTUCT = W,
and UKU®T = UH*UCT = M. Then HT = U'™DU® and UHTU®T =
UUT™DUCUCT = M. Let Dy be of order r, i.e., r < n where n is the order
of D. Then

UAU®T = DW = DW= WM = WM
and so WUUTDUCUCT = W,UUTDUCU°T, WUU™D = W,UU™D.

From DW = DW,, it follows that W and W, have like first » rows. From
WUUD = W,UU™D, WUUT and W,UUT have like first » columns. Since
W and W, have like first r rows, WU U™ and W,UU? have like first » rows also.
Since DW = WM = W,UUTDUCU®", then DWUU"T = W,UUTD Then

By By
/ T =
wou [le X ]

where By is an r X r matrix and W,UUT has the same form except for the
matrix X. Let the elements common to both matrices (i.e., the elements of
Byi, Bis and B,;) be denoted by w;; (according to their row and column
location in WUUT). From DWUU™ = W,UU™D, it follows that if d; denotes
the jth diagonal element of D,

(i,;w”=0, ('L= 1,2,...,7;j=7’+1,...,n>,
wd;, =0, G=1,2,...,r;¢t=7r-+1,...,n).
For fhis range of subscripts, then, w,;;, = 0, i.e., By. and B, are zero matrices.
Therefore
WUU" = By, + X, W\UUT = By, + Y,
W = (Bu + X)UCU®T Wy = (Bu + Y)UCUCT
= UVU°T, = UVTUOCT,
Therefore
B 0 B 0
7o CT 11 C T — CT 11 C
v="u [0 X]U’ r=v [0 Y]U'
But

. T
I/T — UCT[-OBII QT] UC — UCT[‘(?II 3] UC’

and so B;,T = By, ¥ = X7T. Now if X is chosen to be any unitary and sym-
metric matrix of dimension (# — 7) X (# — 7) then X = XT and VT = V.
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Consequently, it is always possible in the singular case to find a V = VT
which is suitable for the polar unitary matrix of 4.
Nowd = HV = VHT and so

UAU* = UHUCTUVU* = UVUTU°H*"U* = DW = WD

where W = UVUYT = W7 is unitary. If W = W; + W, where W3 and W,
are real, it is then true that D, W3, and W, are real symmetric matrices which
commute in pairs and so there exists a real orthogonal matrix U, that diagonal-
izes all of them. Therefore U,UAUTU,* = U,(DW)U,* = D, where D, is
diagonal with complex elements along the diagonal. Let the diagonal elements

of D, be

pre” (k=1,2,...,1),
and form the diagonal unitary matrix D, with

e (k=1,2,...,7),

in the first » diagonal positions followed by ones in the remaining. Then
(D, UU) A(D,U,U)T = D; is real and diagonal and the Theorem is true.

Next consider the case where 4 = AT is a quaternion matrix and the
possibility of transforming such a matrix by means of a real orthogonal
matrix into a diagonal quaternion matrix. It may be noted first that a quater-
nion matrix has a polar form (4) 4 = HV = VK with the same properties
as mentioned above in connection with the singular and non-singular case.
V' may, of course, be merely unitary and not necessarily T-unitary.

THEOREM 5. If A is a quaternion matrix, there exists a real orthogonal matrix
U such that UAU™ = D is diagonal and quaternion if and only if A is symmetric
with a real hermitian polar matrix.

Let A = HV = VK where H has real elements and 4 is symmetric. Then
AT = (HV)T = VTHT = VTH and so VK = VTH. Whether 4 is singular
or non-singular, the preceding proof may be followed; the matrix U is real in
this case, and the relations DW = DW, = WD = WD result so that W =
By + X and Wy = By, + ¥V from which V = UT(By + X)U and VT =
UT™(By + Y)U. Then VT = UT(By® + XTU = UT(By + Y)U, which is
permissible since U is real. Therefore B;;T = Bj;and XT = V. If 4 is singular
and if X is chosen to be unitary and symmetric, then V = V7; if 4 is non-
singular, then X does not appear above and 17 = V7T holds automatically.
Then HV = VH = A where V is T-unitary and symmetric. By Corollary 1.2,
there exists a real orthogonal U; such that U,VU,*™ = D, is diagonal and
quaternion with like diagonal elements grouped together. Then

U]A U1T = UxVU1TU1HU1T = U1HU1TU1VU1T = D1U1HU1T = U1HU1TD1.

Then U HU,T falls into a direct sum of real symmetric block matrices as

https://doi.org/10.4153/CJM-1956-006-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1956-006-1

38 N. A. WIEGMANN

determined by D, and a real orthogonal U, can then be determined so that
UUAU"U," = D is quaternion diagonal.

Conversely, if A = UTDU for U real orthogonal, let D = D,-D, where D,
consists of the real parts of each diagonal element of D and D, is composed
of the corresponding quaternion part of absolute value one. (If 4 is singular,
D, is arbitrary to some extent but not necessarily diagonal.) Then

4 =U™D,U-U™D,U = U'D,U-U™D,U

is symmetric and the hermitian polar matrix, UTD,U, has the required
property.

THEOREM 6. If A is a symmetric quaternion matrix with a real polar unitary
matrix, there exists a real orthogonal matrix U such that

+_ | D M]
UAU" = [ u* D,
where Dy and Dy are real diagonal and M = — MC; and conversely.

Let A = HV = VK = VTHT = KTVT since V is real orthogonal. As
before H = KT and ¥V = V7. (In the singular case, let U be a complex unitary
matrix such that UVUC®T = D; then UVTUCT = DT and applying this
transformation to VTHT = VHT = HV = HVT, there results

D°*™M = DM = M.D = M.D°T

where M = UHTUCT and M, = UHU®T are hermitian, and D has along
the diagonal elements of absolute value one.) If in a given row, say k, of M
one element m;, # 0, then dym;; = dymy,; (where d, is the kth diagonal element
of D) and so d; is +1 or —1; if all elements of the kth row are zero, d; is
arbitrary except that it must have absolute value one. If the kth row of M is
zero, so is the corresponding row of M;, and conversely. By choosing the
arbitrary d; to be either +1 or —1, it is evident that D = DC®T and therefore
V=Vt

If V =1, (or can be taken to be I), then 4 = H = H°T = HT and so 4
is real and symmetric and consequently can be brought into diagonal form
by a real orthogonal transformation. For the case where A is quaternion
symmetric (as considered here), there exists a real orthogonal matrix W so
that WVW?T = I, + I, = D where I, and I, are diagonal with +1 and —1,
respectively, along the diagonal. Then

WAW?T = WHWTWVWT® = WVW*WH*W?* = H,D = DH,"

[k 1@]
H‘“[Ka K,

where H, = WHWT. Let
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be subdivided to correspond to I; + I, (where H;T = H;°). Then K, = K,T

and K, = K,T are real symmetric and K, = — K,° and K3 = — K;° while
K; = — K,". Therefore,
r | K —Kz]
WAW™ = [—KgT L

Let W\K.iW,™ = D and WK W™ = D, be real and diagonal where W and
Wy are real orthogonal, and U; = W1 + Ws. Then

. D M
U\WAW" U, = [ e DZ] :
where M = — WK, W,T = — M. The converse is evident.
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