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Abstract

While the convergence properties of many sampling selection methods can be proven,
there is one particular sampling selection method introduced in Baker (1987), closely
related to ‘systematic sampling’ in statistics, that has been exclusively treated on an
empirical basis. The main motivation of the paper is to start to study formally its
convergence properties, since in practice it is by far the fastest selection method available.
We will show that convergence results for the systematic sampling selection method are
related to properties of peculiar Markov chains.
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1. Introduction

Let (Xk)k≥0 be a nonhomogeneous Markov chain on a locally compact metric spaceE with
transition kernels (Kn)n≥1 and initial law η0 defined on the Borel σ -field B(E). Furthermore,
let Bb(E) be the set of bounded B(E)-measurable functions.

Given a sequence (gn)n≥1 of positive functions in Bb(E), suppose that we want to calculate
recursively the following Feynman–Kac formulae, (ηn)n≥1:

ηn(f ) = γn(f )

γn(1)
, f ∈ Bb(E),

where

γn(f ) = E

(
f (Xn)

n∏
k=1

gk(Xk−1)

)
.

Note that most nonlinear filtering problems are particular cases of Feynman–Kac formulae.
Following [9] and [12], let M1(E) denote the set of probability measures on (E,B(E)). If

µ ∈ M1(E) and n ≥ 0, let µKn be the probability measure defined on Bb(E) by

µKn(f ) = µ(Knf ) =
∫
E

∫
E

f (z)Kn(x, dz)µ(dx).

Received 12 October 2005; revision received 17 February 2008.
∗ Postal address: CEREMADE, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, F-75775 Paris
cedex 16, France. Email address: gentil@ceremade.dauphine.fr
∗∗ Postal address: Service de l’enseignement des méthodes quantitatives de gestion, HEC Montréal, 3000 chemin de
la côte-Sainte-Catherine, Montréal, Canada H3T 2A7. Email address: bruno.remillard@hec.ca

454

https://doi.org/10.1239/aap/1214950212 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950212


Systematic sampling selection 455

In order to understand the relation between the ηns for any n ≥ 1, letψn : M1(E) �→ M1(E)

be defined by

ψn(η)f = η(gnf )

η(gn)
, η ∈ M(E), f ∈ Bb(E),

and let �n denote the mapping from M1(E) to M1(E) defined by

�n(η) = ψn(η)Kn.

Then it is easy to check that, for any n ≥ 1,

ηn = �n(ηn−1). (1.1)

Note also that, for any n ≥ 1, the mapping �n can be decomposed into

η̂n = ψn+1(ηn), ηn+1 = η̂nKn+1, n ≥ 0, η0 ∈ M1(E). (1.2)

Furthermore, note that the first transformation, ηn �→ η̂n, is nonlinear, while the second
transformation, η̂n �→ ηn+1, is linear.

Even though the forward system of equations (1.1) looks simple, it can rarely be solved
analytically, and if an analytic solution did exist, it would require extensive calculations. This
is why algorithms for approximating (ηn)n∈N, starting from η0, are so important. One such
method, presented in [7], [11], and [12], is to build approximations of the measures (ηn)n∈N

using interacting particle systems. The algorithm uses decomposition (1.2) and, by analogy
with genetics, the first step, which is related to a sampling selection method, is often referred
to as the selection step and the second step is termed the mutation step, while in reality it is a
Markovian evolution of the particles. The speed of any algorithm depends on the two steps.
In [19] the authors focused on the mutation step; in this paper we focus on the sampling selection
process.

In this paper we discuss the properties of a particular algorithm, called the ‘systematic
sampling’ selection in this paper and the ‘stochastic universal sampling’ selection in the genetic
algorithms literature. It seems to have first appeared in [2]. It has been reintroduced in the
filtering literature in [5]; see also [17].

In what follows, a description of the general algorithm is given in Section 2, with a few
examples of sampling selection methods, together with some tools for studying its convergence.
In Section 3 we focus on the systematic sampling selection method, giving some properties, and
stating some convergence results and a conjecture, based on results for Markov chains which
we prove in Appendix A. Finally, in Section 4 numerical comparisons between the sampling
selection methods are made through a simple model of nonlinear filtering for noisy black-and-
white images. It serves two purposes. Firstly, to illustrate that our conjecture holds. Secondly,
to show that, in terms of precision, the systematic sampling selection method performs as well
as other methods.

2. Algorithm and sampling selection methods

The general algorithm for approximating the solution of (1.1) is given first, following the
exposition in [9] and [12], and particular sampling selection methods are presented second.
Throughout the rest of the paper, it is assumed that, for any n ≥ 1,

0 < inf
x∈E gn(x) ≤ sup

x∈E
gn(x) < +∞.
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456 I. GENTIL AND B. RÉMILLARD

2.1. General algorithm

Let N be an integer representing the number of particles and, for any n ≥ 0, let ξn =
{ξ1
n , . . . , ξ

N
n } denote the particles at time n and set

ηNn = 1

N

N∑
i=1

δξin
.

• At time n = 0 the initial particle system ξ0 = {ξ1
0 , . . . , ξ

N
0 } consists of N independent

and identically distributed particles with common law η0.

• For each n ≥ 1, the particle system ξn = {ξ1
n , . . . , ξ

N
n } consists of N particles and is

obtained in the following way.

Sampling/selection. First calculate the weights vector Wn ∈ (0, 1)N , where

Wi
n = gn(ξ

i
n−1)∑N

i=1 gn(ξ
i
n−1)

, i = 1, . . . , N. (2.1)

Then select, according to a given sampling selection method, a sample ξ̂n−1 =
{ξ̂1
n−1, . . . , ξ̂

N
n−1} of size N from ξn−1 with weights (Wi

n).

Evolution/mutation. Given ξ̂n−1, the new particle system ξn consists of particles ξ in
chosen independently from the law Kn(ξ̂

i
n−1, dx), 1 ≤ i ≤ N . In other words, for any

z = (z1, . . . , zN) ∈ EN ,

P(ξn ∈ dx | ξ̂n−1 = z) =
N⊗
i=1

Kn(z
i, dxi).

Note that in order to describe a sampling selection method, it suffices to define how the num-
bersM1

n, . . . ,M
N
n ∈ {0, 1, . . . , N} are randomly selected, withMi

n representing the number of
times particle ξ in−1 appears in the new sample. Therefore, we can write

η̂Nn−1 = 1

N

N∑
i=1

δ
ξ̂ in−1

= 1

N

N∑
i=1

Mi
nδξin−1

.

A sampling selection method will be said to be conditionally unbiased if, for any i ∈
{1, . . . , N} and any k ≥ 1, E(Mi

k | ξk−1) = NW i
k .

Remark 2.1. Conditional unbiasedness yields the property that

E(ηNk f | ξk−1) = �k(η
N
k−1)(f ), f ∈ Bb(E), (2.2)

since
E(ηNn f | ξn−1) = E(E(ηNn f | ξn−1, ξ̂n−1) | ξn−1)

= E

(
1

N

N∑
i=1

Mi
nKnf (ξ

i
n−1)

∣∣∣∣ ξn−1

)

=
N∑
i=1

Wi
nKnf (ξ

i
n−1)

= �n(η
N
n−1)(f ).
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The mean square error of a particular sampling selection method can be obtained using the
following useful result from [12]. Before stating the result, define, for any measurable η with
values in M(E),

‖η‖2
2 = sup

f∈Bb(E), ‖f ‖∞≤1
E((ηf )2).

Theorem 2.1. ([12, Theorem 2.36].) Assume that the sampling selection method is condition-
ally unbiased and that the following condition is verified for all 1 ≤ k ≤ n: there exists a
constant Ck such that, for all N -dimensional vectors {q1, . . . , qN } ∈ RN ,

E

((
1

N

N∑
i=1

(Mi
k − NW i

k)q
i

)2 ∣∣∣∣ ξk−1

)
≤ 1

N
Ck max

1≤i≤N |qi |2. (2.3)

Then, for all 1 ≤ k ≤ n, there exists a constant C′
k such that

‖ηNk − ηk‖2
2 ≤ C′

k

N
.

In what follows, only conditionally unbiased sampling selection methods are considered.
As shown in Remark 3.2, we can see that, in general, the systematic sampling selection method
defined below does not satisfy condition (2.3), while classical sampling selection methods, like
the ones listed in Section 2.3, do satisfy condition (2.3). Therefore, weaker conditions must be
imposed in order to obtain mean square convergence. In fact, we have the following result.

Theorem 2.2. Let (aN) be a sequence such that aN/N → 0 as N → ∞. Assume that the
sampling selection method is conditionally unbiased. Then

lim
N→∞ aN max

1≤k≤n ‖ηNk − ηk‖2
2 = 0

if and only if, for any f ∈ Bb(E),

lim
N→∞ aN max

1≤k≤nE

((
1

N

N∑
i=1

(Mi
k − NW i

k)f (ξ
i
k−1)

)2)
= 0. (2.4)

Moreover, supN≥1 aN max1≤k≤n ‖ηNk − ηk‖2
2 is finite if and only if

sup
N≥1

aN max
1≤k≤nE

((
1

N

N∑
i=1

(Mi
k − NW i

k)f (ξ
i
k−1)

)2)
< ∞.

Proof. Suppose that aN/N → 0, and let f ∈ Bb(E) be given. First note that, using the
unbiasedness condition together with (2.2), we have, for any k ∈ {1, . . . , n},

E((ηNk f − ηkf )
2) = E((ηNk f −�k(η

N
k−1)f )

2)+ E((�k(η
N
k−1)f − ηkf )

2).

Since gk ≥ ck > 0 for some positive constant ck, k ≥ 1, by hypothesis, it follows that

lim
N→∞ aN max

1≤k≤n ‖ηNk − ηk‖2
2 = 0
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458 I. GENTIL AND B. RÉMILLARD

if and only if, for any k = 1, . . . , n, limN→∞ aN E((ηNk f −�k(η
N
k−1)f )

2) = 0. Next, it can
be easily shown that, for any k = 1, . . . , n, E((ηNk f −�n(ηk−1)f )

2 | ξk−1) can be written as

E

((
1

N

N∑
i=1

(Mi
k − NW i

k)Kkf (ξ
i
k−1)

)2 ∣∣∣∣ ξk−1

)
+ 1

N
�k(η

N
k−1)(Kkf

2 − (Kkf )
2).

Since Kkf ∈ Bb(E),

0 ≤ 1

N
�k(η

N
k−1)(Kkf

2 − (Kkf )
2) ≤ 1

N
‖f ‖2∞,

and aN/N → 0, it follows from the calculations above that

lim
N→∞ aN max

1≤k≤nE((ηNk f −�k(η
N
k−1)f )

2) = 0

if and only if (2.4) holds. The rest of the proof is similar, so it is omitted.

2.2. Systematic sampling

By obvious analogy with systematic sampling in statistics, the first sampling selection
method that is described is simply called ‘systematic sampling’. It appears that this method
was first proposed in [2] under the strange name ‘stochastic universal sampling’, in the context
of unbiased sampling selection for genetic algorithms. However, nobody has formally studied
its convergence properties.

As opposed to the definition given in [2], the sampling selection method can simply be
defined in the following way. For n ≥ 1, let Un be a uniform random variable on [0, 1) and
note that, for w ∈ [0, 1], M(w,Un) := 
Nw + Un�, where 
x� denotes the integer part of x.
Then

M1
n := M(W 1

n , Un),

Mk
n := M(W 1

n + · · · +Wk
n ,Un)−M(W 1

n + · · · +Wk−1
n , Un), k = 2, . . . , N.

SinceM(1, Un) = N , we find that
∑N
i=1M

i
n = N . Therefore, the number of particles is always

equal toN . Properties of the systematic sampling selection method are examined in Section 3.

2.3. Other sampling methods

We can classify the various sampling selection methods into two categories, according to
whether the number of particles is constant or random. The following list is by no means
exhaustive. We concentrate on ‘classical’ selection methods. For the first two methods, N is
constant, while Nn fluctuates in the last two methods. For other sampling selection methods,
we refer the reader to [9], [11], [12], and the references therein. See also [4] for a recent review
of the comparison of various selections. Note that the last two methods are particular cases of
what is known as ‘branching selection methods’ in the filtering literature. However, there are
many other sampling methods, for example, the tree sampling method proposed in [9]. The
latter is more computationally demanding, and since it is not as simple to implement as the
other methods, it is not considered here.

2.3.1. Simple random sampling. This selection method is based on simple random sampling
without rejection. It follows that

(M1
n, . . . ,M

N
n ) ∼ Multinomial(N,W 1

n , . . . ,W
N
n ),
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where (Wi
n)1≤i≤N is given in (2.1). This sampling selection method is the classical selection

method and has many interesting properties that have been studied mainly by Del Moral and
coauthors; see, e.g. [11]. In particular, the conditions of Theorem 2.1 are satisfied; we can also
prove a central limit theorem and large deviations properties.

2.3.2. Remainder stochastic sampling. This algorithm was first introduced in [3] in the context
of unbiased sampling selection for genetic algorithms; see also [1] and [2] for comparisons
between sampling selection methods in the latter context. It is also defined as ‘residual
sampling’ in [18]. It is a much faster algorithm to implement than the simple random sampling
selection method, it satisfies the conditions of Theorem 2.1, and Douc and Moulines [13]
recently investigated some of its convergence properties. See also [12] and the references
therein. To describe the selection method, first define Ñ = N − ∑N

i=1
NW i
n� = ∑N

i=1{NW i
n},

where {x} stands for the fractional part of x, i.e. {x} = x − 
x�. Next, allocate the (possibly)
remaining Ñ particles via simple random sampling, i.e.

(M1
n − 
W 1

n �, . . . ,MN
n − 
WN

n �) ∼ Multinomial(Ñ, W̃ 1
n , . . . , W̃

N
n ),

where W̃ i
n = {NW i

n}/
∑N
j=1{NW j

n}, 1 ≤ i ≤ N . In fact, Ñ and N are of the same order; thus,
the speed of this selection method is almost the same as for the simple random sampling selection
method.

2.3.3. Binomial sampling. As stated before, for this sampling selection method and the next
one, the number of particles at time n is random and denoted by Nn, n ≥ 0. Of course,
N0 is fixed. For n ≥ 1, and given that ξn−1 and Nn−1,M

1
n, . . . ,M

Nn−1
n are independent and

Mi
n ∼ Bin(Nn−1,W

i
n) for i = 1, . . . , Nn−1. It follows that

Nn =
Nn−1∑
i=1

Mi
n.

This sampling selection method is a little faster to implement than the simple random sampling
selection method, but a major drawback is that there is no control on the number of particles.
Moreover, P(Nn = 0) > 0.

2.3.4. Bernoulli sampling. The Bernoulli sampling selection method was introduced in [10].
See also [6] and [8] for additional properties of this sampling selection method. It is worth
noting thatMi

n takes the same values as in the systematic sampling selection method, provided
thatNn−1 = N . For n ≥ 1, and given ξn−1 andNn−1,M

1
n, . . . ,M

Nn−1
n are independent, where

Mi
n is defined by

Mi
n = 
Nn−1W

i
n� + εin, εin ∼ Ber({NnWi

n}), 1 ≤ i ≤ Nn−1.

Note that Nn ≥ 1 and that the following alternative representation also holds:

Mi
n = 
N(W 1

n + · · · +Wi
n)+ Uin� − 
N(W 1

n + · · · +Wi−1
n )+ Uin�,

where U1
n , . . . , U

Nn−1
n are independent and Uin ∼ Unif([0, 1)), given ξn−1 and Nn−1.

3. Some properties and results for systematic sampling selection

Throughout the rest of the paper, the selection method used is the one defined in Section 2.2.
Let us begin with some elementary properties of the systematic sampling selection method.
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Lemma 3.1. Suppose thatUn is uniformly distributed over [0, 1). Then, conditionally on ξn−1,
we have, for any i ∈ {1, . . . , N},

Mi
n − 
NW i

n� ∼ Ber({NW i
n}).

In particular, for any i ∈ {1, . . . , N}, E(Mi
n | ξn−1) = NW i

n.

Proof. It suffices to show that whenever U ∼ Unif([0, 1)) and x, y ≥ 0, 
U + x + y� −

U + x� − 
y� is a Bernoulli random variable with parameter p = {y}. To this end, first note
that V = {U + x} is also uniformly distributed on [0, 1). Furthermore,


U + x + y� − 
U + x� − 
y� = 
{U + x} + {y}� = 
V + {y}� ∼ Ber({y});
hence the result holds.

Remark 3.1. Using the same proof as in Lemma 3.1, we obtain, conditionally on ξn−1, Mi
n +

· · · +M
j
n − 
N(Wi

n + · · · +W
j
n )� ∼ Ber({N(Wi

n + · · · +W
j
n )}) for any i ≤ j ∈ {1, . . . , N}.

Also note that, since the sampling selection method is unbiased, for any n ≥ 1, we have (2.2).

To obtain L2-convergence of the algorithm based on the systematic sampling selection
method, we apply Theorem 2.1 of [12]. All the sampling selections presented in Section 2.3
satisfy property (2.4). If Nn is random, there is a similar condition to (2.4). But, as we show
next, systematic sampling behaves differently.

Remark 3.2. Inequality (2.3) is not verified in general for the systematic sampling selection
method. Here is an illustration. Suppose that N = 2m and let, for any i ∈ {1, . . . , N/2},
W 2i
n = 1/2N and W 2i−1

n = 3/2N . Then we can check that, for any 1 ≤ i ≤ N/2,

M2i−1
n = 1 if Un ∈ [0, 1

2 ), M2i−1
n = 2 if Un ∈ [ 1

2 , 1),

M2i
n = 1 if Un ∈ [0, 1

2 ), M2i
n = 0 if Un ∈ [ 1

2 , 1).

Next, if 1 ≤ i ≤ N/2, set q2i = 1 and q2i−1 = −1. It follows that

E

((
1

N

N∑
i=1

(Mi
k − NW i

k)q
i

)2 ∣∣∣∣ ξk−1

)
= 1

4
,

which shows that inequality (2.3) is false.

The description of all the sampling selection methods in Sections 2.2 and 2.3 prove that
the systematic sampling selection method is the least computationally demanding. In light of
Remark 3.2, we can see that the L2-convergence of the particle system with the systematic
sampling selection is not easy. However, we believe that the following conjecture holds.

Conjecture 3.1. Suppose that η0 and (Kn)n≥1 are absolutely continuous laws, and consider
that M1

n, . . . ,M
N
n are obtained using the systematic sampling selection method. Then, for all

f ∈ Bb(E) and n ≥ 1, (2.4) holds with aN ≡ 1, i.e.

lim
N→∞ E

((
1

N

N∑
i=1

(Mi
n − NW i

n)f (ξ
i
n−1)

)2)
= 0. (3.1)
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Note that it follows from Theorem 2.2 that the above conjecture is equivalent to ‖ηNn −
ηn‖2 → 0 asN → ∞ for any n ≥ 0. In what follows, we try to determine why Conjecture 3.1
might be true. To this end, first note that, for any 1 ≤ k ≤ N ,

Mk
n − NWk

n = {N(W 1
n + · · · +Wk−1

n )+ Un} − {N(W 1
n + · · · +Wk

n )+ Un}.
Now, set F 0

n = 0 and Fkn = ∑k
j=1 gn(ξ

j
n−1), 1 ≤ k ≤ N . For any α > 0 and any f ∈ Bb(E),

further define

ZNn (f, α) = 1√
N

N∑
k=1

f (ξkn−1)

({
Fk−1
n

α
+ Un

}
−

{
Fkn

α
+ Un

})

= 1√
N

N∑
k=1

f (ξkn−1)({Sk−1
n } − {Skn}),

where Skn = Fkn /α + Un and S0
n = Un. Then, setting

ḡn = 1

N

N∑
k=1

gn(ξ
k
n ),

and defining YNn (f ) = ZNn (f, ḡn), we have

YNn (f ) = 1√
N

N∑
i=1

(Mi
n − NW i

n)f (ξ
i
n−1).

So we can rewrite (3.1) in the form

lim
N→∞

1

N
E((YNn (f ))

2) = 0.

Unfortunately, working with YNn appears to be impossibly difficult, so instead we could work
with a more tractable quantity, namely ZNn . In the case in which n = 1 we have the following
result, which is a first step in proving Conjecture 3.1. Before stating it, recall that D([0, 1]) is
the space of càdlàg functions (i.e. those that are continuous from the right with left limits) with
Skorokhod’s topology.

Theorem 3.1. Assume that the law of {g1(ξ
1
0 )} is absolutely continuous. Then, for any α > 0

and any f ∈ Bb(E), the sequence of processes BN ∈ D([0, 1]) defined by

BNf,α(t) = Z

Nt�
1 (f, α), t ∈ [0, 1],

converges in D([0, 1]) to σBf,α , where Bf,α is a Brownian motion and

lim
N→∞ E((ZN1 (f, α))

2) = σ 2.

The proof of Theorem 3.1 is an easy consequence of Theorem A.2 in Appendix A with
Xk = f (ξk0 ), Yk = {g1(ξ

k
0 )}, and f (x, y, s) = x(y − s). In addition, there is an ‘explicit’

expression for σ 2. More details can be found in Appendix A.
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Remark 3.3. Theorem 3.1 does not prove Conjecture 3.1 in the case in which n = 1. However,
if we are willing to deal with a random number of particles at step n = 1 then the following
interesting result is obtained. Set N1 = 
U1 + ∑N

j=1 g1(ξ
k
0 )/α�, and define

η̂
N1
0 = 1

N1

N∑
k=1

Mk
1 δξk0

.

Then, as N → ∞, N1/N → η0(g1)/α and lim supN→∞N‖ηN1
1 − η1‖2

2 < ∞.
To prove convergence for higher orders, i.e. n > 1, we would need results from nonhomo-

geneous Markov chains. This approach will be examined in the near future using, for example,
the results of [20].

Remark 3.4. In order to keep N1 fixed, we could try to control the ZN1 (ḡ1)− ZN1 (α) term.
Since √

N(ḡ1 − α)�
√
η0(g

2
1)Z,

where ‘�’ represents an intuition for the computation and Z ∼ N (0, 1), it follows that

√
N

(
1

ḡ1
− 1

α

)
= −

√
η0(g

2
1)

η2
0(g1)

Z + oP(1).

If we could differentiate term by term, we would obtain

(ZN1 (ḡ1)− ZN1 (α))� η0(K1fg1)

√
η0(g

2
1)

η0(g1)2
Z = η1(f )

√
η0(g

2
1)

η0(g1)
Z.

So we could guess that

YN � η1(f )

√
η0(g

2
1)

η0(g1)
Z + Bf,α(1).

On the other hand, if the sequence ZN1 (α) was tight for α in a closed interval not containing 0
then we would obtain ZN1 (ḡ1)− ZN1 (α) → 0 in probability. There is no indication so far in
favor of one of these two approaches.

4. Numerical comparisons

The numerical comparisons will be made through a simple model of filtering for tracking a
moving target using noisy black-and-white images. It serves two purposes. Firstly, it illustrates
that our conjecture holds. Secondly, it shows that, in terms of precision, the systematic sampling
selection method performs as well as the other selection methods.

The main interest of this model is that we can explicitly compute the exact filter, that is,
ηn is known for any n ≥ 1 (see, e.g. [15]), enabling us to make a comparison between the
approximation (ηNn )N>0 and the optimal measure ηn.

4.1. Description of the model

We will assume that the target moves on Z2 according to a Markov chain. Observations con-
sist of black-and-white noisy images in a finite fixed regionR ⊂ Z2. More precisely, let (Xn)n≥0
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be a homogeneous Markovian chain with values in X = {ω ∈ {0, 1}Z : ∑
x∈Z

ω(x) = 1}.
Of course, the position of the target at step n is x0 if and only if Xn(x0) = 1. Set

M(a, b) = P(Xn+1(a) = 1 | Xn(b) = 1), a, b ∈ Z2. (4.1)

Note that M describes the movement of the target exactly.
The model for observationsYk ∈ {0, 1}R, k = 1, . . . , n, is the following. GivenX0, . . . , Xn,

assume that the {Yn(x)}x∈R are independent and, for any x ∈ R,

P(Yn(x) = 0 | Xn(x) = 0) = p0, P(Yn(x) = 1 | Xn(x) = 1) = p1,

where 0 < p0, p1 < 1. For a more realistic result, we can assume that 1
2 < p0, p1 < 1. We

want to compute the distribution ofXk conditionally to Yn, where Yn is the σ -algebra generated
by the observations Y1, . . . , Yn and Y0 is the trivial σ -algebra. As in Section 2 of [15], note that,
for any (ω, ω′) ∈ {0, 1}R ⊗ X, the conditional probability P(Yk = ω | Xk = ω′) = �(ω,ω′)
satisfies

�(ω,ω′) = p
|R|−1
0 (1 − p1)

(
1 − p0

p0

)〈ω〉(
p0p1

(1 − p0)(1 − p1)

)〈ωω′〉
,

where 〈ω〉 = ∑
x∈R ω(x) and 〈ωω′〉 = ∑

x∈R ω(x)ω′(x).
Let P be the joint law of the Markovian targets (with initial distribution ν) and the

observations. Also, let Q be the joint law of the Markovian targets (with initial distribution ν)
and independent Bernoulli observations with mean 1

2 . Furthermore, let Gn be the σ -algebra
generated by Y1, . . . , Yn,X0, . . . , Xn. Then it is easy to check that, with respect to Gn, P is
equivalent to Q and

dP

dQ

∣∣∣∣
Gn

=
n∏
j=1

2|R|�(Yj ,Xj ).

Furthermore, define Ln = ∏n
j=1�(Yj ,Xj ). Denoting by EP and EQ the expectation with

respect to P and Q, respectively, observe that, for any f ∈ Bb(X), we have

η̂n(f ) = EP(f (Xn) | Yn) = EQ(f (Xn)Ln | Yn)

EQ(Ln | Yn)
. (4.2)

This formula is a consequence of the properties of the conditional expectations and, in the
context of filtering, (4.2) is known as the Kallianpur–Stribel formula; see, e.g. [16].

Denote byK the Markov kernel associated with the Markov chain (Xn)n≥0 defined byM , as
in (4.1). We can check that ηn and η̂n satisfy (1.2) with gn(x) = �(yn, x) and Kn = K . Also,
note that in this case gn takes only two values, which can be assumed to belong to Q (the set of
all rational numbers) because of rounding errors. It follows from Remark A.2 in Appendix A
that

sup
N0≥1

E(N1‖ηN1
1 − η1‖2) < ∞.

The results proved in Section 2 of [15] provide an algorithm for recursively computing the
exact filter, i.e. the law ofXn given Yn. In the next subsection we will compare the results from
the exact filter with those obtained using the Monte Carlo algorithm described in Section 2 with
various sampling methods.
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4.2. Simulation results

In what follows,R is chosen to be the window of size 100×100 defined byR = {0, . . . , 99}2.
To make things simple, the target starts at (50, 50) and moves according to a simple symmetric
random walk, i.e. it goes up, down, right, or left to the nearest neighbor with probability 1

4 . The
estimation of the position of the target is taken to be the mean of the various measures. The
simulations were performed with p0 = 0.9 and p1 = 0.9, with a 10% error in the pixels.

We use two methods of comparison for the sampling methods described in Section 2,
i.e. simple random sampling (SRS), remainder stochastic sampling (RSS), systematic sampling
(SyS), binomial sampling (BiS), and Bernoulli sampling (BeS).

The first method of comparison between the selection methods and the optimal filter (OF)
is based on the mean square error. We computed ‖ηNn − ηn‖2 for different values of n (1, 2, 3,
4, 5, and 100) and N (1000, 10 000, 30 000, and 50 000). These results are reported in Table 1.
We find that Conjecture 3.1 holds and that there is no significant difference, in terms of the
precision as measured by ‖ηNn − ηn‖2, between the selection methods.

The second method of comparison illustrates how efficient the sampling methods are at
estimating the exact position of the target. We also compute the efficiency of the OF. More
precisely, we compute the mean absolute error between the estimated position and the true
position, as calculated over several time intervals, namely [2, 100], [10, 100], and [30, 100].

Table 1: Differences in L2 between the particle filters and the optimal filter for one target performing a
simple symmetric random walk in images of size 100 × 100 with a 10% error in the pixels.

n
Sampling

N method 1 2 3 4 5 100

1000 SRS 0.27 0.78 0.79 0.81 1.0 1.1
RSS 0.12 0.37 0.64 0.65 0.68 1.3
SyS 0.07 0.28 0.31 0.85 0.54 1.1
BiS 0.04 0.058 0.087 0.15 0.17 0.93
BeS 0.07 0.16 0.21 0.65 0.69 1.3

10 000 SRS 0.031 0.11 0.26 0.40 0.36 1.2
RSS 0.039 0.12 0.40 0.50 0.91 1.2
SyS 0.025 0.13 0.22 0.38 0.40 1.3
BiS 0.028 0.049 0.082 0.15 0.17 0.96
BeS 0.028 0.07 0.11 0.23 0.25 1.1

30 000 SRS 0.018 0.10 0.23 0.22 0.50 1.4
RSS 0.17 0.10 0.23 0.21 0.56 1.4
SyS 0.018 0.098 0.17 0.20 0.25 1.0
BiS 0.027 0.048 0.8 0.15 0.17 0.95
BeS 0.018 0.056 0.10 0.17 0.22 0.97

50 000 SRS 0.013 0.094 0.26 0.22 0.37 1.2
RSS 0.021 0.068 0.18 0.26 0.39 1.3
SyS 0.012 0.095 0.26 0.24 0.45 1.2
BiS 0.02 0.04 0.08 0.15 0.17 0.70
BeS 0.017 0.052 0.086 0.16 0.20 1.2
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Table 2: Mean absolute error for one target performing a simple symmetric random walk in images of
size 100 × 100 with a 10% error in the pixels.

n
Sampling

N method [2, 100] [10, 100] [30, 100]
OF 4.1 2.9 0.8

1000 SRS 57.4 60.3 56.2
RSS 51.8 53.6 43.8
SyS 42.7 43.7 36.9
BiS 54.0 56.5 45.5
BeS 13.8 12.1 6.9

10 000 SRS 76.0 81.0 64.1
RSS 1.9 0.8 0.5
SyS 2.4 0.7 0.5
BiS 6.4 6.7 0.5
BeS 77.5 82.5 85.4

30 000 SRS 8.7 3.0 0.5
RSS 2.4 0.6 0.4
SyS 3.9 1.5 0.4
BiS 4.0 2.1 0.5
BeS 8.1 6.2 0.4

50 000 SRS 3.9 3.4 0.9
RSS 10.2 5.2 0.7
SyS 5.0 2.5 0.6
BiS 4.8 2.1 0.8
BeS 3.6 1.5 0.3

The number of particles N takes the values 1000, 10 000, 30 000, and 50 000. The results are
reported in Table 2.

According to these results, we conclude that the algorithm based on the systematic sampling
selection method performs quite well, provided that the number of particles is large enough.
Again, we also conclude that there is no significant difference, in terms of the precision as
measured by the mean absolute error, between the selection methods. Furthermore, based on
the results of Table 2 for the time interval [30, 100], note that when the target is precisely
detected, the error seems to stabilize near 0, indicating that the distance between ηNn and ηn
might be uniform on n.

Surprisingly, the Monte Carlo based approximate filters seem to perform better than the
optimal filter, but recall that the optimal filter is optimal when the precision is measured by the
mean square error.

Finally, let us recall that in terms of the two measures of precision chosen here, there is
no significant difference between the different selection methods. We never anticipated that
a simple method (in terms of the computational complexity), like the systematic sampling
selection method, would be more precise than other proven selection methods. We are just
glad that it performs as well as its competitors and that its main advantage is its simplicity.
Furthermore, the numerical comparisons have showed that Conjecture 3.1 seems plausible, at
least in the special case considered here.
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Appendix A. Convergence results for a Markov chain

Suppose that (Xi, Yi)i≥1 are independent observations of (X, Y ) ∈ Z := R × [0, 1) of law
P with marginal distributions PX and PY , respectively. Furthermore, let λ denote Lebesgue’s
measure on [0, 1). Given Z0 = (X0, S0) ∈ R × [0, 1), set Zi = (Xi, {Si}), where Si =
Si−1 + Yi, i ≥ 1.

For n ∈ Z, set en(s) = e2π ins, s ∈ [0, 2), and let ζn = E(en(Y )). Furthermore, set
N = {n ∈ Z : ζn = 1}. Recall that (en)∈Z is a complete orthonormal basis of the Hilbert space
H = L2([0, 1), λ) with scalar product (f, g) = ∫ 1

0 f (s)ḡ(s) ds and norm ‖f ‖2 = √
(f, f ).

It is easy to check that (Zi)i≥0 is a Markov chain on Z with kernel K defined by

Kf (x, s) :=
∫

Z
f (x′, {s + y})P(dx′, dy), f ∈ Bb(Z), (A.1)

and stationary distribution µ = PX ⊗ λ. Note that, for any f ∈ L2(µ), by Tonelli’s theorem,
Kf is well defined, depends only on s ∈ [0, 1), and belongs to H since

‖Kf ‖2
2 ≤

∫ 1

0

∫
Z
f 2(x, {s + y})P(dx, dy) ds

=
∫

Z

∫ 1

0
f 2(x, u) duP(dx, dy)

=
∫

Z
f 2(z)µ(dz)

= ‖f ‖2
L2(µ)

.

Finally, let L and A be the linear bounded operators from L2(µ) to H defined by

Lf (s) =
∑
n∈N

(Kf, en)en(s) and Af (s) =
∫

R

f (x, s)PX(dx), s ∈ [0, 1).

Theorem A.1. Letf ∈ L2(µ)be given, and setWN = (1/N)
∑N
k=1 f (Zk). Then the following

assertions hold.

(i) If the initial distribution of Z0 = (X0, S0) is µ then WN converges almost surely and in
mean square to W given by

W = Lf (S0) =
∑
n∈N

(Kf, en)en(S0). (A.2)

If, in addition, ∑
n∈Z\N

|(Kf, en)| |(Af, en)|
|1 − ζn| < ∞ (A.3)

then N E((WN − W)2) converges as N → ∞ to

‖f ‖2
L2(µ)

− ‖Lf ‖2
2 + 2

∑
n∈Z\N

(Kf, en)(Af, en)

1 − ζn
. (A.4)
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(ii) If the initial distribution of Z0 = (X0, S0) is µ, if N = {0}, and if

∑
n∈Z\{0}

|(Kf, en)|2
|1 − ζn|2 < ∞, (A.5)

then the sequence of processesBN , defined byBN(t) = √
N(W
Nt� − µ(f )), t ∈ [0, 1],

converges in D([0, 1]) to σB, where B is a Brownian motion and σ 2 is given by (A.4).

(iii) If PY admits a square integrable densityh then the Markov chain is geometrically ergodic,
that is, there exists ρ ∈ (0, 1) such that, for any f ∈ L2(µ),

|Knf (Z0)− µ(f )| ≤ ‖h‖2ρ
n−2‖f ‖L2(µ), n ≥ 2.

Proof. For simplicity, set ψ = Kf ∈ H . To prove (i), start the Markov chain from µ and
denote the law of the chain by Q. Then the sequence (Zn)n≥0 is stationary and Birkhoff’s
ergodic theorem (see, e.g. [14, Section 6.2]) can be invoked to claim that WN converges
almost surely and in mean square to some random variable W . To show that W is indeed
given by (A.2), it suffices to show that E((WN − W)2) → 0 as N → ∞. First, note that
E(W2) = ‖Lf ‖2

2 = ∑
n∈N |(ψ, en)|2. Next, set ϕ(s) = Af (s). If n ∈ N then en(Y ) = 1

P-almost surely and it follows, by Fubini’s theorem, that

(ψ, en) =
∫ 1

0

∫
Z
f (x, {s + y})en(s)P(dx, dy) ds

=
∫ 1

0

∫
Z
f (x, u)en(u)P(dx, dy) du

= (ϕ, en).

As a result, E(W2) = ∑
n∈N |(ϕ, en)|2. Next, using the fact that, for any k ∈ Z and any

s, y ∈ [0, 1), we have ek({s + y}) = ek(s + y) = ek(s)ek(y), it follows that

Kek(s) =
∫

Z
ek({s + y})P(dx, dy) =

∫
[0,1)

ek({s + y})PY (dy) = ζkek(s), s ∈ [0, 1).

Hence, for any k ≥ 1 and any n ∈ Z, we obtain

Kken = ζ kn en. (A.6)

Now, using the Markov property of the chain together with (A.6), we have

E(WNW) = E(WNW)

= 1

N

N∑
k=1

∑
n∈N

(ψ, en)E(f (Zk)en(S0))

= 1

N

N∑
k=1

∑
n∈N

(ψ, en)E(Kkf (S0)en(S0))

= 1

N

N∑
k=1

∑
n∈N

(ψ, en)(K
k−1ψ, en)

= 1

N

∑
j∈Z

N∑
k=1

∑
n∈N

(ψ, ej )(ψ, en)(K
k−1ej , en)
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= 1

N

∑
j∈Z

N∑
k=1

∑
n∈N

(ψ, ej )(ψ, en)ζ
k−1
j (ej , en)

= 1

N

N∑
k=1

∑
n∈N

|(ψ, en)|2ζ k−1
n

= E(W2),

since, by definition, ζn = 1 for any n ∈ N .
Next, using stationarity, the Markov property, (A.6), and the identity

2

N2

N−1∑
k=1

k∑
j=1

zj−1 = N − 1

1 − z
− z− zN

(1 − z)2
, z ∈ C, z �= 1,

it follows that

E(W 2
N) = 1

N
E(f 2(Z0))+ 2

N2

N−1∑
k=1

k∑
j=1

E(Kj−1ψ(S0)f (Z0))

= 1

N
‖f ‖2

L2(µ)
+ 2

N2

N−1∑
k=1

k∑
j=1

(Kj−1ψ, ϕ)

= 1

N
‖f ‖2

L2(µ)
+

∑
n∈Z

(ψ, en)(ϕ, en)

(
2

N2

N−1∑
k=1

k∑
j=1

ζ
j−1
n

)

= 1

N
‖f ‖2

L2(µ)
+ N − 1

N

∑
n∈N

(ψ, en)(ϕ, en)

+ 2

N2

∑
n∈Z\N

(ψ, en)(ϕ, en)

(
N − 1

1 − ζn
− ζn − ζNn

(1 − ζn)2

)

= 1

N
‖f ‖2

L2(µ)
+ N − 1

N
E(W2)

+ 2

N2

∑
n∈Z\N

(ψ, en)(ϕ, en)

(
N − 1

1 − ζn
− ζn − ζNn

(1 − ζn)2

)
.

Collecting the expressions obtained for E(W 2
N) and E(WNW), we obtain

E((WN − W)2) = 1

N
‖f ‖2

L2(µ)
− 1

N
E(W2)

+ 2

N2

∑
n∈Z\N

(ψ, en)(ϕ, en)

(
N − 1

1 − ζn
− ζn − ζNn

(1 − ζn)2

)
. (A.7)

Since
∑
n∈Z\N |(ψ, en)||(ϕ, en)| is finite,

sup
n∈Z\N

∣∣∣∣N − 1

1 − ζn
− ζn − ζNn

(1 − ζn)2

∣∣∣∣ =
∣∣∣∣
N−1∑
k=1

k∑
j=1

ζ
j−1
n

∣∣∣∣ ≤ N2

2
,
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it follows, from (A.7) and the dominated convergence theorem, that

lim
N→∞ E((WN − W)2) = 0,

and under the additional condition (A.3), we also obtain

lim
N→∞N E((WN − W)2) = ‖f ‖2

L2(µ)
− E(W2)+ 2

∑
n∈Z\N

(ψ, en)(ϕ, en)

1 − ζn
.

This completes the proof of (i).
The proof of (ii) is inspired by Durrett [14]. First, note that, since N = {0}, Lf = µ(f )

for any f ∈ L2(µ) and it follows from (i) that (1/N)
∑N
k=1 f (Zk) converges almost surely and

in Lp to µ(f ) for any 1 ≤ p ≤ 2. Moreover, given any f ∈ L1(µ), we can find fn ∈ L2(µ)

such that ‖f − fn‖L1(µ) < 1/n. It follows that, for any n ≥ 1,

lim sup
N→∞

E

(∣∣∣∣ 1

N

N∑
k=1

f (Zk)− µ(f )

∣∣∣∣
)

≤ 2

n
+ lim sup

N→∞
E

(∣∣∣∣ 1

N

N∑
k=1

fn(Zk)− µ(fn)

∣∣∣∣
)

= 2

n
.

Since the latter is true for any n ≥ 1, we conclude that (1/N)
∑N
k=1 f (Zk) converges in L1 to

µ(f ). By Birkhoff’s ergodic theorem, (1/N)
∑N
k=1 f (Zk) converges almost surely to µ(f ).

Next, let D be the subset of H defined by

D =
{
h ∈ H :

∑
n∈Z\{0}

|(h, en)|2
|1 − ζn|2 < ∞

}
,

and let � be the operator from D to H that satisfies

�h =
∑

n∈Z\{0}

(h, en)

1 − ζn
en.

Note that, since (I − K)�h = (I − L)h, � = (I − K)−1(I − L) on D. Let D be the
set of all f ∈ L2(µ) such that f satisfies (A.5), i.e. Kf ∈ D. Then � can be extended to a
mapping from D to L2(µ) viz.�f = (I − L)f +�Kf . Using KL = LK = L, we obtain
� = (I − K)−1(I − L) on D . Next, if f ∈ D , set g = �f . Since Lf = µ(f ), it follows
that

√
N(WN − µ(f )) = 1√

N

N∑
k=1

(g(Zk)− Kg({Sk−1}))+ 1√
N

Kg(S0)− 1√
N

Kg({SN }).

Now, setting Fk = σ {Zj : j ≤ k}, the terms ξk = g(Zk)− Kg({Sk−1}) are square-integrable
martingale differences with respect to (Fj )j≥0, i.e. E(ξk | Fk−1) = 0, and because g2 and
(Kg)2 both belong to L1(µ) it follows from (i), as shown above, that

1

N

N∑
k=1

E(ξ2
k | Fk−1) = 1

N

N∑
k=1

(Kg2({Sk−1})− (Kg)2({Sk−1}))
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converges almost surely to µ(g2) − µ((Kg)2). Note that, since Kg = �Kf , we have
(Kg,Lf ) = 0 and expression (A.4) can be written as

σ 2 = ‖(I − L)f ‖2
L2(µ)

+ 2(�Kf,Af )

= ‖(I − K)g‖2
L2(µ)

+ 2(Kg,Af )

= ‖(I − K)g‖2
L2(µ)

+ 2(Kg,A(I − L)f )

= ‖(I − K)g‖2
L2(µ)

+ 2(Kg,A(I − K)g)

= µ(g2 − 2gKg + (Kg)2)+ 2µ(gKg)− 2µ((Kg)2)

= µ(g2)− µ((Kg)2).

Finally, because of the stationarity of (ξk)k≥1, it follows that, for any ε > 0,

1

N

N∑
k=1

E(ξ2
k 1(|ξk| > ε

√
N)) = E(ξ2

1 1(|ξ1| > ε
√
N)) → 0 as N → ∞.

The conditions of Theorem 7.4 of [14] are all met, so we may safely conclude that by defining
the process BN(t) = √

N(W
Nt� − µ(f )), t ∈ [0, 1], BN converges in D[0, 1] to σB, where
B is a Brownian motion.

To prove (iii), first note that, since the density h of Y is square integrable, then N = {0},
supn≥1 |ζn| = ρ < 1, ζn = (en, h), and ‖h‖2

2 = ∑
n∈Z

|ζn|2. Therefore, for any g ∈ H ,

∑
n∈Z

|(g, en)| |ζn| ≤ ‖g‖2‖h‖2 < ∞.

It follows that, for any k ≥ 2,

Kkf = Kk−1ψ =
∑
n∈Z

(ψ, en)ζ
k−1
n en,

with the series converging absolutely. Thus,

sup
z0∈Z

|Kkf (s)− µ(f )| = sup
s∈[0,1)

|Kk−1ψ(s)− λ(ψ)|

≤
∑

n∈Z\{0}
|(ψ, en)||ζn|ρk−2

≤ ‖h‖2‖f ‖L2(µ)ρ
k−2.

This completes the proof of the theorem.

Remark A.1. Note that if ζn = 1 for some n > 0 then k �→ ζk is n-periodic, so {ζk : n ∈
Z \ N } is finite. Therefore, supk∈Z\N |ζk| = ρ < 1 and condition (A.3) is satisfied. Also, if
PY has a nondegenerate absolutely continuous part then N = {0} and supn≥1 |ζn| = ρ < 1, so
condition (A.3) holds.

The next result is a straightforward extension of the previous theorem. Before stating it,
denote by ν the joint law of (Z1, S0), where S0 ∼ Unif([0, 1)).
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Theorem A.2. Suppose that f ∈ L2(ν), and setWN = (1/N)
∑N
k=1 f (Zk, {Sk−1}). Then the

following assertions hold.

(i) If the initial distribution of Z0 = (X0, S0) is µ then WN converges almost surely and in
mean square to W given by (A.2), where

Kf (s) =
∫

Z
f (x, {s + y}, s)P(dx, dy).

If Af (s) = ∫
Z f (x, s, {s − y})P(dx, dy), s ∈ [0, 1), and if, in addition,

∑
n∈Z\N

|(Kf, en)| |(Af, en)|
|1 − ζn| < ∞, (A.8)

then N E((WN − W)2) converges as N → ∞ to

‖f ‖2
L2(ν)

− ‖Lf ‖2
2 + 2

∑
n∈Z\N

(Kf, en)(Af, en)

1 − ζn
. (A.9)

(ii) If N = {0}, if the initial distribution of Z0 is µ, and if

∑
n∈Z\{0}

|(Kf, en)|2
|1 − ζn|2 < ∞, (A.10)

then the sequence of processesBN , defined byBN(t) = √
N(W
Nt� − µ(f )), t ∈ [0, 1],

converges in D([0, 1]) to σB, where B is a Brownian motion and σ 2 is given by (A.9).

(iii) If PY admits a square-integrable densityh then the Markov chain is geometrically ergodic,
that is, there exists ρ ∈ (0, 1) such that, for any f ∈ L2(µ),

|Knf (Z1, S0)− µ(f )| ≤ ‖h‖2ρ
n−2‖f ‖L2(µ), n ≥ 2.

Remark A.2. Suppose that Xk is bounded, and set f (x, y, s) = x(y − s). Then it is easy to
check that, for any n ∈ N ,

(Kf, en) =
∫

Z×[0,1)
x({y + s} − s)P(dx, dy)en(s) ds

=
∫

Z×[0,1)
xu(en(y)− 1)en(u)P(dx, dy) du

= 0,

since P(en(Y ) = 1) = 1. It follows from Theorem A.2 that

WN = 1

N

N∑
k=1

Xk({Sk} − {Sk−1})

converges to 0 almost surely and in mean square.
Furthermore, if card(N ) > 1 then condition (A.8) holds and supN≥1N E(W 2

N) < ∞, while
if PY is absolutely continuous then condition (A.10) holds and

√
NTN converges in law to a

centered Gaussian random variable with variance σ 2 given by (A.9).
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