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Abstract

In this paper we consider optimal stopping problems for a general class of reward functions
under matrix-exponential jump-diffusion processes. Given an American call-type reward
function in this class, following the averaging problem approach (see, for example, Alili
and Kyprianou (2005), Kyprianou and Surya (2005), Novikov and Shiryaev (2007), and
Surya (2007)), we give an explicit formula for solutions of the corresponding averaging
problem. Based on this explicit formula, we obtain the optimal level and the value
function for American call-type optimal stopping problems.

Keywords: Optimal stopping problem; American call-type reward function; averaging
problem; matrix-exponential distribution; jump-diffusion process

2010 Mathematics Subject Classification: Primary 60G40; 60J75; 60G51

1. Introduction

The optimal stopping problems we consider in this paper will be of the form

V (x) = sup
τ∈T

Ex(e
−rτ g(Xτ )), (1.1)

where X = {Xt : t ≥ 0} under Px is a Lévy process started from X0 = x, g is a continuous
reward function, r > 0, and T is a family of stopping times with respect to the natural filtration
generated by X. The optimal stopping problem consists of finding the value function V (x)
and the optimal stopping time τ ∗ such that V (x) = Ex(e−rτ∗

g(Xτ∗)). The general theory of
optimal stopping rules for Markov processes says that the value function V (x) is the smallest
r-excessive majorant of g(x). Moreover, the first entry time τD of the process X into the
stopping region D = {x ∈ R, V (x) = g(x)} is the smallest optimal stopping time (if it exists)
and, hence, the value function is given by the formula Ex(e−rτDg(XτD)).

For diffusion processes, many authors have determined the boundary of the stopping region
D using the smooth pasting condition for the value function and solved the optimal stopping
problem by reducing it to the problem of solving a corresponding Stefan free boundary problem.
Unfortunately, once problem (1.1) is driven by Lévy processes, the smooth pasting condition
may break down. (See [1] for an example.) Recently, to solve the optimal stopping problem (1.1)
in a general setting, Surya [13] proposed using an averaging problem approach instead of one
of the many other methods given in the literature. (For earlier works on the averaging problem
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approach, see [1], [4], [8], and [12].) The averaging problem approach does not appeal to a
free boundary problem associated to the optimal stopping problem. Instead, by solving the
corresponding averaging problem, we have a new fluctuation identity for overshoots of a Lévy
process. With this identity, Surya [13] showed by martingale arguments that an optimal solution
can be found if the solutions to the averaging problem have certain monotonicity properties. By
this approach, he was able to reproduce the results of, among others, Kyprianou and Surya [8],
Mordecki [10], and Novikov and Shiryaev [12].

In this paper we consider a matrix-exponential jump-diffusion process X of the form given
in (2.2) below. For a general class of reward functions, under some assumptions on the process,
we give an explicit formula in Theorem 3.1 for solutions of the averaging problem. (Our
result depends on the recent work of Lewis and Mordecki [9].) Moreover, when the reward
function g is of American call type, we derive sufficient criteria for optimality in terms of the
reward function g and the solutions of the averaging problem (see Theorem 3.2). The class of
reward functions contains many known examples in the literature and our results are consistent
with those of Kyprianou and Surya [8], Mordecki [10], Boyarchenko and Levendorskii [4], and
many others. Also, our examples in Section 4 show that the sufficient conditions for optimality
in Theorem 3.2 are easier to verify than those given in the literature.

The rest of the paper is organized as follows. In Section 2 we recall some main results of
Surya [13] and Lewis and Mordecki [9]. In Section 3 we present our main results. In Section 4
we give some examples.

2. Preliminaries

2.1. Sufficient conditions for optimality

Let X = {Xt : t ≥ 0} be a real-valued Lévy process defined on (�,F , {Ft },P) such that
X0 = 0 almost surely. A Lévy process starting from X0 = x is simply defined as x + Xt for
t ≥ 0, and we denote its law by Px . For every Lévy process, we have E(eiuXt ) = etψ(u), where
ψ is called the characteristic exponent of X and is given by the formula

ψ(u) = iau− 1

2
b2u2 +

∫
R

(eiux − 1 − iux 1{|x|<1})π(dx).

Here a ∈ R, b ≥ 0, and π is a measure on R \ {0} such that
∫

R
(1 ∧ x2)π(dx) < ∞.

Denote by er an exponential random variable with parameter r > 0, independent of the
process X, and denote by Mr = sup0≤s≤er Xs and Ir = inf0≤s≤er Xs the supremum and the
infimum of the Lévy processX killed at the independent exponential random time er . It is well
known thatXer − Ir and Ir are independent, and thatXer − Ir has the same distribution asMr .
From these, we obtain the Wiener–Hopf factorization formula: E eiuXer = r/(r − ψ(u)) =
ψ+
r (u)ψ

−
r (u), where ψ+

r (u) = E(eiuMr ) and ψ−
r (u) = E(eiuIr ).

To solve the optimal stopping problem (1.1), as in [8], [12], [13], and many other works, we
first introduce the corresponding averaging problem. We say that the reward function g is of
American call type if g is a nondecreasing continuous function and {g > 0} = (â,∞) for some
â < ∞. Given a reward function g of American call type and r > 0, the averaging problem for
the optimal stopping problem (1.1) consists of finding a function Q̃g satisfying the condition

E(Q̃g(x +Mr)) = g(x) (2.1)

for every x > â. Using similar arguments (with some minor modifications) as in [13], we have
the following sufficient conditions for optimality.
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Theorem 2.1. Given a reward function g of American call type with H = {g > 0} = (â,∞)

for some â < ∞, consider a continuous function Q̃g on H satisfying the averaging condition
(2.1) for every x ∈ H . We assume further that there exists x̂ ∈ H such that Q̃g(x̂) = 0,
Q̃g(x) is nondecreasing for x > x̂ and Q̃g(x) ≤ 0 for â < x < x̂. Let x∗ be the largest
root of Q̃g(x) = 0 in (â,∞), and set τ ∗ = inf{t > 0 : Xt > x∗}. Then τ ∗ is the optimal
stopping time for the optimal stopping problem (1.1) and the value function is given by V (x) =
E(Q̃g(x +Mr) 1{x+Mr>x∗}).

Remark 2.1. (a) By replacingX with its dual process X̂ = −X and x with −x, similar results
were also obtained in Surya [13] for American put-type optimal stopping problems.

(b) It is worth noting that if g(x) = E[∫ ∞
0 e−rth(x +Xt) dt] for some bounded function h then,

by the Wiener–Hopf fluctuation identity, the function Q̃g(x) = Ex[h(Ir)] is a solution of the
averaging problem (2.1).

2.2. Matrix-exponential jump-diffusion processes

From now on, we consider matrix-exponential jump-diffusion processes X of the form

Xt = X0 + at + bWt +
Nλt∑
n=1

Yn +
N
µ
t∑

k=1

Zk, t ≥ 0. (2.2)

Here a ∈ R \ {0}, b ≥ 0, W = (Wt , t ≥ 0) is a standard Brownian motion, and Nλ = (Nλ
t ;

t ≥ 0) and Nµ = (N
µ
t ; t ≥ 0) are the Poisson processes with rates λ > 0 and µ > 0,

respectively. Also, Y = (Yn, n ∈ N) and Z = (Zk, k ∈ N) are sequences of independent
random variables with identical matrix-exponential distributions given by

dF (+)(x) = 1{x>0}
v1∑
k=1

nk∑
j=1

ckjβ
j
k x

j−1

(j − 1)! e−βkx dx

and

dF (−)(x) = 1{x<0}
v2∑
p=1

�p∑
m=1

c̃pmα
m
p (−x)m−1

(m− 1)! eαpx dx,

respectively. Here the parameters ckj , βk, c̃pm, and αp can in principle take complex values,
but if we order αp and βk by their real parts then α1 and β1 must be real, while the others may
be complex with 0 < β1 < Re(β2) ≤ · · · ≤ Re(βv1) and 0 < α1 < Re(α2) ≤ · · · ≤ Re(αv2).

(For more on matrix-exponential distributions, see, for example, [2].) The random variables
W , Nλ, Nµ, Y , and Z are assumed to be independent. Note that the characteristic exponent of
X is given by

ψ(z) = iaz− b2z2

2
+ λ

[ v1∑
k=1

nk∑
j=1

ckj

(
iβk

z+ iβk

)j
− 1

]
+ µ

[ v2∑
p=1

�p∑
m=1

c̃pm

( −iαp
z− iαp

)m
− 1

]
.

(2.3)
We quote the following results of Lewis and Mordecki [9].

Theorem 2.2. (a) The equation r − ψ(z) = 0 has, in the half-plane Im(z) < 0, µ1 distinct
roots −iρ1, . . . ,−iρµ1 (with respective multiplicities m1, . . . , mµ1 ), ordered such that 0 <

Re(ρ1) ≤ Re(ρ2) ≤ · · · ≤ Re(ρµ1). The root −iρ1 is purely imaginary. Furthermore, the
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total root count
∑µ1
j=1mj is equal to n̄ when −X− is a subordinator and n̄+ 1 when −X− is

not a subordinator. Here, n̄ = ∑v1
k=1 nk . On the other hand, the equation r − ψ(z) = 0 has,

in the half-plane Im(z) > 0, µ2 distinct roots −iρ̃1, . . . ,−iρ̃µ2 (with respective multiplicities
m̃1, . . . , m̃µ2 ), ordered such that Re(ρ̃µ2) ≤ · · · ≤ Re(ρ̃1) < 0. The root −iρ̃1 is purely
imaginary. Furthermore, the total root count

∑µ2
j=1 m̃j is equal to �̄whenX+ is a subordinator

and �̄+ 1 when X+ is not a subordinator. Here, �̄ = ∑v2
p=1 �p.

(b) The Laplace transform ψ−
r for Ir is given by

ψ−
r (u) =

v2∏
k=1

(
u− iαk
−iαk

)�k µ2∏
j=1

(
iρ̃j

u+ iρ̃j

)m̃j

and the Laplace transform ψ+
r for Mr is given by

ψ+
r (u) =

v1∏
k=1

(
u+ iβk

iβk

)nk µ1∏
j=1

(
iρj

u+ iρj

)mj
.

3. Main results

Recall that {Xt }t≥0 is a matrix-exponential jump-diffusion process of the form given in (2.2)
and −iρ̃1, . . . ,−iρ̃µ2 ,−iρ1, . . . ,−iρµ1 are distinct roots of r − ψ(z) = 0 with Re(ρ̃µ2) ≤
· · · ≤ Re(ρ̃1) ≤ 0 < Re(ρ1) ≤ · · · ≤ Re(ρµ1). We assume further that all the roots are
simple, i.e. m1 = · · · = mµ1 = m̃1 = · · · = m̃µ2 = 1. (This is the case for hyperexponential
jump-diffusion models. Owing to its analytical tractability, this model has gained popularity
among practitioners and academics working in mathematical finance and insurance. In fact, in
the literature, there are many related works which also cover the case of multiple roots. See,
for example, [3], [5], and [7].) Then, under these assumptions, we solve the optimal stopping
problem (1.1) for a class of continuous reward functions g and r > 0.

First we observe, by Theorem 2.2, that the distribution of inf0≤s≤er Xs is given by

P
(

inf
0≤s≤er

Xs ∈ dy
)

= 1{a>0, b=0} d̃0δ0(dy)+ 1{µ2≥1}
[( µ2∑

η=1

d̃ηρ̃ηe−ρ̃ηy
)

1{y<0} dy

]
,

where d̃0 = ∏µ2
j=1(−ρ̃j )

∏v2
k=1 α

−�k
k and

d̃j = −
v2∏
k=1

(
ρ̃j + αk

αk

)�k µ2∏
m=1,m�=j

ρ̃m

−ρ̃j + ρ̃m
for 1 ≤ j ≤ µ2. (3.1)

Also, the distribution of sup0≤s≤er Xs is given by

P
(

sup
0≤s≤er

Xs ∈ dy
)

= 1{a<0, b=0} d0δ0(dy)+ 1{µ1≥1}
[( µ1∑

j=1

djρj e−ρj y
)

1{y>0} dy

]
, (3.2)

where d0 = ∏µ1
j=1 ρj

∏v1
k=1 β

−nk
k and

dk =
v1∏
j=1

(
βj − ρk

βj

)nj µ1∏
i=1, i �=k

ρi

ρi − ρk
for 1 ≤ k ≤ µ1. (3.3)

In the following, we follow the convention that
∏µ1
i=1, i �=k = 1 and

∏µ2
m=1,m�=j = 1 in theµ1 = 1

and µ2 = 1 cases, respectively. We also need the following facts.
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Lemma 3.1. Suppose that µ1 ≥ 1 and µ2 ≥ 1. Then the following statements hold.

(a) For i = 1, . . . , µ1, we have

−λ
v1∑
k=1

nk∑
j=1

(βk)
j ckj

(βk − ρi)j
−µ

v2∑
p=1

�p∑
m=1

(αp)
mc̃pm

(αp + ρi)m
+(µ+λ+r)−aρi− b2ρ2

i

2
= 0, (3.4)

and, for ξ = 1, . . . , µ2, we have

−λ
v1∑
k=1

nk∑
j=1

(βk)
j ckj

(βk − ρ̃ξ )j
−µ

v2∑
p=1

�p∑
m=1

(αp)
mc̃pm

(αpρ̃ξ )m
+(µ+λ+r)−aρ̃ξ− b2ρ̃ξ

2

2
= 0. (3.5)

(b) For 1 ≤ k ≤ v1 and 1 ≤ ξ ≤ nk , we obtain

µ1∑
j=1

djρj

(βk − ρj )ξ
=

{
d0 if a < 0, b = 0, and ξ = 1,

0 otherwise.

(c) For 1 ≤ p ≤ v2 and 1 ≤ m ≤ �p, we obtain

µ2∑
j=1

d̃j ρ̃j

(αp + ρ̃j )m
=

{
d̃0 if a > 0, b = 0, and m = 1,

0 otherwise.
(3.6)

(d) For any complex numbers Ap,m and ω, we have

µ2∑
η=1

v2∑
p=1

�p∑
m=1

Ap,md̃ηρ̃η

ω − ρ̃η

(
1

(αp + ρ̃η)m
− 1

(αp + ω)m

)

=
v2∑
p=1

�p∑
m=1

Ap,m

(αp + ω)m
(d̃0 1{a>0, b=0}). (3.7)

(e) For any complex numbers As , we obtain

µ1∑
s=1

µ2∑
η=1

dsρsAsd̃ηρ̃η

ρs − ρ̃η

[ v1∑
k=1

nk∑
j=1

−λ(βk)j ckj
(βk − ρs)j

− aρs − b2ρ2
s

2

−
( v1∑
k=1

nk∑
j=1

−λ(βk)j ckj
(βk − ρ̃η)j

− aρ̃η − b2ρ̃2
η

2

)]

= 1{a>0, b=0}
µ1∑
s=1

v2∑
p=1

�p∑
m=1

(−d̃0)dsρsAsµ(αp)
mc̃pm

(αp + ρs)m
. (3.8)

(f) The following identities hold:

−ad0

r

µ2∑
j=1

d̃j ρ̃j = 1 if a < 0, b = 0, (3.9a)

ad̃0

r

µ1∑
j=1

djρj = 1 if a > 0, b = 0, (3.9b)

https://doi.org/10.1239/jap/1339878803 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1339878803


536 Y.-C. SHEU AND M.-Y. TSAI

and

1

r

µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

(
b2

2

)
= 1 if b �= 0. (3.9c)

Proof. (a) The identities follow from the facts that −iρ̃1, . . . ,−iρ̃µ2 and −iρ1, . . . ,−iρµ1

are solutions of r − ψ(z) = 0 and (2.3).
(b) Since mj = 1 for j = 1, . . . , µ1, by Theorem 2.2, we obtain

ψ+
r (u) =

v1∏
k=1

(
u+ iβk

iβk

)nk µ1∏
j=1

iρj
u+ iρj

. (3.10)

Note that if a < 0 and b = 0 then µ1 = ∑v1
k=1 nk; otherwise, µ1 = ∑v1

k=1 nk + 1. Applying
fractional decomposition to the right-hand side of (3.10) gives

v1∏
k=1

(
u+ iβk

iβk

)nk µ1∏
j=1

iρj
u+ iρj

= 1{µ1≥1}
µ1∑
j=1

djρj i

u+ iρj
+ 1{a<0, b=0} d0, (3.11)

where limu→−iρj (u + iρj )ψ+
r (u) = djρj i and the dj are given in (3.3). For 1 ≤ k ≤ v1 and

1 ≤ ξ ≤ nk , our results follow by differentiating both sides of (3.11) ξ − 1 times at u = −iβk .
(c) Note that we have

ψ−
r (u) =

v2∏
k=1

(
u− iαk
−iαk

)�k µ2∏
j=1

iρ̃j
u+ iρ̃j

. (3.12)

Also, if a > 0 and b = 0 then µ2 = ∑v2
k=1 �k; otherwise, µ2 = ∑v2

k=1 �k + 1. Applying
fractional decomposition to the right-hand side of (3.12) gives

v2∏
k=1

(
u− iαk
−iαk

)�k µ2∏
j=1

iρ̃j
u+ iρ̃j

= 1{µ2≥1}
µ2∑
j=1

d̃j ρ̃j (−i)

u+ iρ̃j
+ 1{a>0, b=0} d̃0, (3.13)

where limu→−iρ̃j (u + iρ̃j )ψ−
r (u) = (−i)d̃j ρ̃j and the d̃j are given in (3.1). For 1 ≤ p ≤ v2

and 1 ≤ m ≤ �p, our result follows by differentiating both sides of (3.13) m − 1 times at
u = iαk .

(d) Observe that

m∑
q=1

1

(αp + ρ̃η)q(αp + ω)m−q+1 = 1

ω − ρ̃η

(
1

(αp + ρ̃η)m
− 1

(αp + ω)m

)
.

Given any complex numbers Ap,m and w, we have

µ2∑
η=1

v2∑
p=1

�p∑
m=1

Ap,md̃ηρ̃η

ω − ρ̃η

(
1

(αp + ρ̃η)m
− 1

(αp + ω)m

)

=
µ2∑
η=1

v2∑
p=1

�p∑
m=1

m∑
q=1

Ap,md̃ηρ̃η

(αp + ρ̃η)q(α + ω)m−q+1
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=
v2∑
p=1

�p∑
m=1

m∑
q=1

Ap,m

(αp + ω)m−q+1

( µ2∑
η=1

d̃ηρ̃η

(αp + ρ̃η)q

)

=
v2∑
p=1

�p∑
m=1

Ap,m

(αp + ω)m
(d̃0 1{a>0, b=0}),

where the last equality follows from (3.6).
(e) It is clear from (3.4) and (3.5) that

µ1∑
s=1

µ2∑
η=1

dsρsAsd̃ηρ̃η

(ρs − ρ̃η)

×
[
−λ

v1∑
k=1

nk∑
j=1

(βk)
j ckj

(βk − ρs)j
− µ

v2∑
p=1

�p∑
m=1

(αp)
mc̃pm

(αp + ρs)m
− aρs − b2ρ2

s

2

−
(

−λ
v1∑
k=1

nk∑
j=1

(βk)
j ckj

(βk − ρ̃η)j
− µ

v2∑
p=1

�p∑
m=1

(αp)
mc̃pm

(αp + ρ̃η)m
− aρ̃η − b2ρ̃2

η

2

)]

= 0.

This together with (3.7) yields (3.8).
(f) From Theorem 2.2, we have the following results.

µ1 =
v1∑
p=1

np and µ2 =
v2∑
m=1

�m + 1 if a < 0, b = 0, (3.14a)

µ1 =
v1∑
p=1

np + 1 and µ2 =
v2∑
m=1

�m if a > 0, b = 0, (3.14b)

µ1 =
v1∑
p=1

np + 1 and µ2 =
v2∑
m=1

�m + 1 if b �= 0. (3.14c)

By applying the Wiener–Hopf factorization formula and combining (3.11) and (3.13), we see
that, for b = 0,

r

r − ψ(u)
= r

∏v1
p=1(u+ iβp)np

∏v2
m=1(u− iαm)�m

(−ia)
∏µ1
j=1(u+ iρj )

∏µ2
k=1(u+ iρ̃k)

=
(

1{µ1≥1}
µ1∑
j=1

djρj i

u+ iρj
+ 1{a<0, b=0} d0

)

×
(

1{µ2≥1}
µ2∑
j=1

d̃j ρ̃j (−i)

u+ iρ̃j
+ 1{a>0, b=0} d̃0

)
, (3.15)
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and, for b �= 0,
r

r − ψ(u)
= r

∏v1
p=1(u+ iβp)np

∏v2
m=1(u− iαm)�m

(b2/2)
∏µ1
j=1(u+ iρj )

∏µ2
k=1(u+ iρ̃k)

=
( µ1∑
j=1

djρj i

u+ iρj

)( µ2∑
j=1

d̃j ρ̃j (−i)

u+ iρ̃j

)
. (3.16)

For the b = 0 case, our results follow by multiplying both sides of (3.15) by u, letting u → ∞,
and using (3.14). For the b �= 0 case, we obtain our result by multiplying both sides of (3.16)
by u2, letting u → ∞, and using (3.14).

Observe that if v1 ≥ 1 (i.e. there are upside jumps for the processX) then the functionψ(iz)
is a real analytic function in (−β1, 0) with ψ(0) = 0 and limz↓−β1 ψ(iz) = ∞. Hence, we
have 0 < ρ1 < β1.

Definition 3.1. We write g ∈ π0 if the function g : R → R is absolutely continuous on every
compact interval and there existA1 > 0,A2 > 0, and θ ∈ (0, ρ1) such that |g(x)| ≤ A1+A2eθx

for all x ∈ R.

For any g ∈ π0, we define Qg(x) by

Qg(x) = 1{µ2≥1}
µ2∑
η=1

d̃ηρ̃η

r

{ v1∑
k=1

nk∑
j=1

j∑
�=1

−λ(βk)j ckj
(βk − ρ̃η)�(j − �)!eβkx

×
∫ ∞

x

(y − x)j−�g(y)e−βky dy

−
((
a + b2ρ̃η

2

)
g(x)+ b2

2
g′(x)

)}

+ d̃0

r

{ v1∑
k=1

nk∑
j=1

−λ(βk)j ckj
(j − 1)! eβkx

∫ ∞

x

(u− x)j−1g(u)e−βku du

+ (λ+ µ+ r)g(x)− ag′(x)
}

1{a>0, b=0} . (3.17)

We show below that Qg is a solution of the averaging problem (2.1).

Theorem 3.1. For any g ∈ π0 and r > 0, we have E[Qg(Mr + x)] = g(x) for all x ∈ R.

Proof. Observe that

EQg(Mr + x) =
∫ ∞

0
Qg(y + x)fM(y) dy =

∫ ∞

x

Qg(u)fM(u− x) du,

where

fMr (z) = 1{a<0, b=0} d0δ0(dz)+ 1{µ1≥1}
µ1∑
j=1

djρj e−ρj z 1{z>0} . (3.18)

We write
Qg(x) = 1{µ2≥1}(Q(1)

g (x)+Q(2)
g (x)+Q(3)

g (x))

+ 1{a>0, b=0}(Q(4)
g (x)+Q(5)

g (x)+Q(6)
g (x)), (3.19)
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where

Q(1)
g (x) =

µ2∑
η=1

d̃ηρ̃η

r

{ v1∑
k=1

nk∑
j=1

j∑
�=1

−λ(βk)j ckj
(βk − ρ̃η)�(j − �)!eβkx

∫ ∞

x

(y − x)j−�g(y)e−βky dy

}
,

(3.20)

Q(2)
g (x) =

(
−

µ2∑
η=1

d̃ηρ̃η

r

)
b2

2
g′(x), (3.21)

Q(3)
g (x) = −

µ2∑
η=1

d̃ηρ̃η

r

(
a + b2ρ̃η

2

)
g(x), (3.22)

Q(4)
g (x) = d̃0

r

{ v1∑
k=1

nk∑
j=1

−λ(βk)j ckj
(j − 1)! eβkx

∫ ∞

x

(u− x)j−1g(u)e−βku du

}
, (3.23)

Q(5)
g (x) = d̃0(−a)

r
g′(x), (3.24)

and

Q(6)
g (x) = d̃0(λ+ µ+ r)

r
g(x). (3.25)

Taking account of g ∈ π0 and using integration by parts, we obtain

eρsx
∫ ∞

x

e(βk−ρs)u
∫ ∞

u

(y − u)j−�g(y)e−βky dy du

= (j − �)! eρsx

(βk − ρs)j−�+1

∫ ∞

x

g(y)e−ρsy dy

+
j−�+1∑
ξ=1

−(j − �)! eβkx

(j − �+ 1 − ξ)! (βk − ρs)ξ

∫ ∞

x

(y − x)j−�+1−ξ g(y)e−βky dy. (3.26)

For simplicity, we also write

I
(1)
s,k,j−� = eρsx

∫ ∞

x

e(βk−ρs)u
∫ ∞

u

(y − u)j−�g(y)e−βky dy du

and

I
(2)
k,j−�+1−ξ = eβkx

∫ ∞

x

(y − x)j−�+1−ξ g(y)e−βky dy.

Using (3.18), (3.20), and (3.26), we obtain, for µ2 ≥ 1,∫ ∞

x

Q(1)
g (u)fM(u− x) du

= 1{µ1≥1}
1

r

{ µ1∑
s=1

µ2∑
η=1

v1∑
k=1

nk∑
j=1

j∑
�=1

dsρs d̃ηρ̃η(−λ)(βk)j ckj
(βk − ρ̃η)�(j − �)! (I

(1)
s,k,j−�)

}

+ 1{a<0, b=0} d0Q
(1)
g (x)
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= 1{µ1≥1}
1

r

{ µ2∑
η=1

v1∑
k=1

nk∑
j=1

j∑
�=1

j−�+1∑
ξ=1

d̃ηρ̃ηλ(βk)
j ckj

(βk − ρ̃η)�(j − �+ 1 − ξ)!

×
( µ1∑
s=1

dsρs

(βk − ρs)ξ

)
I
(2)
k,j−�+1−ξ

+ 1{µ1≥1}
µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

v1∑
k=1

nk∑
j=1

( j∑
�=1

−λ(βk)j ckj
(βk − ρ̃η)�(βk − ρs)j−�+1

)

× eρsx
∫ ∞

x

g(y)e−ρsy dy

}
+ 1{a<0, b=0} d0Q

(1)
g (x). (3.27)

For µ1 ≥ 1, it follows from of Lemma 3.1(b) that, for k = 1, . . . , v1 and ξ = 1, . . . , nk ,

µ1∑
j=1

djρj

(βk − ρj )ξ
=

{
1{ξ=1} d0 if a < 0 and b = 0,

0 otherwise.

This implies that, for µ2 ≥ 1,

1{µ1≥1}
1

r

µ2∑
η=1

v1∑
k=1

nk∑
j=1

j∑
�=1

j−�+1∑
ξ=1

d̃ηρ̃ηλ(βk)
j ckj

(βk − ρ̃η)�(j − �+ 1 − ξ)!
( µ1∑
s=1

dsρs

(βk − ρs)ξ

)
I
(2)
k,j−�+1−ξ

= − 1{a<0, b=0} d0Q
(1)
g (x).

By this and the identity

j∑
�=1

1

(βk − ρ̃η)�(βk − ρs)j−�+1 = 1

ρs − ρ̃η

(
1

(βk − ρs)j
− 1

(βk − ρ̃η)j

)
,

(3.27) becomes

∫ ∞

x

Q(1)
g (u)fM(u− x) du

= 1{µ1≥1}
1

r

{ µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

ρs − ρ̃η

( v1∑
k=1

nk∑
j=1

−λ(βk)j ckj
(βk − ρs)j

+ λ(βk)
j ckj

(βk − ρ̃η)j

)
eρsx

×
∫ ∞

x

g(y)e−ρsy dy

}
. (3.28)

Again, by using integration by parts together with g ∈ π0, we obtain

eρsx
∫ ∞

x

g′(y)e−ρsy dy = −g(x)+ ρse
ρsx

∫ ∞

x

g(y)e−ρsy dy. (3.29)
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Combining (3.29) with (3.18) and (3.21) gives, for µ2 ≥ 1,∫ ∞

x

Q(2)
g (u)fM(u− x) du

= 1{µ1≥1}
(

−b
2

2r

) µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

(
eρsx

∫ ∞

x

g′(y)e−ρsy dy

)

= 1{µ1≥1}
(

−b
2

2r

) µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

(
−g(x)+ ρse

ρsx

∫ ∞

x

g(y)e−ρsy dy

)

= 1{µ1≥1}
b2

2r
g(x)

µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

− 1{µ1≥1}
µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

ρs − ρ̃η

(
ρsb

2

2r
(ρs − ρ̃η)

)
eρsx

∫ ∞

x

g(y)e−ρsy dy. (3.30)

Also, using (3.18), (3.21), and (3.22) we have, for µ2 ≥ 1,∫ ∞

x

Q(3)
g (u)fM(u− x) du

= 1{µ1≥1}
(−1)

r

µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

(
a + b2ρ̃η

2

)(
eρsx

∫ ∞

x

g(y)e−ρsy dy

)

+ 1{a<0, b=0} d0Q
(3)
g (x)

= 1{µ1≥1}
(−1)

r

µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

ρs − ρ̃η

(
aρs + b2ρ̃ηρs

2
−

(
aρ̃η + b2ρ̃2

η

2

))
eρsx

×
∫ ∞

x

g(y)e−ρsy dy

+ 1{a<0, b=0} d0Q
(3)
g (x). (3.31)

Combining (3.28), (3.30), and (3.31) gives, for µ2 ≥ 1,

E[(Q(1)
g +Q(2)

g +Q(3)
g )(Mr + x)]

= 1{µ1≥1}
1

r

µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

(ρs − ρ̃η)
eρsx

∫ ∞

x

g(y)e−ρsy dy

×
[
−λ

v1∑
k=1

nk∑
j=1

(βk)
j ckj

(βk − ρs)j
− aρs − b2ρ2

s

2

−
(

−λ
v1∑
k=1

nk∑
j=1

(βk)
j ckj

(βk − ρ̃η)j
− aρ̃η − b2ρ̃2

η

2

)]

+ 1{a<0, b=0} d0Q
(3)
g (x)+ 1{µ1≥1}

b2

2r
g(x)

µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η.
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Using Lemma 3.1(e), we obtain, for µ2 ≥ 1,

E[(Q(1)
g +Q(2)

g +Q(3)
g )(Mr + x)]

= 1{a<0, b=0} d0Q
(3)
g (x)+ 1{µ1≥1}

b2

2r
g(x)

µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

+ 1{µ1≥1, a>0, b=0}
µ1∑
s=1

v2∑
p=1

�p∑
m=1

(−d̃0)dsρsµ(αp)
mc̃pm

r(αp + ρs)m
eρsx

∫ ∞

x

g(y)e−ρsy dy.

(3.32)

Consequently, using (3.14), (3.9), and (3.19), we see that, for the b �= 0 case,

E[Qg(Mr + x)] = E[(Q(1)
g +Q(2)

g +Q(3)
g )(Mr + x)] = g(x)

(
b2

2r

µ1∑
s=1

µ2∑
η=1

dsρs d̃ηρ̃η

)
= g(x)

and, for the case in which a < 0 and b = 0,

E[Qg(Mr + x)] = E[(Q(1)
g +Q(2)

g +Q(3)
g )(Mr + x)] = g(x)

(
(−a)d0

r

µ2∑
η=1

d̃ηρ̃η

)
= g(x).

It remains to consider the case in which a > 0 and b = 0. By (3.14), we have µ1 ≥ 1. It
follows from (3.18), (3.23), and (3.26) that

∫ ∞

x

Q(4)
g (u)fM(u− x) du

=
v1∑
k=1

nk∑
j=1

j∑
ξ=1

d̃0λ(βk)
j ckj eβkx

r(j − ξ)!
( µ1∑
s=1

dsρs

(βk − ρs)ξ

) ∫ ∞

x

(y − x)j−ξ g(y)e−βky dy

+
µ1∑
s=1

v1∑
k=1

nk∑
j=1

d̃0dsρs(−λ)(βk)j ckj eρsx

r(βk − ρs)j

∫ ∞

x

g(y)e−ρsy dy

=
µ1∑
s=1

v1∑
k=1

nk∑
j=1

d̃0dsρs(−λ)(βk)j ckj eρsx

r(βk − ρs)j

∫ ∞

x

g(y)e−ρsy dy. (3.33)

The last equality follows from Lemma 3.1(b). Using (3.29), (3.18), and (3.24) we have

∫ ∞

x

Q(5)
g (u)fM(u− x) du =

(−ad̃0

r

) µ1∑
s=1

dsρs

(
−g(x)+ ρse

ρsx

∫ ∞

x

g(y)e−ρsy dy

)
.

(3.34)
By (3.18), (3.24), and (3.25), we have

∫ ∞

x

Q(6)
g (u)fM(u− x) du = d̃0(λ+ µ+ r)

r

µ1∑
s=1

dsρse
ρsx

∫ ∞

x

g(y)e−ρsy dy. (3.35)
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It follows, from (3.19), (3.32), (3.33), (3.34), and (3.35), that

E[Qg(Mr + x)]

= 1{a>0, b=0}
µ1∑
s=1

d̃0dsρseρsx

r

∫ ∞

x

g(y)e−ρsy dy

+ 1{a>0, b=0}
d̃0a

r

( µ1∑
j=1

djρj

)
g(x)

×
[
−λ

v1∑
k=1

nk∑
j=1

(βk)
j ckj

(βk − ρs)j
− µ

v2∑
p=1

�p∑
m=1

(αp)
mc̃pm

(αp + ρs)m
+ (µ+ λ+ r)− aρs

]
.

By Lemma 3.1(a) and (f), we obtain E[Qg(Mr + x)] = g(x). The proof is complete.

Remark 3.1. (a) We write g ∈ R if g : R → R is an L1-integrable function such that the
Fourier transform ĝ, defined by ĝ(ω) = ∫ ∞

−∞ e−iωxg(x) dx, satisfies the integrability condition∫ ∞
−∞(1 + |ω|3)|ĝ(ω)| dω < ∞. As noted in [13], the set R belongs to the class of C3

b . This
implies that every element in R is also in π0. Surya [13] showed that, if g ∈ R, the function
(1/2π)

∫ ∞
−∞(e

iωxĝ(ω)/ψ−
r (ω)) dω solves the American put-type averaging problem. By using

the Fourier inversion formula, we can verify by direct calculation that, for g ∈ R, the function
(1/2π)

∫ ∞
−∞(e

iωxĝ(ω)/ψ+
r (ω)) dω coincides with Qg(x). Moreover, we have the following

identity

(ψ(+)r (ω))−1 = 1{a>0, b=0}
d̃0

r

[ v1∑
k=1

nk∑
j=1

−λ(βk)j ckj
(βk − iω)j

− iaω + (λ+ µ+ r)

]

+ 1{µ2≥1}
1

r

µ2∑
η=1

d̃ηρ̃η

iω − ρ̃η

[
(iω − ρ̃η)

(−iωb2

2
− a − b2ρ̃η

2

)

+
( v1∑
k=1

nk∑
j=1

−λ(βk)j ckj
(βk − iω)j

+ λ(βk)
j ckj

(βk − ρ̃η)j

)]
.

(b) It is interesting to note that if g(x) = ∑M
m=1 hmeθmx with 0 ≤ max{θm : 1 ≤ m ≤ M} < ρ1

then

Qg(x) =
M∑
m=1

hmeθmx(ψ+
r (−iθm))

−1.

The result is consistent with those in [4], [10], and [13].

In the following we study some properties of Qg(x). We write g ∈ π̂0 if g ∈ π0 is
nondecreasing, {g > 0} = (â,+∞) for some â < ∞, and g ∈ C1(â,+∞). In the remainder
of the paper, we consider the model X with ckj > 0, βk > 0, and αp > 0 for 1 ≤ k ≤ v1, 1 ≤
j ≤ nk , and 1 ≤ p ≤ v2.

Proposition 3.1. Consider the reward function g ∈ π̂0 with {g > 0} = (â,∞) and Qg given
by (3.17). Then the following statements hold.

(a) If there exists α > 0 such that limx→∞Qg(x) ≥ α then there exists x∗ > â such that
Qg(x

∗) = 0.
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(b) If (g(u + x)/g(x))′ < 0 and (g′(x)/g(x))′ < 0 for any x > â and u > 0, then there
exists at most one x∗ ∈ (â,+∞) such that Qg(x

∗) = 0.

(c) If both conditions in (a) and (b) hold, then there exists a unique x∗ ∈ (â,+∞) such that
Qg(x

∗) = 0. Moreover,Qg(x) is increasing for x > x∗ andQg(x) < 0 for â < x < x∗.

Proof. Observe that

Qg(x) =
v1∑
k=1

nk∑
j=1

j∑
�=1

−λ(βk)j ckj
r(j − �)!

[(
1{µ2≥1}

µ2∑
η=1

d̃ηρ̃η

(βk − ρ̃η)�
+ 1{a>0, b=0, �=1} d̃0

)

×
∫ ∞

0
uj−�g(u+ x)e−βku du

]

−
[

1{µ2≥1}
b2

2r

( µ2∑
η=1

d̃ηρ̃η

)
+ 1{a>0, b=0}

ad̃0

r

]
g′(x)

−
[

1{µ2≥1}
µ2∑
η=1

d̃ηρ̃η(a + b2ρ̃η/2)

r
− 1{a>0, b=0}

d̃0

r
(λ+ µ+ r)

]
g(x). (3.36)

We first show that limt→â+ Qg(t) < 0. To do this, we first claim that, for µ2 ≥ 1 and b �= 0,

µ2∑
η=1

d̃ηρ̃η =
∏µ2
j=1 −ρ̃j∏v2
k=1(αk)

�k
> 0, (3.37)

and, for a > 0 and b = 0,

d̃0 =
∏µ2
j=1 −ρ̃j∏v2
k=1(αk)

�k
> 0. (3.38)

Also, we will show that, for 1 ≤ k ≤ v1 and 1 ≤ � ≤ nk ,

1{µ2≥1}
µ2∑
η=1

d̃ηρ̃η

(βk − ρ̃η)�
+ 1{a>0, b=0} 1{�=1} d̃0 > 0. (3.39)

From identities (3.12) and (3.13), we obtain

E[euIr ] =
v2∏
k=1

(
u+ αk

αk

)�k µ2∏
j=1

−ρ̃j
u− ρ̃j

= 1{µ2≥1}
µ2∑
j=1

d̃j ρ̃j

u− ρ̃j
+ 1{a>0, b=0} d̃0. (3.40)

We obtain (3.37) by multiplying both sides by u, letting u → ∞ in (3.40), and using the fact
that µ2 = ∑v2

k=1 �k + 1. Similarly, (3.38) follows by letting u → ∞ in (3.40) and using the
fact that µ2 = ∑v2

k=1 �k . To verify (3.39), we note that differentiating both sides of (3.40) ξ
times at u = βk implies that

E[(Ir )ξ eβkIr ] = 1{µ2≥1}(−1)ξ
µ2∑
η=1

d̃ηρ̃η

(βk − ρ̃η)ξ+1 + 1{a>0, b=0} 1{ξ=0} d̃0.

This yields (3.39). Using (3.37)–(3.39) and (3.36), we obtain limt→â+ Qg(t) < 0.
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To prove (a), note that, by the assumption in (a), we have limx→+∞Qg(x) > 0 andQg(x) ∈
C(â,+∞). These together with limt→â+ Qg(t) < 0 and the intermediate value theorem, imply
that there exists at least one x∗ in (â,∞) such that Qg(x

∗) = 0.
To prove (b), we write Qg(x) = g(x)h(x) for x ∈ (â,∞), where

h(x) = −
[

1{µ2≥1}
b2

2r

( µ2∑
η=1

d̃ηρ̃η

)
+ 1{a>0, b=0}

ad̃0

r

]
g′(x)
g(x)

+
v1∑
k=1

nk∑
j=1

j∑
�=1

−λ(βk)j ckj
r(j − �)!

[(
1{µ2≥1}

µ2∑
η=1

d̃ηρ̃η

(βk − ρ̃η)�
+ 1{a>0, b=0} 1{�=1} d̃0

)

×
∫ ∞

0
uj−� g(u+ x)

g(x)
e−βku du

]

−
[

1{µ2≥1}
µ2∑
η=1

d̃ηρ̃η

r

(
a + b2ρ̃η

2

)
− 1{a>0, b=0}

d̃0

r
(λ+ µ+ r)

]
.

Taking account of (3.37)–(3.39), and the conditions (g(u+x)/g(x))′ < 0 and (g′(x)/g(x))′ < 0
for any x > â and u > 0, we see that h′(x) > 0 for any x > â. This implies that there exists
at most one x∗ ∈ (â,∞) such that h(x∗) = 0. Hence, Qg(x) = 0 has at most one solution in
(â,+∞).

To prove (c), by (a) and (b) we see that there exists only one x∗ ∈ (â,∞) such thatQg(x
∗) =

0. Furthermore, since limt→â+ Qg(t) < 0, Qg is continuous on (â,∞) and Qg(x) = 0 has
a unique solution on (â,∞), we have Qg(x) < 0 for x ∈ (â, x∗). For x > x∗, we have
Qg(x) = g(x)h(x) and, hence,Q′

g(x) = g′(x)h(x)+g(x)h′(x). Since each term on the right-
hand side is nonnegative, and g(x) and h′(x) are positive, we obtain Q′

g(x) > 0 for x > x∗
and, hence, Qg(x) is increasing on (x∗,∞).

Combining Theorem 2.1, Theorem 3.1, and Proposition 3.1 gives the following main result.

Theorem 3.2. Consider a reward function g(x) ∈ π̂0 with {g > 0} = (â,∞) andQg(x) given
by (3.17). Assume that the following conditions hold.

(a) There exists α > 0 such that limx→∞Qg(x) ≥ α.

(b) (g(u+ x)/g(x))′ < 0 and (g′(x)/g(x))′ < 0 for any x > â and u > 0.

Then the value function for the optimal stopping problem (1.1) is given by

V (x) = Ex(e
−rτ∗

g(Xτ∗)) =
∫ ∞

x∗−x
Qg(x +m)fMr (m) dm.

Here x∗ is the unique solution of the equationQg(x) = 0 in (â,∞), τ ∗ = inf{t > 0 : Xt > x∗},
and fMr is given by (3.2).

4. Examples

In the following, we first reproduce the results of Kyprianou and Surya [8], Novikov and
Shiryaev [12], and Deligiannidis et al. [6].
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Example 4.1. (Option with power function.) Consider the optimal stopping problem (1.1) with
g(x) = (x+)γ , γ > 1. According to (3.17), Qg(x) is given by

Qg(x) = 1{µ2≥1}
µ2∑
η=1

d̃ηρ̃η

r

[ v1∑
k=1

nk∑
j=1

j∑
�=1

−λ(βk)j ckj
(βk − ρ̃η)�(j − �)!

∫ ∞

0
uj−�e−βku(u+ x)γ du

−
((
a + b2ρ̃η

2

)
xγ + b2

2
γ xγ−1

)]

+ 1{a>0, b=0}
d̃0

r

{ v1∑
k=1

nk∑
j=1

−λ(βk)j ckj
(j − 1)!

∫ ∞

0
uj−1e−βku(u+ x)γ du

+ (λ+ µ+ r)xγ − aγ xγ−1
}
.

Moreover, we have

lim
x→∞Qg(x)x

−γ = 1{µ2≥1}
µ2∑
η=1

d̃ηρ̃η

r

{ v1∑
k=1

nk∑
j=1

j∑
�=1

−λ(βk)j ckj
(βk − ρ̃η)�β

j−�+1
k

−
(
a + b2ρ̃η

2

)}

+ 1{a>0, b=0}
d̃0

r
(µ+ r).

By using the identity

v1∑
k=1

nk∑
j=1

( j∑
�=1

−λ(βk)j ckj
(βk − ρ̃η)�(βk − θ)j−�+1

)
= 1

θ − ρ̃η

( v1∑
k=1

nk∑
j=1

−λ(βk)j ckj
(βk − θ)j

+ λ(βk)
j ckj

(βk − ρ̃η)j

)

and Remark 3.1(a), we see that limx→∞Qg(x)x
−γ = (ψ+

r (0))
−1 = 1. Also, observe that,

for x > 0 and u > 0, (g(u + x)/g(x))′ = ((1 + u/x)γ )′ = γ (1 + u/x)γ−1(−u/x2) < 0
and (g′(x)/g(x))′ = (γ x−1)′ = −γ x−2 < 0. By Theorem 3.2, there exists a unique x∗ such
that Qg(x

∗) = 0 and τ ∗ = inf{t ≥ 0 : Xt ≥ x∗} is the optimal stopping time for the optimal
stopping problem (1.1) with g(x) = (x+)γ , γ > 1.

Remark 4.1. (a) Assume that g(x) = (x+)n, where n ∈ N ∪ {0}. Write Qn(x) = Qg(x).
Direct calculations show that Qn(x) satisfies Q0(x) = 1, dQn(x)/dx = nQn−1(x), and
E[Qn(Mr)] = 0. Hence, the functions Qn(x) are just the Appell polynomials for the random
variableMr in [8]. For Appell functions of any order γ �= 0 and related works, see [6] and [12].

(b) For the perpetual American call options, by using a similar approach and Remark 3.1(a),
we obtain the optimal stopping boundary x∗ and the pricing formula in terms of Qg and fMr .
By a different approach, the solution was obtained earlier by Mordecki [10] for general Lévy
processes.

In the following example we consider a special jump-diffusion model so that we can obtain
a simple form for the value function.

Example 4.2. Consider the case where g(x) = (x+)γ with γ > 1, and Xt = at + ∑Nλt
i=1 Y

β
i ,

where a < 0 and {Yβi : i = 1, 2, . . .} is a sequence of independent exponentially distributed

https://doi.org/10.1239/jap/1339878803 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1339878803


Optimal stopping problems for matrix-exponential jump-diffusion processes 547

random variables with parameter β. Under these model assumptions, we have ψ(z) = iaz −
λz/(z + iβ) and fMr (y) = d0δ0(dy) + d1ρ1e−ρ1y dy, where d1 = (β − ρ1)/β, d0 = ρ1/β,
and {−iρ1,−iρ̃1} are the solutions of r − ψ(z) = 0. Also, we have

Qg(x) = −ρ̃1

r

(
− λβ

β − ρ̃1

∫ ∞

x

yγ e−β(y−x) dy − axγ
)

for every x > 0. Hence, for each x < x∗, the value function is given by

V (x) = −(β − ρ1)ρ1ρ̃1

βr
eρ1x

∫ ∞

x∗
e−ρ1y

(
−ayγ − λβ

β − ρ̃1
eβy

∫ ∞

y

zγ e−βz dz

)
dy.

Since∫ ∞

x∗
e(β−ρ1)y

∫ ∞

y

zγ e−βz dz dy = 1

β − ρ1

(∫ ∞

x∗
e−ρ1zzγ − e(β−ρ1)x

∗
∫ ∞

x∗
e−βzzγ dz

)
,

a = −λβ/(β − ρ1)(β − ρ̃1), and Qg(x
∗) = 0, we see that

V (x) = −(β − ρ1)ρ1ρ̃1

βr
eρ1x

×
[(

−a − λβ

(β − ρ1)(β − ρ̃1)

) ∫ ∞

x∗
e−ρ1zzγ dz

+ λβ

(β − ρ1)(β − ρ̃1)
)e(β−ρ1)x

∗
∫ ∞

x∗
e−βzzγ dz

]

= aρ̃1ρ1

βr
eρ1(x−x∗)(x∗)γ .

Furthermore, since ψ(0) = 0 and r − ψ(z) = (−ia)(z + iρ1)(z + iρ̃1)/(z + iβ), we have
aρ̃1ρ1/βr = 1 and, hence, V (x) = eρ1(x−x∗)(x∗)γ . Clearly, V is continuous at the optimal
boundary x∗. Since V ′(x∗−) = ρ1(x

∗)γ and g′(x∗) = γ (x∗)γ−1, there is no smooth fit at x∗
as x∗ �= γ /ρ1. (To show that x∗ �= γ /ρ1, we set

F(x) = −λβ
a(β − ρ̃1)

∫ ∞

0

(
1 + z

x

)γ
e−βz dz.

Then, using the inequality (1 + z/x)γ ≤ eγ z/x , we observe that

F(x) <
λβ

(−a)(β − ρ̃1)

1

β − γ /x
.

This implies that F(γ /ρ1) < λβ/(−a)(β − ρ̃1)(β − ρ1) = 1 and, hence, Qg(γ /ρ1) > 0.
Consequently, x∗ < γ/ρ1.) Note that {0} is not regular for the half-line (0,∞) for the process
{Xt }. Our results show no contradiction with the general results of Theorem 5.1 of [13]. Similar
results were obtained for the r = 0 case by Moddecki and Salminen [11].

Example 4.3. Consider the optimal stopping problem (1.1) with g(x) = ln(x + 1) 1{x≥0}.
To check conditions (a)–(b) of Theorem 3.2, we first substitute g(x) = ln(x + 1) 1{x≥0} into
(3.17). Multiplying both sides of (3.17) by (ln(x+1))−1 and using Remark 3.1(a), we see that
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limx→∞Qg(x)(ln(x + 1))−1 = (ψ+
r (0))

−1 = 1, which implies that limx→∞Qg(x) = ∞.
Next, observe that, for x > 0 and u > 0,(

g(u+ x)

g(x)

)′
= ln(x + 1)/(u+ x + 1)− ln(u+ x + 1)/(x + 1)

(ln(x + 1))2
< 0

and (
g′(x)
g(x)

)′
= −(x + 1)−2 ln(x + 1)− (x + 1)−2

(ln(x + 1))−2 < 0.

By Theorem 3.2, there exists a unique x∗ > 0 such that Qg(x
∗) = 0 and τ ∗ := inf{t ≥

0 : Xt ≥ x∗} is the optimal stopping time for the optimal stopping problem (1.1) with g(x) =
ln(x + 1) 1{x≥0}.
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