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USING PROGRAM SCHEMES TO CAPTURE POLYNOMIAL-TIME
LOGICALLY ON CERTAIN CLASSES OF STRUCTURES

TAIN A. STEWART

Abstract

In this paper, the study of the expressive power of certain classes
of program schemes on finite structures is continued, in relation to
more mainstream logics studied in finite model theory and to com-
putational complexity. The author shows that there exists a program
scheme — whose constructs are assignments and while-loops with
quantifier-free tests and which has access to a stack — that can accept
aP-complete problem, the deterministic path system problem, even
in the absence of non-determinism, so long as problem instances are
presented in a functional style. (The proof given here leans heav-
ily on Cook’s proof that the classes of formal languages accepted
by deterministic and non-deterministic logspace auxiliary pushdown
machines coincide.) However, whilst this result is of independent in-
terest, in that it leads to a deterministic model of computation captur-
ing P, whose non-deterministic variant also captiPethe program
scheme can also be used to build a successor relation in certain classes
of structures (namely: the class of strongly connected locally ordered
digraphs, the class of connected planar embeddings, and the class of
triangulations), with the consequence that on these classes of graphs,
(afragment of) path system logic (with no built-in relations) captures
exactly the polynomial-time solvable problems.

1. Introduction

One of the central open problems in finite model theory is whether there is a logic fc
capturing the complexity clag (polynomial-time); that is, whether there is a logic such
that the class of problems definable in this logic coincides with the class of polynomial-tim
solvable problems. Of course, one has to be precise about what one means by a ‘logic’ (
generally accepted definition is given in, for exampf) put one sensible property that
any logic should have is that it should have a recursive syntax; that is, the well-forme
formulae of any logic should be recursively enumerable. This property immediately rule
out all existing ‘logical’ characterisations Bfbased around ‘logics’ with built-in relations,
such as inflationary fixed-point logic with a built-in successor relatimpd path system
logic with a built-in successor relatiof2]. (Throughout, for convenience, we try to ugé [

as our main reference text for definitions and results in finite model theory and descripti
complexity, and the reader is referred to this text for more details on the proper attributic
of results.)
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Using program schemes to capture polynomial-time

Working on the assumption that there is a logic captuFipngne can approach this central
problem from two directions. One can try to develop more and more expressive logics (b
where the expressibility stays within polynomial-time), and hope that eventually a logi
capturingP will emerge; or one can consider existing logics, such as inflationary fixed:
point logic and path system logic (in the absence of built-in relations), and try to cépture
on certain classes of finite structures, in the hope that eventually such characterisations
show exactly what has to be added to one of these logics (while still retaining the proper
of being a logic) so as to captuRe Of course, it may be the case that no such logic exists
capturingP (with the consequence that£ NP). If this is so, then it is clearly worthwhile
to discover on which classes of finite structures — and for which logitsan be logically
captured. It is essentially this question that we are addressing here.

Existing results related to capturifgon restricted classes of structures are all concernec
with inflationary fixed-point logic. In particular, Immerman and Land& froved that
inflationary fixed-point logic with counting (that is, where there is an additional universe
of numbers and a total ordering on this universe) captBres the class of trees; also,
Grohe [6] and Grohe and Marifid] proved that this same logic does likewise on the
class of planar graphs and the class of graphs of bounded tree-width, respectively. Grc
[6] additionally proved that inflationary fixed-point logic (without counting) captuPes
on the class of 3-connected planar graphs. In this paper, we show that a fragment of p
system logic, which is itself a proper fragment of inflationary fixed-point logic (even or
the class of trees), suffices to captiten the following classes of structures: strongly
connected locally ordered digraphs, connected planar embeddings, and triangulations.
class of triangulations (that is, the class of planar graphs having a planar embedding wh
faces, including the outer face, are all cycles of length 3) forms a (significant) proper sul
class of the class of 3-connected planar graphs, and so one might interpret our result ¢
strengthening of Grohe’s result for this class of graphs. (We do not as yet know whether
is the case that path system logic captires) the class of 3-connected planar graphs.)

Our results, mentioned in the preceding paragraph, are applications of another resul
this paper concerning program schenf@sgram schemesssentially provide a model of
computation that is amenable to logical analysis, yet is closer to the general notion of
program than a logical formula would be. They were extensively studied in the seventie
without much regard being paid to an analysis of resources, before a closer complex
analysis was undertaken, mainly in the eighties. There are connections between progt
schemes and logics of programs, especially dynamic logic. Program schemes have si
been further developed to work on finite structures, in the light of advances in finite-mod
theory (see, for examplel] 13, 14] for more details). One appealing characteristic of
program schemes is that they form a model of computation for computing on unorder
data.

Our main result involving program schemes is that there is a deterministic progral
schemep, whose constructs are assignments and while-loops with quantifier-free tests, a
which has access to a stack, with the property that it accePte@mplete problem, the
deterministic path system problem, if the instances of this problem are presented as fir
structures over a signature consisting of a binary function symbol and two constant symbc
Our proof is very close in essence to Cook’s prdtifthat the classes of formal languages
accepted by deterministic and non-deterministic logspace auxiliary pushdown machin
coincide; it is, however, much more rigorously presented than Cook’s proof. Whilst ou
resultis ofindependentinterest, as it leads to a deterministic model of computation capturi
P, whose non-deterministic variant also captuPeshe actual program scheme above,
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allied with results from1] linking similar program schemes with path system logic, enables
us to build a successor relation canonically, in any graph, from one of the classes mentior
above. Thus, we can logically captUPeon these classes of graphs.

In the next section, we give the basic definitions pertaining to finite model theory an
program schemes, before proving in Sect®that we can solve the deterministic path
system problem in the manner described above. Our applications are detailed in &gectior
and we present our conclusions in Sectton

2. Preliminaries

Ordinarily, asignatures isatupleRy, ... , R, C1, ..., C¢), where eaclR; isarelation
symbol, of aritys;, and eaclC; is a constant symbol. However, we sometimes allow our
signatures also to contain function symbols. When we do, we explicitly denote that this
the case by referring to the signaturesdshat is, we use a superscripb denote signatures
that might contain function symbols. Consequently, definitions, theorems and the like mig
apply only to signatures not involving function symbols, or they might apply to signatures
o’ where function symbols are allowed (though not necessarily present). For exéiraple,
order logic over some signatuke, FO(o), consists of those formulae built from atomic
formulae overo using A, v, =, V. and3, and FO= U{FO(o) : o is some signature}.
Thus, according to our notation, we have definedd&Cand FO only for signatures not
containing function symbols. Of course, first-order logic can be defined over signature
containing function symbols; our definition, however, suffices for our needs. The same ¢
be said of other subsequent definitions.

A finite structure4 over the signature, or o-structure, consists of a finiteniverseor
domain| 4|, together with a relatioR;, of arity a;, for every relation symbak; of o of arity
a;, and a constar@; e |A| for every constant symbdl;. (By an abuse of notation, we do
not distinguish between constants or relations, and between constant or relation symbols
A is afinites’-structure for some signatuse (note: possibly containing function symbols),
then in addition to the above, for every function symbBobf arity b;, there is a total function
Fi @ | A% — | Al

A finite structureA whose domain consists efdistinct elements hasizen, and we
denote the size oft by |4| also (this does not cause confusion). We only ever considel
finite structures of size at least 2, and the set of all finite structures over the sigmature
of size at least 2 is denoted STRUT). A problemover some signature’ consists of a
subset of STRUC{o") that is closed under isomorphism; that isyifis in the problem,
then so is every isomorphic copy g@f. Throughout, all our structures are finite.

We are now in a position to consider the class of problems defined by the sentences
FO; we denote this class of problems by ‘FO’ also, and we do likewise for other logics. Iti
widely acknowledged that, as a means of defining problems, first-order logic leaves a lot to
desired, especially when we have it in mind to develop a relationship between computatior
complexity and logical definability. In particular, every first-order definable problem can b
accepted by a logspace deterministic Turing machine, yet there are probleifisgspace)
that cannot be defined in first-order logic (one such being the problem consisting of all tho
structures over the empty signature that have even size). Consequently, we now illustr
one way of increasing the expressibility of FO: we augment FO with a uniform or vectorize
sequence of Lindstrom quantifiers, or ‘operator’ for short. (The reader is referrélddo §
fuller exposition on the limitations of FO, and on a number of different methods — including
this one — for increasing the expressibility of FO.)
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Our illustration uses an operator derived from a problem whose underlying instanc
can be regarded as path system9ath systentonsists of a finite set oferticesand a
finite set ofrules, each of the forngx, y, z), wherex, y andz are (not necessarily distinct)
vertices. There is a unique distinguished vertex calleddece, and a unique distinguished
vertex called theink. The set ohccessible verticeim any path system is built as follows.
Initially, the source is deemed to be accessible, and new vertices are shown to be access
by applyingthe rules as follows: ik andy are accessible (possibly with= y) and there
isarule(x, y, z), thenz becomes accessible. Thath system problegonsists of all those
path systems for which the sink is accessible from the source, and this was the first probl
to be shown to be complete fBrvia logspace reductions [2].

We encode the path system problem as a problem over the sigmgfutet consists
of the relation symboR of arity 3, and the constant symbols ‘source’ and ‘sink’c#:
structure can be thought of as a path system where the vertices of the path system ¢
given by|#|, the source is given by ‘source’, the sink is given by ‘sink’ and the rules of the
path system are given lyx, y, z) : R(x, y, z) holds in#}. Hence, we define the problem
PS as

{# € STRUCT(o3) : the vertex ‘sink’ is accessible from the vertex ‘source’
in the path systen?}.

Let us return to increasing the expressibility of FO. Corresponding to the problem PS
an operator of the same name. The logicPS) [FO], orpath system logids the closure
of FO under the usual first-order connectives and quantifiers, and also the operator PS, v
PS applied as follows.

Given a formulap (X, y, z) € (£ PS)[FO]over the signature, where the variables of
thek-tuplesx, y andz, for somek > 1, are all distinct and free i, the formulad defined
as PS[ixy, z¢](u, v), whereu andv arek-tuples of (not necessarily distinct) constant
symbols and variables, is also a formulg &fPS)*[FO], with the free variables @b being
those variables in andv together with the free variables gfdifferent from those in the
tuplesx, y andz. If ® is a sentence, then it is interpreted in a structére STRUCT(o)
as follows. We build a path system with vertex s&t* and set of rules

{@ b, c) € [AF x |AF x |4]F: @@, b, c) holds inA},

and we say thatt = @ if and only if the sinkv is accessible in this path system from the
sourceu. (The semantics can easily be extended to arbitrary formulage BS)J*[FO]; see,

for example, [4] for a more detailed semantic definition of operators such as PS.) Note tf
(£ PSy[FO] defines a class of problems over signatures not containing function symbol
Note also that there is nothing special about the problem PS: any problem can be conver
into an operator and used to extend first-order logic. Syntactically, such logics are ve
similar, although their semantics depend on the operator in hand.

It is indeed the case that we have increased the expressibility, as we can define pr
lems in (£ PSy[FO] that cannot be defined in FO. (A simple Ehrenfeucht—Fraissé gam
shows that PS is not definable in FO; sdéfpr more on such games.) In the presence
of a built-in successor relation, we can obtain a precise complexity-theoretic characteris
tion of the problems definable i PS)*[FO]. We say that we havelauilt-in successor
relation if, no matter over which signature we happen to be working, there are alway
a binary relation symbol ‘succ’ and two constant symbols 0 and ‘max’ available, suc
that this relation symbol ‘succ’ is always interpreted as a successor relation, of the for
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{(ag, a1), (a1, a2), ..., (an—2, a,_1)}, in a structure of size, where all they; are distinct
andag = 0 anda,,_1 = max. Note that whether a structure satisfies a sentence in which th
relation symbol succ or the constant symbols 0 or max appear might depend upon the
ticular successor relation chosen as the interpretation for succ. Consequently, we consi
only those sentences ¢t PS)y[FO] which have a built-in successor relation, and which
define problems as being well-formed; that is, those sentences for which satisfaction is
dependent of the particular interpretation chosen for succ. We denote thetdg®j [FO]

with a built-in successor relation b PSy[FO,]. Whether or no(4+ PS)[FO;,] should
really be called ‘a logic’ is highly debatable (for example, it is undecidable as to whethe
a sentence of£ PS)[FOy] is order-invariant— that is, satisfies the property we want as
regards succ — and so this ‘logic’ does not have a recursive syntax); the reader is refer
to [4] and [9] for a detailed discussion of this and related points.

THEOREM 1 (se€[12]). A problem over the signatuteis in Pif and only if it can be defined
in (£ PS)[FOy]. Moreover, any problem it PSY[FO,] can be defined by a sentence of
the form

PSIAX Y, zp(X, Y, 2)](0, max),

where|x| = |y| = |z| = k, for somek > 1. Here,0 represents the constant symifpl
repeatedk times, andmax represents repetitions ofmax ¢ is a quantifier-free formula
of FO;.

Our notation for(+ PS)[FO] is such that: denotes the fact that applications of the
operator PS can appear within the scope of negation sign$,dambtes the fact that we are
allowed to nest applications of PS as many times as we like. The fragmd?® ) [FO],
for somek > 1, is obtained by allowing at mostnestings of applications of PS, and the
fragment PS[FOlis obtained by further disallowing any application of PS to appear within
the scope of a negation sign. Hence, by Theoteme see thaP = PSFO;].

The class of problem&t PSY*[FO]is also intimately related with the class of problems
accepted by certain program schemes that have access to a stacigram scheme <
NPSS(1)involves a finite sefx1, x2, ... , xx} of variables for somek > 1, and is over a
signatures’. It consists of a finite sequence iotructions where each instruction, apart
from the first and the last, is one of the following:

¢ anassignment instructioaf the form ‘x; := y’, wherei € {1,2, ..., k}, and where
y is a variable from{x1, x2, ... , x¢}, @ constant symbol af’, or one of the special
constant symbols 0 and max, which do not appear in any signature;

¢ anassignment instructioof the form %; := F(y1, y2, ..., yn)', Where:i € {1, 2,
..., k}; eachy; is a variable from{xy, x2, . .. , x¢}, @ constant symbol @f’ or one of
the special constant symbols 0 andx; andF is a function symbol o&’ of arity m;

¢ aguess instructiof the form ‘GUESSy;’, wherei € {1,2, ... , k};

» awhile instructionof the form ‘WHILE ¢ DO «ay; ap; ... ; oy OD’, wherer is a
guantifier-free formula of FO(aJ {0, max}), with o the signaturex’ minus any
function symbols, whose free variables are chosen fromxo, . .. , x;}, and where
each ofay, ap, ... , a4 is another instruction of a form given here (note that there
may be nested while instructions); or

» astack instructiorof the form ‘x; := POP’ or ‘PUSHY;’, wherei € {1,2, ..., k}.

The first instruction ofp is ‘INPUT(x1, x2,...,x;)’, and the last instruction is
‘OUTPUT (x1, x2, ..., x7)’, for somel, where 1< [ < k. The variablescy, x2, ... , x;
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are theinput-output variable®f p, the variables; 1, x;42, ... , x; are thefree variables

of p and, further, no free variable gfever appears on the left-hand side of an assignment
instruction, or in a POP instruction, or in a guess instruction. Essentially, free variable
appear irp as if they were constant symbols.

A program schemp € NPSS(1)overo’ with s free variables, say, takessé-structure
A ands additional values fromw|, one for each free variable @f, as input; that is, an
expansionA’ of 4 by adjoinings additional constants. The program schemesomputes
on 4’ in the obvious way, except that the POP and PUSH instructions provide access t
stack and:

« execution of the instruction ‘GUESS’ non-deterministically assigns an element of

|4| to the variablex;;

« when the instruction ‘PUSH;’ is encountered in some program scheme, the value
of the variablex; is placed on the top of the stack (so increasing the height of the
stack by 1) but so that; retains its value, and when the instruction != POP’ is
encountered, the value on the top of the stack is removed (so decreasing the heigh
the stack by 1) and the variable assumes this value (if the stack is empty when the
instruction ‘x := POP’ is encountered, then the computation halts);

« the constants 0 and max are interpreted as two arbitrary but distinct elemenats of
and

« initially, every input-output variable is assumed to have the value 0.

Note that throughout a computationmfthe value of any free variable remains unchanged.
The expansiont’ of the structures is accepteddy p, and we writeA’ = p if, and only if,
there exists a computation pfon this expansion such that the output-instruction is reachec
with all input-output variables having the value max. (We can easily build the usual ‘if’ anc
‘if-then-else’ instructions by using ‘while’ instructions; see, for examglé][Henceforth,

we shall assume that these instructions are at our disposal.)

We want the sets of structures that are accepted by our program schemes to be probl
(that is, closed under isomorphism), and so we only ever consider program scheme:
where a structure is accepted pywhen 0 and max are given two distinct values from
the universe of the structure, if and only if it is accepted no matter which pair of distinc
values is chosen for 0 and max. Let us reiterate: when we say tisa program scheme
of NPSS(1), we mean thataccepts a problem, and the acceptance of any input structur
is independent of the pair of distinct values that we give to 0 and max. This is analogous
how we build a successor relation into a logic. Indeed, we can build a successor relation ir
our program schemes of NP&$ so as to obtain the class of program schemes NE&SS
or alternatively we can build two constants into our logics. As with our logics, we write
NPSS(1)and NPSH(1) to denote also the classes of problems accepted by the progral
schemes of NPSS(Bnd NPS$(1), respectively. The reader is referred 19 for more
details on program schemes such as those of NPSS(1), and for some illustrative examp

THEOREM 2 (se€[1]). (a) A problem over some signatuseis in NPSS(1)f and only
if it can be defined by a sentence(af PSy[FO]with two built-in constants, of the form

PS[AX Y, ze(X, y, 2)1(0, max),

where|x| = |y| = |z| = k, for somek > 1. Here,0 represents the constant symifpl

repeatedk times, andnax represents repetitions ofmax; ¢ is quantifier-free first-order.
(b) A problem over some signatueeis in P if and only if it can be accepted by a

program scheme diPSS(1). O
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Itwas also provenin[1] thatthe class of problems defined by the sentereeB8fj [FO]
with two built-in constants is identical to the class of problems accepted by a (proper inf
nite) hierarchy of classes of program schemes, the first level of which is (4P 3%&nce
our notation.

3. Deterministic path systems

Theoren® provides yet another characterisation of the complexity &akwever, this
characterisation is different in flavour from most characterisatior®, @i that it equates
P with the class of problems accepted by a ‘non-deterministic’ model of computatior
namely the program schemes of NRES. One question that immediately arises is: ‘What
can we say about the problems accepted by those program schemes gf NRS®hich
the guess instruction does not appear?’ The immediate response to this question is 1
without the ability to guess, no program scheme of NR$Scan accept any ‘non-trivial’
problem. However, by representing our built-in successor relation in a functional style, w
can make this question meaningful. Instead of having a built-in successor relation, let
assume that there are a builtanccessor functioand assignment instructions of the form
‘x; 1= succ(x)’. (Of course, we still have 0 and max denoting the least and greatest elemen
of the ordering, respectively.) Clearly, whether we have a built-in successor relation or
built-in successor function does not alter the class of problems accepted by the progr
schemes of NPSE&L).

Denote the class of program schemes of NA$® which the guess instruction does
not appear by DPS$), with DPS$(1) defined likewise. Note that it makes no sense to
consider program schemes of DR$Sover signatures involving only relation and constant
symbols, as — again — no ‘non-trivial’ problems can be accepted by such program schem
However, if the underlying signatuse contains function symbols, then we have assignment
instructions of the formx; := F(x;,, xj,. ... , xj,)’, for every function symboF of ¢’ of
arity b. In such a situation, it does make sense to examine the class of problems accep
by the program schemes of DPSS(1).

In this section, we examine the classes of program schemes (DP&8 DPSH(1).

(All the results in this section were proven in collaboration with S. R. Chauhan; they ar
included here with her permission.) In Sectigwe shall use results obtained in this section
to give logical characterisations Bfon certain classes of structures (where by ‘logical’ we
mean not involving any sort of built-in relations; or, more precisely, ‘logical’ in the sense
laid out in [4] and [9]).

We begin by defining a deterministic path systemdéterministic path systers a
path system such that for every pair of vertiaeand y (where possibly = y), there is
exactly one vertex such that eithe¢x, y, z) or (y, x, z) is a rule. (This vertex might be
identical to either or y.) So in a deterministic path system there is at most one new verte:
that can be deduced as accessible from the known accessibility of any two vertices. T
deterministic path system probleonsists of all those deterministic path systems for which
the sink is accessible from the source. Define the signat}nse (F, sourcesink), where
F is a binary function symbol, and source and sink are constant symbei§s&ucture
& encodes a deterministic path system in a similar waydg-structure encoding a path
system, except that:

» thereis arulegx, y, z) if F(x,y) =z = F(y,x) andz # source (where possibly

z=x0rz=y);and

 there is arulgx, y, source otherwise.

https://doi.org/10.1112/51461157000000371 Published online by Caéhridge University Press


https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

The problem DetPS is defined as:

{# € STRUCT(03) : the vertex ‘sink’ is accessible from the vertex ‘source’
in the deterministic path systesm}.

Intuitively, in order to decide whethewra-structure is notin PS, or whethesgstructure
is not in DetPS, we need to know not only that at some point in the process of building tt
set of accessible vertices, every paiactessedertices (that is, those vertices that have so
far been shown to be accessible) has been checked — so that no new vertices can be sk
to be accessible from these accessed vertices — but also that the sink has so far not |
accessed. Hence, it appears to be necessary to build a set of accessed vertices dynami
and to keep a record of those pairs of accessed vertices that have already been chec
Later on, in Subsectioi.2, we show that we can actually do this for deterministic path
systems with a program scheme of DRESover o5. We derive this program scheme by
developing an algorithm (to be callddlF Search) to solve the deterministic path system
problem, and then by showing that this algorithm can be implemented in DPSS(1).

3.1. Aninformal algorithm

Consider the following (informally presented) algorithBF Search, which takes a
deterministic path system as input. In this algorithm, the order in which the vertices al
accessed plays a critical role. During an executio®éfSearch on some input, there is
always, at any time, exactly one accessed vertex, which is descrilethas An accessed
vertex is the active vertex when it is the one currently being checked with each of the alrea
accessed vertices inturn, in order to see whether a new vertex can be shown to be access
(Initially, source is the only accessed vertex, and hence it is the active vertex.) The me
feature of this algorithm is that as soon as a new vertexyxs&y/accessed, it becomes the
active vertex and is checked with each accessed vertex in turn (including itself), not in al
random order buin the order in which these vertices were accesssther until a new
vertex is accessed, sayat which pointy becomes the active vertex, and we stop checking
pairs involvingx and start checking pairs involving, or until x has been checked with all
the vertices that were accessed before it, including itself. In the latter case, our new act
vertex is taken to be the vertexwhich was active at the time thatwas accessed, and the
next pair involvingz is checked, after the pair that accessed

ExaMmpLE 3. Consider the following illustrative example (in our example, we do not stop if
we show the sink to be accessible, but continue to generate other accessible vertices; in f
we do not even specify a sink). Suppose that our deterministic program scheme is such t
the set of rules can be described according to Figusehere the source is (and where,

for clarity, ane denotes that the vertex made accessible by the corresponding pair is one
the vertices of the pair, ar).

Our algorithm begins withy active and checks the pdie, «}, with the result that is
shown to be accessible. Hence the vertices so far shown to be accessible are, inarder,
w, with w now active.

According to our algorithm, we next check the pir, u}, which showsy to be acces-
sible. Hence the vertices so far shown to be accessible are, in@rdeandy, with y now
active.

According to our algorithm, we next check the pairu}, which yields no new accessible
vertex. So we check the pdiy, w}, which shows to be accessible. Hence the vertices so
far shown to be accessible are, in orderw, y andv, with v now active.
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Figure 1: A deterministic path system; see Exanfple

According to our algorithm, we next check the p&itsu}, {v, w}, {v, y} and{v, v},
yielding no new accessible vertex. Thus we makactive (since it was active when
was shown to be accessible), and resume checking the pairs invelyany the vertices
accessed befong, starting from the paify, y}. This pair yields no new accessible vertex,
and so we makev active (sincew was active whery was shown to be accessible) and
resume checking pairs involving (and vertices accessed befgie starting from the pair
{w, w}, which showsx to be accessible. Hence, the vertices so far shown to be accessib
are, in ordery, w, y, v andx, with x now active.

According to our algorithm, we next check the pdiksu}, {x, w}, {x, y}, {x, v} and
{x, x}, yielding no new accessible vertex. Thu®ecomes active. But all the pairs involving
w (and the vertices accessed befafehave been checked, sdecomes active. However,
all the pairs involving: have been checked, so the algorithm halts.

Note that in this case, all the accessible vertices are indeed shown to be accessible
our algorithm, and if we repeated the algorithm on our input, then the vertices would k
shown to be accessible in exactly the same order. O

Our algorithmDF Search can be looked upon as a sort of depth-first search in a deter
ministic path system; hence its name. However, the analogy is not exact, as the ‘depth-fi
search’ is not given aa priori ordering of the elements upon which the search is performed
(asis usually the case in a depth-first search in a graph): it computes the visit-order for its
as it progresses.

A less informal description of the algorithm than that shown in Figuie given in
Figure2. Throughout, we usey to denote source. Also, we write, y) — z to denote the
fact thatz is the unique vertex such that there is a ridey, z) or (y, x, z) andz is different
from x, y andxo; and we write(x, y) > ¢ to denote the fact that the unique vertesuch
that there is a ruléx, y, z) or (v, x, z) is such that is identical to one of, y andxg. If
(x,y) — zis used to show thatis accessible, given thatandy have already been shown
to be accessible, then we say thandy accesg and that(x, y) — z is appliedto access
z:in such a case, the vertexwill always be the active vertex. Also, givanandz, if x and
y accesg, for somey, then we say that (the active vertexaccesses.
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1 suppose that  xg,x1,...,x; have been accessed so far
and x; is active;
2 check the ordered pairs (xi, x0), (xj, x1), ... in turn;
3 IF (xj,xj) = xjy1 Where x;; is a vertex not yet accessed THEN
4 IF xiy1 = sink THEN
5 ACCEPT,;
6 ELSE
7 add x;41 to our list of vertices accessed so far;
8 make x;41 the active vertex and repeat from line 2 (with Xiy1
9 replacing x;) and starting with the pair (xj+1, x0);
10 FI
11 ELSE
12 it must be the case that each pair (xi, xj), for all j <i, has
13 been checked and nothing new has been shown to be accessible;
14 find the pair (xi;, xj;) such that  (x;;,xj;) — x; was applied to
15 access  x;;
16 make x;, active;
17 IF x;; =xp THEN
18 REJECT;
19 ELSE
20 repeat from line 2 starting from the pair (Xig> Xj1+1);
21 FI
22 FI

Figure 2: A less informal description of our algorithPF Search.

3.2. Proving our algorithm correct

Henceforth, we equate the algorithF Search with the description in Figur@. The
following lemmas are used to prove thaF Search solves the deterministic path system
problem. In these lemmas, we write to denote that it is théth vertex to be accessed
during an execution oDF Search, andAccessed Set to denote the set of vertices shown
to be accessible by the algorithF Search. (AccessedSet can be regarded as being
dynamically constructed, starting off &g} and ending up as the set of vertices shown to
be accessible bipF Search.)

The following lemma proves that if we place the vertices accessed by the algorithi
DF Search in aline in the order in which they are accessed, and we draw (above the line)
directed arc from vertex to vertexy if vertex x accesses vertex then no two arcs cross.

LEMMA 4. Consider an execution dPF Search such that the algorithm terminates with
AccessedSet = {xg, x1,...,x;}. Suppose that; accesses;,, for somei such that
0<i <k—2andforsome > 2 Thenitis not the case that_, accesses;,, for any
sands suchthalD < s <rand0 < r <.

Proof. Sincex; accesses;,, let x, be the paired vertex such thét;, x,) — x4, IS
applied to access;+,. Assume that the statement in the lemma is false, and s
the minimal suchs for which somex;_, accesses;,. Note that whenx; is accessed,
it becomes the active vertex, and the pais xo), (x;, x1), ... are checked in turn until
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either(x;, x;) — x;41 is applied to accesg 1, for somej, or (x;, x;) has been checked
and (x;, x;) accesses nothing. Singgaccesses; ., it must be the case that accesses
xi+1, and sa > 2. In fact, by hypothesis, eveny, for whichi < p < i + s is accessed by
somex, for whichi < ¢ < p. Puttingso =i + (s — 1) > i, we see that, is accessed by
somex,, such that < s1 < so; xy, is accessed by somg, such thai < s» < s1, and so
on, untilx,, , for somev > 0, is accessed by;.

Whenx,, (= xi1(s—1)) is accessed, it becomes active.JAs; accesses;,, we find that
X5, accesses no vertices, and, becomes active. Again, as,_, accesses;yy,
x5, accesses no vertices argbecomes active, and so on, untibecomes active. Note that
the pair(x;, x,) has not yet been checked, as otherwise the elemgntvould have been
accessed. Henog — x;4; is applied to access ., which yields a contradiction. [

As soon asy; is accessedDF Search starts to check the pairg;, xo), (x;, x1), ...,
(x;, x;) inturn. If at some time during the execution dDF Search, all the pairs have been
checked, then we say that is fully checked at time. Note that once a vertex becomes
fully checked, it stays fully checked.

LemMa 5. Consider an execution dDF Search such that the algorithm terminates with
AccessedSet = {xg, x1, ... , x;}. Suppose that; accesses;,, wherer > 1. Then at the
time at whichy; ., is accessed, all the verticeg withi < p < i + r are fully checked.

Proof. We may assume that> 1. We give a proof using induction, where our induction
hypothesis IHj) is as follows: ‘At the time at which; accesses; ., all the verticest,
withi < j < p < i + r are fully checked'.

The base case of our induction is whee: i +r — 1. Since itis not the case that,, 1
accesses; ., it must be the case that,,_1 does not access any new vertices, and hence
it becomes fully checked befong, is accessed. Thus the induction hypothesis holds for
the base case.

Suppose that Ik + 1) holds, wherej # i. The vertexx; is accessed before .
Either x; does not access a new vertex,xgraccesses;1. If the former is true, then
we are done, sincg is fully checked before; ., is accessed. If the latter is true, then
accesses at least one new vertex.l;die any vertex such thaj accesses,. By Lemma4,

s < i+ r and, by hypothesis; is fully checked before; ., is accessed. Whex is fully
checked,DF Search resumes checking the vertex that accessedhat is,x;. Let x, be
the last vertex such thaf accesses,. Sincex; does not access any more new vertices,
DF Search continues checking; until it is fully checked, and at this point., is still to
be accessed. Hence the result follows by induction. O

We can now obtain the following corollary.

CoroLLARY 6. Consideran execution &fF Search. Suppose thatattimieAccessed Set =
{x0, x1, ..., x;4r}, and the vertex; is active, where- > 1. Then at time all verticesx,
withi < p < i 4+ r are fully checked.

Proof. Supposethat; accesses .. Wheny; . isaccessed, itbecomes active, and because
x; is active at time, x;, accesses no new vertices before becoming fully checked. At thi
time (whenx; ., is fully checked, which is before timg, by Lemmab, the vertices of
{xp : j < p <i+r}arefully checked. Ifi < i, then we are done.

Suppose that < j. After x; , becomes fully checked,; becomes active. As is active
at (the later) time, x; becomes fully checked. Suppose thataccesses;. By Lemma5,
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wheny; is accessed, which is before timethe vertices ofx, : j1 < p < j} are fully
checked. Ifj1 < i, then we are done.

Continuing as above, we find that there exists safeuch thatx; accesses; _,, the
vertices of{x, : jx < p < i+ r} are fully checked at some time not later than timand
Jr < i.Hence the result follows. O

Now we can prove the correctness of our algorithm.
ProposITION 7. The algorithmDF Search solves the deterministic path system problem.

Proof. Consider the execution &F Search with some deterministic path system as input.
Initially, DF Search starts withAccessedSet consisting only of the source; if any more
vertices are added, then they must have been accessed by vertices that have already
placed inAccessedSet. Hence,AccessedSet contains only vertices that are accessible
from the source. Suppose thar Search accepts its input. Then the sink is accessed from
vertices inAccessed Set, and so the input is a deterministic path system in which the sink
is accessible from the source.

Conversely, suppose thddF Search rejects its input, and thatccessedSet =
{x0,x1, ..., xx} on termination. For termination to occur, either= 0, or xo must have
become active again. f = 0, then clearly the input is a deterministic path system in which
the sink is not accessible from the source; so assumeghatomes active again. By Corol-
lary 6, at the time at whichrg becomes active again, all the vertices{a§, x1, ... , xx}
are fully checked. Henceccessed Set consists of all those vertices that can be shown to
be accessible from the source, and the sink is notdoessedSet; that is, the input is a
deterministic path system in which the sink is not accessible from the source. [

3.3. Implementing our algorithm

Now that we have developed the algorittid' Search to solve the deterministic path
system problem, let us reconsider the demands on any DPS®@ram scheme that might
implementDF Search. Firstly, it will need to build a set of accessed verticéscessed Set,
and then retrieve vertices from the set in the order in which they were inserted; and it mt
do this where the only additional storage is the stack. Secondly, it will need to check wheth
avertex is already in the s@tcessed Set. Thirdly, for any accessed vertex it should be able
to ascertain the pair from which this vertex was accessed. As we shall see, it is non-triv
to implementDF Search in DPSS(1).

However, we now describe such an implementation of the algoritSearch; that
is, a program scheme € DPSS(1)overoy that solves the problem DetPS. The structure
of our program schemgy is that it consists of the instruction ‘PUSH’ followed by one
while-loop that loops until the input structure is either accepted or rejected. Changes ¢
made to the stack (starting from an empty stack) during each while-loop iteration such th:
for any iteration, the changes to the stack are determined by the top (at most) two ste
elements, and these changes involve only the top two stack elements, with possibly c
extra element being pushed onto the stack. Consequently, we describe the program sch
po using the table in Figurd (the notation, and the underlying encoding, used in FiGure
are explained shortly). The ‘pre-loop’ column shows the top two stack elements, wisere
the height of the stack; and the ‘post-loop’ column shows how the stack changes during o
iteration, given the ‘pre-loop’ conditions. So our program scheme essentially repeatec
applies the operations specified in each row, depending upon the current conditions,
defined in the ‘condition’ column.
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Top 2 items on stack|| Top 3 items on stack | Condition satisfied
pre-loop post-loop by stack pre-loop
Row| ¢c—1 \ c c—1 \ c \ c+1
1
1.1 —— | item [ —— Jitem| xo |[onlyoneitem
2
21 p q ACCEPT (p, q) — sink
22 p q (p.q,r) | —— | —— | (p,q) = r Ar #sink
23 p p [p] — | —— | (p,p>enpFxo
2.4 X0 X0 REJECT (x0, x0) > &
25 p q 14 q xo |(p.@)—>enpFq
2.6 p item p item | xp | item not of type ()
3
3.1 <p’q’r> (p’qu> r - -
32 | (p.q.r) | (P'.q".7) p g | xo |(p#EPVa#Fd)ApFq
33 | (p.p.1) | (P.q" 1) [p] — | —— [ @#PVp#4q)
34 | (p,q,r) item (p,q,r) |item| xo |item# (p’, ¢, r),Vp'.q
4
4.1 [r] {p.q,r) p q | X |p#q
4.2 [r] (p,p,1) [p] —— | —— | p#Fx0
4.3 [r] (x0, x0,7) || REJECT
4.4 [r] item [7] item| xo |item=#{p,q,r),Vp.q

Figure 3: The program schempg.

We give each row in the table in FiguBea number. Let be a row in our table, and let
B be a stack configuration (that is, the contents of the stack) that satisfies the ‘pre-loc
condition of rowi. We say thap8 satisfiegow i, or that rowi holdsfor . In addition, if pg
is such that, prior to an iteration of the while-logpsatisfies row, then any changes made
to B in this iteration are said to by or viarow i, and we say that rowis applied Note that
the rows in the table in Figurg are mutually exclusive — that is, any stack configuration
can satisfy at most only one rule — and every possible combination of a pair of stack iter
is considered in the table.

We now give a definition of the stack items that are introduced in Figuidote that
in the actual program schemg a suitable encoding scheme is used so as to realise th
different types of stack item below. Let the input to our program scheme lagthteucture
& . We have stack items of the following types:

(&) p,wherep € |2];
(b) (p,q,r), wherep,q,r € |P|; and
() [pl, wherep € |2].
As an example of an encoding scheme alluded to above, we might encode the stack ite
(&) p € |P] as the six stack items, u, u, p, p, p, for some fixed: € |P|;

(b) (p,q,r), wherep, q,r € |P|, as the six stack items, v, v, p, g, r, for some fixed
u,v € |#| such thaut # v; and

() [pl, wherep € |£|, as the six stack items v, u, p, p, p, for some fixeds, v € ||
such that # v.
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u (v [(w |y

Figure 4: A deterministic path system; see Exanile

Consequently, popping an ‘item’ from the stack, for example, really means popping s
elementsuy, uz, us, ua, us andug, from the stack and then ascertaining, usingu, and
us, the type of the encoded item, wiih, us andug yielding the parameters of the item.

Having described our program schepes DPSS(1)it is clear that the above descrip-
tion can be implemented in DP8B), let us now set about proving that it is an implemen-
tation of the algorithnDF Search.

Some definitions are in order here, so that we may reason about stacks. Consider
computation ofop, given somes;-structures as input. Astack configuratiosimply con-
sists of the contents of the stack at some particular point in the computation. If the sta
configurationg = (B8(1), B(2), ..., B(m)) (with B(m) the top item), then kB) = m and
the element apositioni, for 1 < i < ht(B), is B(i). (The height of the empty stack con-
figuration is 0.) Thestack traceof p on input# is the sequence of stack configurations in
the order in which they occur when the flow of control of the executiopgadn input
is frozen immediately before executing the while-loop, and then immediately after evel
iteration of the while-loop (and so the first non-empty stack configuration of any stack trac
is (xp)). That is, we do not consider the stack manipulations perforuegithg an iteration
of the while-loop, but we focus on the stack oimymediately aftethe iteration. Note that
it is conceivable that a stack trace might be infinite; thapgsmight not halt on inputr.

In fact, this is never the case, but until we have proved this assertion, we must assume t
infinite stack traces are possible. Thh stack configuration in the stack trageis X;,

and the indices of the stack configurations yield a notion of time; that is, we say that tf
stack configuratiork; is the configuration at time If i < j, then we say thaE; evolves

to ;. If « andp are stack configurations of heighitand j, respectively, then we denote
the stack configuratiot (1), «(2), ..., a(i), (1), B(2), ..., B(j)) bya + B;and ifx is
some stack item, then we denote the stack configuratiom(1), «(2), ... , «(i)) by x +c.

Before proving that the program schepgesimulates our algorithmF Search, we give
an example that illustrates the design of and the philosophy behind the program ggheme
(in relation to the algorithnDF Search).

ExampLE 8. Consider the deterministic path systétrdescribed in Figuré, whose source
we take as the vertex We shall consider the execution of the program schegnen &.

To get the most from our example, we shall not specify a sink in our program scheme, b
will simply let the program scheme run until the input is rejected (if there is no sink, ther
it can never be shown to be accessible).
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u
1.1 u 2.2 11 u 3.4 u 2.2
u — u - (u,u,w) — (u,u,w) — (U,u,w) —
1
(u,u,w) 31 11 u 2.2 11 u 3.4
(u,u, w) — w — w - (w,u,y) — (w,u,y) —
2 3
u
u u u (u, u, w)
u 22 {u,u,w) 34 (u,u,w) 34 (uw,u,w) 22 (uu,w) 31
(w,u,y) — (w,u,y) — (w,uy — (wuy — (wuy —
u
w 3.4 w 22 (w,u,y) 31 11 u 25
(w,u,y) d (w,u,y) - (w,u,y) - y - Yy i
4 5
u
u u u (u, u, w)
u 22 {u,u,w) 26 (u,u,w) 34 (w,u,w) 22 (u,u,w) 31
Yy - Yy - Yy - Yy - Yy -
u
w 25 w 2.2 31 y 2.3 11
Yy - y - - y - [y] -
6 7
u
u 4.4 u 22 (u,u,w) 44 22 (w,u,y) a1
] - [y] - [y] - - [y] -
8
u
u 2.2 31 w 2.2 11 u 3.4
w — — w - (w,w,v) — (w,w,v) —
9
u
u 22 22 (w,w,v) 31 11 u 25
(w, w,v) — - (w,w,v) — v — v —
10
u
u 22 31 23 11 u 4.4
v — — — [v] — [v] —
11
u
u 22 22 (w,w,v) 42 11 u 44
[v] — — [v] — [w] — [w] —
12
u
u 22 (u,u,w) 43
[w] — [w] — halt
13

Figure 5: The stack trace pf.
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We portray the execution @ on & in Figure5. In this figure, we depict the stack trace
of the execution. Each stack configuration is represented as a column of elements, and
row that is applied in order to alter the stack at any configuration is denoted as a supersci
to the symbol—. Some stack configurations are given a breakpoint number (written belov
the stack), which we shall use below in our description of the execution.

Initially, u is the only vertex so far shown to be accessible; this is signalled by the stac
configuration initially consisting solely of the item

The computation begins so that the stack configuration evolves until it consists of or
item, namely the itenfu, u, w) (at breakpoint 1); this comes about becausa:) — w.
Essentially, this configuration is interpreted as ‘it may be the casatlsthe next vertex to
be shown to be accessible (but we must confirm this)’. The stack configuration now evolv
so that the whole computation, from the start, is repeated ‘above’ theitem w), which
remains at the bottom of the stack.

This evolution continues until a stack configuration of the faKm u, w), (—, —, w))
comes about (such a circumstance is shown at breakpoint 2). Generally, if the two iter
are different, thenw must already have been shown to be accessible; otherwise, they a
the same and has not so far been shown to be accessible. At breakpoint 2, the latter ca
holds, and sav is made accessible, an event that is signalled by the stack configuratic
consisting solely of the item.

The stack configuration now evolves so that the whole computation is repeated abo
the itemw, until a previously accessed vertex is reached. This happens at breakpoint
when the stack configuration s, u). As (w, u) — v, the stack evolves so that it consists
solely of the item{w, u, y), which signals that ‘it may be the case thas the next vertex
to be shown to be accessible’. The stack configuration now evolves so that the whc
computation is repeated above the itém u, y) until a stack configuration of the form
((w, u, y), {(—, —, y)) comes about. This happens at breakpoint 4, when the configuratio
is((w, u, y), (w, u, y)), which signals that has not previously been shown to be accessible.
The vertexy is now made accessible.

The stack configuration now evolves so that the whole computation is repeated abo
the itemy, until a previously accessed vertex is reached: this happens at breakpoint 5.
this case(y, u) — &, and so we continue the repetition, again until a previously accesse
vertex is reached (at breakpoint 6). Just as beforay) — ¢, and so we yet again continue
the repetition. We eventually reach the stack configuratiary) (at breakpoint 7). As
(y,y) — ¢, the stack configuration evolves ingpy]), which is interpreted to mean that
‘all pairs of the form(y, —), where the second component ranges over previously accesse
vertices, have been checked and no potentially new accessible vertices have been obtair
The computation now evolves so that the whole computation is repeated above the ite
[v], until a stack configuration of the forify], (—, —, y)) comes about. This happens at
breakpoint 8, when the stack configuratior([ig], (w, «, y)). This signals that the pair of
vertices that accessedwvas(w, u).

The stack configuration now evolves irto, u, u), as ifit were the case thab, u) — «.

Of course, in realityw, u) — y but, given thatog is intended to simulate the algorithm
DF Search, we wish pg to search for the vertex accessater the vertexu, and then pair
this vertex with the vertew. This means repeating the computation ahoy&om the stack
configuration(w, u, u), until the next accessed vertex is obtained. The next vertex accesse
after vertex: is vertexw, and the stack configuration evolves irito, w) (at breakpoint 9).

As (w, w) — v, the stack configuration now evolves irita, w, v)) (with an interpretation
similar to that above). A® has not previously been shown to be accessible, the stacl
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configuration evolves int§w, w, v), (w, w, v)) (at breakpoint 10), and then (o).

As (v,u) — ¢, (v,w) — ¢, (v,y) — ¢ and(v,v) — ¢, the whole computation is
repeated above until the stack configuration evolves to, v) (at breakpoint 11), and then
to ([v]). The whole computation is then repeated abjayén order to ascertain the pair of
vertices that accessex this comes about at breakpoint 12, when the stack configuratior
is ([v], {w, w, v)). The stack configuration now evolves infav]), and the whole compu-
tation is then repeated aboj] in order to ascertain the pair of vertices that accessed
This comes about at breakpoint 13, when the stack configuratiwis (u, u, w)). The
execution now halts. Note that this execution is indeed a simulation of the algorithr
DF Search. O

The following lemmas will be used to show thAF Search can be implemented as a
program scheme of DPSS(1).

LEmMA 9. LetP be acj-structure, and let be the stack trace gfp on inputs. Suppose
thatX; = (1), forsome > 1 and for some stack item£ xg. Then there exists such that
i <kand

e Sy =X+ %, forall je{1,2,... ,k—i};
e ht(Z) =2; and
e ¥ evolves tx; 1 by one of the row2.1-2.4,3.1-3.3and4.1-4.3.

Proof. We haveX1 = (xo) and X2 = (xo, x0), and, by Figure3, ¥;,,1 = (¢, xo) and
¥i+2 = (t, x0, x0). The application of any row is dependent only upon the top two stack
items, and alters only (at most) the top two stack items (although a further item might t
pushed onto the stack, or the height of the stack might be lessened by i) bleghe least
m such thain > 1 and htZ,,) = 1. (We know that such amn exists, as itZ;) = 1.) Then
Yipi1=t+ 21, Yigo=t+ 22, ..., Xigm =L+ Xy

If ;1 evolves toX;,,+1 by one of the rows B, 2.6, 3.4 and 4 then, by Figures,
Sitma+1l = L+ Zpg1 With ht(Z;1,,41) = 3. Thus, we may assume that evolves to
X, = (1, item) whereX; ; = ¥; + X;, forall j € {1,2,... ,k — i}, andX; satisfies one
of the rows 21 — 24, 31 — 33 and 41 — 4.3. The result follows. O

LeEmmA 10. Let  be aog-structure, and lets be the stack trace gfp on input . Fix
i > 1and define:

TG ={t:1<t<iandX; = (p), forsomep € |P|},

with T (i) ordered asg < 11 < ... < I, for somek > 0. Suppose tha}:,j = (x;), for

all j =0,1,...,k and that at time, AccessedSet = {xg, x1, ... , xx}. Suppose further
thatX; = (x;, xn, x0), forsomd, m € {0, 1, ... , k}, wherem < [. ThenX; evolves ta;
where:

* YNiyj=x1+ X440+, foral j=1,2,...,5s—i,and

o Xy = (X1, Xm+1).

Proof. We havex, = (x,,)andX; +1 = (xn, x0), and sox; = x; + %, 1. By Figure3,

the application of any row is dependent only upon the top two stack items, and alters or
(at most) the top two stack items (although a further item might be pushed onto the sta
or the height of the stack might be lessened by 1).

https://doi.org/10.1112/51461157000000371 Published online by Cafpridge University Press


https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

Consequentlyy; 11 = x; + X, +1)+1 Zit+2 = X + D, +1)+25 -+ -5 Zitr = X +
Z (4, +1)+1, for somer such that Wt ,,, +1)+,) = 1. (We know that such aexists, asn </
andt,, < typy1 <1i.)

If ¥;4; evolves to%; ;41 by row 26, thenX;, 11 = x + X¢,+1)++1, and we
can continue as above (as(Bt;,+1) = 3). HenceX; evolves toX; whereX;;; =
X+ X1+ forall j =1,2,...,s —i,andX; = (x, Xp+1)- O

LEmMA 11. Lets be acg-structure, and lek be the stack trace gfp on input. Leti be
suchthats; = ({p, ¢, r)), for somep, ¢, r € |P|. Then there existssuch that < k and:
e Xy =X+ %, foreveryj =1,2,... ,k—i;and
* k= Up.q.r), (P, q',r)), for somep’, q" € | P|.

Proof. By Lemma9, X; evolves by repeating the computationgfon input® ‘above’
(p, q, r) until the stack height is 2 and one of the row% 2 24,31 -33and 41 -43is
to be applied; that is, in this case, one of the rows 3.13-Bhe result follows. O

Now we prove that the program schemgimplements the algorithiF Search.

THEOREM 12. Foreveryos-structures, the algorithmDF Search accepts the deterministic
path system encoded I if and only if ? = po. Hence the program schemsg accepts
the problem DetPS.

Proof. Suppose that on input (the deterministic path system encodef te algorithm
DF Search halts with AccessedSet = {xo, x1, ..., xx}, for somek > 0. Suppose also
that these vertices have been shown to be accessible in the order given. There are nume
distinguished events in the computationlaf Search on input$, namely:
« the events when the different vertices are shown to be accessible (line 7 of Ejgure
« the events when pairs of accessible vertices are checked to see whether a new ve
might be accessed (line 2 of Figute and
« the events when the search is embarked upon for the pair of vertices that was usec
show that a vertex is accessible (line 14 of FigRye
These events are all distinct, and have time-stamps associated with them, denoting wi
they occur. Let these (finitely many distinct) time-stamps be ordered as:

n<th<iz<....

(Obviously,z1 is the time-stamp whexy is assumed to be accessibieis the time-stamp
associated with the event when the gai, xo) is checkedss is the time-stamp associated
with the event when is shown to be accessible, unléss- 0, and so on.)

In order to prove our theorem, we shall proceed by induction3Lke the stack trace of
po on inputf. Our induction hypothesis IH) is as follows: ‘There exist non-zero natural
numberss; < s < ... < s; such that foreach € {1,2, ... ,i}:

« if ¢; is the time-stamp associated with the event whkers shown to be accessible

thenEsj = (x));
« if ¢; is the time-stamp associated with the event when the(paix,,) is checked to
see whether a new vertex might be accessed,mjeaz (X1, Xm);

« if ¢; is the time-stamp associated with the event when a search is embarked upon

the pair(x;,, x,,,) that was used to show thatis accessible, theﬁsj = ([x;]); and

e if sissuchthat I< s <s; buts & {s1,s2, ..., s}, thenXs # (), Xy # (y,z) and

s # (yD, foranyy, z € | 2]
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The base cases of the induction, whiea 1 andi = 2, are immediate, simply by following
the first few steps of the computation @f on input?.
Suppose that the induction hypothesigilHholds, for some > 1. There are three
possibilities:
1) X5, = (x7), for some!;
(2) =5 = (a7, xp), for somel andm; and
(3) =5 = ([x]), for some!.

Case(1l): Z; = (x).

The next event in the computation B¥F Search on input® is when the pairx;, xo) is
checked to see whether some new vertex might be access&y. As= (x;, xo), IH(G +1)
holds.

Case(2): X = (x1, xp).
There are four possibilities as regards the next event in the computatidf $darch on
input £:

(@) (x;, xp) — sink, and sdDF Search goes on to accept;

(b) (x7, xn) — y # sink wherey has not yet been accessed, and so the next event i
wheny is shown to be accessible;

(c) I > m, and it is not the case th&t;, x,,) — y for somey that has not yet been
accessed, and so the next event occurs when thepai,, 1) is checked to see
whether a new vertex might be accessed; and

(d) I = m, and it is not the case that;, x,,) — y for somey that has not yet been
accessed, and so either= x,, = 0 andDF Search goes on to reject, or the next
event occurs when a search is embarked upon for theéxpair,,,) that accessed.

Case(2a):  (x7, x,) — sSink.
In this case DF Search acceptsP andpg acceptsp.

Case(2b):  (x7, x) — y wWherey has not yet been accessed.

We haveX,, 1 = ((x, xn, y)). Suppose thak; = ({p,q, y)), for some;j < s; and

for somep, g € ||, and letj be the minimal sucly. By Lemmall and Figure3, X;
evolves tox; = (y), for somes < s;. This yields a contradiction (ashas not yet been
accessed). Hence, by Lemrha, X, 11 evolves to({x;, x,;, y), (X, X», ¥)), SO that none

of the intermediate stack configurations corresponds to any distinguished events, and tl
({xt, xm, ¥)s (x1, xm, y)) evolves ta(y) by applying row 31. Consequently, Id 4+ 1) holds.

Case(20): [ > m, and it is not the case théat;, x,,) — y for somey that has not yet
been accessed.
In this caset; 11 is the time-stamp associated with the event of checking th&pair,,, 1 1).
There are two possibilities: eithéx;, x,,) — &, or (g, x,) — x,, for somex, €
AccessedSet (that is, the current version dfccessed Set).

If (x7, xm) > €, thenXg, 11 = (x7, x,n, x0), Which, by Lemmal0, evolves to the stack
configuration(x;, x,,.-1) such that no intermediate stack configuration corresponds to :
distinguished event; so It1+ 1) holds.
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If (x7, xm) — x, Wherex, € AccessedSet, thenXy, 11 = ((x;, X, x,)). AS % iS in
AccessedSet, by the induction hypothesigis; = (x,), for somej < i; consequently, (by
consulting Figure3) 5,1 = ((p, ¢, x+), (P, q, x;)), for somep, g € | P|. Lets <s; — 1
be the minimals such that; = ((p, ¢, x,)), for somep, g € |P|. (Such ans exists by
Figure3.) By Lemmall, ¥, 11 evolves to the stack configuratiofx;, x,,, x,), (p, ¢, x,)),
so that no intermediate stack configuration corresponds to a distinguished event. Note t
¥s-1=(p, q),and so, by IHi), we have(p, ¢) # (x;, x,). Hence the stack configuration
(X1, Xms Xr), (P, q, xr)) €vVolves to(x;, x,,, xo) by applying row 3.2, which in turn, by
Lemmal0, evolves to the stack configurati@n, x,,+1) such that no intermediate stack
configuration corresponds to a distinguished event. Thigs+HL) holds.

Case(2d): [ = m, and it is not the case that;, x,,) — y for somey that has not yet
been accessed.
If | = m = 0, thenDF Search rejects® andpg rejects®. Assume that = m # 0. The
next event in the computation 6F Search on input? is the event where the search begins
for the pair(x;,, x,,) that was used to access

If (x7,x7) = ¢, thenXy, 11 = ([x]) and IH{ + 1) holds.

If (x;, x;) — x, andx, € AccessedSet,thenwe proceed as we did in Case (2c), whence
¥, evolves to the stack configuratid@x;, x;, x.), (p. q, x,)) (wWhere(p, q) # (a1, x7)),
so that no intermediate stack configuration corresponds to a distinguished event.3Row
is now applied so that the stack configuration becotfie$). Hence IHi + 1) holds.

Case(3): Xy = ([x].
Suppose that the pax;, , x,,,) accessed; (note that # 0). There are three possibilities
for the next event in the computation B Search on inputs:

(@) if my < I1, then the pail(x;, x,,,+1) iS checked to see whether a new vertex might
be accessed;

(b) if mqy =11 # 0, then the search for the p&iv,, x,,,) that accessed, is begun; and

(c) if m1 =11 =0, then the input is rejected.

By the induction hypothesis, there is a time-statndor some; < i, when the pair
(x1,, xm,) Was checked and:sj = (X1, Xmy)- Consequentlyzsﬁl = ({X1y, Xmqs X1)).
Suppose thak; = ((p, g, x;)), for somes < s; + 1 and for somep, g € ||, where
(p,q) # (x1, xm). Lets be the minimal such. By Lemmall and Figure3, X, evolves
to Xy = (x;) for somes” < s;. This yields a contradiction, ag would already have been
accessed when the pai, , x,,,) was subsequently checked. (Remember, we are assumin
that (x;,, x,,)accesses;.) Hence, by Lemm® and Figure3, X, evolves to the stack
configuration([x;1, {x;,, xx,. X1)), SO that no intermediate stack configuration corresponds
to a distinguished event.

Case(3a): mq <.

The stack configuratio(ix;], (x;,, Xu,, x1)) evolves to(x;,, x,,, xo), which, by Lemmal0,
evolves to(x;,, xu;,+1), SO that no intermediate stack configuration corresponds to a dis
tinguished event. Hence [iH+ 1) holds.

Case(3b): m1=11 #0.
The stack configuratioffx;], (x;,, xm,, x;)) evolves to([x;,]) by row 4.2, and so I + 1)
holds.
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Case3c): myp =1, =0.
The computation ofg, from the stack configuratiofix; 1, (x;,, x,. x1)), leads to arejection
of the input.

Thus, by induction, the program schemgsimulates the algorithr®F Search, and the
result follows by Propositiofd. O

The reader will no doubt have noted the similarities between the proof of Thelitem
and the proof of the main theorem ig]] Cook uses a similar technique to simulate the
computation of a polynomial-time deterministic Turing machine as a computation of a loc
space deterministic auxiliary pushdown machine. However, note that we provide a mu
more formal proof of our simulation than Cook does for his.

We can now use Theoref® to show that removing non-deterministic guessing from
the program schemes of NP3$) does not diminish the class of problems so captured.

CoroLLARY 13. Let Q be a problem over the signatuse The following statements are
equivalent.

e QeP.

* Qe NPSS(1).

« Qe DPSS(1).

* Qe (= PSy[FO;].

Proof. Lets be ass-structure (thatis, a path system, of sizeWe shall build @3-structure
P’ (that is, a deterministic path system), such titat PS if and only if®’ € DetPS. In
order that we define aj-structure, our path system’ will be such that: for every two
verticesx, y € ||, there is exactly one € |#’| for which (x, y, z) is a rule; furthermore,
(x,y,z)isaruleifand only if(y, x, z) is arule.

Our path systen’ has vertex sett |2 and we partition this vertex set into the disjoint

union:
21=J Qu.

ue|P|

where for every € ||, O, = {(u, v, w) : v, w € |P|}. We define the set of rules ¢?’

in three batches. The first two batches describe rules for which the first two componer
belong to the sam@,,; the third batch describes rules for which the first two components
belong to different setg?, andQ,.

Batchl.
{((u, 0,0), (u, v, w), (u, v, succ(w))), ((u, v, w), (u,0,0), (u, v, succ(w))):

u, v, w € |P|, w # max
U{((u, 0, 0), (u, v, max), (u, succ(v),0)), ((u, 0, 0), (u, v, max, (u, succ(v),0)) :

u,v € |P|, v #max
U{((u, 0, 0), (u, max max, (u, 0, 0)), ((u, max max, (u, 0, 0), (u, 0, 0))}

The rules in Batch 1 are essentially such that forary| 2|, if («, 0, 0) is made accessible
in 2, then so is every vertex ab,, .
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Batch2.

{((u, u, w), (u, u, w), (w,0,0)) :
u,w € |P|, (u, w) # (0,0), R(u, u, w) holds in&}
U{((u, u, w), (u, u, w), (0,0,0)) :
u,w € |P|, (u, w) £ (0,0), R(u, u, w) does not hold i}
U{((u, v, w), (u, v', w"), (0,0,0), (u, v, w), (u, v, w), (0,0, 0)) :
u,v,w, v, w €|P|, v, w) # (0,0 # @, w),=(w=w andv =u =)}

The rules in Batch 2 complete the definition for rules whose first two components are in tt
same sep,,. They are mostly redundant (in that they are there sofHdtas the property
described in the first paragraph of this proof), except tha(if, «, w) holds in % and

(u, 0, 0) is accessible, then so(®, 0, 0) (see the comment subsequent to the definition of
the rules in Batch 1).

Batch3.

{((u, v, w), (v, u, w), (w, 0,0), ((v, u, w), (u, w, w), (w,0,0)) :
u,v,w € |P|,u #v, R(u, v, w) holds inP}
U{((, v, w), (v, u, w), (sourceO, 0)), ((v, u, w), (u, w, w), (source0, 0)) :
u,v,w € |P|,u # v, R(u, v, w) does not hold i}
U{((u, v, w), ', v, w"), (0,0,0)) :

u,v,w,u, v, w e |P|,u#u,=((u,v) =0, v)andw = w')}

The rules in Batch 3 essentially ensure thatif0, 0) and (v, 0, 0) are accessible i/,
whereu # v, andR(u, v, w) or R(v, u, w) holds in#, then(w, 0, 0) is accessible i#’.
(Some rules are redundant in terms of making new vertices accessiBlg)in

The source of the path systemis the vertex(source 0, 0) and the sink is the vertex
(sink, 0, 0).

A simple induction, with the vertices d¢fu, 0,0) : u € |P|} € |#’| corresponding to
the vertices ofP, yields that the sink is accessible in the path sysfend, and only if,
the sink is accessible in the path systéth Moreover, this is true independently of which
particular successor function is chosen.

What is more, we can actually describe the deterministic path sygtemterms of»
using a quantifier-free formula of EOThat is, there is a quantifier-free formufax, y, z)
FO,, wherex = (x1, x2,x3), Y = (¥1, ¥2, y3) andz = (z1, z2, z3), such that for every
u,v,w € |#’|, F(u,v) = win &£’ if and only if ¥ (u, v, w) holds in£. In fact, given
variablesxi, x2, x3, y1, y2 andys, we can write a portion of ‘DPS8L) code’ that gives
the variables1, z2 andzz the valueF ((x1, x2, x3), (y1, y2, y3)). Consequently, we can
clearly amend the program schemgof DPSS(1)so that it becomes a program scheme
p1 of DPSS(1) overos and accepts the problem PS. (In doing so, we essentially replac
single variables with 3-tuples of variables, and the built-in successor function with th
lexicographic successor function on 3-tuples obtained using succ. Such constructions
commonplace in the literature.)

Let Q2 be some problem iR over the signature. By Theorenll, there exists a quantifier-
free formulag(x,y, z) € FO,, where|x| = |y| = |z| = k, for somek > 1, such that for
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everyo-structureA: the path system with vertex set|*, with rules{(u, v, w) : u, v, w €
|4|K, o(u, v, w) holds in}, with source(0, 0, 0) and with sink(max max max) is such
that the sink is accessible from the source if, and onlyife 2. By amending the pro-
gram schemes, in the same way that we amended the program scheybe obtainp1,
we can obtain a program schemg € DPSS (1) that accepts2. The result follows by
Theoremsl and?2. O

Notice what Corollaryl3 actually says: it states that the deterministic model of com-
putation DPSE(1) captures exactly the complexity cla8sand that the non-deterministic
extension of this model, NP$&), captures? too. This result can be interpreted as a
‘logical reformulation’ of Cook’s result, mentioned earlier, regarding deterministic anc
non-deterministic logspace auxiliary pushdown machines.

4. Building an ordering

A different interpretation can be placed on the proof, given in Se&jdhat DetPS can
be solved by the program schemgof DPSS(1). By a simple modification @b so that
it does not accept if the sink is shown to be accessible, but simply continues exhibitir
new accessible vertices, we can build a canonical ordering of the accessible vertices in
determinstic path system. If we knaavpriori that our deterministic path system is such
that every vertex is accessible from the source, then we can build a canonical ordering
the vertices whose minimal element is the source.

In more detail, letP be aos-structure with the property that for everyy € || (where
possiblyx = y), there exists exactly ongsuch that eitheR(x, y, z) or R(y, x, z) holds.
Thatis,& encodes a deterministic path system. By the proof of Thedrhere is clearly
a program schemgs € NPSS(1)overoz U {C, D}, whereC andD are two new constant
symbols, such that on inpur:

e if C and D are accessible an@ comes immediately befor® in the canonical
ordering of accessible vertices 4f, then every terminating computation pf on
input # signifies this fact, and there is at least one terminating computation; and

« if either one ofC and D is not accessible, or i does not come immediately be-
fore D in the canonical ordering of accessible verticesPgfthen every terminating
computation ofoz on input# signifies this fact, and there is at least one terminating
computation.

This observation can be used to show that on certain classes of structures, any problem
is solvable in polynomial-time can be defined by a sentende-¢¥S) [FO] (in fact, in a
fragment of this logic).

First, we require some definitions. LEtbe a class of -structures that is closed under
isomorphism. By groblem involving structures frofi we mean an isomorphism-closed
subset ofl". For any problent2 involving structures over', we say that a sentende of
some logiadefines if, for every structures € T,

A € Qif, and only if, A = W.

Note that we say nothing about which structures of STRWJT ' satisfy . There is

an analogous definition for a program scheme to accept some problem involving structul
from I", or for a Turing machine to accept some problem involving structures ffom
Consequently, when we talk of, for example, ‘a logion a class of structurds, we mean

the class of problems involving structures fréhthat are definable ict.
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We begin by examining problems involving strongly connected locally ordered digraph:
Let ¢ be aos-structure with the following property: for every € |4|, the set of pairs
N(x) = {(y,2) : R(x, y, z) holds ing} is of the form{(x, x)} or

{(x, y1), )1, y2), - -. , (%, x) : k > 1 and they; are distinct and different from}.

The structureg can be considered to be a digraph with vertex|gét wherex has no
neighbours, itV (x) = {(x, x)}, and where the neighboursoére ordered ag, yo, ... , y,
otherwise. Such structures are callechlly ordered digraphsA locally ordered digraph is
strongly connected there is a path from any vertex to any other vertex in the underlying
digraph.

THEOREM 14. Any problem involving strongly connected locally ordered digraphs that can
be solved in polynomial-time can be accepted by a program scheMie®%(1), and can
also be defined by a sentenceR& [FO] with two built-in constants, of the form

PS[Ax Y, zy1(0, max),

where|x| = |y| = |z| = k, for somek > 1. Here,0 represents the constant symitpl
repeatedk times, andmax represents repetitions ofmax, ¢ is a quantifier-free formula
of FO. Consequently, on the class of strongly connected locally ordered digrBphs,
PS'[FO] = NPSS(1), even when there are no built-in constanSHFO].

Proof. Let ¢ be a strongly connected locally ordered digraph. Defitie’, y’, Z'), where
X' = (x],x5), Y = (y1. ¥5) andz’ = (2}, z5), as:

/ / / / U / / / / / / / / / / /
(X3 =Y1AXp =Yy AXy =21 F 25 ARy, ¥1,22) V (Xp =X = ¥y # Yo =21 = 22)-

The vertices of the path systef?y; obtained by interpreting the formula in § are|g|?,
and the rules are as follows:

e ((u,v), (u,v), (4, w)) if u # w andR (u, v, w) holds ing; and

e ((u,u), (u,v), (v,v))if u#v.

For every pair of vertices afg, there is at most one rule that can be applied; and also ever
vertex of the form(u, u) or (u, v), wherev is a neighbour of; in g, is accessible no matter
which vertex (of the form(u’, v'), whereu’ = v’ or v’ is a neighbour ofi’) we choose for
the source.

We might be inclined to think that by amending the program scheimdefined at the
beginning of this section (in a style similar to that used in the proof of Coroll&yso
that vertices are replaced by pairs of elements @wnidkfines the rules), we could obtain
a canonical ordering of the vertices &% (starting at any vertex we cared to choose).
However, the program scherpe takes as input-structures, and such structures encode
deterministic path systems (that is, path systems where thexagslyone rule of the form
(u, v, w) or (v, u, w) for every pair of verticegu, v}). More to the point, given two vertices
u andv, p3 has to ascertain whether there is a ralev, w) with u # w # v. Actually,
by considering the proofs of the results in the previous section, we finghthadeds only
to be able to ascertain whether there is a (ulev, w), with u # w # v, for accessible
verticesy andv. Such a predicate can easily be checked (in NBSvhen the path system
is deterministic: we simply guess the unique vetigxand then check to see whether there
is a rule(u, v, w) or (v, u, w), and whethemw is different from bothu andv. However,
when given®g as input, this cannot be done, since for some pairs of verticas € ||,
there is no vertew e | 24| for which (u, v, w) is arule.
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Hence let us add the following rules to our path system Choose some < |#4| SO
that (s, s) is the source of?4 and add the rules:

e ((u,v), (u,v), (s,s))if v #u # vandv # v'; and

e ((u,v), (W', v), (s,8))ifu#u.

These are essentially ‘dummy rules’ (involving accessible vertices), but their presen
allows us to apply the results of the previous section, as these new rules can be definec
conjunctions of atomic and negated atomic formulae. The consequence is that we can obt
a program schemp, € NPSS(1)that canonically orders the accessible verticesPgf
starting from the vertexs, s). (In pa we begin by guessing and leave fixed throughout.)

We can now use this ordering of the accessible vertiegdo obtain an ordering of the
vertices ofg. Our encoding scheme is such that a vert@x g is identified with the vertex

(u, u) of P¢. Hence, in a computation @f; on §, we can always remember the last vertex
of »4 of the form(u, u) that was shown to be accessible. Thus, to know whetleemes
immediately before in the canonical ordering &f, we simply need to know whethér, u)
comes beforév, v) in the canonical ordering of the accessible verticesRaf, so that no
vertex of the form(w, w) is such thatu, u) < (w, w) < (v, v) in this canonical ordering;
this is whatpq tells us.

Let @ be any problem involving strongly connected locally ordered digraphs that i
solvable in polynomial-time. By Theoref) 2 can be accepted by a program scheme of
NPSS(1). By replacing tests to see whether Sucg) or — succ(x, y)holds with the code
pa, With 0 chosen as the source and max chosen as the last element in our canonical order
we obtain a program scheme of NR$Bthat accepts2. By Theoren2, 2 can be defined
by a sentenc& e PS'[FO], as required. Hence, on the class of strongly connected locall
ordered digraph®? = PS[FO], even in the absence of two built-in constants, as we car
replacev by:

303 max(‘ max is the last element in the canonical ordering starting at @).
(Here, we are treating 0 and max as two new variables.) O

Theorenl4should be compared with a result of Etessami and Immergjam[strongly
connected locally ordered digraphs. Their notion of a locally ordered digraph, which the
call aone-way locally ordered graphs the same as ours — that isggstructure with
identical restrictions orR — except that in addition they have at their disposal another
universe{0, 1, ... ,n — 1}, in a g3-structure of size:, and a built-in total ordering on this
universe (that is, their structures are two-sorted). Immerman had previously proved tt
transitive closure logidsee [4] for more details) with a built-in successor relation defines
the class of problems solvable in non-deterministic logspace; that is, the complexity cla
NL. The inclusion of this second universe (or ‘counting on the side’) meant that Immerma
and Etessami could prove that on the class of strongly connected one-way locally ordel
graphsNL consists of those problems that are definable in transitive closure logic (without
built-in successor relation). Looking at transitive closure logic on Etessami and Immermar
one-way locally ordered graphs is a way of removing the built-in successor relation whil
retaining a weaker notion of ordering. Our result shows that if we dispense with ‘countin
on the side’ in one-way locally ordered graphs — that is, if we consider our locally ordere
digraphs —then, whilst we do not show that transitive closure logic captilres this class
of structures, we do show that path system logic captlrms the class of such digraphs.

We have another remark concerning TheoienProbably the most commonly occurring
locally ordered digraph is the planar graph when it comes with a plane embedding; that
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for every vertex of the graph, the neighbours are listed in clockwise order. Consequent
Theorenil4holds for the class of connected planar embeddings. But what if we are just give
a connected planar graphithoutan embedding? That s, we are given a strucguoger the
signaturer, = (E), whereE is abinary relation symbol, and we consigeas an undirected
graph with vertex setg| and with edgeg(u, v) : u,v € |4|, E(u, v) or E(v, u) holds}.
Can we obtain a result similar to Theordrhon the class of planar graphs, or at least on a
significant sub-class of planar graphs?

A planar grapl is atriangulationif there is a plane embedding éfsuch that every face
is a cycle of length 3 (in particular, triangulations are connected). A graphasBectedf,
no matter which two vertices and their incident edges are removed, the graph remains ¢
nected. By [10], for example, a triangulation is 3-connected; and by [3], for example, evel
3-connected planar graph has a unique plane embedding up to topological isomorphis
Hence we can talk about ‘the unique set of faces of a triangulation’.

THEOREM 15. Any problem involving triangulations that can be solved in polynomial-time
can be defined by a sentence fPSF[FO] with two built-in constants. Consequently, on
the class of triangulation® = (+ PSF[FO](even in the absence of two built-in constants

Proof. Let § be ao»-structure encoding a triangulation. L&y be a path system with
vertex setg|* x {X, Y, Z}. Fix co, c1, c2 € |4, for which (co, c1, c2) forms a face irg.
The path systen®y has rules:
@) X, w,v,w,u), v, w,u,v))and((u, v, w,u), X, (v, w, u, v)), forallu, v, w € |4
for which (u, v, w) forms a face irg;
(b) ¥, (u, v, w,u), (u, w, v, u)) and((u, v, w,u), Y, (4, w, v, u)), forall u, v, w € |4|
for which (u, v, w) forms a face irg;
() (Z, (u, v, w,u), (u, v, w,u))and((u, v, w,u), Z, (u, v, w, u)),foralu, v, w, w €
|| for which (u, v, w) and(u, v, w’) form distinct faces irg;
(d) ((u, v, w,u), (U, v,w,u), u,u,u,u), forall u,v,w € |4| for which (u, v, w)
forms a face irg;
) ((u,v,w,u), @, v, w,u), X), forallu,v,w,u’, v, w € |g| for which (u, v, w)
and(u’, v', w’) form distinct faces i and whergu, v, w, u) # (', v, w’, u’);
() (@, u,u,u),t, X)and(t, (u,u,u,u), X), forallu € |§| andz € |Pg]; and
9) X,X,Y),,Y,2),(Z,Z, (co, c1, c2, c0)) and(s, t, X), forall s, t € {X, Y, Z} for
whichs # 1.
The source of the path systefy isthe vertexX . The vertices ofg|* of the form(u, v, w, u),
where(u, v, w) forms a face irg, can be viewed as rooted partial orientations of the faces
of g, via the fact that the vertefu, v, w, u) is the pathu — v — w of length 2 partially
encompassing the face, v, w). The rules are such that they allow us to show that every
vertex of the form(u, v, w, u), where(u, v, w) forms a face ing, is accessible, with the
rules involvingX andY and Z used to generate all ‘rooted 2-paths’ around a face, anc
the rules involvingZ used to ‘flip’ across neighbouring faces. Moreover, all vertices of the
form (u, u, u, u), whereu € |4/, are accessible too.

The path systen®y can easily be defined in terms$fusing a formula of PJFO]. (To
check that(u, v, w) is a face ing, we need to check that for evesy, v’ € |4\ {u, v, w},
there is a path ig, from «’ to v' avoidingu, v andw; this can be verified with a formula of
PSHFO].) Additionally, the path system obtained fraRy by restricting the choice to the
vertices of{(u, v, w, u) : u,v,w € |4, (u, v, w) forms aface irg} U {(u, u,u,u) : u €
16|} U{X, Y, Z} is deterministic.

https://doi.org/10.1112/51461157000000371 Published online by Ca@bridge University Press


https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

We can amend the program scheme(defined at the beginning of this section), as in
the proof of Theoremi4, so that we obtain a program schemethat yields a canonical
ordering of the accessible vertices 8. However, this program schems is not in
NPSS(1), as the tests in while-loops are allowed to be formulae YFP8. We can now
use this ordering to obtain a canonical ordering of the vertices &f a computation of
ps on g, we can remember the last vertex®8§ of the form(u, u, u, u) that was shown
to be accessible. This yields a canonical ordering of the verticgs bfence, as in the
proof of Theoreml4, any polynomial-time solvable problem involving triangulations can
be accepted by a program scheme of NASSvith tests from P§FO], and thus — by
Theoren? — by a sentence aft PSF[FO]. The rider in the statement of the result follows
as in the proof of Theoreri4. O

Theoreml5 should be compared with a recent result of GrasjeWwho proved that any
polynomial-time solvable problem involving 3-connected planar graphs can be defined |
a sentence of inflationary fixed-point logic. As was remarked Jndath system logic is a
proper fragment of inflationary fixed-point logic (in fact, there are problems involving tree:
that are definable in inflationary fixed-point logic but not in path system logic); however, i
is not known whether this is the case on the class of 3-connected planar graphs. Thgoren
shows that on the class of triangulations, a proper sub-class of the class of 3-connected plz
graphs, inflationary fixed-point logic and (the fragmeatPS?[FO] of) path system logic
are equally expressive: they express exactly the polynomial-time properties of such grap

We end with aremark for those readers acquainted with the hierarchy of program schen
NPSS, defined inl]]. An immediate corollary of the proof of TheorelBis that on the class
of triangulations, this hierarchy collapses to its second level, NBS&d any polynomial-
time solvable problem on the class of triangulations can be defined by a program schel
of NPSS(2.

5. Conclusions

In this paper we have essentially developed a new technique for building logically de
finable successor relations in certain classes of structures. Our technique is establishec
considering the relationship between certain program schemes with access to a stack
path system logic; and it enables us (sometimes) to build successor relations that are
finable in path system logic, as opposed to (the more expressive) inflationary fixed-poi
logic, as is usually the case in the literature.

Ouranalysis has resulted in a model of computation that takes arbitrary finite structures
inputs, and that captur®s but whose non-deterministic version has the same computatione
power as its deterministic version. It is interesting to note that this equivalence of mode
comes about essentially because there is a quantifier-free first-order translation (in 1
parlance of 4]) from the problem PS to the problem detPS. Whilst this translation is no
particularly difficult to establish, it is the association of the problem PS and detPS with th
classes of program schemes NPB%nd DPSS(1yherein the non-trivial aspects of the
equivalence result lie. Another interesting aspect of this equivalence result is that althou
a program schemg of, for example, NPS&1) can solve any given problem &f, the
computation ofp need not itself be a polynomial-time computation. This point is worthy
of further consideration.

There are numerous other obvious directions for further research. For example, it wol
be interesting to find other (natural) classes of structures over which path system loc
capture®. (Such a contender has already been mentioned: the class of 3-connected grap
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A slightly more involved question might be: ‘Can we find a class of structures over whicl
path system logic capturd®, but so that(+ PS)y[FO] capturesP, for somei, whereas
within (+ PS)[FO] there is a proper hierarchy: PSY[FO] c (£PSF[FO] C ...2' A

first step in this direction would be to prove that on the class of triangulations, there al
polynomial-time-solvable problems that are not definabletifPS) [FO].
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