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Measurements in high-speed flows are difficult to acquire. To maximise their utility, it
is important to quantify the preceding events that can influence a sensor signal. Flow
perturbations that are invisible to a sensor may prevent the detection of key physics.
Conversely, perturbations that originate away from a sensor may impact its signal at
the measurement time. The collection of the latter perturbations defines the domain
of dependence (DOD) of the sensor, which can be evaluated efficiently using adjoint-
variational methods. For Mach 4.5 transitional flat-plate boundary layers, we consider
the DOD of an instantaneous and localised wall-pressure observation, akin to that by a
piezoelectric probe. At progressively earlier times prior to the measurement, the DOD
retreats upstream from the probe, and the sensitivity to flow perturbations expands spatially
and is amplified. The expansion corresponds to a wider region where initial disturbances
can influence the measurement, and the amplification is because these perturbations grow
during their forward evolution before reaching the probe. The sensitivity has a wavepacket
structure concentrated near the boundary-layer edge, and a portion that radiates into the
free stream. The DOD is further interpreted as the optimal initial perturbation with unit
energy that maximises the norm of the measurement, establishing a link to transient-
growth analysis. We test this formulation for a laminar condition and contrast the sensor
dependence on different components of the state vector. When the boundary layer is
transitional, we adopt the general formulation to assess the impact of sensor placement
within the transition and turbulent zones on the DOD, and we characterise the flow
disturbances that most effectively influence the measurement in each regime.
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1. Introduction
Measurements in transitional high-speed flows are challenging to acquire due in part to
the short time and length scales of the instability waves, and because some quantities are
impossible to probe directly and must be evaluated from other state variables. Additionally,
the sensor placement plays an important role. For example, boundary-layer measurements
near the onset of linear instability may suffer from low signal-to-noise ratios while
probes far downstream may be sampling the nonlinear or chaotic turbulent regime. Data-
assimilation techniques have recently been demonstrated as a viable approach to interpret
and augment experimental measurements using numerical simulations. The success of
data assimilation, however, hinges on the extent to which measurements depend on
the precursor flow events. We therefore seek to evaluate the domain of dependence of
a measurement, which describes all possible earlier-in-time flow disturbances that can
alter a sensor signal. In other words, the domain of dependence accounts for when,
where and what perturbations can affect the measurement (Zaki 2025). In this work,
we propose a framework to characterise the back-in-time domain of dependence of a
measurement in high-speed flow, and to compare the sensitivity of the measurements with
different components of the state vector. Our approach is based on an adjoint-variational
mathematical formalism.

The difficulty of acquiring resolved spatio-temporal measurements in transitional high-
speed boundary layers has motivated significant theoretical and computational activities.
These efforts have largely adopted a forward perspective, attempting to predict the
emergence and evolution of disturbances, and ultimately the onset of turbulence. The
success of linear-stability theory for the prediction of the most unstable waves is
particularly notable (Mack 1975; Malik & Spall 1991; Fedorov 2011). These methods
have been extended from the study of parallel base states to spreading boundary layers
(Bertolotti & Herbert 1991; Zuccher et al. 2006), sensitivity analyses (Park & Zaki
2019), complex geometries (Kocian et al. 2013; Moyes & Reed 2019) and nonlinear
effects (Chang et al. 1991, 1993). To predict transition to the fully turbulent state, direct
numerical simulations (DNS) are considered the highest fidelity approach. While DNS
are computationally costly, they are feasible since the range of scales in the transitional
regime can be resolved at relevant Mach and Reynolds numbers. The challenge in
forward approaches lies in how to prescribe initial and boundary conditions, which have
a significant impact on the downstream flow dynamics, including the amplification of
instability waves, their nonlinear interactions and the particular transition scenario that
is realised. Previous efforts have examined canonical transition mechanisms, for example
by simulating a primary wave and its secondary instability through fundamental or sub-
harmonic resonance (Franko & Lele 2014; Hader & Fasel 2019). A qualitatively different
approach adopted by Hader & Fasel (2018) was to introduce white-noise forcing in
order to initiate boundary-layer instabilities. A third strategy is to perform tunnel-scale
computations in order to account for the noise from the boundary layers entering the test
section (Duan et al. 2019), although this strategy is quite costly and is not applicable to
flight tests.

Experiments also examine the forward flow evolution. For example, gas in a high-
pressure tank is expanded in a Ludwieg tube to instantiate flow over the test article
(Kimmel et al. 2017; Kennedy et al. 2022). The experimentalist is faced with unique
challenges associated with characterisation of the flow environment and the limitations
imposed by available measurement techniques (Parziale et al. 2014; Hofferth & Ogg 2019;
Kostak et al. 2019; Mamrol & Jewell 2022). In addition, the acquired sensor data must be
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interpreted in order to extract, or at times infer, quantities of interest. For example, the finite
sensor size of a picoCoulomb (PCB) probe has a filtering effect (Kennedy et al. 2018), and
hence corrections must be adopted when evaluating spectra (Corcos 1963; Lueptow 1995).
When the amplitudes of disturbances upstream of the first sensor is of interest, it must
be estimated using a model (Marineau et al. 2014). In the context of schlieren imaging,
Kennedy et al. (2018) adopted a form of Taylor hypothesis to construct a time series
from temporally under-resolved but spatially resolved measurements. Later efforts utilised
an ultra-high frame rate imaging to resolve the flow (Butler & Laurence 2021, 2022),
and the images are then processed to extract characteristics of the instability waves. For
complex geometries, measurements from different modalities (e.g. PCB sensors, infrared
thermography, etc.) are combined to construct a more complete description of the flow
(Berridge et al. 2019; Kostak & Bowersox 2021). Interpretation of the measurements can,
however, be obscured by uncertainties (Schneider 2015).

The interpretation of measurements can be regarded as the inverse, or observer,
perspective, where one starts from probe data and attempts to identify the origin of
the observations. A rigorous mathematical framework for such interpretation is data
assimilation (Law et al. 2015; Asch et al. 2016), which attempts to reduce uncertainty
by exploiting the measurements themselves. The basic idea is to use the sensor data as
targets during the search for uncertain simulation parameters, such that the computations
can reproduce the measurements (Zaki & Wang 2021). Once the unknown simulation
parameters are discovered, the computational predictions provide a complete description
of the flow, beyond the original sensor data. Data assimilation can thus augment spatio-
temporally under-resolved measurements (Li et al. 2020; Du et al. 2023), estimate
unknown parameters (Mons et al. 2016, 2021), predict quantities of interest that cannot
be directly measured (Loose & Heimbach 2021; Clark Di Leoni et al. 2023) or forecast
the dynamics beyond the measurement horizon (Stammer et al. 2016). The simulations
themselves attain a level of fidelity that is not possible without the measurements. These
ideas are actively being pursued in basic research related to transitional (Buchta & Zaki
2021) and turbulent flows (Wang & Zaki 2021). Applications to high-speed transitional
flows have demonstrated the capacity of these techniques to estimate the entire flow field
from wall-pressure data from Mach 6 flow over a cone (Buchta et al. 2022).

The success of the assimilation directly hinges on the dependence of available
measurements on the unknown parameters, for example, the dependence of downstream
measurements in a boundary layer on upstream events in the flow. It is important to
determine where, when and what flow perturbations would impact a specific observation,
or in other words, analyse the domain of dependence (DOD) of the measurement data.
The adjoint to the forward governing equations are an efficient approach to evaluate
sensitivities (Lockwood & Mavriplis 2010; Poulain et al. 2024), and will be adopted
herein to evaluate the DOD of a measurement as a function of backward time. This
idea was briefly introduced for a wall-stress measurement in incompressible flow (Wang
et al. 2022), but has not been pursued in depth or in the context of high-speed flows. The
notion of a measurement DOD in compressible flow is mathematically more nuanced and
involves unique physics, for example due to the distinction between acoustic, vortical and
entropic disturbances. In transitional hypersonic boundary layers, surface measurements
are commonly performed and used to characterise the flow state. However, it is difficult to
unambiguously differentiate the sensitivity of the measurements to potential upstream and
earlier in time events. In addition, some upstream disturbances may not at all influence a
wall-pressure sensor, or may only do so indirectly through the dynamics of its evolution to
the sensor location at the measurement time.
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The idea of the DOD of a measurement can be helpful in the design of measurement
campaigns, as it can provide guidance regarding which quantities to monitor, where to
place sensors and how to interpret the data effectively (Wheaton et al. 2021). For instance,
the DOD can identify regions of the flow and types of disturbances that have the most
significant influence on the sensor data. This knowledge can then be used to target these
effects, thereby improving the accuracy and reliability of the data. Recent examples
from data assimilation have also demonstrated that sensor placement can be optimised
to reduce the uncertainty in the solution of the data-assimilation problem (Mons et al.
2019; Buchta & Zaki 2021).

The present work introduces the formulation of the DOD of a point observation in high-
speed boundary layers, using an adjoint-variational method. A schematic representation
is provided in figure 1, which compares the conventional forward and herein formulated
adjoint approach. In the former, a new computation or experiment is required to assess
the influence a disturbance on the sensor. In contrast, using a single adjoint computation,
we can define the DOD of the sensor and the influence of any potential disturbance on
the measurement. The adjoint approach thus provides significant computational efficiency,
without the requirement for multiple forward simulations or optimisation of a cost function
as usually encountered in data-assimilation problems. A wall-pressure measurement is
used as an example to develop and demonstrate the approach. Three positions within
the development of the flow are considered: (a) the early laminar regime; (b) the
nonlinear regime preceding transition; (c) the turbulent region. The structure of the
paper is designed as follows. In § 2, we develop the mathematical formulation. In § 3.1,
we present results in the laminar region, for a parallel boundary layer. In § 3.3, the
analysis is performed for the spatial boundary layer, and the three sensor placements are
contrasted.

2. Theoretical formulation
The DOD of a sensor that is placed in high-speed flow has significant implications for
our capacity to interpret the measurement. In this section, we introduce the theoretical
formulation to characterise an isolated measurement, and adopt wall pressure as a
demonstrative example. However, the formulation is kept general and applicable to
other types of measurements. In order to motivate our approach, we briefly note how
measurements feature in data assimilation, although we do not perform the assimilation in
this work.

The flows of interest are governed by the compressible Navier–Stokes equations. To
aid the presentation, we consider a flat-plate boundary layer as shown schematically
in figure 1. Three regimes are qualitatively distinguished – laminar, transitional and
turbulent – which can be quantitatively demarcated, e.g. based on the wall-friction
coefficient. We adopt the Blasius length as a reference scale L∗ = √

x∗
0μ∗∞/(ρ∗∞U∗∞),

where x∗
0 is the streamwise location at the inflow. The other reference quantities are the

free-stream values of density ρ∗∞, viscosity μ∗∞, conductivity κ∗∞, temperature T ∗∞ and
velocity U∗∞. Using these scales, the non-dimensional governing equations are

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ρu
∂t

+ ∇ · (ρuu) = −∇ p + ∇ · τ ,

∂ E

∂t
+ ∇ · (u (E + p)) = ∇ · (τ · u) + γ

(γ − 1)RePr
∇ · (κ∇T ) ,

(2.1)

1009 A67-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.224


Journal of Fluid Mechanics

y

forward

adjoint

x

y

x

δq0

q0

xm

xm

t

†
τ

q0, δq0
†〈 〈 〈〈= =  δm∂M , δqtm∂q( )tm

(a)

(b)

Figure 1. Schematic of the domain of influence and the DOD in a spatially developing transitional boundary
layer. The dashed lines separate the laminar, transitional and turbulent regions within the flow. Here, xm marks
the location of the pressure sensor. Schematics of the forward perturbation and adjoint evolutions of the flow
field are shown on the top and bottom. The forward-adjoint duality relation between them shows the physical
interpretation of adjoint, i.e. the DOD.

where

τ = 1
Re

μ
(
∇u + (∇u)�

)
+ 1

Re

(
μb − 2

3
μ

)
(∇ · u) I, (2.2)

E = ρ

γ (γ − 1)M2 T + 1
2
ρ||u||2, (2.3)

and the equation of state is
p = ρRT = ρT/

(
γ M2

)
. (2.4)

The Reynolds number based on the Blasius length scale is Re = ρ∗∞U∗∞L∗/μ∗∞,
and that based on streamwise position is Rex = ρ∗∞U∗∞x∗/μ∗∞. The two are related
at the starting position of the domain, Re = √

Rex0 . The Mach and Prandtl
numbers are defined by M = U∗∞/a∗∞ = U∗∞/

√
γ R∗T ∗∞ and Pr = μ∗∞C∗

p,∞/κ∗∞, where
γ = 1.4 is the ratio of specific heats for air, and C�

p,∞ is the free-stream
specific heat at constant pressure. The relationship between the viscosity and the
temperature is modelled by the power law μ = T n , with n = 0.983 as a fit for
Sutherland’s law. The flow state can be expressed in terms of primitive variables,
q = [ρ, u, T ]�, or conserved quantities, s = [ρ, ρu, E]�. The governing equations (2.1)
can then be written compactly as q(t) =N(q0), where N is the compressible Navier–
Stokes operator that maps the initial condition q0 to the state q(t) at time t .

In general, the measurements m can be expressed as m =M(qtm ), where M is a
linear or nonlinear observation operator acting on q, and tm is the measurement time.
For example, if the pressure at a sensor position is of interest, the operator M extracts a
single-point pressure measurement and is defined as

M
(
qtm

) =
∫
V

p(x, tm)δ (x − xm) dV. (2.5)
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The measurements can then be related to the initial state q0 according to

m =M
(
N

(
q0

))
, (2.6)

which highlights that a modification in q0 can alter m.
The assimilation of experimental data in simulations can be formulated as a

nonlinear optimisation. One then searches for the initial flow state q0 whose nonlinear
evolution optimally reproduces available experimental data me. The cost function of this
optimisation is therefore defined in terms of the difference between the estimated and true
observations

J
(
q0

) = 1
2
||m − me||2 = 1

2
||M (

N
(
q0

)) − me||2, (2.7)

which must be minimised; the notation || • || indicates vector norm in Euclidean space.
Evidently, the solution of the data-assimilation problem depends on the gradient of J with
respect to q0, or the sensitivity of the measurements to variations in the initial flow state.
While this gradient vanishes at optimality, it must be finite away from the true solution for
the data assimilation to be successful. Conversely, if the observations are not sensitive to
changes in the flow state, it is futile to attempt the optimisation problem.

2.1. Measurement domain of dependence
While m typically comprises multiple observations, the analysis benefits from isolating
a single measurement that is denoted by the scalar m. This focused approach allows
more precise characterisation of an individual measurement, and can be repeated for an
ensemble of observations. The derivation of the measurement DOD starts by perturbing
the initial state and evaluating the change in the cost function (2.7). In this regard, the
DOD is equivalent to the sensor sensitivity which is the terminology adopted in data
assimilation where the objective is to minimise the cost. As such, both terms can be used
interchangeably, although we prefer ‘domain of dependence’ because we are not concerned
with cost minimisation but rather characterisation of the sensor itself. Using the Fréchet
derivative, the variation in the cost is given as

δ J = [
M

(
N

(
q0

)) − me
] 〈(

∂M
∂q

)
tm

, δqtm

〉

= [
M

(
N

(
q0

)) − me
] 〈(

∂M
∂q

)
tm

,Lqδq0

〉
. (2.8)

The inner product in (2.8) follows the definition of Chu’s energy (Chu 1965; Hanifi
et al. 1996), which is designed to include both kinetic and potential energy from
compression and heat exchange, with appropriate coefficients to exclude the effect of
conservative compression. This form of energy guarantees a monotonically non-increasing
total energy in a uniform, homogeneous medium at rest. This energy inner product can be
expressed as〈

δq1, δq2
〉 = ∫

V
δq�

1 Ξδq2 dV

= 1
2

∫
V

[
R

T

ρ
δρ1δρ2 + ρδu1 · δu2 + R

γ − 1
ρ

T
δT1δT2

]
dV, (2.9)

where ρ and T are averaged quantities. In a developing boundary layer, averaging is
performed in the spanwise direction and in time, which can be denoted as q = qz,t .
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The matrix Ξ contains the weights that are required to calculate the total energy from
the perturbation state vectors. The energy norm is most conveniently formulated in terms
of the primitive variables, q = [ρ, u, T ]�. When conserved variables s = [ρ, ρu, E]� are
adopted, the associated weight matrix must be adopted, which can be derived from the
transformation between state vectors (see Appendix A).

The term (∂M/∂q)tm will be referred to as the measurement kernel. In order to clarify
its nature, we consider the example of a pressure measurement, where p = ρT /(γ M2).
The derivative of the measurement operator with respect to the flow state, at the
measurement time tm , is given by(

∂M
∂q

)
tm

= 2
[

T

T
ρ, 0, 0, 0, (γ − 1)

ρ

ρ
T

]�
δ (x − xm) . (2.10)

This expression is different from taking the derivative of pressure with respect to the
primitive variables. Instead, it is the Fréchet derivative that takes into account the weight
matrix in the definition of the inner product, namely δm = 〈

(∂M/∂q)tm , δqtm

〉
.

The last equality in (2.8) introduced the linearised Navier–Stokes operator Lq , where
the linearisation is performed around the base solution, i.e.

δqtm =N(q0 + δq0) −N(q0) =Lqδq0, (2.11)

for a small initial perturbation δq0. Using integration by parts, we can write (2.8) as

δ J = [
M

(
N

(
q0

)) − me
] 〈(

∂M
∂q

)
tm

,Lqδq0

〉

= [
M

(
N

(
q0

)) − me
] 〈

L†
q

(
∂M
∂q

)
tm

, δq0

〉
, (2.12)

where L†
q represents solving the adjoint equations. The gradient, or Fréchet derivative, of

the cost with respect to the initial state is therefore

∂ J

∂q0
= [

M
(
N

(
q0

)) − me
]
L†

q

(
∂M
∂q

)
tm

= [
M

(
N

(
q0

)) − me
]

q†
0. (2.13)

The last equality is the adjoint map

q†
0 =L†

q

(
∂M
∂q

)
tm

=L†
q q†

tm , (2.14)

which represents solving the adjoint equations backward in time, from t = tm to
t = 0. Specifically, starting from the measurement kernel, q†

tm = (∂M/∂q)tm , the adjoint
equations are evolved back in time to obtain q†

0, which for our purposes is the most
important contribution to the gradient of the cost function (2.13).

It is clear from (2.13) that the gradient of the cost function vanishes at the true solution
q0 = q0,e, since M(N(q0,e)) = me. One interesting implication is that the properties of
the cost function at optimality are encapsulated in its Hessian

∂2 J

∂q0∂q0
=

(
L†

q

(
∂M
∂q

)
tm

) (
L†

q

(
∂M
∂q

)
tm

)
+ [

M
(
N

(
q0,e

)) − me
]︸ ︷︷ ︸

=0

L†
qL†

q
∂2M

∂qtm ∂qtm

= q†
0q†

0. (2.15)
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In other words, at the special optimal state, the Hessian matrix is the cross-correlation of
the initial adjoint field which is generated from the observation kernel (Wang et al. 2022).

We now return to the general meaning of the adjoint state, not necessarily at optimality.
An important interpretation of the adjoint field is that it measures the sensitivity of
the measurement to a perturbation in the initial condition. To highlight this connection,
consider an infinitesimal deviation in the initial state δq0. The associated perturbation in
the measurement is

δm =
〈(

∂M
∂q

)
tm

, δqtm

〉
=

〈(
∂M
∂q

)
tm

,Lqδq0

〉
, (2.16)

which we re-write in terms of the adjoint field according to

δm =
〈
L†

q

(
∂M
∂q

)
tm

, δq0

〉
=

〈
q†

0, δq0

〉
. (2.17)

This expression relates perturbations to the initial condition δq0 to variations in the
observation at the sensing location and time, δm. In other words, the adjoint field at the
initial time is the sensor sensitivity, q†

0 = ∂m/∂q0. Taken together, (2.16) and (2.17) define
the forward-adjoint duality relation

δm =
〈(

∂M
∂q

)
tm

,Lqδq0

〉
=

〈
q†

0, δq0

〉
. (2.18)

The schematic in figure 1 illustrates the above relations, (2.16) and (2.17), and the
notation of duality (2.18). To evaluate a deviation in the measurement δm without the aid of
the adjoint, numerous forward computations must be performed, one for each perturbation
δq0 (2.16). This approach is computationally costly, and becomes intractable for very high-
dimensional problems. In contrast, (2.17) shows that the same δm can be predicted for any
initial disturbance using a simple inner product with a particular adjoint field. This specific
adjoint is the back-in-time evolution from the measurement kernel, and the associated
computational cost is a single adjoint simulation. Once q†

0 is obtained, it can be regarded as
the Riesz vector linking the perturbations in the measurement and in the initial flow state.
Perturbations outside the support of the adjoint field at t = 0 or within it but orthogonal to
q†

0 have no impact on the sensor at the measurement time. Conversely, only measurements
within the support of q†

0 and with a finite projection onto this field can alter the sensor
signal at the measurement time. The most effective initial disturbance in this regard is one
that is aligned with the adjoint field. This adjoint field thus defines the sensitivity of the
sensor to the antecedent flow events, or its DOD.

The duality relation (2.18) is foundational to the solution of inverse problems, or data
assimilation. Consider for example two perturbations that have the same inner product with
the adjoint field; they will yield the same impact on the sensor signal at the measurement
time, and are thus indistinguishable by a single probe. This examples exposes the potential
non-uniqueness of the solution of the inverse problem and the benefit of employing diverse
sensor modalities. Our interest in the present work is not, however, data assimilation.
Instead, our primary focus is on the interpretation of the adjoint field that is initiated from
the measurement kernel as the sensor DOD.

The adjoint equations are notably dependent on the choice of state variables and the
specific definition of the inner product. For example, the adjoint equations may be derived
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from conserved variables and using a standard dot product (e.g. Vishnampet Ganapathi
Subramanian 2015)

[s1,Ls s2] =
∫
V

s�
1 Ls s2 dV=

∫
V

(
L‡

s s1

)�
s2 dV=

[
L‡

s s1, s2

]
. (2.19)

Here, the square brackets denote a standard dot product without any additional weighting.
The adjoint operators L†

q in (2.16) and L‡
s in the above equation are different, and so are

their associated adjoint variables. The relation between the two definitions of the adjoint
is provided in Appendix A.

2.2. Eigen-representation of measurement domain of dependence
The above formulation of sensor sensitivity is general, and can be adopted with any type of
measurement and in complex flow configurations. In canonical flows, for example a flat-
plate laminar boundary layer, the formulation can be expressed in the language of linear-
stability theory (LST). Here, we will demonstrate this connection in the temporal setting,
where the boundary layer is assumed to be locally parallel, and the perturbations evolve
in time. The adjoint evolution (2.14) thus becomes an initial value problem starting from
the measurement kernel, q†

tm = (∂M/∂q)tm . The solution can be expressed in terms of an
appropriate basis, for example the eigenfunctions of the temporal linear-stability operator
or its adjoint. For brevity, we only show the formulation for the former choice, which is
sufficient and eliminates the dependence on constructing an accurate adjoint solver that
satisfies the forward-adjoint duality relation.

With the locally parallel assumption for the base flow, we can adopt a Fourier
representation of variables in the homogeneous streamwise and spanwise directions

δq0(x) =
∫

kz

∫
kx

δq̂0(y, kx , kz)eikx x eikz zdkx dkz,

q†
0(x) =

∫
kz

∫
kx

q̂†
0(y, kx , kz)eikx x eikz zdkx dkz .

(2.20)

We will restrict our attention to a single horizontal wavenumber vector κ = (kx , kz), and
omit these arguments to simplify the notation. We further expand the wall-normal profiles,
δq̂0(y) and q̂†

0(y), in terms of the eigenfunctions q̃(y) of the forward temporal-stability
problem

δq̂0(y) =
∑

n

an q̃(n)(y) +
∫

ω

aω q̃(ω)(y)dω,

q̂†
0(y) =

∑
n

bn q̃(n)(y) +
∫

ω

bω q̃(ω)(y)dω.

(2.21)

The summation is performed over the discrete modes, and the integration is over the
continuous branches parameterised by ω, where dω represents the measure associated
with the continuous branch on the ω plane. Numerical evaluation of the linear-stability
eigen-modes is influenced by domain height and grid resolution (Fedorov & Tumin 2011;
Poulain et al. 2024), and must therefore be verified for convergence. The coefficients
in the above expansions are denoted a and b, for the forward and adjoint states,
respectively. The dependence of the eigenmodes (q̃, ω) and of the coefficients (a, b) on the
wavenumber κ is implicit in the above expressions. Substituting the expansion of the initial
perturbation δq̂0(y) in the linearised forward equations, and using the bi-orthogonality of
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the eigenfunctions, we can derive the following expression for the forward field at the
measurement time tm :

δq̂(y, tm) = L̂qδq̂0 =
∑

n

ane−iωntm q̃(n)(y) +
∫

ω

aωe−iωtm q̃(ω)(y)dω. (2.22)

The analytical expression involves all the discrete and continuous-branch modes.
Numerically, a finite number of modes are retained and the eigenfunctions are arranged
as the column vectors of matrix Q̃. In the discrete form, the forward perturbation at the
initial and measurement times (δq̂0 and δq̂tm ), and the adjoint field q̂†

0(y), are represented
as

δq̂0(y) = Q̃a, δq̂(y, tm) = Q̃Λtm a, q̂†
0(y) = Q̃b, (2.23)

where Λ is a diagonal matrix with elements e−iω.
We substitute the above expressions in the spectral form of forward-adjoint duality (2.18)

δm̂ =
〈(

∂M
∂q

)
tm

, L̂qδq̂0

〉
=

〈
q̂†

0, δq̂0

〉
, (2.24)

and obtain

OΛtm a = bHGa. (2.25)

The matrix O has j columns, each corresponding to the observations o j = 〈
∂M/∂qtm , q̃ j

〉
evaluated from the j-eigenfunction. In the case of one observation, e.g. when observing
the wall pressure at time tm , matrix O has a single row with O1 j = p̃ j

∣∣
wall . The matrix

Gi j = 〈q̃i , q̃ j 〉 is the Grammian, evaluated using the energy inner product of each pair
of forward eigenmodes. Equation (2.25) is true for any arbitrary choice of the initial
disturbance, and hence any choice of a. As a result

b = G−1 (
Λtm

)H OH, (2.26)

and the adjoint field can be evaluated from

q̂†
0 = Q̃G−1 (

Λtm
)H OH. (2.27)

The above representation of the adjoint fields can be related to the theory of non-modal,
or transient, energy amplification from linear-stability analysis. In the original transient-
growth formulation, we seek the optimal initial perturbation with unit energy, which
maximises the energy E= 1/2||δq̂||2E = 1/2〈δq̂, δq̂〉 at a target time. In a similar vein,
we can seek the optimal initial perturbation with unit energy that maximises the change in
the measurement

1
2
|δm̂|2 = 1

2

〈(
∂M
∂q

)
tm

, L̂qδq̂0

〉2

= 1
2

aH (
Λtm

)H OHOΛtm a, (2.28)

which is equivalent to maximising

max
δq̂0

1
2 |δm̂|2
||δq̂0||2E

= 1
2

max
α

aH
(
Λtm

)H OHOΛtm a

aHGa
. (2.29)
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Using a Cholesky decomposition of G = FFH, we write

max
δq̂0

1
2 |δm̂|2
||δq̂0||2E

= 1
2

max
α

aHFF−1(Λtm )HOHOΛtm F−HFHa

aHFFHa

= 1
2

max
α

||OΛtm F−HFHa||2
||FHa||2 = 1

2
||OΛtm F−H||2.

(2.30)

When O has multiple rows (multiple measurements), the above formulation requires
singular value decomposition of the matrix OΛtm F−H. When only one measurement is
taken, O has one row, and the maximum variation in the observation is achieved when FHa
is aligned with (OΛtm F−H)H. Equivalently, the optimal coefficients, which we denote ao,
are chosen such that

FHao ∝
(

OΛtm F−H
)H

, (2.31)

and therefore

ao ∝ G−1 (
Λtm

)H OH = b, (2.32)

which agrees with (2.27).
Expressed in the language of optimal transient growth, the adjoint field associated with

the measurement kernel is the optimal direction for the initial perturbation to maximally
influence the measurement. The derivation demonstrated the equivalence for a single
observation data, and is straightforward to generalise when multiple observations are
provided and O has multiple rows. Another benefit of using this formulation is that we
can obtain the coefficients ao when projecting the adjoint sensitivity onto the forward
modes. The results are identical to invoking the bi-orthogonality condition between the
forward and adjoint eigenmodes.

This formulation is introduced to establish a connection to the existing linear-stability
literature and applications in canonical flows. For complex configurations, e.g. transitional
boundary layers or complex geometries, the original form of the measurement DOD that
was introduced in § 2.1, e.g. (2.18), should be adopted.

3. Results
The DOD of a measurement, for example from a wall-pressure probe, naturally depends
on the flow within which the sensor is placed. We will adopt high-speed, zero-pressure-
gradient, laminar and transitional boundary layers as base states, and consider a wall-
pressure measurement in order to demonstrate the ideas introduced in the previous section.
The free-stream Mach number is M = 4.5, and the Reynolds numbers span the range
1800 ≤ √

Rex ≤ 2800. We start with a qualitative discussion based on the transitional case
and then take a step back to analyse a simpler laminar parallel boundary layer, and lastly
return to the more complex transitional flow.

The base flows are computed using direct numerical simulations (Vishnampet et al.
2015), and the adjoint computations are performed using the discrete-adjoint approach
in order to ensure that duality relations are satisfied to machine precision (Vishnampet
et al. 2015; Wang et al. 2019). The flow domains are three-dimensional rectangular boxes,
with periodic boundary conditions in the spanwise direction (z). At the bottom surface,
iso-thermal and no-slip conditions are enforced. The hot wall temperature is prescribed at
4.21 times the edge value, which is similar to the adiabatic wall temperature. At the top
boundary, a far-field pressure condition with a sponge region is adopted, where the state is
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Base flow and Adjoint Disturbance Inflow Sensor
case designation Solver energy, Ep

√
Rex0

√
Rexm

Parallel (P) ANS - 2000 2000
Parallel (P-LST) LST - 2000 2000
Transitional (T) ANS 1.44 × 10−5 1800 2000, 2350, 2650

Table 1. Flow configurations for computing the DOD using ANS or (LST. The base flow is either parallel
or a spatially developing transitional boundary layer with initial disturbance energy Ep . The inflow and
measurement Reynolds numbers are reported.

Base flow Domain size Grid points
and designation (Lx , L y, Lz) (Nx , Ny, Nz)

Parallel (P) (400, 200, 300) (256, 150, 150)

Transitional (T) (2553, 200, 250) (1703, 150, 180)

Table 2. Domain sizes and grid numbers for solving the adjoint Navier–Stokes equations for different base
flows, including parallel and transitional boundary layers.

gradually adjusted to the free-stream values within a distance of fifty spatial units. When
we consider parallel boundary layers (cases P and P-LST in table 1), the Reynolds number
is constant

√
Rex0 = 2000 and periodicity is enforced in the streamwise direction (x). For

the spatial boundary layer (case T in table 1), the inflow is prescribed as a superposition of
a Blasius base state at

√
Rex0 = 1800 and instability waves. The lower Reynolds numbers

at the inflow allow us to place a sensor at
√

Rex0 = 2000, which can be compared with
the parallel-flow configuration. The instability waves are Fourier modes in the spanwise
direction, harmonic in time and their wall-normal profiles are eigenfunctions of the linear-
stability operator. The modal amplitudes were optimised to achieve the earliest possible
transition location when the total disturbance energy, here using Chu’s norm, is Ep =
1.44 × 10−5 (Jahanbakhshi & Zaki 2019). For each of the cases in table 1, the domains
of dependence for wall-pressure sensors at

√
Rexm are computed either in physical space

using the adjoint Navier–Stokes equations (ANS) or in spectral space using the linear-
stability formulation (LST), according to the formulations in § 2.1 and § 2.2, respectively.
The computational parameters are provided in table 2.

The example from the transitional case T is shown in figure 2. The grey contours
represent the streamwise velocity, from DNS. The flow is initially laminar near the inflow
(
√

Rex0 = 1800), is progressively more perturbed downstream and undergoes transition to
turbulence near

√
Rex = 2400. Superimposed on the forward field are colour contours of

the adjoint density, ρ†, due to point measurement of wall pressure when the probe is placed
within the turbulent flow at

√
Rexm = 2650. The four panels display ρ† at backward times

τ = tm − t = {100, 814, 1628, 2442}. The DOD of the measurement, which is represented
by the support of ρ†, starts from the adjoint impulse at the probe location and expands in
backward time. At early backward time τ = 100, the adjoint field is contained within the
edge of the turbulent boundary layer, and breaches it by τ = 814 (figure 2b). The pattern
of ρ† in the free stream resembles spherical wave fronts that propagates upstream. When
the adjoint traverses from the turbulent to the laminar region in the boundary layer, it has
an elongated streamwise appearance (figure 2c,d) and a more regular, harmonic pattern.
In panel (d), at τ = 2442, distinct waves with a larger wavelength compared with earlier
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1800
0

40y

80
0

40y
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0
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0

40y

80

0 ≤ u ≤ 1

2000 2200 2400 2600 2800

–0.05 ≤            ≤ 0.05ρ†

max|ρ |†

�Rex

(a)

(b)

(c)

(d)

Figure 2. Streamwise velocity 0 ≤ u ≤ 1 (grey contours) and adjoint density −0.05 ≤ ρ†/|ρ†|max ≤ 0.05
(colour contours) for case T, plotted at z = 0 and (a-d) τ = tm − t = {100, 814, 1628, 2442}.

times are concentrated near the edge of the boundary layer. The trends identified in figure 2
will be revisited once simpler configurations are examined in detail.

Just as the forward evolution of a disturbance in a boundary layer depends on whether
the flow is laminar, transitional or turbulent, the evolution of the adjoint field from a sensor
probe has distinct behaviours in these three regimes. It is therefore instructive to start from
the laminar configuration, specifically, we will consider a probe placed within a temporal
laminar boundary layer in § 3.1, and examine the connection to transient growth in § 3.2.
We will then consider a spatial, transitional boundary layer in § 3.3, where we evaluate the
impact of the sensor placement on the probe sensitivity, including when it is placed within
the turbulent region similar to figure 2.

3.1. Measurement domain of dependence in laminar boundary layer
We consider the parallel, laminar boundary layers at M = 4.5 and

√
Rex = 2000, with

designations P and P-LST in table 1. The former refers to solving the adjoint Navier–Stokes
equation to study the DOD of a pressure measurement, while the latter is in reference
to using the linear-stability operator (in spectral space) and its adjoint. For the adjoint
Navier–Stokes solver, we employ periodic boundary conditions in the streamwise direction
while freezing the base flow, which enables us to maintain consistency between the two
approaches. The streamwise domain length was designed to ensure that the allowable
wavelengths in the ANS simulations match those evaluated in the temporal LST. By
examining a laminar case, we can compare and verify the adjoint Navier–Stokes and LST,
and clearly identify properties of the wall-pressure sensor.

Iso-surfaces of the adjoint fields from case P are plotted in figure 3, at different
backward times, τ = tm − t . Each component of the adjoint state vector is normalised
by its maximum value, and the boundary-layer edge is marked by a transparent plane
located at y = δ99 = 13.9. According to (2.16), the inner product between the adjoint
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y

z x

ρ†/|ρ†|max

u†/|u†|max

T †/|T †|max

p†/|p†|max

v†/|v†|max

w†/|w†|max

τ = 225
τ = 180

τ = 135
τ = 90

τ = 45 110

–0.02 0.02
–110

110
–110

110

–110

110
–110

110
–110

110
–110

Figure 3. Adjoint fields starting from an impulse of pressure at the wall of a compressible temporal
boundary layer. Iso-surfaces of different adjoint quantities are shown at backward time τ = tm − t =
{45, 90, 135, 180, 225}.

field and a perturbation in the forward state represents the deviation in the measurement.
Therefore, locations where the adjoint variables attain large magnitudes correspond to
a high sensitivity of the measurement to fluctuations at these locations and in the
corresponding flow component.

The adjoint originates from the wall as a pressure impulse, mathematically modelled as
a two-dimensional Gaussian with standard deviation equals to four Blasius length scales.
Changing the width of the Gaussian in the initial condition, for example decreasing it
to two Balsius length scales, does not affect our findings and the resulting adjoint fields
remain nearly identical. Since the sensor is at the wall, the local flow is subsonic. As such,
in the early adjoint evolution, both upstream and downstream propagation of the adjoint
field are possible. However, once the adjoint has crossed into the supersonic region of
the boundary layer, and at the reverse times shown in figure 3, the dominant structures
are advected upstream. Furthermore, the upstream DOD splits into two regions: one is
contained within the boundary layer and the other is a radiating acoustic wave outside
the boundary layer, the latter representing the sensor sensitivity to incoming perturbations
from the free stream. The alternating pattern of positive and negative values corresponds to
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Figure 4. Energy distribution of adjoint field representing the sensitivity for pressure measurement. The top
curves show the energy growth in the whole computational domain (solid line) and inside the boundary layer
(dashed line), as a function of the backward time τ , normalised by the initial energy of the adjoint E†

t=tm . The
bottom contour shows the energy distribution along the vertical direction at different τ . dashed white line marks
the edge of the boundary layer, δ99.

a forward perturbation leading to an increase or decrease in the sensor measurement. Also
interesting is the complement of this view: disturbances outside the support of the adjoint
field in space–time are cloaked to the sensor. Perhaps more interestingly, even disturbances
within the support of the adjoint field but orthogonal to it, i.e. 〈q†

0, δq0〉 = 0, are cloaked
to the sensor (see 2.18). The design of measurement campaigns can therefore attempt to
capture these unobservable regions and disturbances by use of different sensor placements
and modalities. As such, the DOD offers valuable insight for the design of effective sensor
networks. In Appendix B, we provide an example where we contrast the forward evolutions
of two initially localised, free-stream disturbances: an acoustic and an entropic one. The
former is observable while the latter is entirely cloaked to the sensor. The example also
serves as a validation of the accuracy of our implementation of the adjoint, by verifying
the forward-adjoint duality relation.

A quantitative measure of the adjoint field is its energy

E† =
∫

y
ε†(y) dy =

∫
y

1
2

∫
x,z

ρ||u†||2 + R
T

ρ
ρ†2 + R

γ − 1
ρ

T
T †2dx dz dy, (3.1)

where ε†(y) is the energy integrated over the horizontal plane, and E† is obtained by
further integration in the wall-normal direction. The latter quantity can be integrated over
the boundary-layer height only or the entire domain, in order to quantify the relative
dependence of the sensor on boundary-layer versus free-stream disturbances, as shown
in figure 4a. At early times, the boundary-layer portion (dashed line) is 100 % of the total
energy (solid line). Beyond τ 
 27, this fraction reduces to as little as 60 % at τ = 135,
and subsequently starts to recover at longer reverse times. Figure 4b shows ε†(y) in
backward time τ , and provides a clear interpretation. While contours of ε† are initially
entirely contained within the boundary layer, a portion of the energy breaches δ99 at
τ 
 27 and propagates into the free stream as an adjoint acoustic wave (recall figure 3)
that travels at the speed of sound, as marked in the figure. The part of ε† that remains
within the boundary layer amplifies exponentially at large τ . The highest adjoint energy
is recorded below δ99, around y = 10, which we will later relate to a critical layer at that
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(a) (b.i) (b.ii)
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1

0
0.2
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k z

0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
–1

0

ε†(kx , kz)

max ε†log10
τ = 200τ = 100

Figure 5. (a) Contours of eigenvalues for the most unstable/least stable modes at different (kx , kz). The neutral
curve is plotted with the grey line in the background. (b) Contours of the logarithmic of the normalised energy
in the adjoint fields at different (kx , kz) and different backward times τ = {100, 200}. The neutral curve is
plotted in the black line as a reference.

position. The expansion and amplification of the DOD in backward time imply that a
larger region becomes observable and that the measurement is more sensitive to events
farther away from the probe position. To understand the latter effect, consider a fixed initial
perturbation energy: If the perturbation is close to the sensor, it may have an immediate
impact on the measurement, while perturbations farther upstream can grow though modal
and non-modal mechanisms prior to reaching the probe.

The late-time amplification of ε† near the boundary-layer edge coincides with the wave-
like patterns near δ99 in figure 3, which are most evident in (u†, v†, w†) at τ = {180, 225}.
This observation motivates a spectral decomposition of the adjoint fields. To anchor the
discussion to established knowledge, we first report results from linear-stability analysis of
the temporal boundary layer. At every wavenumber pair (kx , kz), we solve the eigenvalue
problem and identify the most unstable mode. Contours of the modal growth rate are
reported in figure 5(a), where two distinct regions of instability are marked A and B, and
identified by their respective neutral curves. These regions correspond to the familiar first
and second Mack modes (Mack 1984).

The energy-spectral density of the adjoint field is plotted in figure 5(b), as a function of
the horizontal wavenumbers. Superimposed on the contours are the neutral curves (black
lines) from the forward linear-stability analysis, reproduced from figure 5(a). Since the
adjoint field is initialised at τ = 0 as a Gaussian kernel in the homogeneous directions, the
initial energy distribution is also a Gaussian centred around the origin. As the adjoint field
evolves in backward time, distinct growth rates come into play. At τ = 100, the energy
distribution is still concentrated in the low-wavenumber region. However, it is modified
by amplification at wavenumber (kx , kz) = (0.1, 0) which coincides with the first mode
from the forward problem, and by a secondary peak at (kx , kz) = (0.22, 0) within the
Mack second-mode region. At larger backward times, τ = 200, the peak around (kx , kz) =
(0.22, 0) becomes dominant. This description should not be misinterpreted as a banal
restatement of the forward modal instability. Equation (2.27) expressed the adjoint in terms
of the forward modes. One can therefore expect that the most unstable wavenumbers of
the forward dynamics dominate at long times. In the context of the sensor DOD, those
modes will amplify the most during the forward evolution, and may lead to a significant
signature at the sensor. Whether this behaviour materialises in the adjoint is not a foregone
conclusion, and depends on the observation operator which appears in (2.27). In the case
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Figure 6. (a) Solid black lines represent the mode shape of the adjoint fields for the wavenumber pair
(kx , kz) = (0.1, 0) (region A) at backward times (a.i) τ = tm − t = 100 and (a.i i) τ = 200, starting from a
pressure measurement at the wall evaluated using LST with transient growth formulation. Shapes of the most
unstable adjoint mode at the same wavenumber pair in these components are shown in dashed lines. (b) Similar
to (a), but the wavenumber pair is (kx , kz) = (0.2, 0) (region B).

of a wall-pressure sensor, the wall signature of the forward most unstable modes is indeed
sufficient to dominate the sensor sensitivity at long times. In other words, measurements
from wall-pressure sensors in the laminar region of the flow can be accurately assimilated
to predict the upstream second-mode waves, although one should caution that a material
fraction of the sensor signal may be due to incident free-stream waves (see figure 4).

The profiles of the adjoint fields at the peak wavenumbers in regions A and B are
reported in figures 6(a) and 6(b), at two times τ = {100, 200} (top and bottom panels).
These results for sensor DOD were computed using (2.27), namely the transient-growth
formulation, and the profiles are normalised to unit modal energy under Chu’s norm.

The dashed lines in the figures are profiles of the most unstable eigenfunction of the
adjoint LST operator, and are included for comparison.

At both times τ = tm − t = {100, 200}, all components of the sensor DOD (solid curves)
have an appreciable portion in the free stream, except û. As such, a streamwise-velocity
perturbation from the free stream is ineffective at creating a pressure signature at the sensor
position at tm . In all cases, the perturbations in the free stream satisfy the dimensionless
relations for an isentropic acoustic wave (Kovasznay 1953)

|ρ̂†| = M2| p̂†|, |T̂ †| = (γ M2 − 1)| p̂†|, |v̂†| = M| p̂†|. (3.2)

At the larger backward time, the free-stream portion has propagated farther from the
boundary-layer edge at the free-stream speed of sound, 
y = 
τ/M = 100/4.5 ≈ 22.2.
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Within the boundary layer, the DOD profiles have high values around the critical layer
(y = 10), which agrees with the overall energy distribution in figure 4. In other words, the
wall-pressure sensor has high sensitivity to perturbations in this region, especially when
they can amplify for sufficient time prior to reaching the sensor. In addition, the profiles
exhibit a growing resemblance to the most unstable eigenfunction of the adjoint linear-
stability operator. This tendency is particularly pronounced for mode (kx , kz) = (0.22, 0),
within region B. Evolving the adjoint field for an extended temporal duration is essentially
the outcome of repeatedly multiplying it by the adjoint operator, thus progressively
aligning it with the principal adjoint eigenfunctions. The rate of convergence to the
principal adjoint eigenfunction depends on the separation in growth rates between the
least stable modes. Therefore, we observe a considerably faster convergence of the Fourier
components of the adjoint field within region B, relative to A. In addition, while one may
have intuitively expected that the sensor would be most sensitive to the most unstable
forward mode, the reality is different. The sensitivity of the pressure measurement at the
wall is most pronounced along the direction set by the adjoint eigenfunction, which is
a composite of various forward eigenmodes. In reverse time, this adjoint eigenfunction
propagates upstream as an instability wave, with most of its energy concentrated near the
boundary-layer edge. The impact of free-stream acoustic waves also contributes to the
sensor sensitivity. These two effects combine optimally, depending on the measurement
time, to influence the sensor measurement.

3.2. Forward evolution of the sensor DOD in laminar boundary layer
In § 2.2, the measurement DOD was interpreted in the context of transient growth. The
adjoint field at τ = t − tm is the optimal perturbation with unit energy that, in the forward
evolution, maximises the norm of the sensor measurement at t = tm . We examine this
property by prescribing the initial forward perturbation δq̂0 = q̂†

0, and computing its
forward evolution.

As an example, we consider the DOD at (kx , kz) = (0.1, 0), when the measurement is
the wall pressure at tm = 200. This adjoint field is adopted as an initial disturbance, and
figure 7 examines its forward evolution. Figure 7(a) shows side views of the pressure field
at forward time instances t = {0, 100, 200, 300, 400}, with the corresponding wall-normal
profiles plotted in figure 7(b). The initial disturbance (t = 0), which is also the adjoint
profile, clearly comprises two parts: the free-stream acoustic wave and the boundary-
layer component. During the forward evolution, the acoustic wave propagates towards the
wall, traverses the boundary-layer edge, and interacts with the boundary-layer portion.
The outcome maximises the measurement at time t = tm = 200, resulting in the largest
possible norm of the wall-pressure signature. The evolution of the wall-pressure magnitude
is reported in panel (c). As anticipated, the curve peaks at t = tm = 200. This result helps
tie the notion of the sensor DOD, or sensitivity, to the disturbance that maximises the
measurement. The complement to this point of view is also worth reiterating: disturbances
that are orthogonal to the adjoint field have zero impact on the measurement (for an
example, see Appendix B).

When examining the forward evolution of δq̂0 = q̂†
0, it is perhaps most instructive

to express the perturbation field in terms of eigenmodes of the forward operator, q̂†
0 =∑

j b j q̃ j . The coefficients b j are obtained with the aid of the bi-orthogonality relation〈
q̃i , q̃†

j

〉
= σ jδi j , (3.3)
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Figure 7. Forward evolution of the pressure field from an initial disturbance δq̂0 = q̂†
0, at (kx , kz) = (0.1, 0)

(region A). (a) Contours of δp in physical space and (b) wall-normal profiles of δ p̂, at selected time instances
t = {0, 100, 200, 300, 400}. (c) The wall-pressure signature as a function of time. Dashed lines mark the
time instances reported in panels (a,b). (d) Decomposition of the adjoint fields onto the forward eigen-basis.
Larger symbols represent larger coefficient |b j |/||q̂†

0||E of adjoint fields projected onto the forward eigenbasis,
calculated using the expression (2.26).

where δi j is the Kronecker delta. Using the expansion of the adjoint field and bi-
orthogonality, we can write

〈
q̂†

0, q̃†
j

〉
=

∑
i

bi

〈
q̃i , q̃†

j

〉
= σ j b j , b j =

〈
q̂†

0, q̃†
j

〉
〈
q̃ j , q̃†

j

〉 =
〈
q̂†

0, q̃†
j

〉
σ j

. (3.4)

The above projection (3.4) of the sensor DOD onto the forward eigenfunction basis
yields the same result as (2.26), namely b = G−1(Λtm )HOH; we used this equivalence
for numerical verification.

Figure 7(d) provides a representation of the projection coefficients, b j . Each point in
the figure marks an eigenvalue of the forward temporal-stability operator, at (kx , kz) =
(0.1, 0). The sizes of the points represent the magnitudes |b j |/||q̂†

0||E in logarithmic scale,
where the normalisation uses the energy norm of the adjoint field at the initial time. The
largest contribution from a single mode is by the slow acoustic wave, which has the largest
|b j |. Since the slow mode features prominently in the adjoint sensitivity, it is expected to
contribute appreciably to the measurement in a forward evolution. However, this figure also
underscores that the sensitivity is not a single forward mode in isolation, but rather a
superposition of all the shown modes that, together, yields the largest possible outcome at
the measurement. For example, modes along the fast acoustic and slow acoustic continuous
branches individually make a modest contribution to the adjoint sensitivity, as reflected by
their relatively small |b j |. However, they are essential in the expansion. This fact may be
inferred from figure 7(a,b): the second-mode wave does not, for example, account for the
free-stream sensitivity which, as we demonstrate below, makes an appreciable contribution
to the sensor signal.
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Figure 8. (a) The forward evolution of a disturbance equal to the adjoint field from a wall-pressure
measurement at time tm = 200 and wavenumbers (kx , kz) = (0.1, 0). The disturbance is decomposed into the
near-wall (red lines) and outer acoustic (blue lines) parts, and is reported at times t = {0, 100, 200, 300, 400},
normalised to unit initial energy. Panel (b) shows the wall-pressure measurements from the near wall, outer
acoustic and the combined disturbance. All profiles are normalised by eω1,it .

We decompose the adjoint DOD into two parts: the boundary-layer portion and the
outer acoustic wave. This step is achieved by multiplying δq̂0 = q̂†

0 by a hyperbolic
tangent function that approximates a Heaviside function at the edge of the boundary
layer, y = 13.9. This decomposition is motivated by the shape of the full adjoint field
at large reverse time, rather than its eigen-representation which would require special
attention to the treatment of the continuous modes that may bridge the free stream and
the boundary layer. The forward evolution of the inner and outer parts of the profile,
each normalised to unit initial energy, is shown in figure 8(a) (red and blue curves). The
associated wall-pressure signatures are reported in panel (b). The wall-pressure signatures
are normalised by the amplification of the most unstable forward mode, eω1,it . A few
observations are noteworthy: (i) the wall-pressure signature of the boundary-layer portion
is smooth, while the signature of the free-stream portion is more localised around t = tm .
This qualitative difference facilitates distinguishing the two contributions. (ii) The time-
dependent boundary-layer portion is not exponential. As such, this part of the profile is
not solely a second-mode instability, but rather a superposition of waves that are subject
to transient amplification. For reference, purely modal amplification would appear as a
horizontal line on this graph, since the pressure signal is normalised by the maximum
possible modal growth rate. (iii) It is apparent that placing all the energy in either the
boundary-layer portion or in the free-stream acoustic wave alone will not achieve the
highest possible wall signature at the target measurement time, t = tm = 200. (iv) Instead,
the total adjoint field q̂†

0 captures the optimal proportionality of the two parts, which
achieves the maximum, appreciably larger, wall-pressure signature. The ratio of the energy
in the two components, similar to the results in figure 4, is approximately 70 % in the
boundary layer and 30 % in the free stream.

The results in figure 9 are at wavenumbers (kx , kz) = (0.22, 0). The forward evolution
of the inner and outer parts of the profile, each normalised to unit initial energy, is shown
in figure 9(a) in red and blue curves, respectively. The time evolution of the wall pressure
is plotted in panel (b), normalised by eω1,it . Compared with the case with wavenumbers
(kx , kz) = (0.1, 0), the contribution from the boundary-layer portion of the adjoint profile
accounts for the majority of the wall-pressure signature. At long times, the normalised
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Figure 9. (a) The forward evolution of a disturbance equal to the adjoint field from a wall-pressure
measurement at time tm = 200 and wavenumbers (kx , kz) = (0.22, 0). The disturbance is decomposed into the
near-wall (red lines) and outer acoustic (blue lines) parts, and is reported at times t = {0, 100, 200, 300, 400},
normalised to unit initial energy. Panel (b) shows the wall-pressure measurements from the near wall, outer
acoustic, and the combined disturbance. All profiles are normalised by eω1,it .

wall pressure is nearly constant, which indicates that the forward evolution of the adjoint
from large tm aligns with the exponential amplification of the second mode.

The results in this section supplement the interpretation of the DOD of a wall-pressure
sensor in laminar flow, by computing the forward evolution of the DOD field. The free-
stream and boundary-layer portions of the DOD were distinguished in order to stress their
respective contributions and the outcome of their superposition. While the superposition
has the largest impact on the sensor signal at the measurement time, the relative importance
of the two parts depends on the wavenumber of the disturbance. This information can be
particularly important when interpreting wall-pressure measurements in noisy free-stream
conditions.

3.3. Measurement domain of dependence in transitional boundary layer
We now return to the more complex case of a spatially developing, transitional boundary
layer. As noted earlier, the DOD of wall-pressure measurement within the preceding flow
state is a function of the sensor placement, whether it is located in the laminar, transitional
or fully turbulent region of the flow. A spatially developing, transitional boundary layer
enables comparison of these three regimes (cases T in table 1). A sample flow field
from case T is shown in figure 10, where the sensor is positioned at

√
Rexm = 2350,

within the transitional zone, or upstream of the fully turbulent boundary layer. The grey
contours show the forward streamwise velocity at two back-in-time instances relative to the
measurement, at τ ≡ tm − t = 450 and 1600. The colour contours show the DOD of the
sensor, in terms of the adjoint density. Similar qualitative characteristics to the temporal
case are evident in the figure: a free-stream component appears as wave fronts travelling
at the Mach angle and a boundary-layer component elongates and amplifies in backward
time. Properties of the adjoint field will be evaluated and compared for different positions
of the measurement probes, and we will comment on the implication in the context of the
interpretation of the measurements in data assimilation.

For case T, we consider three probe locations within the laminar, transitional and
turbulent regions of the flow, at

√
Rexm = {2000, 2350, 2650}. The first position was

selected to match the Reynolds number of the temporal boundary layer that we discussed
previously, at

√
Rex = 2000. This case then serves as a reference for comparison with
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Figure 10. Grey contours of streamwise velocity for case T, overlaid by colour contours of the adjoint density
from a wall-pressure probe at

√
Rexm = 2350. The two instances correspond to (a) τ = 450 and (b) τ = 1600.

Two other sensor locations,
√

Rexm = {2000, 2650} are marked by transparent probes on the figures. The mean
skin-friction coefficient curve C f is plotted to further distinguish the laminar, transitional and turbulent regions.

1800

(a) (b) (c)

1800 1800

280028002800
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�Rex �Rex

ρ† = ±5 × 10–7

Qc = 7 × 10–5

Figure 11. Iso-surface of the streamwise velocity u = 0.9U∞, coloured by the fluctuation velocity u′. The left
half of each panel shows the coloured contour of the skin-friction fluctuation, c′

f = μ/Re∂u′/∂y/(1/2ρ∞U 2∞)

between −0.001 and 0.001. The iso-surfaces in the laminar region show the normalised adjoint density
ρ†/ max |ρ†

tm | from a wall-pressure sensor in the (a) laminar
√

Rexm = 2000 (b) transitional
√

Rexm = 2350
and (c) turbulent

√
Rexm = 2650 regions. The backward time is chosen such that the adjoint has reached similar

upstream position. The iso-surfaces are divided by the edge of the boundary layer into the outer parts, shown
on the left, and the inner part of the boundary layer, shown on the right.

the other probes. Three-dimensional views of the forward and adjoint fields are shown
in figure 11. The former are visualised by iso-surfaces of the Q criterion and contours
of the skin-friction coefficient at the wall. The positions of the wall-pressure probes are
marked in the figures, and the associated adjoint fields, ρ†/ max |ρ†

tm |, are visualised when
they reach nearly the same upstream location in order to compare their sensitivities with
events that take place near the inflow. The visualisation is dissected in the span in order to
contrast the free-stream and boundary-layer portions of the sensor DOD. The wave-front
appearance of the former and the wave-train shape of the latter are evident for the upstream
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Figure 12. (a) Energy amplification versus backward time τ = tm − t for case T , and the three sensor
placements. Darker colours represent probes at larger downstream distances,

√
Rexm = {2000, 2350, 2650}.

(b) Ratio of adjoint energy inside the boundary layer to the total energy versus backward time.

most sensor. The wave train within the boundary layer is structured, spreads and amplifies
in backward time, and has a dominant streamwise wavenumber. These characteristics are
most evident in the adjoint field from the most upstream sensor and, while discernible from
the last one, are distorted by the adjoint field having traversed the turbulent and turbulent-
to-laminar regions. The adjoint in this case, starting from a sensor at

√
Rexm = 2650, is

larger in text and its magnitude is at least more than two orders of magnitude larger than
the other cases. In addition, the visualised iso-surfaces above the boundary layer are not
the dependence on an incoming free-stream acoustic wave that is directly incident onto the
sensor, as discussed in the temporal problem and observed for the two upstream sensors.
For the third sensor placement, that part of the adjoint field has already propagated beyond
the visualised volume at the reported time, τ = 1800. The observed protrusion of the DOD
beyond the edge of the boundary layer is a continued sensitivity to edge disturbances that
can interact with the boundary layer and lead to a modification of the sensor signal post
transition. The connection between the characteristics of these adjoint fields and data
assimilation, or more specifically the cost function of the data-assimilation problem, is
noteworthy. The adjoint field that emanates from the turbulent region is qualitatively less
structured, or more chaotic in nature, which mirrors a typical feature of the gradient of
cost functions with observations within a turbulent field. These cost functions often exhibit
non-convexity, with large local gradients and extreme curvatures, making the optimisation
process more intricate due to the presence of multiple local minima.

A quantitative comparison of the adjoint fields from the three sensor locations is
reported in figure 12(a), where the adjoint energy is plotted as a function of backward time.
For sensors in the laminar region, sensitivity amplifies exponentially and agrees with the
growth rate for the most unstable mode from linear theory. When the sensor is within the
turbulent region, the adjoint amplification is initially at a much steeper rate. As the adjoint
traverses the turbulence-to-laminar region during its back-in-time upstream propagation,
its energy decays slightly, followed by the exponential amplification within the laminar
regime. The fraction of the adjoint energy that is contained within the boundary layer
is plotted in figure 12(b). For all three sensors, the fraction that propagates into the free
stream is up to approximately 45 %, which indicates that in the forward problem incident
Mach waves from the free stream can have an equal influence on the wall-pressure signal
as a boundary-layer disturbance.
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Figure 13. (a) Streamwise xc and (b) wall-normal yc positions of the centroid, evaluated according to (3.5).
Darker solid lines correspond to sensors further downstream,

√
Rexm = {2000, 2350, 2650}. The dotted line in

(b) marks the vertical position assuming the adjoint travels at the local speed of sound.

To further characterise the adjoint fields, we compute their centroids

xc =
∫
V xq†�

Ξq† dV∫
V q†�

Ξq† dV
, (3.5)

and the tensor of moments

I=
∫
V (x − xc) (x − xc)

� q†�
Ξq† dV∫

V q†�
Ξq† dV

. (3.6)

We will evaluate these properties in two dimensions, specifically the streamwise-vertical
coordinates, e.g.

I=
[

Ixx Ixy
Ixy Iyy

]
(3.7)

which has two principal directions with associated stretches λ± and angle θ , given by

λ± = 1
2

(
Ixx + Iyy ±

√
(Ixx − Iyy)2 + 4I 2

xy

)
, θ = 1

2
tan−1

(
2Ixy

Ixx − Iyy

)
. (3.8)

The centroid locations (xc, yc) of the adjoint fields are reported in figure 13. In panel (a),
the upstream advection within the boundary layer is captured by the change in xc as
a function of τ , which yields an indication that the advection speed is approximately
equal to 90 % of U∞. The evolution of yc in figure 13(b) indicates that the adjoint field,
once initialised at the sensor position, swiftly moves towards the boundary-layer edge at
approximately the local speed of sound (see inset).

The expansion of the DOD of the last sensor is examined in figure 14, which also shows
the skin-friction coefficient to distinguish the turbulent, transitional and laminar regions.
The solid curves show the energy of the adjoint, integrated in the cross-flow plane, at
τ = {0, 22.5, 117, 261, 805}. Throughout the evolution, the predominant stretching of the
adjoint field is in the streamwise (x) direction, as the angle θ ≤ 0.1 decreases with τ .
Given the alignment of the adjoint field with the streamwise direction, we mark on the
figure xc ± λ+. In both turbulent and transitional regions, the adjoint energy is contained
within a compact streamwise extent, and is oscillatory which is indicative of a pronounced
inhomogeneity. The exact pattern of the oscillation would necessarily vary depending on
the time of release since it is dependent on the state of the forward turbulent flow; this
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Figure 14. Streamwise distribution of the zy integrated adjoint profile, for
√

Rexm = 2650. Filled circles
mark the streamwise coordinate of the centroid, xc, and |—| is 2λ+. Red to grey solid curves represent
τ = {0, 22.5, 117, 261, 805}. The dashed line is the skin-friction coefficient, C f = μ/Re∂U/∂y/(1/2ρ∞U 2∞),
included to highlight stretching of the adjoint across transition.
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dependence thus points to the difficulty of interpreting wall-pressure measurements within
the turbulent region. Within the laminar region, the spreading of the DOD is evident,
and leads to a smoothly distributed sensitivity over a longer extent. The wall-pressure
sensor can therefore observe disturbances within this upstream region with nearly uniform
sensitivity.

The evolution of the size and energy of the DOD are co-examined in figure 15. Each
point on this stretching-amplification map corresponds to the sensor DOD at an instance in
backward time, starting from two different sensor locations,

√
Rexm = {2350, 2650}. The

curves start when the initial concentrated adjoint pulse from the sensor location is locally
diffused a few grid points. The line colour corresponds to the Reynolds number based on
the centroid position

√
Rexc = √

xc Re. Upstream advection is represented by the change
in the colour from red to blue, and the two circles on each curve mark the end and start
of transition to turbulence. The back-in-time evolution of the DOD exhibits three general
behaviours: (I) energy amplification, (II) stretching and (III) simultaneous stretching and
amplification.
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Considering the sensor in the turbulent region,
√

Rexm = 2650, all three behaviours
are observed starting with (I) energy amplification without appreciable stretching of the
adjoint field. During this part of the evolution, the adjoint energy intensifies by two orders
of magnitude. This early stage is best understood by considering the anticipated change
in the spectral content of the adjoint. Since the turbulent forward field appears in the
adjoint equation, the early evolution will feature amplification of the adjoint energy across
a wide range of wavenumbers, while the spatial extent is localised. As the adjoint field
traverses the turbulent-to-laminar transition region, it experiences significant stretching
without energy amplification. This behaviour (II) is also observed when the sensor is
placed at

√
Rexm = 2350 and hence the start of the adjoint evolution is immediately at the

onset of this back-in-time base-flow ‘laminarisation’ process. The stretching in physical
space can be due to the decay of the small scales within the adjoint field, akin to the
increase of the integral length scale as a function of time in decaying isotropic turbulence.
The simultaneous stretching and amplification (III) is observed for both curves, within
the laminar-flow regime, and is congruent with the results for the parallel boundary layer
(§ 3.1). The adjoint field amplifies according to the behaviour of its constituent modes
from LST. The dispersive nature of these modes leads to spreading in physical space, and
the dominance of particular wavenumbers leads to energy amplification and an expected
localisation of the peak energy in spectral space.

In summary, the intense amplification in (I) signals turbulence and chaotic dynamics, the
stretching in (II) marks an expansion of the DOD across back-in-time laminarisation. The
simultaneous amplification and stretch in (III) are symptomatic of the exponential growth
rate captured by linear theory in the laminar regime.

These characteristics of the sensor DOD have implications for the assimilation of
wall-pressure measurements in compressible, transitional boundary layers. When solving
this inverse problem, two key challenges come to the forefront: (i) disturbances amplify
exponentially both in forward and in backward time. The amplification in forward
time is more familiar, and implies that small errors in the estimated initial and
boundary conditions can lead to appreciable deviations of the assimilated state from the
observations. In backward time, discrepancies from available measurements will amplify
exponentially during the adjoint evolution and hence late measurements dominate the
update of the estimated state. (ii) The second challenge is related to the landscape of cost
function. According to (2.15), the Hessian is related to this amplifying adjoint field. As
such, the cost landscape develops very large local curvatures and becomes more difficult
to navigate for longer assimilation horizon. This difficulty is naturally most severe when
the sensors are embedded in the turbulent region and hence the cost landscape is tortuous.

Spectral analysis of the adjoint fields enables us to examine how different frequencies
and wavenumbers within the flow may contribute to the measurement, and enables us
to relate our finding to the body of knowledge from linear stability of boundary layers.
At the inflow, the boundary layer is laminar, and the Reynolds number is

√
Rex = 1800.

A forward spatial stability analysis of the Blasius flow at this Reynolds number was
performed. For a range of (F, β), the maximum growth rate, αi , was computed and is
plotted in figure 16(a), where the neutral curve is also marked. The neutral curves at two
additional positions,

√
Rex = {2000, 2350} (location of the first two sensors), were also

evaluated and all three curves are marked in figure 16(b). The colour contours in those
figures are the normalised energy spectra of the adjoint field released from the three sensor
positions,

√
Rexm = {2000, 2350, 2650}, and collected at the inflow.

For the sensor located at
√

Rex = 2000, upstream of transition, the amplification of the
adjoint field takes place largely within the range of frequencies and spanwise wavenumbers
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Figure 16. (a) The spatial growth rate of the most unstable LST mode in the wavenumber–frequency space
at

√
Rex = 1800. The black line marks the neutral curve. (b) The coloured contour shows the logarithmic of

the normalised adjoint energy in the wavenumber–frequency space. Thin to thick lines show the spatial neutral
curves for parallel flow at

√
Rex = {1800, 2000, 2350}, plotted in the three panels, respectively.

within the neutral curves. The most energetic adjoint is recorded at (F, β) = (100, 0),
within the neutral curve for

√
Rex = 2000. For the sensor located at

√
Rex = 2350,

within the transitional regime, the adjoint fields exhibit energy in wavenumbers beyond
the neutral curve, or decaying modes, that are generated due to the spectral content of
the turbulence of the forward base flow. This effect is more pronounced for the adjoint
field starting from the sensor located at

√
Rex = 2650, with most of the energy contained

around (F, β) ≈ (50, 0.1).
In figure 17(a), we plot the eigenfunctions of the most unstable mode of the forward and

adjoint spatial linear-stability operators, at the inflow plane
√

Rex = 1800 and (F, β) =
(100, 0). Similar to the temporal problem discussed in § 3.1, the adjoint mode has its
largest amplitude in the adjoint velocity, and is concentrated near the boundary-layer
edge. We will compare these eigen-stability profiles with the sensor DOD. When the
adjoint fields from wall-pressure measurements at

√
Rexm = {2000, 2350, 2650} reach the

inflow, they are Fourier transformed in time and in the span, and we plot the profiles at
(F, β) = (100, 0) in figure 17(b). Each profile is normalised to unit energy, and they all
show a strong dependence on the region near the edge of the boundary layer, with the
only exception being the dependence on temperature which is also pronounced near the
wall. Each of the profiles in figure 17(b) is in principle a superposition of discrete and
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Figure 17. (a) Red lines show the most unstable forward eigen-modes from spatial LST results at (F, β) =
(100, 0) with

√
Rex = 1800. Black lines show the corresponding adjoint modes, defined using Chu’s energy

inner product. (b) The mode shapes of the adjoint fields at the inflow plane
√

Rex = 1800 from adjoint-Navier–
Stokes simulation, case T. The adjoint mode is extracted at (F, β) = (100, 0). Sensors are placed at

√
Rexm =

2000 (black solid lines),
√

Rexm = 2350 (black dashed lines) and
√

Rexm = 2650 (symbols).

continuous eigenfunctions at this (F, β). However, they are clearly dominated by the most
unstable adjoint eigenfunction shown in figure 17(a). This agreement should, however,
be viewed in context. We are here focusing on the boundary-layer portion of the DOD at
an unstable (F, β) pair. Other wavenumbers are not included in this figure, in particular
stable ones at large β which are the most energetic when

√
Rexm = 2650 (figure 17) and

are strongly influenced by the turbulence in the forward field.
In summary, the results demonstrate that wall-pressure measurements within the early

turbulent region retain strong dependence on the upstream second-mode instability waves.
The capacity of turbulence to obfuscate the interpretation of the measurements is primarily
related to larger spanwise wavenumbers, beyond the unstable range. It is also important
to once again underscore that a portion of the DOD of a wall-pressure measurement is
the acoustic free-stream propagating wave, which was discussed in detail in the previous
section.
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4. Conclusion
High-speed transitional boundary layers are sensitive to the disturbance environment
which can quantitatively and qualitatively alter the transition mechanism. Assimilation of
sensor data in numerical simulations is a rigorous and objective approach to augment the
measurements and to discover the flow field that optimally reproduces the observations.
Naturally, the success of data assimilation hinges on the properties of the available
measurements, which we study using the notion of the DOD of a measurement probe.
Put simply, the DOD captures when, where and what perturbations can affect the sensor.
Physically, it is defined, at a time that precedes the measurement, as the region in space and
the type of perturbation that will maximally impact the sensor signal at the measurement
time. Mathematically, it is computed using the adjoint Navier–Stokes equations, starting
from a measurement kernel and evolving it back in time in order to determine the sensor
dependence on earlier disturbances at remote regions in the flow. Upstream flow events that
are outside the DOD of the measurement kernel or are orthogonal to the adjoint field are
entirely cloaked to the sensor. Those that are aligned with the adjoint field, through their
forward evolution, have the largest linear impact on the measurement at the sensor location
and observation time. We have also demonstrated how the definition of this adjoint field
can be related to ideas from LST, so that existing tools from the community can be adapted
and adopted to compute a sensor DOD.

The ideas introduced in this work were applied to a canonical flat-plate, zero-pressure-
gradient, boundary-layer flow at Mach 4.5. Two configurations were considered: the first
is a parallel and laminar base flow and the second is a spatial transitional case where the
boundary layer is forced at the inflow by a superposition of instability waves and undergoes
breakdown to turbulence. In all cases, we placed our focus on the DOD of a wall-
pressure measurement, and in the spatial case we compared the domains of dependence of
measurements in the laminar, transitional and turbulent regions of the flow.

In laminar boundary layers, whether they are parallel or spatially developing, the adjoint
field from the wall-pressure sensor advects towards the edge of this boundary layer and
splits into two sub-domains: the first advects upstream along the boundary layer, has its
maximum energy near the boundary-layer edge and amplifies exponentially in backward
time. During this back-in-time evolution, this portion progressively converges onto the
leading eigenfunction of the adjoint linear-stability operator. The second portion of the
adjoint field is emitted into the free stream, and propagates as an acoustic wave at the
Mach angle. This part constitutes a considerable portion, up to approximately 40 % of the
total adjoint energy at this stage of the evolution, and underscores that incident acoustic
waves can have an appreciable impact of the measurement.

When the sensor is placed downstream of transition, in the turbulent boundary layer, its
DOD retains the same two features discussed for sensors in the laminar region. However,
the measurement sensitivity to the second mode is small compared with the dependence
on high wavenumbers that are generated by the turbulence. In addition, as the adjoint
travels back in time, it undergoes an appreciable change across the transition zone where it
becomes significantly larger in streamwise extent, which indicates that the sensor becomes
sensitive to a much larger region in space within a short time interval, followed by
amplification in the laminar region.

The ideas explored here are relevant to understanding how the placement of a sensor
in a high-speed flow can affect its DOD and, as a result, the accuracy of solving
the data-assimilation problem. Analysis of the DOD adjoint field distinguishes the
spectral components and types of disturbances that are observable by the sensor. These
disturbances can therefore be discovered by a data-assimilation algorithm, and their
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associated modal, non-modal and nonlinear mechanisms examined in detail. This work
can also serve as a building block for the design of measurements. For example, these
tools can be used to characterise and compare different types of measurements, and to
optimise the placement of a group of sensors in a manner that maximises their collective
DOD or that ensures overlap to reduce uncertainty.
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Appendix A. Transformation between different adjoint definitions
In this appendix, the relationships between conserved and primitive variables are derived,
both for the forward and adjoint problems. Since the transformations involve the forward-
adjoint relations, we first reiterate that the adjoint field depends on the choice of inner
product. Consider two vector fields f and g and the discrete representation of their inner
product

(f, g) = f HWg, (A1)

where W is a weight matrix. For example, if the inner product represents spatial integration
on a grid, (f, g) = ∫

V f HgdV = f HVg, we have W = V is a diagonal matrix with cell
volumes as its elements. Using the same inner product in the forward-adjoint relation,
we can write

(Lf, g) =
(

f,L†g
)

, (A2)

where L represents the forward operator associated with solving the linearised Navier–
Stokes equations from t = 0 to t = tm , or δqtm =Lδq0. We will use L to refer to both
the continuous operator and its discrete representation, and we will similarly overload the
notation for the adjoint operators. The corresponding discrete representation of the adjoint
with a general weight matrix W can be derived as

f HLHWg = f HWL†g, (A3)

and as such

L† = W−1LHW, (A4)

which is the relation between adjoint and Hermitian transpose. Equation (A4) captures that
the adjoint operator and field depend on the weight matrix, and hence on the definition of
the inner product.

The same relation can be used to derive the sought transformations. As an example,
we will relate the adjoint operators and variables computed from energy and vector inner
products. We will denote the respective operators as L† and L‡, and the associated weight
matrices as WE and W2. The discrete representation of the adjoint operators can be written
as

L† = W−1
E LHWE , L‡ = W−1

2 LHW2, (A5)

and therefore the transformation between L† and L‡ is given by

L† = W−1
E W2L‡W−1

2 WE . (A6)

1009 A67-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.224


Journal of Fluid Mechanics

From the above expression, the transformation between different adjoint variables, e.g.
q†

0 =L†q†
tm and q‡

0 =L‡q‡
tm is given by

q† = W−1
E W2q‡. (A7)

Where WE = VΞ is the energy inner product and W2 = V is vector field inner product,
we obtain the relation between these two adjoints

q† = Ξ−1q‡. (A8)

In addition, for different choices of the forward state vector, the adjoint variables
have different interpretations. The most common example is the adjoint associated
with primitive variables δq = [δρ, δu, δv, δw, δT ]� and with conserved ones δs =
[δρ, δ(ρu), δ(ρv), δ(ρw), δE]�. The transformation between these two representations
of the forward state is⎡⎢⎢⎢⎣

δρ

δ (ρu)
δ (ρv)
δ (ρw)

δE

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
u ρ 0 0 0
v 0 ρ 0 0
w 0 0 ρ 0

RT
(γ−1)

+ 1
2

(
u2 + v2 + w2) ρu ρv ρw

Rρ
(γ−1)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

δρ

δu
δv

δw

δT

⎤⎥⎥⎥⎦ , (A9)

and⎡⎢⎢⎢⎣
δρ

δu
δv

δw

δT

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0

−u/ρ 1/ρ 0 0 0
−v/ρ 0 1/ρ 0 0
−w/ρ 0 0 1/ρ 0

−γ−1
R

E
ρ2 + γ−1

R
u2+v2+w2

ρ
−γ−1

R u/ρ −γ−1
R v/ρ −γ−1

R w/ρ
γ−1

R /ρ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

δρ

δ (ρu)
δ (ρv)
δ (ρw)

δE

⎤⎥⎥⎥⎦ . (A10)

For compactness, we introduce the notation δq = Tδs, where T is the transformation matrix
in (A10).

We denote the forward linearised Navier–Stokes operators that advance δq and δs as
Lq and Ls , respectively. The perturbation at time tm , expressed in primitive form, can be
evaluated by advancing an initial perturbation

δqtm =Lqδq0. (A11)

Alternatively, the same final state can be reached starting from an initial disturbance in
conservative form and then applying the transformation T

δqtm = TLsδs0 = TLsT−1δq0. (A12)

Comparing the above two equations, the transformation across operators is

Lq = TLsT−1. (A13)

We now combine the above two transformations, the one that relates energy and vector
products and the relation between conserved and primitive variables. This step is useful
when comparing modes from LST and direct numerical simulations, for example. We start
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from the forward-adjoint relations〈
Lqδq0, q†

tm

〉
=

〈
δq0,L†

q q†
tm

〉
,

[
Lsδs0, s‡

tm

]
=

[
δs0,L‡

s s‡
tm

]
. (A14)

Angle brackets represent the energy inner product as in the main text, and the square
brackets represent the dot product with spatial integration, which is often adopted in
numerical simulations

〈f, g〉 = f HVΞg, [f, g] = f HVg. (A15)

Therefore 〈
Lqδq0, q†

tm

〉
=

〈
TLsT−1δq0, q†

tm

〉
=

(
TLsT−1δq0

)H
VΞq†

tm

= δqH
0 (VΞ) (VΞ)−1

(
TLsT−1

)H
(VΞ) q†

tm

=
〈
δq0, (VΞ)−1

(
TLsT−1

)H
(VΞ)︸ ︷︷ ︸

L†
q

q†
tm

〉
.

(A16)

We can then derive the relation between the two adjoint operators

L†
q = (VΞ)−1

(
TLsT−1

)H
(VΞ)

= (VΞ)−1 T−HLH
s T H (VΞ)

= (VΞ)−1 T−HV V−1LH
s V︸ ︷︷ ︸

L‡
s

V−1T H (VΞ)

= (VΞ)−1 T−HVL‡
s V−1T H (VΞ) .

(A17)

In order to obtain the transformation between the adjoint variables q† and s‡, we start from
the adjoint equation q†

0 =L†
q q†

tm and substitute the above expression for L†
q , which yields

q† = (VΞ)−1 T−HVs‡. (A18)

The above expression relates the adjoint-primitive variables derived using the energy
inner product and the adjoint-conserved variables derived using the vector inner product.
Written explicitly, the transformation is given by⎡⎢⎢⎢⎣

ρ

u
v

w

T

⎤⎥⎥⎥⎦
†

= Ξ−1

⎡⎢⎢⎢⎢⎣
1 u v w RT

γ−1 + 1
2

(
u2 + v2 + w2)

0 ρ 0 0 ρu
0 0 ρ 0 ρv

0 0 0 ρ ρw

0 0 0 0 Rρ
γ−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ρ

ρu
ρv

ρw

E

⎤⎥⎥⎥⎦
‡
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= 2

⎡⎢⎢⎢⎢⎣
ρ

RT
ρ

RT
u ρ

RT
v

ρ

RT
w

ρT
(γ−1)T̄

+ ρ

2RT

(
u2 + v2 + w2)

0 ρ/ρ̄ 0 0 ρu/ρ̄

0 0 ρ/ρ̄ 0 ρv/ρ̄

0 0 0 ρ/ρ̄ ρw/ρ̄

0 0 0 0 ρT̄ /ρ̄

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ρ

ρu
ρv

ρw

E

⎤⎥⎥⎥⎦
‡

. (A19)

Appendix B. Validation of forward-adjoint duality
In the main text, we used adjoint techniques to compute the DOD of a sensor. We
also evaluated the forward evolution of the adjoint field, to demonstrate how it leads to
a variation at the sensor location and at the measurement time tm . We remarked that
disturbances outside the support of the adjoint field cannot result in a signal at the
sensor location and time, and that a disturbance within the support of the adjoint field
can still be unobservable by the sensor if it is orthogonal to q†

0 . The former condition is
straightforward, and the latter will be demonstrated in this appendix which also provides a
demonstration and validation of forward-adjoint duality

δm =
〈(

∂M
∂q

)
tm

,Lqδq0

〉
=

〈
q†

0, δq0

〉
. (2.18)

We consider a parallel boundary layer at Rex = 2000 (case P), and a wall-pressure
measurement recoded by a sensor at (xm, ym, zm) = (300, 0, 150) and tm = 225. To
evaluate the DOD of the sensor, we perform adjoint Navier–Stokes simulations staring
from the measurement kernel, and obtain the adjoint field q†

0. We then verify duality,
and thus validate our adjoint computation, by considering two types of disturbances that
are both initialise in the free stream within the spatial support of the adjoint field, at
(x0, y0, z0) = (100, 40, 150). The first disturbance is acoustic, and is constructed directly
from the adjoint field according to

δq0 = G(x)q†
0, (B1)

where G is a narrow Gaussian

G(x) = 1
(2πσ 2)3/2 e−‖x−x0‖2

2σ2 . (B2)

The second disturbance is entropic, and is created according to

δρ0 = G(x), δu0 = δv0 = δw0 = δp0 = 0, δT0 = − T̄

ρ̄
δρ0 = − T̄

ρ̄
G(x). (B3)

The forward evolutions of both disturbances were computed using the linearised Navier–
Stokes equations, and are shown in figure 18(a,c). The acoustic disturbance emits waves
that reach the boundary layer, and result in a measurable signal at the sensor location at
tm = 225. In contrast, the entropic disturbance, which is orthogonal to the adjoint field, is
simply advected in the free stream with limited diffusion at the present Reynolds number.
This disturbance does not penetrate the boundary layer, and leaves the sensor measurement
unperturbed.

According to the forward-adjoint relation (2.18), the variation in the measurement
δm can be evaluated either from the forward simulation and observing the variation in
the pressure at the sensor, δm = δp(xm)

∣∣
tm

, or by performing the inner product of the

adjoint field with the initial disturbance, δm = 〈q†
0, δq0〉. In the linear limit, these two
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Figure 18. Examples of observable and unobservable initial disturbances, both within the spatial support of
the sensor DOD. (a,c) Side views at z = 150, with contours showing the linearised Navier–Stokes evolution of
a free-stream (a) acoustic and (c) entropic disturbance, both initiated at y = 40 within the spatial support of the
DOD. The entropic disturbance is, however, orthogonal to the adjoint fields p†

0. Contours are the normalised
density δρ/ max δρ, and multiple times relative to the measurements at tm = 225. (b,d) Wall-pressure signal
at the sensor location, evaluated using (solid line) a forward linearised Navier–Stokes computation and (◦) the
inner product 〈q†

0, q0〉.
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approaches should be mathematically equivalent and computationally equal to within
machine precision

δp(xm)
∣∣
tm

=
〈
q†

0, δq0

〉
. (B4)

The two approaches are compared in figure 18(b,d). The lines are the wall-pressure signals
at the sensor locations as a function of time, which clearly demonstrates that only the free-
stream acoustic disturbance is observable. The measurement time is marked by the dashed
vertical lines, and the black circles are the values of the inner products

〈
q†

0, δq0

〉
. The

relative difference between the two approaches to computing δm is of the order of 10−15,
which is consistent with machine error for double-precision arithmetic, thus validating the
accuracy of the adjoint computation.
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