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HIGHER IDELES AND CLASS FIELD THEORY

MORITZ KERZ and YIGENG ZHAO

Abstract. We use higher ideles and duality theorems to develop a universal

approach to higher dimensional class field theory.
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HIGHER IDELES AND CLASS FIELD THEORY 215

§1. Introduction

In higher dimensional class field theory one tries to describe the abelian

fundamental group of a scheme X of arithmetic interest in terms of idelic

or cycle theoretic data on X. More precisely, assume that X is regular and

connected and fix a modulus data, that is, an effective divisor D on X. Let

πab
1 (X, D) be the abelian fundamental group classifying étale coverings with

ramification bounded by D. One defines an idele class group C(X, D) which

is a quotient of the idele group

I(U ⊂X) :=
⊕
P∈P

KM
d(P )(k(P ))

by a modulus subgroup depending on D and certain reciprocity relations.

Here P ∈ P runs through some set of chains of prime ideals and k(P )

is a generalized form of Henselian local residue field at the chain P ; see

Section 2.1 and [Ker11].

One then constructs a residue map

ρ : C(X, D)→ πab
1 (X, D)

which we show to be an isomorphism after tensoring with Z/nZ (n > 0) in

the following situations:

(i) X is a smooth proper variety over a finite field, recovering (with simpler

proof) the main result of [KS86] for varieties; see Section 3.

(ii) X is an (equal characteristic) complete regular local ring with finite

residue field, recovering in case dim(X) = 2 results of [Sai87], recovering

in case n is invertible on X results of [Sat09] and completing our

understanding in case X is of equal characteristic p and n is a power

of p; see Section 4.

(iii) X is a smooth proper scheme over an (equal characteristic) complete

discrete valuation ring with finite residue field, recovering results of

Bloch and Saito, see [Sai85], for dim(X) = 2 and results of [For15] for

n invertible on X and completing our understanding in case X is of

characteristic p and n is a power of p; see Section 5.

Here is an outline of our universal strategy to all three cases of the

reciprocity isomorphism ρ in higher dimensional class field theory listed

above:

https://doi.org/10.1017/nmj.2018.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.34


216 M. KERZ AND Y. ZHAO

Step 1 : Show that C(X, D) is isomorphic to a Nisnevich cohomology group

of relative Milnor K-sheaf KMX,D, for example, in case (i) above one has an

isomorphism

C(X, D)∼=Hd(XNis,KMd,X|D),

where d= dim(X).

Step 2 : Show that the Nisnevich cohomology of the relative Milnor K-sheaf

with finite coefficients is isomorphic to a certain analogous étale cohomology

group, for example, in case (i) and for n= pm a power of the characteristic

p of the base field one has an isomorphism

Hd(XNis,KMd,X|D/n)∼=Hd(Xét, WmΩd
X|D,log)

where WmΩd
X|D,log is a relative de Rham–Witt sheaf. This isomorphism is

established by comparing coniveau spectral sequences and observing that

based on cohomological dimension arguments there is just one additional

potentially nonvanishing row in the spectral sequence in the étale situation,

which however disappears at the end by known cases of the Kato conjecture.

Step 3 : Arithmetic duality tells us that the étale cohomology group from

Step 2 is isomorphic to an abelian étale fundamental group, for example, in

the special case as in Step 2 the profinite group limD H
d(Xét, WmΩd

X|D,log),

where D runs through all effective divisors with a fixed support X \ U , is

Pontryagin dual to the (discrete) cohomology group H1(Uét, Z/nZ).

§2. Higher ideles and Milnor K-sheaves

2.1 Higher ideles

Let X be an integral Noetherian scheme with a dimension function d.

Recall that a dimension function on a scheme X is a set theoretic function

d : X → Z such that:

(i) for all x ∈X, d(x)> 0;

(ii) for x, y ∈X with y ∈ {x} of codimension one, d(x) = d(y) + 1, where

{x} denotes the closure of {x} in X.

We also denote d= d(η), where η is the generic point of X. Let dm be

the minimal of the integers d(x) for x ∈X. For an effective Weil divisor D

of X, we denote U =X \D.
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Definition 2.1.1.

(i) A chain on X is a sequence of points P = (p0, p1, . . . , ps) of X such

that

{p0} ⊂ {p1} ⊂ · · · ⊂ {ps}.

(ii) A Parshin chain on X is a chain P = (p0, p1, . . . , ps) on X such that

d(pi) = i+ dm, for 06 i6 s.
(iii) A Parshin chain on the pair (U ⊂X) is a Parshin chain P =

(p0, p1, . . . , ps) on X such that pi ∈D for 06 i < s and such that

ps ∈ U .

(iv) The dimension d(P ) of a chain P = (p0, p1, . . . , ps) is defined to be

d(ps).

(v) A Q-chain on (U ⊂X) is defined as a chain P = (p0, . . . , ps−2, ps) on

X for 16 s6 d, such that d(pi) = i+ dm for i ∈ {0, 1, . . . , s− 2, s},
pi ∈D for 06 i6 s− 2 and ps ∈ U .

We also recall the definition of Milnor K-theory.

Definition 2.1.2.

(i) For a commutative unital ring R, the Milnor K-ring KM
• (R) of R is

the graded ring T (R×)/I, where I is the ideal of the tensor algebra

T (R×) over R× generated by elements a⊗ (1− a) with a, 1− a ∈R×.

The image of a1 ⊗ · · · ⊗ ar in KM
r (R) is denoted by {a1, . . . , ar}.

(ii) If R is a discrete valuation ring with quotient field K and maximal

ideal m⊂R we define KM
r (K, n)⊂KM

r (K) be the subgroup generated

by {1 + mn, K×, . . . , K×} for an integer n> 0.

Definition 2.1.3. Let P = (p0, . . . , ps) be a chain on X.

(i) We define the ring OhX,P , which is a finite product of Henselian local

rings, as follows: If s= 0 set OhX,P =OhX,p0
. If s > 0 assume that OhX,P ′

has been defined for chains of the form P ′ = (p0, . . . , ps−1). Denote

R=OhX,P ′ , let T be the finite set of prime ideals of R lying over ps.

Then we define

OhX,P :=
∏
p∈T

Rhp .

(ii) For a chain P = (p0, . . . , ps) on X we let k(P ) be the finite product

of the residue fields of OhX,P . If s> 1 each of these residue fields has a
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218 M. KERZ AND Y. ZHAO

natural discrete valuation such that the product of their rings of integers

is equal to the normalization of OhX,P ′/ps, where P ′ = (p0, . . . , ps−1).

Let P be the set of Parshin chains on the pair (U ⊂X), and let Q be the

set of Q-chains on (U ⊂X). For a Parshin chain P = (p0, . . . , pd−dm) ∈ P
of dimension d we denote by D(P ) the multiplicity of the prime divisor

{pd−dm−1} in D.

Definition 2.1.4.

(i) The idele class group of (U ⊂X) is defined as

I(U ⊂X) :=
⊕
P∈P

KM
d(P )(k(P )),

and endow this group with the topology generated by the open

subgroups ⊕
P∈P
d(P )=d

KM
d (k(P ), D(P ))⊂ I(U ⊂X),

where D runs through all effective Weil divisors with support X \ U .

(ii) The idele group of X relative to the fixed effective divisor D with

complement U is defined as

I(X, D) := Coker

( ⊕
P∈P
d(P )=d

KM
d (k(P ), D(P ))→ I(U ⊂X)

)
.

(iii) The idele class group C(U ⊂X) is

C(U ⊂X) := Coker

(⊕
P∈Q

KM
d(P )(k(P ))

Q−→ I(U ⊂X)

)
,

where Q is defined to be the sum of all QP
′→P for P ′ =

(p0, . . . , ps−2, p) ∈Q and P = (p0, . . . , ps−2, ps−1, ps) ∈ P:

– if ps−1 ∈D, then QP
′→P is the natural map KM

d(P ′)(k(P ′))→
KM
d(P )(k(P )) induced on Milnor K-groups by the ring homomor-

phism k(P ′)→ k(P );

– if ps−1 ∈ U , then QP
′→P is the residue symbol KM

d(P ′)(k(P ′))→
KM
d(P ′′)(k(P ′′)) where P ′′ = (p0, . . . , ps−1).
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(iv) The idele class group C(X, D) of X relative to the effective divisor D

is defined as

C(X, D) := Coker

(⊕
P∈Q

KM
d(P )(k(P ))

Q−→ I(X, D)

)
.

2.2 Milnor K-sheaves

Let X be an integral scheme. Recall the Milnor K-sheaf KM∗ is defined as

the Nisnevich sheafification of the presheaf on affine scheme Spec(A) given

as follows:

A 7→KM
• (A) =

⊕
i∈N

(A× ⊗Z · · · ⊗Z A
×)︸ ︷︷ ︸

i times

/I,

where I is the two-sided ideal of the tensor algebra generated by the

elements a⊗ (1− a) with a, 1− a ∈A×. This sheaf is closely related to a p-

primary sheaf if X is of characteristic p> 0, so-called logarithmic de Rham–

Witt sheaf WmΩr
X,log on the small Nisnevich (resp. étale) site, which is a

subsheaf of WmΩr
X (cf. [Ill79]) Nisnevich (resp. étale) locally generated by

d log[x1]m ∧ · · · ∧ d log[xr]m with xi ∈ O×X for all i, d log[x]m := d[x]m/[x]m
and [x]m is the Teichmüller representative of x in WmOX .

These notations can be generalized to a relative situation with respect

to a divisor. Let i : D ↪→X be an effective divisor with its complement

j : U :=X \D ↪→X.

Definition 2.2.1. Let r ∈ N. We define:

(i) [RS18, Definition 2.4] the relative Milnor K-sheaf KMr,X|D on the small

Nisnevich (resp. étale) site is defined to be the subsheaf of j∗KMr,U
Nisnevich (resp. étale) locally generated by {x1, . . . , xr} with x1 ∈
ker(O×X →O

×
D) and xi ∈ O×U for all i. Note that if X is a regular

scheme over a field, then KMr,X|D ⊂K
M
r,X by the known Gersten con-

jecture [Ker09] (see also [RS18, Corollary 2.9]).

(ii) [JSZ18, Definition 1.1.1] in the case that X is of characteristic p> 0,

the relative logarithmic de Rham–Witt sheaf WmΩr
X|D,log on the small

Nisnevich (resp. étale) site is the subsheaf of j∗WmΩr
U,log Nisnevich

(resp. étale) locally generated by d log[x1]m ∧ · · · ∧ d log[xr]m with x1 ∈
ker(O×X →O

×
D) and xi ∈ O×U for all i. Similar to the relative Milnor K-

group, we also have WmΩr
X|D,log ⊂WmΩr

X,log in the case that X is a

regular scheme.
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220 M. KERZ AND Y. ZHAO

We will show relations between them in a local case, and then we may

use these results in different settings. In the following, we fix the notation

as follows: Let R be a Henselian regular local ring of characteristic p > 0

with the residue field k. We assume that k is finite. Let D be an effective

divisor such that C := Supp(D) is a simple normal crossing divisor on X :=

Spec(R). Let {Dλ}λ∈Λ be the (regular) irreducible components of D, and

let iλ :Dλ ↪→X be the natural map.

Theorem 2.2.2. The d log map induces an isomorphism of Nisnevich

sheaves on XNis

d log[−] :KMr,X|D/(p
mKMr,X ∩ KMr,X|D)

∼=−→ WmΩr
X|D,log

{x1, . . . , xr} 7→ d log[x1]m ∧ · · · ∧ d log[xr]m.

Proof. The assertion follows directly by the following commutative

diagram

KMr,X|D/(p
mKMr,X ∩ KMr,X|D) �

� //

d log
����

KMr,X/pm

∼=d log

��
WmΩr

X|D,log
� � // WmΩr

X,log

where the right vertical map is an isomorphism by Bloch–Gabber–

Kato theorem [BK86] and Gersten resolutions of ε∗KMr,X and ε∗WmΩr
X,log

from [Ker09, GS88]; here ε : XNis→XZar is the canonical map.

In order to study the structure of the relative logarithmic de Rham–Witt

sheaves, we introduce some notions here. We endow NΛ with a semiorder

by

n := (nλ)λ∈Λ > n
′ := (n′λ)λ∈Λ if nλ > n

′
λ for all λ ∈ Λ.

For n= (nλ)λ∈Λ ∈ NΛ let

Dn =
∑
λ∈Λ

nλDλ

be the associated divisor. For ν ∈ Λ we set δν = (0, . . . , 1, . . . , 0) ∈ NΛ,

where 1 is on the νth place, and we define the following Nisnevich sheaves

for r > 1

grn,νKMr,X :=KMr,X|Dn/K
M
r,X|Dn+δν

;

grn,νWmΩr
X,log :=WmΩr

X|Dn,log/WmΩr
X|Dn+δν ,log.
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Proposition 2.2.3. [RS18, Proposition 2.10] Let n= (nλ)λ∈Λ ∈ NΛ,

and let ν ∈ Λ, r > 1. Assume nν = 0 and set

Dν,n :=
∑

λ∈Λ\{ν}

nλ(Dλ ∩Dν).

Then there is a natural isomorphism of Nisnevich sheaves

grn,νKMr,X
∼=−→ iν,∗KMr,Dν |Dν,n .

Proof. The argument in [RS18] works verbatim for our case.

Theorem 2.2.4. If D is reduced, then d log induces an isomorphism of

Nisnevich sheaves

d log[−] :KMr,X|D/p
m ∼=−→ WmΩr

X|D,log

{x1, . . . , xr} 7→ d log[x1]m ∧ · · · ∧ d log[xr]m.

Proof. By the commutative diagram

KMr,X|D/p
m //

d log
����

KMr,X/pm

∼=d log

��
WmΩr

X|D,log
� � // WmΩr

X,log

it is enough to show that KMr,X|D/p
m ↪→KMr,X/pm. On the other hand, we

have the following commutative diagram:

0 // KMr,X|D //

pm

��

KMr,X //

pm

��

KMr,X/KMr,X|D //

pm

��

0

0 // KMr,X|D // KMr,X // KMr,X/KMr,X|D // 0

Combining the fact [GL00, Theorem 8.1] and the Gersten resolution [Ker09],

we know that KMr,X is p-torsion free. Therefore the middle vertical map is

injective, so is the first vertical map. By the snake lemme, it is sufficient

to check that the third vertical map pm :KMr,X/KMr,X|D→K
M
r,X/KMr,X|D is

injective. This follows from the above Proposition 2.2.3, by noting that

https://doi.org/10.1017/nmj.2018.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.34


222 M. KERZ AND Y. ZHAO

KMr,X/KMr,X|D is a successive extension of sheaves grn,νKMr,X and the map

pm : iν,∗KMr,Dν |Dν,n → iν,∗KMr,Dν |Dν,n is injective (similar to the injectivity of

the first vertical map in the above diagram). We remark that the assumption

in Proposition 2.2.3 is satisfied, since D is reduced.

Proposition 2.2.5. [JSZ18, Proposition 1.1.9] Let X, D be as above.

Then we have:

(i) WmΩd
X,log =WmΩd

X|Dred,log;

(ii) for n> 1, the quotient grn,νWmΩr
X,log is a coherent Op

e

Dν
-module, for

some e� 0.

Proof. In the case that d= 1 (i.e., R is a discrete valuation ring), the

assertions have been given in [BK86, (4.7), (4.8)]. For general d, in [JSZ18],

the graded pieces have been studied in the case that R is the Henselization

of a local ring of a smooth scheme over k. But note that the argument also

works in our setting. We only need to show (i). By Theorem 2.2.4, we see

that, for n < 1,

grn,νKMd,X/pm ∼= iν,∗KMd,Dν |Dν,n/p
m = iν,∗WmΩd

Dν |Dν,n,log = 0,

where the vanishing is by dimension.

§3. Class field theory for proper varieties over finite fields

In this section we reprove the main results of the class field theory of

smooth proper varieties over finite fields with ramification along divisors D,

which originally are due to Kato and Saito [KS86].

Let X be a smooth proper variety of dimension d over a finite field k, let D

be an effective divisor such that C := Supp(D) is a simple normal crossing

divisor on X, and let j : U :=X − C ↪→X be the complement of C. Let

{Dλ}λ∈Λ be the (smooth) irreducible components of D, and let iλ :Dλ ↪→
X be the natural map. We use the dimension function d(x) = dim({x})
for x ∈X. We also denote by Xr := {x ∈X| d(x) = r} the set of points of

dimension r of X and Xr :=Xd−r the set of points of codimension r of X.

3.1 Idele class groups

The K-theoretic class group Hd(XNis,KMd,X|D) is introduced by Kato and

Saito in [KS86], and they also give an idelic description of the dual of this

class group. In [Ker11], we give a direct description of this class group, and

prove the following theorem.
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Theorem 3.1.1. [Ker11, Theorem 8.4] There exists a unique isomor-

phism

ρX,D : C(X, D)∼=Hd(XNis,KMd,X|D)

such that the following triangle commutes⊕
x∈X0

Z
ı

{{

ıNis

&&

C(X, D)
ρX,D

// Hd(XNis,KMd,X|D)

where ı is the obvious map, and ıNis is the map from [KS86, Theorem 2.5].

3.2 The `-primary part

In this subsection, we study the groupHd(XNis,KMd,X|D)/`m, and compare

it with H2d(Xét, j!µ
⊗d
`m ).

The coniveau spectral sequence for an abelian étale (resp. Nisnevich)

sheaf F on Xét (resp. XNis) writes

Ep,q1,ét(F) :=
⊕
x∈Xp

Hp+q
x (Xét, F) =⇒Hp+q(Xét, F)

Ep,q1,Nis(F) :=
⊕
x∈Xp

Hp+q
x (XNis, F) =⇒Hp+q(XNis, F),

where Xp is the set of points of codimension p of X. Note that the degen-

eration of the coniveau spectral sequence due to cohomological dimension

(cf. [KS86, 1.2.5]) for KMd,X|D on XNis gives rise to a short exact sequence⊕
x∈Xd−1

Hd−1
x (XNis,KMd,X|D) →

⊕
x∈Xd

Hd
x(XNis,KMd,X|D)

→ Hd(XNis,KMd,X|D)→ 0.(3.2.1)

We now study the coniveau spectral sequence for j!µ
⊗d
`m on Xét.

Proposition 3.2.1. Let X be a smooth (not necessarily proper) variety

over a finite field of dimension d. For any x ∈Xa, we have

Ha+d+1
x (Xét, j!µ

⊗d
`m ) =Ha+d+1

x (Xét, µ
⊗d
`m ),

that is, E•,d+1
1,ét (j!µ

⊗d
`m ) = E•,d+1

1,ét (µ⊗d`m ). In particular, we have Ed−2,d+1
2,ét (j!µ

⊗d
`m )

= Ed−1,d+1
2,ét (j!µ

⊗d
`m ) = 0.
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224 M. KERZ AND Y. ZHAO

Proof. We prove the first claim by induction on the codimension a. For

x ∈Xa, we denote by Xx = Spec(OhX,x) the Henselization of X at x, and

Yx =Xx \ {x}. If a= 1, then any divisor of Xx must have support in the

closed point {x}. Therefore

j!µ
⊗d
`m |Yx = µ⊗d`m |Yx

by the definition of j!. Using the localization exact sequences twice, we

obtain

Hd+2
x (Xét, j!µ

⊗d
`m ) ∼= Hd+1(Yx,ét, j!µ

⊗d
`m ) =Hd+1(Yx,ét, µ

⊗d
`m )

∼= Hd+2
x (Xét, µ

⊗d
`m ),

where the first isomorphism is due to j!µ
⊗d
`m |x = 0, and the second iso-

morphism is by the vanishing Hd+2(Xx,ét, µ
⊗d
`m )∼=Hd+2(xét, µ

⊗d
`m ) = 0 =

Hd+1(xét, µ
⊗d
`m )∼=Hd+1(Xx,ét, µ

⊗d
`m ), where we use the fact that cd`(x)6

d+ 1− codimX(x) (cf. [Sat09, Lemma 4.2(1)]).

For general codimension a > 1, the coniveau spectral sequence on Yx and

cohomological vanishing give us an exact sequence⊕
y∈Y a−2

x

Ha+d−1
y (Yx,ét, j!µ

⊗d
`m ) →

⊕
y∈Y a−1

x

Ha+d
y (Yx,ét, j!µ

⊗d
`m )

→ Ha+d(Yx,ét, j!µ
⊗d
`m )→ 0.(3.2.2)

On the other hand, the localization exact sequence for j!µ
⊗d
`m on Xx tells us

(3.2.3) Ha+d(Yx,ét, j!µ
⊗d
`m )∼=Ha+d+1

x (Xx,ét, j!µ
⊗d
`m ),

Indeed due to cd`(x)6 d+ 1− codimX(x) we have

Ha+d(Xx,ét, j!µ
⊗d
`m ) = 0 =Ha+d+1(Xx,ét, j!µ

⊗d
`m ).

Combining these facts, we get the following diagram with exact rows

⊕
y∈Y a−2

x

Ha+d−1
y (Yx,ét, j!µ

⊗d
`m ) //

��

⊕
y∈Y a−1

x

Ha+d
y (Yx,ét, j!µ

⊗d
`m ) //

��

Ha+d+1
x (Xx,ét, j!µ

⊗d
`m ) //

��

0

⊕
y∈Xa−2

x

Ha+d−1
y (Xx,ét, µ

⊗d
`m ) // ⊕

y∈Xa−1
x

Ha+d
y (Xx,ét, µ

⊗d
`m ) // Ha+d+1

x (Xx,ét, µ
⊗d
`m ) // 0
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The first two vertical maps are isomorphisms by induction. Hence the

third vertical arrow is also an isomorphism. Thanks to [JSS14, Theorem

3.5.1], we see that the complex E•,d+1
1,ét (µ⊗d`m ) is the Kato complex of µ⊗d`m

(cf. [KS12, (0.2)]) up to a sign. By the known Kato conjecture on vanishing

of cohomology groups of this complex at places d− 1 and d− 2 (cf. [KS12,

Theorem 8.1]) we obtain the second part of Proposition 3.2.1.

Corollary 3.2.2. We have the following exact sequence⊕
x∈Xd−1

H2d−1
x (Xét, j!µ

⊗d
`m )→

⊕
x∈Xd

H2d
x (Xét, j!µ

⊗d
`m )→H2d(Xét, j!µ

⊗d
`m )→ 0.

Proof. By the above proposition, we have Ed,d2,ét(j!µ
⊗d
`m ) =H2d(Xét, j!µ

⊗d
`m ).

Using the Galois symbol maps and induction on codimension, Sato

constructs the localized Chern class map and proves the following theorem.

Theorem 3.2.3. [Sat09, Theorem 1.2 and Section 3] For any x ∈Xa,

there exists a canonical surjective map

cld,loc
X,D,x,`m : Ha

x(XNis,KMd,X|D)/`m�Hd+a
x (Xét, j!µ

⊗d
`m ),

which is called the localized Chern class map. Moreover, if x ∈Xd, the

localized Chern class map

cld,loc
X,D,x,`m : Hd

x(XNis,KMd,X|D)/`m
∼=−→H2d

x (Xét, j!µ
⊗d
`m )

is bijective.

Corollary 3.2.4. There is a canonical isomorphism

Hd(XNis,KMd,X|D)/`m ∼=H2d(Xét, j!µ
⊗d
`m ).

Proof. We have the following commutative diagram with exact rows:

⊕
x∈Xd−1

Hd−1
x (XNis, KMd,X|D)/`m //

cl
d,loc
X,D,x,`m����

⊕
x∈Xd

Hdx(XNis, KMd,X|D)/`m //

cl
d,loc
X,D,x,`m

∼=

��

Hd(XNis, KMd,X|D)/`m //

��

0

⊕
x∈Xd−1

H2d−1
x (Xét, j!µ

⊗d
`m

) // ⊕
x∈Xd

H2d
x (Xét, j!µ

⊗d
`m

) // H2d(Xét, j!µ
⊗d
`m

) // 0,
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where the first exact row follows from the exact sequence (3.2.1) by tensoring

with Z/`mZ, the second is Corollary 3.2.2. By Theorem 3.2.3 the first

vertical arrow is surjective and the second is bijective. Then the assertion

follows from an easy diagram chasing.

Theorem 3.2.5. [Sai89, Lemma 2.9] There is a perfect pairing of finite

Z/`mZ-modules

H i(Uét, µ
⊗r
`m)×H2d+1−i(Xét, j!µ

⊗d−r
`m )→H2d+1(Xét, j!µ

⊗d
`m )

∼=−→ Z/`mZ.

In particular, in case i= 1, r = 0, we obtain

(3.2.4) Hd(Xét, j!µ
⊗d
`m )/`m ∼= πab

1 (U)/`m.

In summary:

Corollary 3.2.6. We obtain canonical isomorphisms

C(X, D)/`m
ρX,D∼= Hd(XNis,KMd,X|D)/`m ∼= πab

1 (U)/`m.

3.3 The p-primary part

In this subsection we want to compare the group Hd(XNis,KMd,X|D)/pm

with the group Hd(Xét, WmΩd
X|D,log).

The coniveau spectral sequence for a p-primary étale (resp. Nisnevich)

sheaf F on Xét (resp. XNis) writes

Ep,q1,ét(F) :=
⊕
x∈Xp

Hp+q
x (Xét, F) =⇒Hp+q(Xét, F)

Ep,q1,Nis(F) :=
⊕
x∈Xp

Hp+q
x (XNis, F) =⇒Hp+q(XNis, F).

We know that Ep,q1,ét(F) = 0 if q > 1 or p > d, and Ep,q1,Nis(F) = 0 if q > 0 or

p > d.

Theorem 3.3.1. The canonical map

Hd(XNis, WmΩd
X|D,log)

∼=−→Hd(Xét, WmΩd
X|D,log)

is an isomorphism.

Proof. By the coniveau spectral sequences, it follows from the following

two propositions.
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Proposition 3.3.2. Let X be a smooth (not necessarily proper) vari-

ety over a finite field of dimension d. The map E•,11,ét(WmΩd
X|D,log)

∼=−→
E•,11,ét(WmΩd

X,log) is an isomorphism of complexes. Therefore we have

Ed−1,1
2,ét (WmΩd

X|D,log) = Ed−2,1
2,ét (WmΩd

X|D,log) = 0.

Proof. For x ∈Xa, we denote by Xx := Spec(OhX,x) the Henselization of

X at x, and Yx :=Xx \ {x}. We want to prove that

Ha+1
x (X,WmΩd

X|D,log)∼=Ha+1
x (X,WmΩd

X,log).

If a= 1, then any divisor of Xx must have support in the closed point

{x}. Therefore, we have

WmΩd
X|D,log|Yx =WmΩd

X,log|Yx

by the definition of WmΩd
X|D,log. Using the localization exact sequences

twice, we obtain

H1(Xx,ét, WmΩdX|D,log) //

��

H1(Yx,ét, WmΩdX|D,log) // H2
x(Xét, WmΩdX|D,log) //

��

0

H1(Xx,ét, WmΩdX,log) // H1(Yx,ét, WmΩdX,log) // H2
x(Xét, WmΩdX,log) // 0

We claim that the first vertical arrow is surjective: Indeed, we have the exact

sequence

H1(Xx,ét, WmΩd
X|D,log) → H1(Xx,ét, WmΩd

X,log)

→ H1(Xét, WmΩd
X,log/WmΩd

X|D,log),

where H1(Xét, WmΩd
X,log/WmΩd

X|D,log) = 0 since this sheaf is a successive

extension of coherent sheaves by Proposition 2.2.5. We conclude that the

third vertical map in the previous commutative diagram is an isomorphism.

For general codimension a > 1, we prove this by induction. The coniveau

spectral sequence on Yx gives us the exact sequence⊕
y∈Y a−2

x

Ha−1
y (Yx,ét, WmΩd

X|D,log) →
⊕

y∈Y a−1
x

Ha
y (Yx,ét, WmΩd

X|D,log)

→ Ha(Yx,ét, WmΩd
X|D,log)→ 0.(3.3.1)
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On the other hand, the localization exact sequence for WmΩd
X|D,log on Xx

tells us

(3.3.2) Ha(Yx,ét, WmΩd
X|D,log)∼=Ha+1

x (Xx,ét, WmΩd
X|D,log),

since we know that Ha+1(Xx,ét, WmΩd
X|D,log)∼=Ha+1(xét, WmΩd

X|D,log) = 0

and similarly Ha(Xx,ét, WmΩd
X|D,log)∼=Ha(xét, WmΩd

X|D,log) = 0. Combin-

ing these facts, we get the following diagram with exact rows:

⊕
y∈Y a−2

x

Ha−1
y (Yx,ét, WmΩdX|D,log) //

��

⊕
y∈Y a−1

x

Hay (Yx,ét, WmΩdX|D,log) //

��

Ha+1
x (Xx,ét, WmΩdX|D,log) //

��

0

⊕
y∈Xa−2

x

Ha−1
y (Xx,ét, WmΩdX,log) // ⊕

y∈Xa−1
x

Hay (Xx,ét, WmΩdX,log) //Ha+1
x (Xx,ét, WmΩdX,log) // 0

The first two vertical maps are isomorphisms by induction. Hence the third

vertical arrow is also an isomorphism. Thanks to [JSS14, Theorem 4.11.1],

we see that the complex E•,11,ét(WmΩd
X,log) is the Kato complex of WmΩd

X,log

(cf. [KS12, (0.2)]) up to a sign. By the known Kato conjecture on vanishing of

the cohomology groups of this complex at places d− 1 and d− 2 (cf. [JS03]),

we obtain the second part of Proposition 3.3.2.

Proposition 3.3.3. Let X be a smooth (not necessarily proper) over a

finite field k of dimension d. For any x ∈Xa, the canonical map

(3.3.3) Ha
x(XNis, WmΩd

X|D,log)→Ha
x(Xét, WmΩd

X|D,log)

is an isomorphism.

That is, there is a natural isomorphism of complexes

E•,01,Nis(WmΩd
X|D,log)

∼=−→ E•,01,ét(WmΩd
X|D,log)

Proof. To prove this, we use Proposition 2.2.5(ii). We reduced to the

case that D is reduced, since the quotient WmΩd
X|D/WmΩd

X|Dred
on XNis is

a successive extension of coherent sheaves, for which the étale and Nisnevich

cohomology groups are the same. By Proposition 2.2.5(i), it is equivalent to

show that the canonical map

Ha
x(XNis, WmΩd

X,log)
∼=−→Ha

x(Xét, WmΩd
X,log)

is an isomorphism. This is true since both are isomorphic to

KM
d−a(k(x))/pm =WmΩd−a

x,log by purity [Mil86, Proposition 2.1] and the

known Gersten conjecture [GS88].
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Corollary 3.3.4. There is a canonical isomorphism

Hd(XNis,KMd,X|D)/pm ∼=Hd(Xét, WmΩd
X|D,log).

Proof. First we have

Hd(XNis,KMd,X|D)/pm ∼= Hd(XNis,KMd,X|D/p
m)

∼= Hd(XNis,KMd,X|D/p
mKMd,X ∩ KMd,X|D),

where the first isomorphism is due to the fact that the Nisnevich cohomo-

logical dimension of X is d, and the second follows from the observation

that the support of pmKMd,X ∩ KMd,X|D/p
mKMd,X|D is contained in D, which is

of dimension d− 1.

By Theorems 2.2.2 and 3.3.1, hence we have

Hd(XNis,KMd,X|D)/pm ∼=Hd(XNis, WmΩd
X|D,log)∼=Hd(Xét, WmΩd

X|D,log).

Corollary 3.3.5. Let D1, D2 be two effective divisors on X whose

supports are simple normal crossing divisors. Assume D1 >D2. Then the

canonical map

Hd(Xét, WmΩd
X|D1,log)→Hd(Xét, WmΩd

X|D2,log)

is surjective.

Proof. Note that we have the following exact sequence on XNis

0→KMd,X|D1
→KMd,X|D2

→KMd,X|D2
/KMd,X|D1

→ 0,

but the Nisnevich sheaf KMd,X|D2
/KMd,X|D1

is supported in D2, which is of

dimension d− 1. Hence the associated long exact sequence implies that

Hd(XNis,KMd,X|D1
)→Hd(XNis,KMd,X|D2

)

is surjective. Therefore the claim follows from Corollary 3.3.4.

Now, we recall the duality theorem of the relative logarithmic de Rham–

Witt sheaves.

Theorem 3.3.6. [JSZ18, Theorem 4.1.4] Let X, U, D be as before. For

i ∈ N, r ∈ N, there are natural perfect pairings of topological groups

H i(Uét, WmΩr
U,log)× lim←−

E
Supp(E)⊂X\U

Hd+1−i(Xét, WmΩd−r
X|E,log)

→Hd+1(Xét, WmΩd
X,log)

Tr−→ Z/pmZ,
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where the first group is endowed with discrete topology, the second is endowed

with profinite topology, and the limit with respect to all effective divisor E

with Supp(E)⊂X \ U .

In particular, for i= 1 and r = 0 we get isomorphisms

lim←−
E

Hd(Xét, WmΩd
X|E,log)

∼=−→H1(Uét, Z/pmZ)∨ ∼= πab1 (U)/pm,

and

H1(Uét, Z/pmZ)
∼=−→ lim−→

E

Hd(Xét, WmΩd
X|E,log)∨,

where A∨ is the Pontryagin dual of a topological abelian group A. These

isomorphisms can be used to define a measure of ramification for étale

abelian covers of U whose degree divides pm.

Definition 3.3.7. For our divisor D, we define

FilDH
1(Uét, Z/pmZ) :=Hd(Xét, WmΩd

X|D,log)∨.

Dually we define

πab
1 (X, D)/pm := Hom(FilDH

1(Uét, Z/pmZ), Z/pmZ).

The group πab
1 (X, D)/pm is a quotient of πab

1 (U)/pm, which can be

thought of as classifying abelian étale coverings of U whose degree divides

pm with ramification bounded by D.

Corollary 3.3.8. We have canonical isomorphisms

C(X, D)/pm ∼=Hd(XNis,KMd,X|D)/pm
∼=−→ πab

1 (X, D)/pm.

Proof. This is a consequence of Theorem 3.3.6 and Corollary 3.3.4.

3.4 Class field theory via ideles

Theorem 3.4.1. (Logarithmic version of wildly ramified class field

theory) For any integer n, there exists a canonical isomorphism

ρX,D,n : C(X, D)/n
∼=−→ πab

1 (X, D)/n,

such that the following triangle commutes⊕
x∈X0

Z
ı

zz

ρU

$$

C(X, D)/n
ρX,D/n

// πab
1 (U)/n
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where the right diagonal map ρU sends 1 at the point x to the Frobenius

Frobx. In particular, ρX,D,n induces an isomorphism

(3.4.1) lim←−
D,n

C(X, D)/n∼= πab
1 (U).

Proof. For n= pm, this follows from Corollary 3.3.8 and Theorem 3.1.1

directly. For n prime to p, this is Corollary 3.2.6.

Remark 3.4.2. The wildly ramified class field theory in [KS16], where

we work with the relative Chow group of zero cycles instead of the idelic

class group, comprises Theorem 3.4.1.

§4. Class field theory for complete local rings over Fq

Let (A,m) be a complete regular local ring of dimension d and of

characteristic p > 0, and let k :=A/m be the residue field. We assume

that k is finite. We denote X = Spec(A), x= m ∈X. Let D be an effective

divisor with Supp(D) is a simple normal crossing divisor, let U =X \D
be its complement. Set X ′ =X \ {x}, D′ =D \ {x}. We use the dimension

function on X (hence also induces one on X ′) by d(x) = dim({x}).

4.1 Grothendieck’s local duality

We know that the sheaf Ωd
X is a dualizing sheaf of X. There exists a nat-

ural homomorphism called the residue homomorphism [KCD08, Section 5]:

res : Hd
x(X, Ωd

X)→ k.

By compositing with the trace map Trk/Fp : k→ Fp = Z/pZ, we get the map

Trk/Fp ◦ res : Hd
x(X, Ωd

X)→ Z/pZ.

For any finite A-module M , the Yoneda pairing and the above trace map

give us a canonical pairing

(4.1.1) H i
x(X,M)× Extd−iX (M, Ωd

X)→ Z/pZ.

Theorem 4.1.1. (Grothendieck local duality [GH67]) For each integer

i> 0, the pairing (4.1.1) induces the isomorphisms

Extd−iA (M, Ωd
X)∼= HomZ/pZ(H i

x(X,M), Z/pZ),

H i
x(X,M)∼= Homcont(Extd−iA (M, Ωd

X), Z/pZ),

where Homcont denotes the set of continuous homomorphisms with respect

to m-adic topology on Ext group.
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In particular, if M is a locally free A-module, we obtain the isomorphisms

(4.1.2) Hd−i(M t)∼= HomZ/pZ(H i
x(X,M), Z/pZ),

where M t := HomA(M, Ωd
X) is the dual A-module, and

(4.1.3) H i
x(X,M)∼= Homcont(H

d−i(M t), Z/pZ).

Note that, for a locally free A-module M , we have [GH67]

(4.1.4) H i
x(X,M) = 0 if i 6= d.

4.2 Duality theorems

The purity result of Shiho [Shi07, Theorem 3.2] tells us that there exists

a canonical isomorphism

(4.2.1) Tr: Hd+1
x (Xét, WmΩd

X,log)
∼=−→H1(x, Z/pmZ)∼= Z/pmZ.

Using the same method as in [Zha16], we obtain a map

Φi,r
m : H i(Uét, WmΩr

U,log)→ lim−→
E

HomZ/pnZ

× (Hd+1−i
x (Xét, WmΩd−r

X|E,log), Hd+1
x (Xét, WmΩd

X,log)).

If we endow H i(Uét, WmΩr
U,log) with the discrete topology and endow the

inverse limit lim←−EH
d+1−i
x (Xét, WmΩd−r

X|E,log) with the profinite topology,

where E runs over the set of effective divisors with support on X \ U , then

the (continuous) map Φi,r
m and the trace map (4.2.1) induce a pairing of

topological abelian groups:

(4.2.2) H i(Uét, WmΩr
U,log)× lim←−

E

Hd+1−i
x (Xét, WmΩd−r

X|E,log)→ Z/pmZ.

Using Pontryagin duality, we see that Φi,r
m is an isomorphism if and only if

the pairing (4.2.2) is a perfect pairing of topological abelian groups for the

respective i, m, r.

Theorem 4.2.1. For any integers r > 0, m> 1, the maps Φi,r
m are

isomorphisms.

https://doi.org/10.1017/nmj.2018.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.34


HIGHER IDELES AND CLASS FIELD THEORY 233

Proof. We are reduced to the case m= 1 by induction on m and the

following two exact sequences on the small étale site

0→Wm−1Ωr
U,log

·p−→WmΩr
U,log

R−→ Ωr
U,log→ 0

and

0→Wm−1Ωd−r
X|[E/p],log

·p−→WmΩd−r
X|E,log

R−→ Ωd−r
X|E,log→ 0,

where [E/p] =
∑

λ∈Λ[nλ/p]Dλ if D =
∑

λ∈Λ nλDλ; here [n/p] = min{n′ ∈
Z|pn′ > n}, and the exactness of the second complex follows from [JSZ18,

Theorem 1.1.6].

Using the relation between logarithmic forms and differential

forms ([Ill79, 0, Corollary 2.1.18] and [JSZ18, Theorem 1.2.1]), we see that

the assertion for i 6= 0, 1 follows from the vanishing (4.1.4) directly. We have

the following diagram with exact rows

H0(Uet, Ω
r
U,log) �

� //

��

H0(U, ZΩr
U ) //

��

H0(U, Ωr
U )

��

// //H1(Uet, Ω
r
X,log)

��

lim−→
E

Hd+1
x (Xét, Ω

d−r
X|E,log)∗ �

� // lim−→
E

Hd
x(Xét, Ω

d−r
X|E/dΩd−r−1

X|E )∗ // lim−→
E

Hd
x(Xét, Ω

d−r
X|E)∗ // // lim−→

E

Hd
x(Xét, Ω

d−r
X|E,log)∗

where A∗ := HomZ/pZ(A, Z/pZ) for an abelian group A,

Ωd−r
X|E := Ωd−r

X (log Ered)⊗OX(−E),

and dΩd−r−1
X|E := Image(d : Ωd−r−1

X|E → Ωd−r
X ), and ZΩr

U := Ker(d : Ωr
U →

Ωr+1
U ).

The proof is same as the proof in [JSZ18, Zha16], we quickly recall

the argument: since j : U →X is affine, we may rewrite H0(U, Ωr
U ) as

lim−→E
H0(X, Ωi

X(log Ered)⊗OX(E)). Then we use Theorem 4.1.1 for sheaves

Ωi
X(log Ered)(−E) to conclude that the second and the third vertical arrows

are isomorphisms. Hence the assertion follows.

For r = 0, i= 1, we get

H1(Uét, Z/pmZ)∼= lim−→
E

Hom(Hd
x(Xét, WmΩd

X|E,log), Z/pmZ).

Similar to Corollary 3.3.5, the transition maps are surjective in the

projective system, for our divisor D we define

FilDH
1(Uét, Z/pmZ) := Hom(Hd

x(Xét, WmΩd
X|D,log), Z/pmZ);
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by Pontryagin duality, we also define

πab
1 (X, D)/pm := Hom(FilDH

1(Uét, Z/pmZ), Z/pmZ).

Theorem 4.2.1 gives us an isomorphism

Hd
x(Xét, WmΩd

X|D,log)
∼=−→ πab

1 (X, D)/pm.

Proposition 4.2.2. We have

Hd
x(XNis, WmΩd

X|D,log)∼=Hd
x(Xét, WmΩd

X|D,log).

Proof. This is similar to the argument in the proof of Proposition 3.3.3.

Only the last step, to claim

Ha
x(XNis, WmΩd

X,log)
∼=−→Ha

x(Xét, WmΩd
X,log)

is an isomorphism, uses different results. In this case, it is an isomorphism

since both are isomorphic to KM
d−a(k(x))/pm =WmΩd−a

x,log by purity [Shi07,

Theorem 3.2] and the known Gersten conjecture [Ker09].

4.3 Class field theory via ideles

For a complete regular local ring A of dimension d of characteristic p > 0,

and X, X ′, U, D, D′ as before. An idelic description of Hd
x(XNis,KMd,X|D) is

given by the following theorem.

Theorem 4.3.1. [Ker11, Theorem 8.2] There exists an isomorphism

C(X ′, D′)∼=Hd
x(XNis,KMd,X|D).

In summary, the class field theory of Henselian regular local ring over Fp
can be reformulated as follows:

Corollary 4.3.2. There is a canonical isomorphism

C(X ′, D′)/pm
∼=−→ πab

1 (X, D)/pm.

Remark 4.3.3. The case d= 2 has been studied in [Sai87]. The case

d= 3 has been investigated in [Mat02] using a slightly different class group.

The `-primary analog has been studied by Sato in [Sat09].
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§5. Class field theory for schemes over discrete valuation rings

Let R be a Henselian discrete valuation ring with fraction field K, and let

k be its residue field of characteristic p > 0 which we assume to be finite. We

fix an uniformizer π of R. We use the notation as in the following diagram:

Xs
� � i //

fs

��

X

f

��

Xη

fη

��

? _
j

oo

s= Spec(k) �
� is // B = Spec(R) η = Spec(K)? _

jη
oo

where f is a flat projective of fiber dimension d. We assume that X is a

regular scheme with smooth generic fiber Xη such that the reduced special

fiber Xs,red is a simple normal crossing divisor. Let  : U ↪→X be an open

subscheme contained in the generic fiber such that X \ U is the support of

a simple normal crossing divisor D.

5.1 Idele class group

We want to give an idelic description of the class group

Hd+1
Xs

(XNis,KMd,X|D). We use the dimension function d(x) = dim({x})
on X.

Definition 5.1.1.

(i) A Qo-chain on (U ⊂X) is a Q-chain

P = (p0, . . . , ps−2, ps)

on (U ⊂X) such that s> 2. We denote the set of Qo-chain on (U ⊂X)

by Qo.
(ii) The idele class group C(U ⊂X;Xs) is

C(U ⊂X;Xs)

:= Coker

(⊕
P∈Qo

KM
d(P )(k(P ))⊕

⊕
y∈Ud−1

η

KM
2 (k(y))

Q−→ I(U ⊂X)

)
;
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(iii) The idele class group C(X, D;Xs) of X relative to the effective divisor

D is defined as

C(X, D;Xs)

:= Coker

(⊕
P∈Qo

KM
d(P )(k(P ))⊕

⊕
y∈Ud−1

η

KM
2 (k(y))

Q−→ I(X, D)

)
.

Theorem 5.1.2.

(i) There exists a canonical isomorphism

C(X, D;Xs)∼=Hd+1
Xs

(XNis,KMd+1,X|D).

(ii) Hd+1(XNis,KMd+1,X|D) = 0.

Proof. Let F be the Nisnevich sheaf KMd+1,X|D. We start with part (i).

We have seen that the degeneration of the coniveau spectral sequence

Ep,q1,Nis(F) :=
⊕
x∈Xp

Hp+q
x (XNis, F) =⇒Hp+q(XNis, F)

implies

(5.1.1)

Hd+1
Xs

(XNis, F) = Coker

( ⊕
x∈X1∩Xs

Hd
x(XNis, F)→

⊕
x∈X0

Hd+1
x (XNis, F)

)
.

By definition and [Ker11, Theorem 8.2] we obtain an isomorphism

(5.1.2) C(X, D;Xs)∼= Coker

( ⊕
y∈Ud−1

η

KM
2 (k(y))→

⊕
x∈X0

Hd+1
x (XNis, F)

)
.

It is sufficient to observe that the canonical map⊕
y∈Ud−1

η

KM
2 (k(y))→

⊕
x∈X1∩Xs

Hd
x(XNis, F)

is surjective; see [Ker11, Section 6]. This finishes the proof of part (i).

For part (ii) we use the isomorphism

Hd+1(XNis, F) = Coker

(⊕
x∈X1

Hd
x(XNis, F)→

⊕
x∈X0

Hd+1
x (XNis, F)

)
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and the surjectivity of⊕
x∈X1∩Xη

KM
1 (k(x))→

⊕
x∈X0

Hd+1
x (XNis, F);

see [Ker11, Section 6].

Note that the generic fiber Xη is a smooth variety over the local field K.

Its class field theory has been studied in several cases, for example, the case

d= 1 is well understood by the work of Bloch and Saito; see [Sai85, Hir16].

In [For15], Forré determines the kernel of the reciprocity map in unramified

`-adic class field theory in the higher dimension case.

Definition 5.1.3. Assume Supp(D)⊃Xs, we denote Dη =D ×X Xη,

and define

ŜK1(U) := lim←−
D

C(X, D;Xs) = lim←−
E

Hd+1
Xs

(XNis,KMd+1,X|E),

where the limit is over all effective divisors E with support X \ U .

SK1(Xη, Dη) :=Hd(Xη,Nis,KMd+1,X|D).

Remark 5.1.4.

(i) We have seen that, by the degeneration of the coniveau spectral

sequence, the group SK1(Xη, Dη) =Hd(Xη,Nis,KMd+1,X|D) is isomor-

phic to

coker

( ⊕
y∈(Xη)1

Hd−1
y (Xη,Nis,KMd+1,X|D)

∂−→
⊕

x∈(Xη)0

Hd
x(Xη,Nis,KMd+1,X|D)

)
.(5.1.3)

Using the methods from [Ker11] it is easy to write down an idelic

description of this group, for example, if Dη = 0 then SK1(Xη, 0) =

SK1(Xη) where SK1(Xη) is defined as

coker

( ⊕
y∈(Xη)1

KM
2 (κ(y))

∂−→
⊕

x∈(Xη)0

κ(x)×
)
.
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(ii) If d= 1 and Supp(D) =Xs, then ŜK1(U) = ŜK1(Xη), which has been

defined in [KS83] via the idelic method.

(iii) By Theorem 5.1.2 we get a canonical surjection

SK1(Xη, Dη)→ C(X, D;Xs).

We do not know, whether this map is an isomorphism in general, but

Theorem 5.3.7 suggests that it is so at least after tensoring with Z/nZ
for any integer n > 0.

5.2 Kato complexes on simple normal crossing varieties

We recall notations and theorems in [JS03]. Let Y be a proper simple

normal crossing variety over the finite field k of dimension d, and let

Y1, . . . , YN be its smooth irreducible components. Let

Yi1,...,is := Yi1 ×Y · · · ×Y Yis

be the scheme-theoretic intersection of Yi1 , . . . , Yis , and denote

Y [s] :=
∐

16i1<···<is6N
Yi1,...,is

for the disjoint union of the s-fold intersections of the Yi, for any s > 0. Since

Y is simple, all Y [s] are smooth of dimension d− s+ 1. The immersions

Yi1,...,is ↪→ Y and Yi1,...,is ↪→ Yi1,...,îv ,...,is induce canonical maps

i[s] : Y [s]→ Y, δν : Y [s]→ Y [s−1].

For integer n > 0, i> 0 we define the following étale sheaves on Y :

(i) If p - n, then let Z/nZ(i) := µ⊗in,Y be the ith tensor power over Z/nZ of

the sheaf of nth roots of unity.

(ii) If n=mpr, r > 0 with p -m, then let

Z/nZ(i) := νir,Y [−i]⊕ µ⊗im,Y

where νir,Y (U) := ker(∂ :
⊕

x∈U0WrΩ
i
x,log→

⊕
x∈U1WrΩ

i−1
x,log) for U ⊂ Y

open. Note that νdr,Y =WrΩ
d
Y,log if Y is smooth [Sat07, 1.3.2].
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The Kato complex C1,0(Y, Z/nZ(d)) is defined to be the complex:⊕
y∈Y 0

Hd+1(y, Z/nZ(d))→
⊕
y∈Y 1

Hd(y, Z/nZ(d− 1))→ · · ·

· · · →
⊕
y∈Y a

Hd−a+1(y, Z/nZ(d− a))→ · · · →
⊕
y∈Y d

H1(y, Z/nZ),

where Z/nZ(i) is defined as above for the residue field of Y at y, and put

the term
⊕

y∈Y a in degree a− d as an object in derived category. Similarly,

for each s, on Y [s] we define the complex C1,0(Y [s], Z/nZ(d− s+ 1)), and

moreover we define the complex C(Y •, Z/nZ) as

· · · → (Z/nZ)π0(Y [s+1]) ds−→ (Z/nZ)π0(Y [s]) · · · → (Z/nZ)π0(Y [1]),

where π0(Z) is the set of connected components of a scheme Z, the last

term of this complex is placed in degree 0, and the differential ds is∑s+1
ν=1(−1)ν+1(δν)∗.

Theorem 5.2.1. [JS03, Proposition 3.6 and Theorem 3.9]

(i) There is a spectral sequence

E1
s,t(Y

•, Z/nZ) = Ht(C
1,0(Y [s+1], Z/nZ(d− s)))

⇒ Hs+t(C
1,0(Y, Z/nZ(d)))

in which the differentials d1
s,t =

∑s+1
ν=1(−1)ν+1(δν)∗.

(ii) We have E1
s,t(Y, Z/nZ) = 0 if t < 0, and hence there are canonical edge

morphisms

eY,p
m

a : Ha(C
1,0(Y, Z/nZ(d)))→ E2

a,0(Y •, Z/nZ).

(iii) The trace map induces a canonical isomorphism

tr : E2
a,0(Y •, Z/nZ)→Ha(C(Y •, Z/nZ)).

(iv) The composite of edge and trace morphisms gives us a canonical map

γY,p
m

a : Ha(C
1,0(Y, Z/nZ(d)))→Ha(C(Y •, Z/nZ)),

which is an isomorphism if 06 a6 4.

Remark 5.2.2. In the following, we need the cases a= 1 and a= 2,

which will give us an explicit description of E2-terms of certain coniveau

spectral sequences.
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5.3 The `-primary part

Let ` be a prime number and ` 6= p. The cup product induces the following

morphism

R∗µ
⊗r
`m,U →R∗H omU (µ⊗d+1−r

`m,U , µ⊗d+1
`m,U ).

As µ⊗d+1
`m,U = ∗µ⊗d+1

`m,X the adjoint pair (!, 
∗) gives an isomorphism

R∗RH omU (µ⊗d+1−r
`m,U , µ⊗d+1

`m,U ) =RH omX(!µ
⊗d+1−r
`m,U , µ⊗d+1

`m,X ).

Using the adjoint pair (i∗, Ri
!) and these two maps above, we obtain a

pairing on Xét:

(5.3.1) i∗R∗µ
⊗r
`m,U ⊗

L Ri!!µ
⊗d+1−r
`m,U →Ri!µ⊗d+1

`m,X .

Therefore a pairing of cohomology groups:

(5.3.2) H i(Uét, µ
⊗r
`m,U )×Hj

Xs
(Xét, !µ

⊗d+1−r
`m,U )→H i+j

Xs
(Xét, µ

⊗d+1
`m,X ).

We have the following duality theorem; see [Gei10, Theorem 7.5].

Theorem 5.3.1.

(i) There is a canonical isomorphism, so-called the trace map,

Tr: H2d+3
Xs

(Xét, µ
⊗d+1
`m,X )

∼=−→ Z/`mZ

(ii) The trace map Tr and the pair (5.3.2) induce a perfect pairing of finite

groups

H i(Uét, µ
⊗r
`m,U )×H2d+3−i

Xs
(Xét, !µ

⊗d+1−r
`m,U )

→ H2d+3
Xs

(Xét, µ
⊗d+1
`m,X )

Tr−→ Z/`mZ.

For r = 0, i= 1, we obtain

H1(Uét, Z/`mZ)∼= Hom(H2d+2
Xs

(Xét, !µ
⊗d+1
`m ), Z/`mZ),

and by Pontryagin duality

(5.3.3) H2d+2
Xs

(Xét, !µ
⊗d+1
`m )∼= πab

1 (U)/`m.

For any abelian sheaf F on XNis or Xét, we have the following two

coniveau spectral sequences:

Ep,q1,ét(F) :=
⊕

x∈Xp∩Xs

Hp+q
x (Xét, F) =⇒Hp+q

Xs
(Xét, F),

Ep,q1,Nis(F) :=
⊕

x∈Xp∩Xs

Hp+q
x (XNis, F) =⇒Hp+q

Xs
(XNis, F).
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Proposition 5.3.2.

(i) E•,d+2
1,ét (!µ

⊗d+1
`m,U )∼= E•,d+2

1,ét (µ⊗d+1
`m,X ).

(ii) The local Chern class map induces a surjection E•,01,Nis(KMd+1,X|D)/`m�

E•,d+1
1,ét (!µ

⊗d+1
`m,U ) and an isomorphism

Ed+1,0
1,Nis (KMd+1,X|D)/`m ∼= Ed+1,d+1

1,ét (!µ
⊗d+1
`m,U ).

Proof. The argument is analogous to that in Section 3.2. More precisely,

part (i) corresponds to Proposition 3.2.1 and part (ii) corresponds to

Theorem 3.2.3.

Corollary 5.3.3. There are canonical isomorphisms

Hd+1
Xs

(XNis,KMd+1,X|D)/`m ∼= Ed+1,0
2,Nis (KMd+1,X|D)/`m ∼= Ed+1,d+1

2,ét (!µ
⊗d+1
`m,U ).

Proof. The degenerating coniveau spectral sequence on XNis gives the

first isomorphism. The second isomorphism results from the same argument

as in Corollary 3.2.4 using Proposition 5.3.2(ii).

By purity the complex E•,d+2
1,ét (µ⊗d+1

`m,X ) is isomorphic to the complex Kato

complex C1,0(Xs, Z/`mZ(d)) from Section 5.2 (up to a shift), that is, to⊕
y∈X0

s

Hd+1(y, Z/`mZ(d))→
⊕
y∈X1

s

Hd(y, Z/`mZ(d− 1))→ · · ·

· · · →
⊕
y∈Xa

s

Hd−a+1(y, Z/`mZ(d− a))→ · · · →
⊕
y∈Xd

s

H1(y, Z/`mZ),

where we set the last term in degree 0 as an object in the derived category.

Theorem 5.3.4. The canonical morphism

Hd+1
Xs

(XNis,KMd+1,X|D)/`m→H2d+2
Xs

(Xét, !µ
⊗d+1
`m )

fits into an exact sequence

H2(C(X•s , Z/`mZ)) → Hd+1
Xs

(XNis,KMd+1,X|D)/`m→H2d+2
Xs

(Xét, !µ
⊗d+1
`m )

→ H1(C(X•s , Z/`mZ))→ 0.

Proof. By the coniveau spectral sequence for F = !µ
⊗d+1
`m,U on Xét, we

have an exact sequence:

Ed−1,d+2
2,ét (F)→ Ed+1,d+1

2,ét (F)→H2d+2
Xs

(Xét, F)→ Ed,d+2
2,ét (F)→ 0.
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Using Proposition 5.3.2, we have

Ed+1,d+1
2,ét (F) = Ed+1,0

2,Nis (KMd+1,X|D/`
m) =Hd+1

Xs
(XNis,KMd+1,X|D/`

m)

= Hd+1
Xs

(XNis,KMd+1,X|D)/`m.

Moreover combining with Theorem 5.2.1, we obtain

Ed−1,d+2
2,ét (F) = Ed−1,d+2

2,ét (µ⊗d+1
`m,X ) =H2(C(X•s , Z/`mZ));

Ed,d+2
2,ét (F) = Ed,d+2

2,ét (µ⊗d+1
`m,X ) =H1(C(X•s , Z/`mZ)).

In summary, combining Theorems 5.3.4 and 5.1.2 with the identification

(5.3.3), we reformulate the `-primary part of class field theory in this setting

as follows.

Theorem 5.3.5. There is a canonical map

ρX,D : C(X, D;Xs)/`
m→ πab

1 (U)/`m,

which fits into an exact sequence of finite groups

H2(C(X•s , Z/`mZ)) → C(X, D;Xs)/`
m→ πab

1 (U)/`m

→ H1(C(X•s , Z/`mZ))→ 0.

Equivalently, there is an exact sequence:

H2(C(X•s , Z/`mZ)) → ŜK1(U)/`m→ πab
1 (U)/`m

→ H1(C(X•s , Z/`mZ))→ 0.(5.3.4)

Proof. The map is defined by the following diagram

C(X, D;Xs)/`
m

∼= //

ρX,D

��

Hd+1
Xs

(XNis,KMd+1,X|D)/`m

��

πab
1 (U)/`m H2d+2

Xs
(Xét, !µ

⊗d+1
`m )

∼=oo

So the first exact sequence is a direct consequence of Theorem 5.3.4. The

second exact sequence results from the fact that

(5.3.5) ŜK1(U)/`m =Hd+1
Xs

(XNis,KMd+1,X|D)/`m

for any D with Supp(D) =X \ U . Indeed, we denote by D0 =X \ U the

reduced divisor, it suffices to show the following claim.
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Claim 5.3.6. We have(
lim←−
D

Hd+1
Xs

(XNis,KMd+1,X|D)
)
⊗Z Z/`mZ

∼=−→Hd+1
Xs

(XNis,KMd+1,X|D0
)/`m.

Proof of Claim. The canonical surjective map

ϕD : Hd+1
Xs

(XNis,KMd+1,X|D)→Hd+1
Xs

(XNis,KMd+1,X|D0
)

fits into the exact sequence

(5.3.6)

0 // ker(ϕD) // Hd+1
Xs

(XNis,KMd+1,X|D)
ϕD // Hd+1

Xs
(XNis,KMd+1,X|D0

) // 0

Applying lim←−D to the above exact sequence, we obtain an exact sequence

(5.3.7)

0 // lim←−
D

ker(ϕD) // lim←−
D

Hd+1
Xs

(XNis,KMd+1,X|D) // Hd+1
Xs

(XNis,KMd+1,X|D0
) // 0.

By the long exact sequence associated to the short exact sequence

0→KMd+1,X|D→K
M
d+1,X|D0

→KMd+1,X|D0
/KMd+1,X|D→ 0,

we see that Hd
Xs

(XNis,KMd+1,X|D0
/KMd+1,X|D)� ker(ϕD) is surjective. Propo-

sition 2.2.5(ii) tells us that Hd
Xs

(XNis,KMd+1,X|D/K
M
d+1,X|D0

) is p-primary

torsion group, therefore in particular ker(ϕD) is a Z(p)-module, so is the

inverse limit lim←−D ker(ϕD). It follows that

Z/`mZ⊗Z lim←−
D

ker(ϕD) = 0.

Tensoring the exact sequence (5.3.7) with Z/`mZ, we obtain the claim.

In the case that Supp(D) =Xs, we have the following diagram:

SK1(Xη)/`m

φ

��

ρXη
// πab

1 (Xη)/`m

H2(C(X•s , Z/`mZ)) // ŜK1(Xη)/`m
ρX,Xs// πab

1 (Xη)/`m // H1(C(X•s , Z/`mZ)) // 0

where the last row is the exact sequence (5.3.4), the morphism ρXη
is the reciprocity map of variety over the local field K (cf. [KS83]),
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and the map φ is induced by the connection map Hd(Xη,KMd+1,Xη
)→

Hd+1
Xs

(XNis,KMd+1,X|D).

In the remainder of this subsection, we explain why our new approach

recovers the known result for varieties over local fields (cf. [For15]) in the

good reduction case.

Theorem 5.3.7. If Supp(D) =Xs is smooth, then the map φ :

SK1(Xη)/`
m→ ŜK1(Xη)/`

m is an isomorphism.

To prove this theorem, we may further assume that D =Xs, since the

multiplicity of D has no contribution to ŜK1(Xη)/`
m. To simplify our

notations, we denote Λ(i)Y := Z/`mZ⊗ Z(i)Y for a scheme Y and i ∈ Z,

where Z(i) is Bloch’s cycle complex on the small Nisnevich site (cf. [Gei04]).

We can define the restriction map ri : Λ(i)X → i∗Λ(i)Xs as the composi-

tion

Λ(i)X → j∗Λ(i)Xη
·π−→ j∗Λ(i+ 1)Xη [1]→ i∗Λ(i)Xs ,

where the middle arrow is given by multiplication by π, and the last arrow

is the localization map.

Let

Λ(i)X|Xs := hofib(ri : Λ(i)X → i∗Λ(i)Xs)

be the homotopy fiber of ri. By rigidity [Gei04, Theorem 1.2(3)] we get an

isomorphism j!Λ(i)Xη
∼= Λ(i)X|Xs . Notice that we also have an analogous

isomorphism j!KMi,Xη/`
m ∼=KMi,X|Xs/`

m. So we conclude:

Proposition 5.3.8. There is a canonical isomorphism

KMi,X|Xs/`
m ∼=Hi(Λ(i)X|Xs)

and Hj(Λ(i)X|Xs) = 0 for j > i.

Note that Proposition 5.3.8 implies that the canonical map

(5.3.8) H2d+2
Xs

(XNis, Λ(d+ 1)X|Xs)
∼=−→Hd+1

Xs
(XNis,KMd+1,X|Xs)/`

m

is an isomorphism.

To finish the proof of Theorem 5.3.7, we also need the following result:

Proposition 5.3.9. The group H2d+1(XNis, Λ(d+ 1)X|Xs) = 0.
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Proof. By the definition of Λ(d+ 1)X|Xs , there is a long exact sequence

H2d(XNis, Λ(d+ 1)X)
α−→H2d(Xs,Nis, Λ(d+ 1)Xs)

→ H2d+1(XNis, Λ(d+ 1)X|Xs)

→ H2d+1(XNis, Λ(d+ 1)X)
β−→H2d+1(Xs,Nis, Λ(d+ 1)Xs).

It suffices to show that α is surjective and β is injective. In fact, using the

relation between motivic cohomology and higher Chow groups, we will show

that both α and β are isomorphisms. More precisely, the fact that α is an

isomorphism follows from the diagram:

H2d(XNis, Λ(d+ 1)X)

α

��

CHd+1(X, 2; Z/`mZ)
∼= // H2d(Xét, µ

⊗d+1
`m )

∼=
��

H2d(Xs,Nis, Λ(d+ 1)Xs ) CHd+1(Xs, 2; Z/`mZ)
∼= // H2d(Xs,ét, µ

⊗d+1
`m )

where the equalities in the rows are the definitions of higher Chow groups

with coefficients in Z/`mZ (cf. [GL01]), the two horizontal arrows are

isomorphisms by the known Kato conjecture [KS12, Theorem 9.3], and

the right vertical is the proper base change theorem (SGA41
2 , [Del77,

Arcata IV]). The assertion for β is similar:

H2d+1(XNis, Λ(d+ 1)X)

β

��

CHd+1(X, 1; Z/`mZ)
∼= // H2d+1(Xét, µ

⊗d+1
`m )

∼=
��

H2d+1(Xs,Nis, Λ(d+ 1)Xs ) CHd+1(Xs, 2; Z/`mZ)
∼= // H2d+1(Xs,ét, µ

⊗d+1
`m ).

Proof of Theorem 5.3.7. The assertion follows directly from the diagram:

H2d+1(XNis, Λ(d+ 1)X|Xs ) //

Proposition 4.3.9

H2d+1(Xη,Nis, Λ(d+ 1)Xη ) // //

∼=

��

H2d+2
Xs

(XNis, Λ(d+ 1)X|Xs )

∼=
��

0 SK1(Xη)/`m
φ

// ŜK1(Xη)/`m

where the first row is the exact localization sequence, note that j∗Λ(d+

1)X|Xs = Λ(d+ 1)Xη . The first vertical isomorphism is given by (5.3.8)

and the second vertical isomorphism is given by Proposition 5.3.8

and (5.3.5).
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5.4 The p-primary part: equicharacteristic

Due to the lack of ramified duality in the mixed characteristic case for

p-primary sheaves, we only treat the case that R= Fq[[t]] in this subsection

and assume Xs is reduced. In [Zha16], we proved the following duality

theorem for the relative logarithmic de Rham–Witt sheaves in this setting.

Theorem 5.4.1. [Zha16, Theorem 3.4.2] Let R= Fq[[t]]. There is a

perfect pairing of topological abelian groups

H i(Uét, WmΩr
U,log)× lim←−

E

Hd+2−i
Xs

(Xét, WmΩd+1−r
X|E,log)

→ Hd+2
Xs

(Xét, WmΩd+1
X,log)

Tr−→ Z/pmZ,

where the inverse limit runs over the set of effective divisors D such that

Supp(D)⊂X − U . The first group is endowed with the discrete topology,

and the second is with profinite topology.

For r = 0, i= 1, we get

H1(Uét, Z/pmZ)∼= lim−→
E

Hom(Hd+1
Xs

(Xét, WmΩd+1
X|E,log), Z/pmZ).

Similar to Corollary 3.3.5, the transition maps are surjective in the

projective limit, for our divisor D we define

FilDH
1(Uét, Z/pmZ) := Hom(Hd+1

Xs
(Xét, WmΩd+1

X|D,log), Z/pmZ);

by Pontryagin duality, we also define

πab
1 (X, D)/pm := Hom(FilDH

1(Uét, Z/pmZ), Z/pmZ).

Therefore Theorem 5.4.1 gives us an isomorphism

Hd+1
Xs

(Xét, WmΩd+1
X|D,log)

∼=−→ πab
1 (X, D)/pm.

As before we want to compare the group Hd+1
Xs

(XNis, WmΩd+1
X|D,log) with

Hd+1
Xs

(Xét, WmΩd+1
X|D,log), by using the coniveau spectral sequence.

For any abelian sheaf F on XNis or Xét, we have the following two

coniveau spectral sequences:

Ep,q1,ét(F) :=
⊕

x∈Xp∩Xs

Hp+q
x (Xét, F) =⇒Hp+q

Xs
(Xét, F)

Ep,q1,Nis(F) :=
⊕

x∈Xp∩Xs

Hp+q
x (XNis, F) =⇒Hp+q

Xs
(XNis, F).
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Proposition 5.4.2. We have the following isomorphisms:

(i) E•,11,ét(WmΩd+1
X|D,log)∼= E•,11,ét(WmΩd+1

X,log);

(ii) E•,01,Nis(WmΩd+1
X|D,log)∼= E•,01,ét(WmΩd+1

X|D,log).

Proof. This is a local question. The first claim follows by the same

argument as in Proposition 3.3.2, and the second as in Proposition 3.3.3.

By purity [Shi07] the complex E•,11,ét(WmΩd+1
X,log) is isomorphic to the Kato

complex C1,0(Xs, Z/pmZ(d)) (up to a shift), that is, to⊕
y∈X0

s

Hd+1
y (Xs,ét, Z/pmZ(d))→

⊕
y∈X1

s

Hd+2
y (Xs,ét, Z/pmZ(d))→ · · ·

· · · →
⊕
y∈Xa

s

Hd+a+1
y (Xs,ét, Z/pmZ(d))→ · · ·

→
⊕
y∈Xd

s

H2d+1
y (Xs,ét, Z/pmZ(d)),

where Z/pmZ(d) = νdm,Xs [−d] and where the last term is placed in degree 0.

Theorem 5.4.3. The canonical map

Hd+1
Xs

(XNis, WmΩd+1
X|D,log)→Hd+1

Xs
(Xét, WmΩd+1

X|D,log)

fits into an exact sequence of finite groups

H2(C(X•s , Z/pmZ)) → Hd+1
Xs

(XNis, WmΩd+1
X|D,log)

→ Hd+1
Xs

(Xét, WmΩd+1
X|D,log)→H1(C(X•s , Z/pmZ))→ 0.

Proof. By the coniveau spectral sequence for F =WmΩd+1
X|D,log on Xét,

we have the following exact sequence

Ed−1,1
2,ét (F)→ Ed+1,0

2,ét (F)→Hd+1
Xs

(Xét, F)→ Ed,12,ét(F)→ 0.

By Proposition 5.4.2, we have

Ed+1,0
2,ét (F) = Ed+1,0

2,Nis (F) =Hd+1
Xs

(XNis, F).

Moreover combining with Theorem 5.2.1, we obtain

Ed−1,1
2,ét (WmΩd+1

X|D,log) = Ed−1,1
2,ét (WmΩd+1

X,log) =H2(C(X•s , Z/pmZ));

Ed,12,ét(WmΩd+1
X|D,log) = Ed,12,ét(WmΩd+1

X,log) =H1(C(X•s , Z/pmZ)).
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Remark 5.4.4. In particular, if X has good reduction, then

Hd+1
Xs

(XNis, WmΩd+1
X|D,log)∼=Hd+1

Xs
(Xét, WmΩd+1

X|D,log).

The p-primary part of class field theory in this setting can be reformulated

as follows:

Theorem 5.4.5. There is a canonical map

ρX,D : C(X, D;Xs)/p
m→ πab

1 (X, D)/pm,

which fits into an exact sequence of finite groups

H2(C(X•s , Z/pmZ)) → C(X, D;Xs)/p
m→ πab

1 (X, D)/pm

→ H1(C(X•s , Z/pmZ))→ 0.

In particular, we have

H2(C(X•s , Z/pmZ)) → lim←−
D

(C(X, D;Xs)/p
m)→ πab

1 (U)/pm

→ H1(C(X•s , Z/pmZ))→ 0.

Proof. The map is defined by the following composition:

C(X, D;Xs)/p
m
∼=//

ρX,D ((

Hd+1
Xs

(XNis,KMd+1,X|D)/pm
∼=// Hd+1

Xs
(XNis, WmΩd+1

X|D,log)

��

πab
1 (X, D)/pm Hd+1

Xs
(Xét, WmΩd+1

X|D,log)
∼=oo

where the second isomorphism in the upper row is obtained in analogy

to the proof of Corollary 3.3.4. Theorem 5.4.5 now is a consequence of

Theorems 5.4.3, 5.1.2 and 5.4.1.
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