A NOTE ON NORMAL MATRICES

Marvin Marcus and Nisar Khan⁽¹⁾

(received October 7, 1960)

Introduction. In 1954 A. J. Hoffman and O. Taussky [1] showed that if A is an n-square complex matrix with eigenvalues $\lambda = (\lambda_1, \ldots, \lambda_n)$ and P is a permutation matrix for which $\alpha A + \beta A^*$ has eigenvalues $\alpha \lambda + \beta P \overline{\lambda}$ for some $\alpha \beta \neq 0$ then A is normal. Here $\overline{\lambda}$ is the conjugate vector of λ . As a companion result they also proved that if the eigenvalues of AA* are $\lambda_i(\overline{P\lambda})_i$, $i=1,\ldots,n$ then A is normal. (See footnote.)

In this note we obtain similar characterizations of normal matrices. Our main results are contained in the

THEOREM. Let α be a complex number, $0 \neq |\alpha| \neq 1$, and let $\lambda = (\lambda_1, \ldots, \lambda_n)$ be the eigenvalues of A. If S is a real orthogonal matrix and $\alpha A + A^*$ has eigenvalues $S(\alpha \lambda + \overline{\lambda})$ then A is normal. If U is unitary and AA* has eigenvalues $\lambda_i(\overline{U\lambda})_i$, $i = 1, \ldots, n$ then it also follows that A is normal.

We prove the first part of the theorem in a sequence of lemmas.

The second part is very easy and we indicate this at the end of the paper.

Editor's footnote. A* denotes the conjugate complex transpose of A. A is called normal if it commutes with A*. By a theorem of Schur and Toeplitz, A is normal if and only if there exists a unitary matrix U and a diagonal matrix D such that U*AU = D. Cf. Linear Algebra and Matrices, by H. W. E. Schwerdtfeger, (Groningen, 1950), p. 204.

⁽¹⁾ The work o this author was completed under a Postdoctorate Fellowship of the National Research Council of Canada.

Canad. Math. Bull. vol. 4, no. 1, January 1961

A <u>lower triangular</u> matrix L satisfies $l_{ij} = 0$ for $i \le j$. An <u>upper triangular</u> matrix is the transpose of a lower triangular matrix. If X is any n-square matrix ||X|| will denote the Frobenius norm of X:

$$(\Sigma_{i,j=1}^{n} | \mathbf{x}_{ij} |^{2})^{\frac{1}{2}} = (tr(XX*))^{\frac{1}{2}}$$

LEMMA 1. If L is lower triangular and α, β are complex numbers then

$$tr[(\alpha L + \beta L^*)^2] = 2\alpha\beta ||L||^2$$
.

Proof.

$$tr[(\alpha L + \beta L^*)^2] = \alpha^2 tr(L^2) + 2\alpha\beta tr(LL^*) + \beta^2 tr(L^*).$$

Note that the set of lower triangular matrices is closed under multiplication and hence this last expression becomes $2\alpha\beta \|L\|^2$.

LEMMA 2. If $d = (d_1, \ldots, d_n)$ satisfies $\alpha d + \overline{d} = S(\alpha \lambda + \overline{\lambda})$ for $|\alpha| \neq 1$ and S is real orthogonal then

$$\Sigma_{k=1}^{n} d_{k}^{2} = \Sigma_{k=1}^{n} \lambda_{k}^{2}$$
.

Proof. Let $\lambda = a + ib$, d = x + iy, $\alpha = w + i\delta$ where a,b, x,y,w, and δ are real. Then equating real and imaginary parts separately of $\alpha d + \overline{d} = S(\alpha \lambda + \overline{\lambda})$ we have

$$(w + 1)x - \delta y = S[(w + 1)a - \delta b]$$

$$(1)$$

$$\delta x + (w - 1)y = S[\delta a + (w - 1)b].$$

Denote the 2n-square matrix

$$\begin{pmatrix} (w+1)I & -\delta I \\ \delta I & (w-1)I \end{pmatrix}$$

by F. Now det $F = (|\alpha|^2 - 1)^n \neq 0$ and hence from (1) we conclude

$$x + y = (S + S)(a + b) = Sa + Sb$$

where + indicates direct sum. Thus

$$\Sigma_{k=1}^{n} d_{k}^{2} = \Sigma_{k=1}^{n} (x_{k} + iy_{k})^{2}$$

$$= (x, x) + 2i(x, y) - (y, y)$$

$$= (Sa, Sa) + 2i(Sa, Sb) - (Sb, Sb)$$

$$= (a, a) + 2i(a, b) - (b, b)$$

$$= \Sigma_{k=1}^{n} (a_{k} + ib_{k})^{2}$$

$$= \Sigma_{k=1}^{n} \lambda_{k}^{2}.$$

Here (,) indicates the usual unitary inner product of two n-tuples.

To proceed to the proof of the first part of the theorem select a unitary matrix R that brings $\alpha A + A^*$ to triangular form with zero below the main diagonal. Let $B = RAR^*$ and set

$$B = D + L + V$$

where $D = diag(d_1, \ldots, d_n)$ and L and V are lower and upper triangular matrices. Then

$$\alpha B + B* = (\alpha D + \overline{D}) + (\alpha L + V*) + (\alpha V + L*).$$

Let $d = (d_1, \ldots, d_n)$ and let $\gamma = (\gamma_1, \ldots, \gamma_n)$ be the n-tuple of numbers on the main diagonal of $\alpha B + B^*$, i.e., the eigenvalues of $\alpha A + A^*$. Then

$$\alpha d + \overline{d} = \gamma = S(\alpha \lambda + \overline{\lambda}),$$

 $\alpha L + V = 0,$

and we conclude that

$$B = D + L - \alpha L^*$$

By lemma 2,

$$\Sigma_{k=1}^{n} d_{k}^{2} = \Sigma_{k=1}^{n} \lambda_{k}^{2}$$

and hence

$$tr(B^2) = \sum_{k=1}^{n} \lambda_k^2 = tr(D^2).$$

But

$$tr(B^{2}) = tr[(D + L - \overline{\alpha}L^{*})^{2}]$$

$$= tr(D^{2}) + 2tr[(L - \overline{\alpha}L^{*})D] + tr[(L - \overline{\alpha}L^{*})^{2}].$$

Note that $tr[(L - \overline{\alpha} L^*)D] = 0$ and thus

$$tr[(L - \overline{\alpha} L*)^2] = 0.$$

By lemma 1

$$-2\overline{\alpha}\|L\|^2=0$$

and hence

$$L = 0.$$

Thus B = RAR* is a diagonal matrix and from this it follows that A is normal.

To see the last part of the theorem note that

$$0 \le \operatorname{tr}(AA^*) = (\lambda, U\lambda) = |(\lambda, U\lambda)| \le ||\lambda|| ||U\lambda||$$
$$= ||\lambda||^2 = \sum_{i=1}^{n} |\lambda_i|^2.$$

Thus if RAR* = diag(λ_1 , ..., λ_n) + L, where L is lower triangular and R is unitary then

$$tr(AA*) = \sum_{i=1}^{n} \left| \lambda_{i} \right|^{2} + \left\| L \right\|^{2} \leq \left| \sum_{i=1}^{n} \left| \lambda_{i} \right|^{2}$$

and L = 0. This completes the proof.

REFERENCE

1. A. J. Hoffman and O. Taussky, A characterization of normal matrices, J. Research, Nat. Bur. Standards 52 (1954), 17-19.

U.S. National Bureau of Standards Washington, D.C.

and

Muslim University Aligarh, India

and

University of British Columbia