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Abstract

The northeast model is a spin system on the two-dimensional integer lattice that evolves
according to the following rule: whenever a site’s southerly and westerly nearest
neighbors have spin 1, it may reset its own spin by tossing a p-coin; at all other times,
its spin remains frozen. It is proved that the northeast model has a phase transition at
pc = 1 − βc, where βc is the critical parameter for oriented percolation. For p < pc,
the trivial measure, δ0, that puts mass one on the configuration with all spins set at 0 is
the unique ergodic, translation-invariant, stationary measure. For p ≥ pc, the product
Bernoulli-p measure on configuration space is the unique nontrivial, ergodic, translation-
invariant, stationary measure for the system, and it is mixing. For p > 2

3 , it is shown that
there is exponential decay of correlations.

Keywords: Northeast model; facilitated spin-flip system; oriented percolation; exponen-
tial mixing

2000 Mathematics Subject Classification: Primary 60J25
Secondary 60K35

1. Introduction

The northeast model is the simplest nontrivial facilitated spin-flip system on the two-
dimensional integer lattice Z

2. Interest in such systems dates to [3]; for a recent review, see [6].
The northeast model is specified by the following rules: spins take values in the two-element
set {0, 1}; the spin at site (x, y) ∈ Z

2 may flip only at times when the spins at sites (x − 1, y)

and (x, y − 1) are both 1; and at such times the flip rates are

0 → 1 at rate p,

1 → 0 at rate 1 − p.
(1)

A rigorous construction of the process is outlined in Section 2. It will also be shown that
the product Bernoulli-p measure νp on the configuration space is invariant and reversible.
Note that, unlike many growth models (e.g. the contact process), the northeast model is not
additive (in the sense of [5, Definition III.6.1]) or even monotone (in the sense that stochastic
monotonicity is preserved by the evolution).

The northeast model is the natural two-dimensional analogue of the one-dimensional east
model studied by Aldous and Diaconis [1]. The east model is the spin-flip model on the integer
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Ergodicity and mixing properties of the northeast model 783

lattice Z in which the spin at site x may flip only at times when the spin at site x −1 is 1; the flip
rates at such times are given by (1). The main results of [1] are rigorous bounds on relaxation
rates to the product Bernoulli-p measure that are sharp in the limit p → 0. The northeast
model differs fundamentally from the east model in that the product Bernoulli-p measure νp is
not even ergodic for p < 1 −βc, where βc is the critical parameter for oriented site percolation
(for a general reference on percolation, see [4]). The reason for this is apparent: if p < 1 − βc
then νp-almost every spin configuration must contain infinite southwest clusters of zero spins;
these clusters must remain frozen at spin 0 forever.

We shall establish in this paper that the northeast model exhibits a phase transition at pc :=
1 − βc, by showing that for p > pc the product Bernoulli-p measure is ergodic and mixing.
We state this as follows.

Theorem 1. The only ergodic, translation-invariant, stationary measures for the northeast
model with flip parameter p ≥ 1 − βc are νp and ν0. The only ergodic, translation-invariant,
stationary measure for the northeast model with flip parameter p < 1 − βc is ν0. For p > pc,
the product Bernoulli-p measure νp is not only ergodic but also mixing.

Here mixing means that correlations decay to zero as t → ∞. Theorem 2, below, is a
more precise statement of what we shall prove. For any spin configuration ζ , denote by ζ� its
restriction to the set � ⊂ Z

2. Similarly, denote by ν�
p the product Bernoulli-p measure on the

restricted configuration space {0, 1}�, by Pζ
p the probability measure of the northeast model

with rate p and initial configuration ζ , and by ξt the (random) spin configuration at time t in a
realization of the northeast model.

Theorem 2. If p > 1−βc then νp is mixing for the northeast model in the following sense: for
νp-almost every initial configuration σ , and for every finite set � ⊂ Z

2 and every configuration
ζ� ∈ {0, 1}�,

lim
t→∞ Pσ

p{ξ�
t = ζ�} = ν�

p (ζ�).

In light of the results of [1], it is natural to ask if correlations decay exponentially for p > pc.
We conjecture that they do. We have been able to prove this only for p > 2

3 .

Theorem 3. For each p > 2
3 and each finite set � of sites, there exist constants C�, α� > 0

such that, for any two configurations ζ� and η�,

| P
νp
p {ξ�

t = ζ�; ξ�
0 = η�} − ν�

p (ζ�)νp(η�)| ≤ C� exp{−α�t} for all t > 0. (2)

We further conjecture that the exponential decay parameters α� ≡ α�(p) can be chosen
so as not to depend on the sets �. If this is true then, for p > pc, the northeast model has a
positive spectral gap (see [1]), and the nature of the phase transition is reflected in the behavior
of the spectral gap as p → pc.

Sections 2–4 are devoted to the proofs of Theorems 1–3. Theorems 1 and 2 will be proved
in Sections 2 and 3, and Theorem 3 in Section 4. In the final section, Section 5, we state a
conjecture about the propagation of influence in the northeast model.

2. Construction

Two constructions of the northeast model are possible, one using the Hille–Yosida theorem
(see [5, Chapter 1] and the other using a system of independent marked Poisson processes.
The first has the advantage that it gives simple characterizations of invariant and reversible
measures. The second yields detailed information about the time evolution of the process.
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784 G. KORDZAKHIA AND S. P. LALLEY

2.1. Generator and semigroup

Let X be the space of spin configurations on the lattice Z
2 and, for any subset � ⊂ Z

2,
let X� be the set of configurations on �. Denote by C(X) the space of continuous, real-
valued functions on X (relative to the product topology), and by C∗(X) the subset consisting
of those functions that depend only on finitely many coordinates. Note that C∗(X) may be
naturally identified with

⋃
� C(X�), where the union is over all finite subsets � ⊂ Z

2. For
any configuration σ , define A(σ) to be the set of sites that are flip-eligible in configuration
σ , that is, those sites x whose nearest neighbors to the south and west both have spin 1 in
configuration σ . Also, for any site x, denote by σ+

x and σ−
x the configurations that agree with

σ at all sites y 	= x and have respective spins 1 and 0 at site x.
For any function f ∈ C(X) and each site x ∈ Z

2, define

∇xf (σ ) =
{

(f (σ+
x ) − f (σ−

x ))p if σ = σ−
x ,

(f (σ−
x ) − f (σ+

x ))(1 − p) if σ = σ+
x .

(3)

For any f ∈ C∗(X), define

Lf (σ) =
∑
x∈Z2

∇xf (σ ) 1{x∈A(σ)} . (4)

Observe that, because f ∈ C∗(X) depends on only finitely many coordinates, the sum is finite
and, hence, the definition is valid. It follows from [5, Section 1.3], that the operator L on C∗(X)

extends uniquely to a Markov generator and that C∗(X) is a core for the generator. (Note: in [5]
a larger core was used, but the graph of L restricted to C∗(X) is easily seen to have closure
equal to that of L restricted to that larger core.) The Hille–Yosida theorem therefore implies
that the closure of L generates a unique Feller Markov semigroup on C(X). This implies the
existence of a Markov process with flip rates (1).

2.2. Stationary and reversible measures

A Borel probability measure µ on X is stationary for the Markov semigroup generated by
L if and only if, for every f ∈ C∗(X), ∫

X

Lf dµ = 0. (5)

A stationary measure µ is reversible if and only if, for all pairs f, g ∈ C∗(X),∫
X

f Lg dµ =
∫

X

gLf dµ.

These criteria yield easy proofs that the product Bernoulli-p measure νp is stationary and
reversible for the northeast model with flip parameter p. By (4) and (5), to prove that νp is
stationary it suffices to show that, for any function f : X → R that depends only on the spins
in � and, for each x ∈ �, ∫

F(x)

∇xf (σ ) dνp(σ ) = 0,

where F(x) = {σ : x ∈ A(σ)} is the set of configurations σ for which site x is flip-eligible.
The event {x ∈ A(σ)} = {σ ∈ F(x)} does not depend on the spin at x, so under νp this event
is independent of σ(x). Moreover, the event σ = σ+

x occurs if and only if σ(x) = 1, and is
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hence independent of {σ ∈ F(x)}. Since σ(x) = 1 with probability p under νp, (3) implies
that (with q = 1 − p)∫

F(x)

∇xf (σ ) dνp(σ ) =
∫

F(x)

((f (σ+
x ) − f (σ−

x ))pq + (f (σ−
x ) − f (σ+

x ))qp) dνp(σ )

= 0.

Similarly, to prove that νp is reversible, it suffices to show that, for any pair of functions
f, g ∈ C(X) that depend only on the spins in a finite set �,∫

F(x)

g(σ )∇xf (σ ) dνp(σ ) =
∫

F(x)

f (σ )∇xg(σ ) dνp(σ ).

Since the spin at x is independent of the event σ ∈ F(x), this identity follows by a simple
calculation similar to that above.

2.3. Construction via marked Poisson processes

Let (
, F , P) be a probability space on which are defined countably many independent
rate-one Poisson processes and countably many independent uniform(0,1) random variables.
Assign one Poisson process to each site x ∈ Z

2 and one uniform random variable to each
occurrence in each Poisson process. The occurrences in the Poisson process attached to site x

mark the times of flip opportunities for site x: at each such time, site x queries its neighbors to
the south and west about their current spins; if both of these are 1 then x resets its spin according
to the value, U , of the uniform random variable attached to the occurrence. The reset rule is

U ≤ p �⇒ reset spin to 1,

U > p �⇒ reset spin to 0.
(6)

Note that such a reset does not necessarily change the spin at x: if the reset occurs at a time
when the spin at x is 0 or 1, then the chance that the spin changes is p or, respectively, q. Thus,
the flip rates at site x will agree with the specification (1).

In order that this construction uniquely specify the spin at site x at each finite time, it must
be the case that the spins of the southwest neighbors of x at query times can be determined. For
this to be the case, the initial configuration, ξ0, must be specified. Throughout the remainder
of this subsection and Subsection 2.4, we assume that ξ0 = ζ for some fixed, nonrandom
configuration ζ . (We suppress the dependence of the process ξt on ζ , but the reader should
note that the algorithm specified below will give a different time evolution ξt for every different
choice of ζ .) To determine the spin at site y at time t , we must search backward in time for
occurrences in the Poisson process attached to site y. If there are no occurrences in this process
between times zero and t , then the spin at site y at time t is set to equal its value at time zero.
Otherwise, at s, the last occurrence time before t , the backward search moves to the south and
west neighbors, y′ and y′′, of y and proceeds recursively. If it can then be determined that
the spins at y′ and y′′ at time s are both 1, then the spin at y at time t is determined by the
attached uniform random variable according to the rule (6). Otherwise, the query continues
to the last occurrence in the Poisson process at y before time s. To show that this algorithm
terminates, we must show that the backward tree of queries initiated at (y, t) is almost surely
finite. This follows because the backward query tree is stochastically dominated by a simple
binary fission process with fission rate one. (At each time a query is made, two new query
processes are engendered. The additional queries in these offspring processes are mutually
independent, except when they coincide by virtue of a merger, e.g. SW and WS).
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2.4. Regeneration at reset times

Assume henceforth that the northeast process ξt has been constructed as in Subsection 2.3,
using auxiliary marked Poisson processes and a specified initial configuration ξ0. For each
site x, define τx to be the time of the first reset at x. Note that τx may take the value ∞. Note
also that τx need not be (and generally will not be) measurable with respect to the σ -algebra
generated by {ξt }0≤t<∞.

Let ‘≤’ and ‘<’ denote the natural weak and strong partial orders on Z
2; that is, x ≤ y or

x < y if each coordinate of x is less than or equal to or, respectively, strictly less than the
corresponding coordinate of y. For each site x, define

Ax = {y : y ≤ x}, Bx = {y : x 	≤ y}.
Sites in Ax are those that may influence the times at which spin resets at x may occur, and
sites in Bx are those whose reset times are not influenced by site x. Let Nx

t be the number
of occurrences up to time t in the Poisson process attached to site x, and let {Ux

j }j≥1 be the
uniform(0, 1) random variables attached to the occurrences of this Poisson process, listed in
chronological order. Define the σ -algebras

Gx
t = σ(Nx

s )s≤t , Hx
t = σ(Ux

i )i≤Nx
t
, F x

t = σ(Gx
t ∪ Hx

t ), � x
t = σ

( ⋃
y∈Ax

F
y
t

)
,

�∞
t = σ

(⋃
x

� x
t

)
, Jx

t = σ

( ⋃
y∈Bx

F
y
t

)
, Kx

t = σ(Jx
t ∪ Gx

t ).

Note that �∞
t is generated by everything that happens in the entire construction up to time t .

Proposition 1. For each site x and each time t > 0, the conditional distribution of the spin
ξt (x) given the σ -algebra Kx∞ on the event {τx ≤ t} is Bernoulli-p, that is,

P{ξt (x) = 1 | Kx∞} = p on {τx ≤ t}. (7)

Proof. Observe that the reset time τx , and in fact the entire string of flip opportunity times
at site x up to time t , are measurable with respect to the σ -algebra Kx

t . On the event {τx ≤ t},
there is a last flip opportunity at x before time t , and this occurs at the kth of the Nx

s occurrences,
for some k ≥ 1. The spin at x at time t is determined by the uniform random variable Ux

k .
However, this random variable is independent of Kx∞. Assertion (7) follows.

Corollary 1. If P{τx < ∞} = 1 for every site x in a finite set �, then the joint distribution
of the restricted configuration ξ�

t converges weakly to the product Bernoulli-p measure ν�
p as

t → ∞.

Proof. Consider first, for illustration, the case � = {x, y}, where x is the westerly nearest
neighbor of y. Observe that Kx

t ⊂ K
y
t and recall that ξt (x) is measurable with respect to K

y
t .

By hypothesis, P{τx ≤ t} ≈ 1 and P{τy ≤ t} ≈ 1 for large t . Consequently, by Proposition 1
(first for y, then x), for large t ,

P{ξt (x) = ξt (y) = 1} = E E(P{ξt (y) = 1 | K
y
t }ξt (x) | Kx

t )

≈ p E P{ξt (x) = 1 | Kx
t }

≈ p2.
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The general case is proved by induction on the size of �. Fix a site y ∈ � such that
�′ = � \ {y} ⊂ By ; since � is finite, it must contain such a site. Observe that, for each
x ∈ �′, the spin ξt (x) is measurable with respect to K

y
t . Let ζ� be any spin configuration on

� and let ζR be its restriction to a subset R of �. Then, by Proposition 1 and the induction
hypothesis, for large t ,

P{ξ�
t = ζ�} = E P{ξt (y) = ζ y | K

y
t } 1{ξ�′

t =ζ�′ }
≈ ν

y
p(ζ y) P{ξ�′

t = ζ�′ }
≈ ν

y
p(ζ y)ν�′

p (ζ�′
)

= ν�
p (ζ�).

3. Stationary measures, ergodicity, and mixing

3.1. Examples of stationary measures

We have shown that the product Bernoulli-p measure νp is stationary for the northeast
process. This is not, however, the only stationary measure; for instance, the measure ν0 that
assigns probability one to the configuration with all spins 0 is also stationary, and is ergodic. In
fact, there are infinitely many distinct (and mutually singular) ergodic stationary distributions.
A denumerable family may be built as follows.

Let � be an infinite, connected subset of Z
2 such that

(a) for every site y ∈ �, at least one of the southerly or westerly nearest neighbors of y is
also an element of �, and

(b) every connected component of Z
2 \ � is finite.

Consider the initial configuration ξ0 in which every site in � is assigned spin 0 and every other
site spin 1. If the northeast process starts in this configuration then every site in � will remain
frozen at spin 0, because any query tree (see Subsection 2.3) that begins at such a site will have
leaves in �. Similarly, every site x one of whose southerly or westerly nearest neighbors is in �

will remain frozen at spin 1 forever. Now consider the evolution ξ�
t in a connected component,

�, of Z
2 \ �: because � is finite, and because its southwest border consists of sites that must

remain frozen at spin 1, the process ξ�
t is an ergodic, finite-state Markov process and, so, the

distribution of ξ�
t must converge to a stationary distribution µ� as t → ∞. The product, λ� , of

these measures µ� over all components � with the point mass on the zero configuration in � is
a stationary distribution for the northeast process. Since each of the factors µ� is stationary and
ergodic for the restricted process ξ�

t , the product measure λ� will be ergodic for the northeast
process. Observe that the measures λ� and λ�′ will be mutually singular if � 	= �′, because
different sets of sites (� and �′) remain frozen forever.

The preceding construction shows that there are infinitely many ergodic stationary distribu-
tions for the northeast model. None of these distributions is translation invariant. It is natural to
ask if there exist translation-invariant stationary distributions other than the product Bernoulli-p
measures νp and ν0. The answer is ‘yes’, as the following argument shows. Fix an integer
m ≥ 2 and let �0 be the set of sites with at least one coordinate divisible by m. For each
x = (x1, x2) ∈ Z

2 with coordinates satisfying 0 ≤ xi < m, let �x = �0 + x be the translation
of �0 by x. Note that each of the sets �x is invariant under translations by (m, 0) and (0, m),
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and that �x + y = �x+y , where the addition in the subscript is done mod m. Define

µ = 1

m2

∑
x∈Z2

m

λ�x .

This measure is certainly translation invariant, because a translate of �x is another, say �y , and
µ is stationary for the northeast process because it is a mixture of stationary distributions. Note
that m is not ergodic, because the initially frozen set, �x , must remain frozen forever.

3.2. Characterization of ergodic, translation-invariant measures

We now show that if µ is an ergodic, translation-invariant stationary distribution for the
northeast model with flip parameter p, then either µ = νp or µ = ν0. Denote by Pµ = P ×µ

the probability measure on 
 × {0, 1}Z
2

according to which the initial configuration ξ0 is chosen
randomly from µ and the marked Poisson processes used in the construction of Subsection 2.3
are built on (
, F , P). Under Pµ, the distribution of ξ0 is translation invariant, and so there
exists a constant, r , 0 ≤ r ≤ 1, such that Pµ{ξ0(x) = 1} = r and, hence (by stationarity),

Pµ{ξt (x) = 1} = r for all x ∈ Z
2 and all t ≥ 0.

If r = 0 then µ = ν0. If r = 1 then at every rational time every site has spin 1; however, this
is impossible unless p = 1, because it would imply that no site ever flips to spin 0, as spin
values are held for time intervals of positive duration. Thus, if 0 < p < 1 then either r = 0 or
0 < r < 1.

Suppose that 0 < r < 1. Since µ is assumed to be ergodic, the Birkhoff ergodic theorem
implies that the long-time average spin value at any site x converges to r almost surely. Thus,
with Pµ-probability one, site x flips its spin infinitely often and, so, Pµ{τx < ∞ for all x} = 1.
Hence, Corollary 1 implies that, for µ-almost every initial configuration ζ , the conditional
joint distribution of any finite spin block ξ�

t given ξ0 = ζ converges weakly to the product
Bernoulli-p measure ν�

p as t → ∞. It now follows that r = p and µ = νp.

3.3. Ergodicity and mixing of νp for p > 1 − βc

To complete the proof of Theorem 1 and the first assertion of Theorem 2, we must show
that if p ≥ 1 − βc then νp is ergodic and mixing for the northeast model. The key is that
if p ≥ 1 − βc then, for νp-almost every spin configuration ζ , there are no infinite southwest
clusters of zero spins (see [4, Chapter 12.8]). In particular, the size of the cluster containing
the origin is almost surely finite.

Lemma 1. Define Mx(t) to be the number of flip opportunities at site x up to time t , and denote
by xs and xw the southerly and westerly nearest neighbors of x, respectively. Then, for every
initial configuration ζ ,

P{Mx(∞) < ∞ and Mxs(∞) = Mxw(∞) = ∞ | ξ0 = ζ } = 0.

Proof. It is enough to show that, on the event G := {Mxs(∞) = Mxw(∞) = ∞}, the spins
at sites xs and xw will both almost surely be 1 at arbitrarily large times t . Denote by τ k

y the
time of the kth flip opportunity at site y. On the event G it must be that τ k

y < ∞ for all k ≥ 1
and for both y = xs and y = xw. At each time τ k

y , the spin at site y is reset by a toss of a
p-coin. Since the spin values at y = xs and y = xw play no role in determining the reset times
at either xs or xw, it follows that the pair of spins at xs and xw will be reset by independent
p-coin tosses infinitely many times. Hence, the spins will both be 1 at arbitrarily large times,
with probability one.
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Now assume that the initial configuration ξ0 is chosen at random according to the product
Bernoulli-p measure νp, independently of the marked Poisson processes used to determine
the time evolution, and assume that p ≥ 1 − βc. To show that the process ξt is mixing (and,
therefore, also ergodic), it suffices, by Corollary 1, to show that τx < ∞ almost surely for each
site x. We will show that in fact Mx(∞) = ∞ almost surely.

Suppose, on the contrary, that for some site x there is positive probability, say � > 0, that
Mx(∞) < ∞. Then, by Lemma 1, for at least one of the sites y = xs, xw it must be the case
that My(∞) < ∞. It then follows that, for at least one of these two sites, the spin at this site
stabilizes at 0, because if ξt (y) = 1 eventually and the other southwesterly nearest neighbor,
y′, has infinitely many flip opportunities, then ξt (y

′) = 1 for arbitrarily large times t and, so, x

must have infinitely many flip opportunities, contradicting the hypothesis that Mx(∞) < ∞.
By induction, it follows that there is an infinite sequence, yn, of sites such that (i) each yn+1 is
either the southerly or westerly nearest neighbor of yn, and (ii) the spin at each yn eventually
stabilizes at 0.

This contradicts the hypothesis that p ≥ 1 − βc; in particular, it implies (by translation
invariance) that, for each K < ∞, there is probability at least � that at large times t the origin
will belong to a southwest cluster of zero-spin sites that has size greater than or equal to K .
Since, by stationarity of νp, the size of the southwest cluster of zero spins containing the origin
has the same distribution at time t as at time zero, this is impossible.

4. Exponential decay of correlations

In this section we shall establish the exponential decay of correlations given in (2) for all
parameter values p > 2

3 . Without loss of generality, we may assume that the finite set � in (2)
is a square, since every finite set is contained in a square; furthermore, we may assume that the
northeast corner of the square � is the origin, (0, 0).

Denote by ∂−� the exterior southwest boundary of �, that is, the set of all sites not in �

that border � to the south or west. At any (Markov) time when the spins at all sites in ∂−�

are 1, it is possible for the sites in � to begin to reset, starting from the southwest corner and
proceeding north and east. In particular, it is possible that all spins in � will flip to 1 before
any of the spins in ∂−� reset. Moreover, at any (Markov) time when all of the spins in � are 1,
it is possible that the spins will then reset one at a time starting from the northeast corner and
proceeding to the southwest, in the following order (for a 3 × 3 square):

4 2 1
7 5 3
9 8 6

We call such an occurrence a (total) �-reset. Define τ� to be the time of the first �-reset.
Observe that, at time τ�, the spin at the southwest corner of � has just reset. At this time all
spins in � have been reset at least once, in order, starting from the northeast corner, so the
conditional distribution of the configuration ξ�

τ�
, given the evolution to time τ� of the process

in the region southwest of �, is the Bernoulli-p product measure ν�
p .

Lemma 2. To prove (2) it suffices to prove that, for all t ≥ 0,

P
νp
p {τ� ≥ t} ≤ C� exp{−α�t}. (8)

Proof. This follows from Proposition 1 by an argument similar to that in the proof of
Corollary 1.
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Whether or not a �-reset will occur quickly depends on the current values of the spins at
the sites to the southwest of �, in particular on those that directly border �. Since any such
site with spin 0 will freeze the spins of its northern and eastern neighbors, it is impossible for
� to reset until all the southwest boundary sites have assumed spin value 1, unless all spins in
� initially have spin 1. Similarly, any of the boundary sites that initially have spin 0 cannot
flip until their southwest neighbors have assumed spin value 1, and so on. Thus, at any time t

the obstruction to a �-reset is the union of the oriented zero-clusters attached to the southwest
boundary of �. Denote this union by K�

t ; that is, K�
t is the set of all sites y for which there

exists a (northeast-oriented) path of zero spins in the configuration ξt , beginning at y and ending
at the southwest boundary of �. Fix t∗ > 0 and define stopping times T0 ≤ S0 ≤ T1 ≤ S1 < · · ·
by setting

S0 = min{t ≥ 0 : K�
t = ∅},

T0 = 0,

Sn = min{t ≥ Tn : K�
t = ∅}, n ≥ 1,

Tn = min{t > Sn−1 : K�
t 	= ∅} ∧ (Sn−1 + t∗), n ≥ 1,

where t∗ is a fixed, nonrandom time.

Lemma 3. Assume that p > 2
3 . Then there exist constants C, α > 0, possibly depending on

the size of the square � and on the choice of the constant t∗, such that, for all n and all t > 0,

P
νp
p {Sn − Tn ≥ t | �∞

Tn
} ≤ C exp{−αt}.

Proof. Let Xt := |K�
t | denote the cardinality of the zero-cluster attached to � at time t ;

then Sn is the first time after Tn when Xt = 0. At any time when the cluster K�
t is nonempty, its

exterior southwest boundary consists of B ≥ 1 sites, all with spin 1, and its interior southwest
boundary (the set of sites that are flip-eligible) consists of A ≥ 1 sites, all with spin 0; since
each interior boundary site is bordered by at most two exterior boundary sites, B ≤ 2A.

The cluster can grow or shrink by only one site at a time, either by addition of a site in the
exterior southwest boundary or deletion of a site in the interior southwest boundary. Since there
is always at least one interior boundary site that is flip-eligible, the rate at which jumps in Xt

occur is at least p. Moreover, at any addition/deletion event, the conditional probability that
the event is a deletion, given the current configuration, is at least pA/(pA + (1 − p)B). This
is because the instantaneous rate of deletions is pA, whereas the instantaneous rate of additions
is at most (1−p)B. (All of the spins in the exterior southwest boundary of K�

t are 1, but some
of these may be frozen.)

Since B ≤ 2A and p > 2
3 , we have (pA)/(pA + (1 − p)B) > 1

2 . Thus, the jump process
Xt is stochastically dominated by a reflecting random walk on the nonnegative integers with
negative drift. It follows routinely that, for νp-almost all initial configurations, the times it
takes to reduce the size of the zero-cluster by one have uniformly bounded, exponentially
decaying tails. Let N be the size of the zero-cluster with a random initial configuration (N can
be arbitrarily large), and let Y1, . . . , YN be the consecutive random times required to reduce
the size of the cluster by one. Then S0 − T0 = ∑N

j=1 Yj . For all sufficiently small θ > 0,
the moment generating functions of Yj are finite and arbitrarily close to one. Since, under
the product Bernoulli-p measure, N has an exponentially decaying tail in n, the moment
generating function of S0 − T0 is finite for all sufficiently small θ > 0 and, hence, S0 − T0 has
an exponentially decaying tail. Note that XTn ≤ 1 for all n > 0. It follows immediately that,
for all n > 0, Sn − Tn also has an exponentially decaying tail.
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Proof of (8). Let Gn be the event that there is a �-reset between times Sn and Tn+1. Since,
at time Sn, the zero-cluster K�

Sn
is empty, the conditional probability of Gn, given the history

of the process ξt up to time Sn, is bounded below by a constant, δ > 0. (Recall that the spins
in ∂−� must stay fixed at 1 until there is an occurrence in one of the Poisson processes N

y
t

attached to a site y ∈ ∂−�, regardless of what happens elsewhere.) Hence, by Lemma 3,

τ� ≤ S0 +
H∑

j=1

Rj , (9)

where S0, H , and R1, R2, . . . are mutually independent, H is the number of tosses of a δ-coin
until the first occurrence of a head, and

P{Rj ≥ t} = C exp{−αt} for all t ≥ log(C/α).

Elementary arguments similar to those given in the proof of Lemma 3 show that the random
variable on the right-hand side of (9) has a finite moment generating function and, hence, has
an exponentially decaying tail.

5. Influence propagation

A key component of the argument of [1] (although not explicitly noted as such) is a proof that
the influence of a spin-1 site is propagated forward at a definite linear rate. In two dimensions,
propagation of influence is a much more subtle business, as there is no longer a unique path
along which it occurs. A natural way to measure influence propagation in the northeast model
is by use of influence regions Rt , defined as follows. Consider an initial configuration in which
all sites in the first quadrant are initially set to have spin 0 and all other sites are initially set to
have random spins (using independent p-coin tosses). For each time t ≥ 0, define

Rt = {sites in quadrant one that are flipped at least once by time t}.

Figure 1 shows the results of a simulation (performed by Marc Coram of the University of
Chicago) in which sites in quadrants two, three, and four are initially determined by independent
p-coin tosses with p = 0.8. The figure shows the state of the system at time t = 1044.65;
the size of the box shown is 500 × 500. The influence region Rt is shown in white, and the
darker-gray region in quadrants two, three, and four, Qt , consists of those sites that have been
queried at least once by time t . See Section 2 for an explanation of the query process. The
black specks indicate those sites in Rt or Qt whose spin values are 0 at time t .

The results of this and other simulations suggest the following conjecture.

Conjecture 1. For p > pc, the influence region Rt has a definite, nonrandom limit shape S.
That is, with R̂ denoting the union of all unit squares centered at points of R,

R̂t /t → S

in the Hausdorff metric for some nonrandom set S contained in the first quadrant of R
2.

Note that, because the northeast process is not additive (in the sense of [5]), the usual methods
for proving shape theorems (see, e.g. [2] and [7]) are not applicable.
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Figure 1: Influence propagation in the northeast model.
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