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ABSTRACT. The Comninou^Dundurs effect (C-D effect) has yet to be considered in
slip processes at the base of ice sheets and glaciers.This effect exists whenever slip occurs
between two solids of differing mechanical properties and at least one of the solids is
compressible. It gives rise to an additional normal traction stress across a non-uniformly
slipping interface, a stress which otherwise would not exist if the two solids had identical
properties. The C-D effect should exist to some degree, therefore, wherever ice slips over
glacial till. It will be enhanced where large slip gradients exist, such as at boundaries of
subglacial lakes. In this paper it is shown that, because of the C-D effect, subglacial lakes
that lie at a basal till/ice interface may migrate in the direction of increasing ice thickness.

1. INTRODUCTION

The purpose of this paper is to investigate what change the
Comninou^Dundurs effect (C-D effect) may produce on
subglacial lakes and on sliding conditions at the base of an
ice sheet or glacier in regions where the basal ice rests on
basal till. The C-D effect equations (Dundurs, 1967, 1969;
Comninou,1977,1978; Comninou and Dundurs,1980) essen-
tially were developed for smeared-out glide- and climb-edge
dislocations on an interface between elastic solids of
differing elastic constants.The C-D effect may be important
to some basal processes of ice sheets and glaciers. Appendix
A gives a simple physical explanation of its origin. (In
another geophysical area, a generalization of the C-D effect
under dynamic conditions provides an explanation for the
existence of fast-moving localized packets of smeared glide-
edge dislocations (slip pulses) that move on earthquake
faults, and an explanation for the apparent lack of frictional
heating on the San Andreas Fault, CA, U.S.A. (reviewed in
Ben-Zion, 2001; Ranjith and Rice, 2001).)

Subglacial lakes (water lenses) whose horizontal dimen-
sions are large compared with their depth can be considered
to be cracks. They are subjected to basal shear loading if
they are situated anywhere except under an ice dome. If
the average slope of the upper ice surface is not zero, a shear
traction stress is exerted at the base of an ice sheet. No shear
traction stress, however, can be placed across an effective
water-lens crack where the water depth is appreciable. The
shear traction is concentrated, therefore, in the regions at
the crack tips where the water depth is very small. In this
paper the subglacial lake is treated as a crack loaded in
shear. (For simplicity, only two-dimensional mode II shear
cracks in plane strain are considered in this paper.)

In the case of an elastic solid, the solution of a shear crack
that lies parallel to the x axis can be generated from the
stress^strain-displacement field of a glide-edge dislocation of
Burgers vector bx in the x direction (Weertman, 1996). (The
dislocations dealt with in this paper are not dislocations of

atomic dimensions but mathematically defined dislocations
in an elastic continuum that can have any macroscopic scale
(see Weertman, 1996).) The traction shear stress ¼xy for a
dislocation situated at the origin is equal to

¼xy…x† ˆ Gbx

2º¬x
; …1†

where G is the shear modulus and ¬ ˆ 1¡ ,̧ where ¸ is Pois-
son’s ratio.The shear stress arising from a distribution Bx…x†
of glide-edge dislocations smeared out on the slip plane is
therefore

¼xy…x† ˆ G

2º¬

…1

¡1

Bx…x0† dx0

x ¡ x0 : …2†

The shear crack solution found for Equation (2) is (Weertman,
1996)

Bx…x† ˆ 2¬¼A

G

x���������������
a2 ¡ x2

p ; …3†

and

Dx…x† ˆ
…¬

x

Bx…x† dx ˆ 2¬¼A

G

���������������
a2 ¡ x2

p
; …4†

where ¼A is the applied shear stress and Dx…x† is the net
displacement in the horizontal direction (x direction) at x
across the crack faces. Equations (3) and (4) are valid for
¡a µ x µ a, where a is the half-length of the crack.
…Bx ˆ Dx ˆ 0 for j x j > a:)

No normal (tensile or compressive) traction stress ¼yy is
produced at the slip plane (or crack plane) by a discrete
glide-edge dislocation or a smeared dislocation distribution
Bx…x† of glide-edge dislocations. To have a normal stress on
the crack plane produced by dislocations requires a
distribution By…x† of climb-edge dislocations whose Burgers
vectors are in the vertical direction (y direction). Equations
(1^4) apply for climb-edge dislocations if ¼xy is replaced with
¼yy, bx with by, Bx…x† with By…x†, and Dx…x† with Dy…x†.
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2. COMNINOU^DUNDURS EQUATIONS

Equations (1^4) must be modified if a shear crack (or a
tensile crack) exists on an interface separating elastic half-
spaces A and B (with solid A above and solid B below)
whose elastic constants differ. A glide-edge dislocation of
Burgers vector bx situated at the origin at the interface
produces the following long-range (inverse distance
dependence) and short-range (exists only where the
dislocation exists) traction stresses across the interface

¼xy…x† ˆ Gbx

2º¬x
; ¼yy…x† ˆ ¡ Gbx

2º¬x
º­ ¯…x†: …5a; b†

A climb-edge dislocation of Burgers vector by produces the
traction stresses

¼yy…x† ˆ Gby

2º¬x
; ¼xy…x† ˆ Gby

2º¬x
º­ ¯…x†: …6a; b†

In these equations ¯…x† is the Dirac delta function …¯ ! 1
when x ! 0, and ¯ ˆ 0 when x 6ˆ 0† and ­ is the Dundurs
parameter defined as (Dundurs,1967,1969)

­ ˆ GB…1 ¡ 2¬A† ¡ GA…1 ¡ 2¬B†
2…¬AGB ‡ ¬BGA†

ˆ GA…1 ¡ 2¸B† ¡ GB…1 ¡ 2¸A†
2…¬AGB ‡ ¬BGA† :

…7†

The effective shear modulus and the effective alpha term are
(Weertman,1996)

G ˆ 2GAGB

GA ‡ GB
; …8a; b†

¬ ˆ
…4¬AGB ¡ GB ‡ GA†…4¬BGA ¡ GA ‡ GB†

4…GA ‡ GB†…¬BGA ‡ ¬AGB† :

In the equations above, ¬A ˆ1¡¸A and ¬B ˆ1¡¸B, where ¸A

and ¸B are Poisson’s ratio of solid A and solid B, and GA and
GB are the shear moduli of solids A and B. (See appendix C
inWeertman (1996) for a derivation of these equations.)

Just as Equation (2) above arose from Equation (1),
Equations (5) and (6) for the interface traction stress of
discrete dislocations lead to the following equations for the
traction stress across the interface for a smeared-out
distribution Bx…x† of glide-edge dislocations and a smeared-
out distribution By…x† of climb-edge dislocations.

¼xy…x† ˆ G

2º¬
º­ By…x† ‡

…1

¡1

Bx…x0† dx0

x ¡ x0

0

@

1

A;

¼yy…x† ˆ G

2º¬
¡º­ Bx…x† ‡

…1

¡1

By…x0† dx0

x ¡ x0

0

@

1

A:

…9a; b†

Equations (9) are the Comninou^Dundursequations.They
give the shear traction stress ¼xy and the normal traction stress
¼yy across an interface (with solid A above and solid B below)
that arise from a smeared-out distribution Bx…x† of glide-edge
dislocations and a smeared-out distribution By…x† of climb-
edge dislocations.The inverse Comninou^Dundurs equations

are (after a sign correction is made inWeertman,1996)

Bx…x† ˆ 2¬

ºG…1 ¡ ­ 2†
º­ ¼yy…x† ¡

…1

¡1

¼xy…x0† dx0

x ¡ x0

0

@

1

A;

By…x† ˆ 2¬

ºG…1 ¡ ­ 2†
¡º­ ¼xy…x† ¡

…1
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¼yy…x0† dx

x ¡ x0

0

@

1

A:

…10a; b†
The non-traction stress ¼xx at the interface is given by

¼xx…x† ˆ …G=¬†Bx…x† ¨1 ¡ 1

2
­

³ ´
; …11a†

where the upper sign is used above the interface and the
lower sign below it. (This equation can be obtained from
the p.452 equations in appendix C of Weertman (1996). See
also p.50^51 of the same work.) Thus

Bx…x† ˆ ¡…¬=2G†‰¼xx
‡…x† ¡ ¼xx

¡…x†Š; …11b†
where ¼xx

‡ is the value of ¼xx above the interface, and ¼xx
¡

is the value below it. Similarly, the rotation pseudo-stress ¼!

on either side of the interface is given by

¼!…x† ˆ …G=2¬†By…x†…¨1 ¡ ­ † …12a†
and

By…x† ˆ ¡…¬=G†‰¼!
‡…x† ¡ ¼!

¡…x†Š: …12b†
The rotation pseudo-stress is defined by ¼! ² …G=¬†!,
where ! is the elastic rotation.

Note in Equation (9) that when ­ 6ˆ 0 a distribution of
glide-edge dislocations Bx…x† gives rise not only to a shear
traction stress on the slip plane but also to a normal traction
stress. The normal traction stress exists only where the
dislocations are present. Figure 1 (for ­ > 0) indicates that
glide-edge dislocations of opposite sign produce normal
stress of opposite sign. The Dundurs parameter ­ is equal
to zero if GA…1¡ 2¸B† ˆ GB…1¡2¸A† . If the two solids are
incompressible then ¸A ˆ ¸B ˆ ¬A ˆ ¬B ˆ 1

2 and ­ ˆ 0.
Note that if the upper half-space is incompressible and the
lower is not, the Dundurs parameter ­ is always positive.
(If GA ˆ GB; ¸A ˆ 1

2 and ¸B ˆ 1
4 then ­ ˆ 1

5).

2.1. Solution of Comninou^Dundurs equations for
shear crack

Let a positive shear stress ¼A (such as is applied at the base of
an ice sheet if the ice thickness is larger on the left side, or

Fig. 1. Dislocations of opposite sign on interface between half-
spaces A and B when ­ 40, showing regions of compressive
(negative) normal stress ¼yy where Bx40 and of tensile
(positive) normal stress ¼yy where Bx50. (Curvature of
interface is ignored.)
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negative x side, of the crack than on the right side, or positive
x side) be applied to a crack.The solution of the Comninou^
Dundurs equations gives the displacements at the crack faces
for an interface mode II shear crack, with no shear or tensile
traction stress acting on the crack faces.The solution is

Dx…x†ˆ®0…2¬¼A=G†…a2¡x2†1=2cosf² ln‰…a‡x†=a ¡ x†Šg;

…13a†

Dy…x†ˆ¡®0…2¬¼A=G†…a2¡x2†1=2sinf² ln‰…a‡x†=…a¡x†Šg;

…13b†
if interpenetration of the crack faces is allowed. Here Dx is
the net displacement across the crack faces in the horizontal
direction (x) and Dy is the net displacement in the vertical
direction (y). (See p.393^395 in Weertman (1996) and note
that these pages gives the solution for the mode I rather than
the mode II crack. The solution of the mode II crack is the
same as for the mode Icrack if the displacements Dx and Dy

are interchanged and one sign is reversed.) In Equation (13),
a is the half-length of the crack …¡a µ x µ a†; ¼A is the
applied shear stress, ®0 ¡ cosh ²º and ² ˆ …1=º†arctanh ­ .
(For ­ ˆ 1

5 : ² º 0.0645 and ®0 º1.02.) The crack center is at
x ˆ y ˆ 0. Note in Equation (13) the weirdWilliams oscilla-
tions (Williams, 1959) of ever-decreasing spacing as a crack
tip is approached. Oscillations cease where a ¡ j x j >

2a exp…¡º=2²†. For ­ ˆ 1
5
: a ¡ jx j > 5.37610^11a. The

Williams oscillations die out at very small distances from a
crack tip and can be ignored. In the Equation (13) solution
the crack faces are traction-free because the short-range
traction stresses arising from the C-D effect are canceled
by the long-range stresses of glide- and climb-edge disloca-
tion distributions. (The climb- and glide-edge dislocation
distributions are found from Equation (13) using the
relationships Bx ˆ ¡dDx=dx and By ˆ ¡dDy=dx:)

Figure 2a and b show plots of normalized displacements
(Dx=a†…G=2®0¬¼A) and (Dy=a†…G=2®0¬¼A) andnormalized
dislocation distributions Bx…G=2®0¬¼A) and By…G=2®0¬¼A)
vs normalized distance x=a from the center of the crack found
from Equation (13) for the case of ­ ˆ 1

5 and a positive applied
shear stress ¼A. The curves are cut off before the anomalous
Williams oscillations appear. (The displacement Dx and
edge-glide dislocation density distribution Bx is similar to
that of a Griffith^Inglis mode II crack. The displacement Dy

and edge-climb dislocation density distribution By has the
type of symmetry of a Zener^Stroh^Koehler mode I crack
(Weertman, 1996) but differs from it because the net Burgers
vector of climb dislocations is zero rather than of finite
amount. The crack is mixed-mode I and II in character.)
Note that on the right side Dy is negative. If interpenetration
of the crack faces is not allowed, at the right side the crack
faces make contact over an extended area. The more com-
plicated solution of Equation (9) is required in this situation.
If the Dundurs constant ­ ˆ 0 then Dy ˆ 0 and Dx has the
value of a Griffith^Inglis mode II crack.

It is seen in Figure 2b that the glide-edge dislocation
distribution Bx is very large near the tips of the crack. The
existence of these dislocations gives rise to large compressive
stress to the right of the righthand tip, and to large tensile
stress to the left of the lefthand tip. The stress from these
dislocations opens the left tip and closes the right tip. Figure
3 shows schematically the glide-edge dislocations that might
exist near the tips of a water-lens shear crack at the base of
an ice sheet subjected to a positive shear stress ¼A.

3. APPLICATION TO BASE OF AN ICE MASS

The Comninou^Dundurs equations apply at an interface
between elastic solids. For non-elastic solids it is reasonable
to expect a similar (generalized) C-D effect to exist because

Fig. 2. (a) Normalized plot of displacement Dx and Dy vs
x=a from Equation (8) for the case of ­ ˆ 1

5
. (b)Normalized

plot of dislocation density components Bx ˆ ¡dDx=dx and
By ˆ ¡dDy=dx vs x=a.

Fig. 3. Anomalous C-Deffect pressure regions at ice^till contact
with thick, lake-like water lens.The contact zone is subjected to
an overall shear stress.
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the C-D effect arises from the difficulty, shown schematically
in Figure 6 in Appendix A, of fitting together two half-
spaces of different material whose interface in any region is
subjected to non-uniform slip, and at least one of the half-
spaces contains a compressible solid.

At the base of an ice sheet or a glacier the interface is
between basal ice (solid A or ice of Figs 1 and 3), which
deforms by high (homologous) temperature creep, and the
bed (solid B or till of Figs 1and 3), which may be elastic if it
is bedrock and non-elastic if it is made of glacial till. High-
temperature creep deformation of ice is incompressible
(provided that no voids appear at grain boundaries during
creep and trapped air bubbles have negligible volume). If
the ice sheet or glacier bed is elastic bedrock the ­
parameter can be expected to be insignificant. Note that
the shear modulus of rock is at least an order of magnitude
greater than that of cold ice. Thus, using Equation (7) for a
rough measure of an effective Dundurs parameter, ­ is small
and can be ignored. The C-D effect, therefore, should be
unimportant whenbasal ice rests onbedrock (or onbedrock
veneered with only a thin till layer).

Suppose an ice mass rests on a thick till layer. Tulaczyk
and others (2000) showed that till, taken from under
Whillans Ice Stream (formerly Ice Stream B), Antarctica,
is compressible. Thus a generalized Dundurs parameter ­
is positive. It is prudent, therefore, to consider the C-D effect
when basal ice rests on till. Consider a water lens within
basal till, shown schematically in Figure 3, whose horizontal

dimension is large compared with its thickness. Assume the
water thickness is so large that a shear stress cannot be
transmitted across the lens because bed irregularities do
not penetrate the water layer and make contact with the
overlying ice. However, an overall shear stress exists across
the base of the ice mass as indicated in Figure 3. (A shear
stress of sense given in this figure is produced at the base of
an ice sheet if the ice thickness decreases from left to right.)
The water lens acts a mode II-type shear crack.

(If the horizontal dimension of the water lens is very
much greater than the thickness of an ice sheet the upper
ice surface will be horizontal. In this situation no shear
stress will be transmitted to the base of the ice sheet over
most of the area of the ice lens. In the regions at the edges
of the ice lens, however, a shear stress will exist because the
upper ice surface no longer is horizontal there. The edge
regions of the water lens act as edge shear cracks.)

If the elastic solids of the half-spaces are replaced with
non-elastic solids the qualitative behavior of the crack will
not change.The mode II shear crack faces should still try to
open up on one side (the left side of Figs 2b and 3) and try to
interpenetrate on the opposite side (the right side of Figs 2b
and 3). If the right side of a water lens closes and the left side
opens, the crack may shift its position towards the left.This is
shown schematically in Figure 4a and b. (If only the left side
shifts, the water lens becomes longer in the horizontal direc-
tion, as indicated schematically in Figure 4c.)

In Tulaczyk and others (2000, fig. 4) are shown stress^
strain curves of till obtained in triaxial tests. These stress^
strain curves approximate well those of an elastic perfectly
plastic solid. Tulaczyk and others (2000) find that the shear
stress at failure is proportional to an effective normal stress.
(Alley (2000) discusses the uncertainties in ourunderstanding
of the rheological properties of till present beneath ice sheets.)
The deformation of ice itself can be modeled as that of an
elastic perfectly plastic solid. As is well known, early (and
reasonable) estimates of ice sheet and glacier profiles were
made using this ice rheology.

Assume now, for the purpose of investigating the influ-
ence of the C-D effect at an ice-sheet base, that reasonable
qualitative results can be obtained by considering both ice
and till to be elastic perfectly plastic solids. Assume ice to
be incompressible and till to be compressible. The Dundurs
parameter ­ is positive. For simplicity, assume the yield
stress ¼0 of ice and in situ basal till to be the same. If the yield
stress of till is very much greater than the effective one for
ice, for all practical purposes, basal ice rests on bedrock
and the C-D effect almost entirely disappears. But if the
yield stress of till is very much greater than that of ice, the
generally accepted concept of deformable soft till glacier
beds, based on field observations, is untenable.

Figure 5a and b show, by means of trajectories across
which the shear stress is a maximum, the stress solution near
the lefthand tip (Fig. 5a) and the righthand tip (Fig. 5b).
The crack tip is at the point where the fan-sector trajectories
converge.The crack face is indicated in the figure.The stress
solution consists of fan-type sectors and block-type sectors.
In each sector the effective stress magnitude is at the yield
stress, except in the sector with dashed trajectories. Plastic
deformation takes place in the fan sectors. Equations for
the stress field in each sector are given in Appendix B.
Because of the asymmetry in Figure 5a and b, plastic
deformation leads to the closing of the crack faces at the
righthand tip and to the opening at the lefthand tip.

Fig. 4. (a) Same as Figure 3. (b) Water lens moved to the left
through opening of left-side low-pressure region and closing of
right-side high-pressure region. (c) Water-lens left boundary
moved to the left through opening of left-side low-pressure
region but with right boundary stationary. (Ice thickness
increases towards the left.)
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It is difficult to make a good estimate of just how fast a
water lens might migrate. A more refined analysis than the
one presented here is required. Avery rough and unreliable
estimate can be made using Figure 2a. This figure shows
that the vertical elastic displacements are about an order of
magnitude smaller than the horizontal elastic displace-
ments for a crack in an elastic solid. Hence one might expect
for a crack in a solid that deforms by creep that the vertical
crack face velocity VV is an order of magnitude smaller than
the horizontal velocity VH. The horizontal velocity can be
expected to be smaller than the horizontal velocity at the
upper ice surface. If the depth of the lake is D, its right side
(right side of Fig. 3) would close in a time of about 10D=VH.
(The left side can advance by opening the material beyond
the lefthand crack tip.) If the half-length a of the water lens
is smaller than the ice thickness, the drift velocity could be
of the order of or smaller than aVH=10D. (If the water-lens
half-length is much larger than the ice thickness, the water
lens becomes an edge crack of effective length equal to ice
thickness.) The drift velocity could be large (m a^1 to kma^1)

until the water lens reaches a region of low upper-ice-surface
horizontal velocity.

4. DISCUSSION

Many subglacial lakes with appreciable water volume are
now known to exist in Antarctica (Siegert and others, 1996;
Dowdeswell and Siegert, 1999; Siegert, 2000a,b). (The first
indication of a subglacial lake under an Antarctic ice sheet
was found by Robin and others (1970).) It is interesting to
note that most of the subglacial lakes catalogued by Siegert
and others, as they point out, are close to an ice divide. Of
course, the greater ice thickness at ice divides favors basal
meltwater production and lake creation there, but the heat
produced by frictional sliding also favors increased basal
meltwater production and possible lake formation away
from ice divides.The observation that the location of a sub-
glacial lake is biased to be near an ice divide suggests that
some mechanism exists that drives a basal water lens to
move towards increasing ice thickness. (Of course, the
bottom topography at any one location may have large
bowl-shaped elevation variation and a large geothermal
heat flux that favora stationary subglacial lake.The analysis
of this paper is not applicable to such lakes.)

This paper suggests a mechanism by which crack-shaped
basal water lenses situated between basal ice and basal till
can shift their positions over time. The mechanism is based
on the Comninou^Dundurs equations that are applicable to
dislocation distributions on interfaces including those of the
special cases of interface cracks. Although the Comninou^
Dundurs equations apply to dislocations at interfaces
between elastic solids, they should indicate reasonably well
the qualitative behavior of interface cracks between non-
elastic solids. Thick basal water lens and subglacial lakes
essentially are interface cracks subjected to mode II shear
crack loading. Because of the C-D effect a mode II shear
crack takes on an additional mode I character. At one end
of the crack (that nearest an ice divide) a tensile mode I
component is added that opens the crack and causes that
end to move towards the ice divide. At the other end of the
crack (that furthest from an ice divide) a compressive mode
I component is added that closes the crack and causes that
end also to move towards the ice divide. Hence a water lens
could move over time towards an ice divide if not prevented
from doing so by large bottom topography variations and by
lack of a thick layer of basal till. If subglacial lakes are able to
shift their positions over time, it is possible that larger lakes
devour smaller ones. (Moreover, the expected high-pressure
zone just beyond the downstream side edge of a crack-like
lake might impede water flow.) Under Pleistocene ice sheets,
subglacial lakes may grow so large and so unstable that they
dump and contribute to Heinrich events.

The position and history of subglacial lakes obviously
depends on various factors. These include water flux though
them, their thermal history, basal melting and freezing of
water, and pressure gradients within them. The C-D effect
discussed in this paper may be almost as important a factor
for some types of subglacial lakes.
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Fig. 5. (a) Stress-field maximum shear stress trajectories in
basal ice and till at left side of water lens when there is a C-D
effect. Rheology of ice and till is approximated as an elastic
perfectly plastic solid of yield stress ¼0. (¼D is expressed in
units of ¼0.) (b) Same as (a) but for right side of water lens.
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APPENDIX A

PHYSICAL ORIGIN OF THE COMNINOU^
DUNDURS EFFECT

The physical origin of the C-D effect can be understood
from Figure 6 and the equation of the displacement field of
a glide dislocation of Burgers vector bx:

u ˆ bx

2º
arctan

y

x
‡ 1

2¬

xy

x2 ‡ y2

³ ´
;

v ˆ bx

2º
¡ 1 ¡ 2¸

2¬
ln

���������������
x2 ‡ y2

p

r0
‡ 1

2¬

y2

x2 ‡ y2

Á !

:

…A1†

Here u and v are the displacements in the horizontal (x)
and vertical (y) directions for a dislocation situated at the
origin, and r0 is a constant of order of magnitude of bx.

If the solid is incompressible, its Poisson’s ratio has the
value ¸ ˆ 1

2. At the slip plane there is no vertical displacement.
However, if the solid is compressible (that is, 05 ¸5 1

2) the
vertical displacement of the slip plane (y ˆ 0) is logarithmic
divergent at the origin. The deformed slip plane is shown

schematically in Figure 6. Figure 6a showsthe slip planebefore
an edge dislocation is placed on it in a solid A or in a solid B of
differing Poisson’s ratio. Figure 6b and c show schematically
the deformed slip plane in solid Aor in solid B. Figure6d shows
what wouldhappen if the upperhalf of the solid A in Figure 6b
were to be joined to the bottom half of solid B in Figure 6c and
no change occurred in the deformed slip plane of either figure.
There would be overlap of material as indicated in the figure
(or a gap formed if the top half of B were joined to the bottom
half of A in Figure 6b andc).The overlap (or gap) is prevented
from occurringby the establishmentof a normal traction stress
across the interface between two different materials on which
resides a glide dislocation. A normal traction stress does not
exist at the slip plane of a glide-edge dislocation in a solid
whose elastic constants are the same everywhere. Its appear-
ance here is the C-D effect.

Actually, the Figure 6 explanation, although essentially
correct in outline, is too simple and is somewhat misleading.
It implies, using Equation (1), that if Poisson’s ratios for the
two half-spaces are identical, no normal traction will be set

Fig. 6. (a) Slip plane without glide-edge dislocation between
two elastic half-spaces A-A or B-B. Elastic constants of half-
space A differs from those of half-space B. (b) Glide-edge
dislocation on deformed slip plane between half spaces A-A.
(c) Same as (b), but A-A half-spaces replaced with half-
spaces B-B. (d) Glide-edge dislocation on slip plane between
half-space A and half-space B if the deformed slip planes of
(b) and (c) were unaltered.
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up because the vertical displacements of Figure 6b and c are
the same even if the shear moduli of the two half-spaces are
different. However, if the moduli are different, the
displacements will differ, partly because the partition of the
total Burgers vector of the glide-edge dislocationbetween the
two half-spaces is different. See appendix C of Weertman
(1996) for a detailed derivation of the Comninou^Dundurs
equations and their inverse. If a climb-edge dislocation is
placed on the interface of Figure 6, a shear traction stress is
set up. A climb-edge dislocation is one whose Burgers vector
is perpendicular to the interface.

APPENDIX B

ASYMPTOTIC STRESS FIELD AT CRACK TIP

Figure 5a and b show what would be the stress field (under
plane strain conditions) within the ice and till near the left-
side and the near right-side crack tips of the Figure 3 shear
crack if ice were incompressible but till were not and their
rheology is that of elastic perfectly plastic solids with the same
elastic constants (G ˆ GA ˆ GB). Figure 5 shows the maxi-
mum shear stress trajectories. (These trajectories are a gener-
alizationof those of the Hutchinson (1968a,b) mode II crack-
tip field solution of a shear crack in a homogeneous solid.)

Assume the crack faces near a crack tip are traction-free
(other than the traction stress arising from the overburden
pressure). Because of the term 1

2 ­ in Equation (11a), the
deviatoric stress at the crack faces near a tip (that is,
¼D ˆ 1

2 …¼xx ¡ ¼yy† ˆ 1
2 ¼xx† can only equal the yield stress

just above the crack face and not below it. Thus at the
right-side crack-face tip

¼D ˆ ¡¼0 …above†;

¼D ˆ ¼0 1 ¡ 1

2
­

³ ´¿
1 ‡ 1

2
­

³ ´
…below†;

…B1a†

and at the left side

¼D ˆ ¼0 …above†;

¼D ˆ ¡¼0 1 ¡ 1

2
­

³ ´¿
1 ‡ 1

2
­

³ ´
…above†:

…B1b†

On both sides ice above the crack faces is at the yield stress,
and till below the faces is below the yield stress. The stress
fields in the different sectors are (when ­ ˆ 1

5 and
(1 ¡ 1

2
­ †=…1 ‡ 1

2
­ † ˆ 0.818181 . .) given below.

The stress components in the sectors in Figure 5b are
(with ¡º µ ³ µ º and ­ ˆ 1

5)

¼S ˆ ¼0; ¼D ˆ 0; ¼P ˆ ¡2¼0³ ‡ ¼P0; …fan sector A†;

¼S ˆ ¼0 cos 2 ³ ¡ 1

4
º ‡ ³1

³ ´
;

¼D ˆ ¼0 sin 2 ³ ¡ 1

4
º ‡ ³1

³ ´
;

¼P ˆ ¡2¼0
1

4
º ¡ ³1

³ ´
‡ ¼P0; …block sector B†;

¼S ˆ ¼0 cos 2 ³ ‡ 1

4
º ¡ ³2

³ ´
;

¼D ˆ ¼0 sin 2 ³ ‡ 1

4
º ¡ ³2

³ ´
;

¼P ˆ 2¼0
1

4
º ¡ ³2

³ ´
‡ ¼P0; …block sector E†;

¼S ˆ ¡¼0; ¼D ˆ 0; ¼P ˆ 2¼0 ³ ¡ 1

2
¡ 3

4
º

³ ´
;

…fan between B and C†;

¼S ˆ ¡¼0; ¼D ˆ 0; ¼P ˆ 2¼0 ³ ‡ 3

4
º ¡ ³2

³ ´

‡ 2¼0
1

4
º ¡ ³2

³ ´
‡ ¼P0;

¼! ˆ 2¼2 ln…r=r0† ³ ‡ 3

4
º ¡ ³2

³ ´¿
…³3 ¡ ³2†

µ ¶
;

…fan between D and E†;
¼S ˆ ¼0 sin 2³; ¼D ˆ ¡¼0 cos 2³; ¼P ˆ ¡¼0;

…block sector C†

¼S ˆ ¼2 ‡ ¼1 cos 2 ³ ‡ 3

4
º ¡ ³3

³ ´
;

¼D ˆ ¼1 sin 2 ³ ‡ 3

4
º ¡ ³3

³ ´
;

¼P ˆ ¡2¼2…³ ‡ º† ‡ ¼1 sin 2
3

4
º ¡ ³3

³ ´
;

¼! ˆ 2¼2 ln…r=r0†; …below yield stress sector D†:
…B2†

The traction stress at a crack face is zero.The rotationpseudo-
stress is zero in a sector unless an explicit expression for ¼! is
given. (The need for a log singular rotation pseudo-stress in
sector D is explained in Weertman (1996, in press).) The
constants are given by

¼1 ˆ ¼0

¿
1 ¡ cos 2

3

4
º ¡ ³3

³ ´µ ¶
ˆ ¡0:834711¼0;

¼2 ˆ ¼0 cos 2
3

4
º ¡ ³3

³ ´¿
1 ¡ cos 2

3

4
º ¡ ³3

³ ´µ ¶

ˆ ¡0:1652892¼0;

¼P0 ˆ 2¼0 ¡ 1

2
‡ 1

4
º ¡ 2³1

³ ´

ˆ ¡2¼0…³3 ¡ ³2† ¡ 2¼0
1

4
º ¡ ³2

³ ´

¡ 2¼2 ³3 ‡ 1

4
º

³ ´
‡ ¼1 sin 2

3

4
º ¡ ³3

³ ´

ˆ ¡0:2607¼0;

³1 ˆ 11:9102o…0:30754º†;
³2 ˆ ³3 ˆ 5:71059o …0:0317255º†: …B3†

The value of ³3 is found from the conditions that at
³ ˆ ¡º; ¼D ˆ ¼0…1¡ 1

2 ­ †=…1‡ 1
2 ­ † and ¼S ˆ 0, and at

³ ˆ ¡ 3
4 º ‡ ³3; ¼S ˆ ¡¼0. The angles ³1 and ³2 are

determined once the constant ¼P0 is specified, provided they
are positive quantities.The angles given above are for the phy-
sically possible most negative value of ¼P0. The most negative
value of ¼P0 is chosenbecause in Figure 3b, which is the elastic-
case analogue, a large compressive stress is expected ahead of
the right-side crack tip. (The most positive value,
¼P0 ˆ 0.570796¼0, requires ³1 ˆ 0, ³2 ˆ17.6208³. For ¼P0 ˆ 0:
³1 ˆ ³0 ˆ 1

8 º ¡ 1
4 ˆ 8.17606³, ³2 ˆ 9.4447³.)
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The stress components in the sectors in Figure 5a are
(with ¡º µ ³ µ º and ­ ˆ 1

5)

¼S ˆ ¼0; ¼D ˆ 0; ¼P ˆ ¡2¼0…³ § º† ¡ ¼P0;

…fan sector A with ¡ for ³ > 0 and ‡ for³ < 0†;

¼S ˆ ¼0 cos 2 ³ ¡ 3

4
º ¡ ³1

³ ´
;

¼D ˆ ¼0 sin 2 ³ ¡ 3

4
º ¡ ³1

³ ´
;

¼P ˆ 2¼0
1

4
º ¡ ³1

³ ´
¡ ¼P0; …block sector B†;

¼S ˆ ¼0 cos 2 ³ ‡ 3

4
º ¡ ³2

³ ´
;

¼D ˆ ¼0 sin 2 ³ ‡ 3

4
º ¡ ³2

³ ´
;

¼P ˆ ¡2¼0
1

4
º ¡ ³2

³ ´
¡ ¼P0; …block sector E†;

¼S ˆ ¡¼0; ¼D ˆ 0;
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2
¡ 1

4
º

³ ´
; …fan between B and C†;

¼S ˆ ¡¼0; ¼D ˆ 0;

¼P ˆ 2¼0 ³ ‡ 1

4
º ‡ ³2

³ ´
¡ 2¼0

1

4
º ¡ ³2

³ ´
¡ ¼P0;

¼! ˆ 2¼2 ln…r=r0† ³ ‡ 1

4
º ‡ ³2

³ ´¿
…³2 ¡ ³3†

µ ¶
;

…fan between D and E†;
¼S ˆ ¡¼0 sin 2³; ¼D ˆ ¼0 cos 2³; ¼P ˆ ¼0;

…block sector C†;

¼S ˆ ¼2 ‡ ¼1 cos 2 ³ ‡ 1

4
º ‡ ³3

³ ´
;

¼D ˆ ¼1 sin 2 ³ ‡ 1

4
º ‡ ³3

³ ´
;

¼P ˆ ¡2¼2³ ‡ ¼1 sin 2
1

4
º ‡ ³3

³ ´
;

¼! ˆ ¡2¼2 ln…r=r0†; …below yield stress sector D†:
…B4†

The deviatoric stresses at the crack faces given by Equation
(B2) and the stress fields of Figure 5 imply in Figure 3 that
the ice face will creep downwards at the right-side crack tip
until ice makes contact with till. At the left side the ice face
creeps away from the till face opening the crack. The left
side has a mode I tensile component that can lead to crack
growth towards the left.

(Sham and others (1999) have analyzed interface crack-
tip fields in elastic perfectly plastic solids where the yield
stress is not the same on either side of the interface.)
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