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Abstract

In this paper we consider optimal stopping problems for a general class of reward functions
under matrix-exponential jump-diffusion processes. Given an American call-type reward
function in this class, following the averaging problem approach (see, for example, Alili
and Kyprianou (2005), Kyprianou and Surya (2005), Novikov and Shiryaev (2007), and
Surya (2007)), we give an explicit formula for solutions of the corresponding averaging
problem. Based on this explicit formula, we obtain the optimal level and the value
function for American call-type optimal stopping problems.
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1. Introduction

The optimal stopping problems we consider in this paper will be of the form

V(x) = sup Ex(e™""g(X7)), (1.1)

TeT

where X = {X,: r > 0} under P, is a Lévy process started from Xo = x, g is a continuous
reward function, » > 0, and 7~ is a family of stopping times with respect to the natural filtration
generated by X. The optimal stopping problem consists of finding the value function V (x)
and the optimal stopping time t* such that V (x) = E, (e_”*g(X r+)). The general theory of
optimal stopping rules for Markov processes says that the value function V (x) is the smallest
r-excessive majorant of g(x). Moreover, the first entry time tp of the process X into the
stopping region D = {x € R, V(x) = g(x)} is the smallest optimal stopping time (if it exists)
and, hence, the value function is given by the formula E, (e™""? g(X¢,)).

For diffusion processes, many authors have determined the boundary of the stopping region
D using the smooth pasting condition for the value function and solved the optimal stopping
problem by reducing it to the problem of solving a corresponding Stefan free boundary problem.
Unfortunately, once problem (1.1) is driven by Lévy processes, the smooth pasting condition
may break down. (See [1] for anexample.) Recently, to solve the optimal stopping problem (1.1)
in a general setting, Surya [13] proposed using an averaging problem approach instead of one
of the many other methods given in the literature. (For earlier works on the averaging problem
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approach, see [1], [4], [8], and [12].) The averaging problem approach does not appeal to a
free boundary problem associated to the optimal stopping problem. Instead, by solving the
corresponding averaging problem, we have a new fluctuation identity for overshoots of a Lévy
process. With this identity, Surya [13] showed by martingale arguments that an optimal solution
can be found if the solutions to the averaging problem have certain monotonicity properties. By
this approach, he was able to reproduce the results of, among others, Kyprianou and Surya [8],
Mordecki [10], and Novikov and Shiryaev [12].

In this paper we consider a matrix-exponential jump-diffusion process X of the form given
in (2.2) below. For a general class of reward functions, under some assumptions on the process,
we give an explicit formula in Theorem 3.1 for solutions of the averaging problem. (Our
result depends on the recent work of Lewis and Mordecki [9].) Moreover, when the reward
function g is of American call type, we derive sufficient criteria for optimality in terms of the
reward function g and the solutions of the averaging problem (see Theorem 3.2). The class of
reward functions contains many known examples in the literature and our results are consistent
with those of Kyprianou and Surya [8], Mordecki [10], Boyarchenko and Levendorskii [4], and
many others. Also, our examples in Section 4 show that the sufficient conditions for optimality
in Theorem 3.2 are easier to verify than those given in the literature.

The rest of the paper is organized as follows. In Section 2 we recall some main results of
Surya [13] and Lewis and Mordecki [9]. In Section 3 we present our main results. In Section 4
we give some examples.

2. Preliminaries

2.1. Sufficient conditions for optimality

Let X = {X;: ¢t > 0} be a real-valued Lévy process defined on (2, ¥, {¥;}, P) such that
Xo = 0 almost surely. A Lévy process starting from Xy = x is simply defined as x + X, for
t > 0, and we denote its law by P,.. For every Lévy process, we have E(e“X) = ¢/¥®), where
Y is called the characteristic exponent of X and is given by the formula

] .
V(u) = iau — Ebzuz + /R(emx = 1 —iux Iy <17 (dx).

Here a € R, b > 0, and 7 is a measure on R \ {0} such that fR(l A xH)7(dx) < oo.

Denote by e, an exponential random variable with parameter » > 0, independent of the
process X, and denote by M, = supy,., X; and [, = infp<s<., X the supremum and the
infimum of the Lévy process X killed at the independent exponential random time e,.. It is well
known that X, — I, and I, are independent, and that X, — I, has the same distribution as M, .
From these, we obtain the Wiener—Hopf factorization formula: EeXer = r/(r — ¢ (u)) =
Y, ()Y, (), where 7,7 (u) = E(e™M) and v, (u) = E(e"").

To solve the optimal stopping problem (1.1), as in [8], [12], [13], and many other works, we
first introduce the corresponding averaging problem. We say that the reward function g is of
American call type if g is a nondecreasing continuous function and {g > 0} = (a, oo) for some
a < oo. Given a reward function g of American call type and r > 0, the averaging problem for
the optimal stopping problem (1.1) consists of finding a function 0 ¢ satisfying the condition

E(Q,(x + M,)) = g(x) 2.1

for every x > a. Using similar arguments (with some minor modifications) as in [13], we have
the following sufficient conditions for optimality.
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Theorem 2.1. Given a reward function g of American call type with H = {g > 0} = (a, oo)
for some a < oo, consider a continuous function Qg on H satisfying the averaging condition
(2.1) for every x € H. We assume further that there exists x € H such that Qg x) =0,
Qg (x) is nondecreasing for x > x and Qg (x) < 0fora < x < X. Let x* be the largest
root of Qg(x) = 0in (a, o), and set t* = inf{t > 0: X; > x*}. Then t* is the optimal
stopping time for the optimal stopping problem (1.1) and the value function is given by V (x) =
E(Qg(x + M) 1{x+M,>x*})~

Remark 2.1. (a) By replacing X with its dual process X = —X and x with —x, similar results
were also obtained in Surya [13] for American put-type optimal stopping problems.

(b) It is worth noting that if g(x) = f e Th(x + X t) dr] for some bounded function £ then,
by the Wiener—Hopf fluctuation identity, the function Q ¢(x) = Ex[h(l,)] is a solution of the
averaging problem (2.1).

2.2. Matrix-exponential jump-diffusion processes

From now on, we consider matrix-exponential jump-diffusion processes X of the form

N} N/
Xt=Xo+at+bW,+ZYn+ZZk, t>0. (2.2)
n=1 k=1

Herea € R\ {0}, b > 0, W = (W,, t > 0) is a standard Brownian motion, and N* = (N};
t > 0) and N* = (N,“,t > 0) are the Poisson processes with rates A > 0 and u > 0,
respectively. Also, Y = (Y,, n € N) and Z = (Z;, k € N) are sequences of independent
random variables with identical matrix-exponential distributions given by

dF(+)(x) =10 Z Z Ck]ﬁkx e Brx 4y

k=1 j=1

and
by ~
b2 b mO{ ( X)m 1

PO = Tpaoy )0 Y e dx,

p=1m=1

respectively. Here the parameters c;, Sk, Cpm, and a, can in principle take complex values,
but if we order ), and B by their real parts then oy and 81 must be real, while the others may
be complex with 0 < 1 < Re(f2) < --- < Re(By,) and 0 < a1 < Re(ap) < --- < Re(oryy,).
(For more on matrix-exponential distributions, see, for example, [2].) The random variables
W, N*, N* Y, and Z are assumed to be independent. Note that the characteristic exponent of
X is given by

v Nk Jj v & —ia m
__+)L m .p) —1:|.
T Fg) T e

(2.3)
We quote the following results of Lewis and Mordecki [9].

Theorem 2.2. (a) The equation r — ¥ (z) = 0 has, in the half-plane Im(z) < 0, w1 distinct
roots —ipy, ..., —ipy, (with respective multiplicities my, ..., my, ), ordered such that 0 <
Re(p1) < Re(pz) < --- < Re(py,). The root —ip; is purely imaginary. Furthermore, the
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total root count 2511 m is equal to n when —X~ is a subordinator and n + 1 when — X~ is

not a subordinator. Here, n = ZZ‘ZI ng. On the other hand, the equation r — ¥ (z) = 0 has,
in the half-plane Im(z) > 0, uo distinct roots —ipy, ..., —ipy, (with respective multiplicities
mi, ..., My,), ordered such that Re(p,,) < --- < Re(p1) < 0. The root —ipy is purely
imaginary. Furthermore, the total root count Z’fil m  is equal to ¢ when X7 is a subordinator

and  + 1 when X7 is not a subordinator. Here, { = 222:1 Lp.

(b) The Laplace transform s~ for I, is given by

v2 o L M2 i
_ _ u 10y 1,0]
Wr (M)—l_[( —iog ) Jl:[](u—i‘iﬁj)

k=1

and the Laplace transform ;" for M, is given by

. _ V1 M—"iﬂk)nk /ﬂ( lp] )mj
v H( 1B Jlj[l u+tipj)

k=1

3. Main results

Recall that { X, };>0 is a matrix-exponential jump-diffusion process of the form given in (2.2)
and —ipy, ..., —ipu,, —ip1, ..., —ipy, are distinct roots of r — ¥ (z) = 0 with Re(p,,) <

- < Re(p1) < 0 < Re(p1) < --- < Re(py,). We assume further that all the roots are
simple, i.e. my = --- =my, =m| = --- = my, = 1. (This is the case for hyperexponential
jump-diffusion models. Owing to its analytical tractability, this model has gained popularity
among practitioners and academics working in mathematical finance and insurance. In fact, in
the literature, there are many related works which also cover the case of multiple roots. See,
for example, [3], [5], and [7].) Then, under these assumptions, we solve the optimal stopping
problem (1.1) for a class of continuous reward functions g and » > 0.

First we observe, by Theorem 2.2, that the distribution of info<s<., X is given by

U2
P( inf X e dy) = 1{4>0, p=0} dodo(dy) + l{mzl}[(z dnﬁne_p”y> 1, <o) d)’],

0<s<e, =
where dy = L A T, ay * and
v2 ~ Ly 2%} ~
~ i+«
dj=—l_[<u> [T %= fri<jzm. 3.1
=1\ %k m=1,msj PJ T Pm
Also, the distribution of supy, -, X; is given by
1
P( sup X € dy) = 1{4<0, p=0) dodo(dy) + 1{M1>1}|:<Zdjpje_pjy> 1(y-0) dy], (3.2)
0<s<e ;
=2 =€r j=1

where do = [1/L, p; [T, B, "* and
V1 L nj 13! i
i — H<M) [ -2 fol<k=p. (3.3)
oy B =1 ik P Pk

In the following, we follow the convention that f‘z'l ik =1 and ]_[fff:] maj =1 inthep; =1

and up = 1 cases, respectively. We also need the following facts.
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Lemma 3.1. Suppose that ;11 > 1 and py > 1. Then the following statements hold.

(a) Fori =1,..., 11, we have
v ng v 2 2
(Br)! ck; (ap)™c b*p}

—A A =0, 34
ZZ(ﬁk 7 ZZ(% ) —ap —— (3.4)
k=1 j=1 p=1m=1

and, for& =1, ..., w2, we have
vy Nk i 2 ~2
(Br)! ckj (Otp) b? pe
—A A — =0. 35
22— ZZ w D —ap = = 0. 6.9
(b) For1 <k <vyand1 < & < ng, we obtain
i dipj _ |do ifa<0b=0and§ =1,
Py Br — pj)¢ |0 otherwise.
(¢) For1 < p <wvyandl <m < {,, we obtain
i c?jﬁj _ d~0 ifa>0,b=0andm =1, (3.6)
= (ap +pj)™ 10 otherwise. '
(d) For any complex numbers A, ,, and w, we have
ZiZA,,mdnpn< L 1 )
=1 p=im=1 ®~Pn (@p+ o)™ (ap + o)
= Z Z (do 1{a=0, b=0})- 3.7)
p=lm=1 (O{p + )m
(e) For any complex numbers Ag, we obtain
“Z"Z vaA ann [sz —rBey D6
—aps —
s=1n=1 kl]l('Bk_'O)j 2
(8 )
=g Be-e) T2
2 by 1 ~
(_dO)dxpsAs,u«(ap)mcpm
=1 _ . 3.8
{a>0, b=0} Z Z Z @+ p)" (3.8)
s=1 p=1m=1
(f) The following identities hold:
—ady o .
Y dipj=1 ifa<0,b=0, (3.92)
j=1
ad()
Zd,p]_l ifa>0b=0, (3.9b)
j=1
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and
w1
-ZZdeY ,,,0,7< ):1 ifb # 0. (3.9¢)
s=1n=1
Proof. (a) The identities follow from the facts that —ipy, ..., —ipy, and —ipq, ..., —ipy,

are solutions of r — ¥ (z) = 0 and (2.3).
(b) Sincem; = 1for j =1,..., uy, by Theorem 2.2, we obtain

4 u+ipy ipj
v, (u)—]_[( 5 ) jl—[—u—f-lp, (3.10)

k=1

Note thatif a < 0 and b = 0 then uy =)', ng; otherwise, w1 = Y ;L nx + 1. Applying
fractional decomposition to the right-hand side of (3.10) gives

v . TR
l_[ I/l"‘lﬂk lp]

[1 =1 1 do, 3.11

( i ) j_1u+ip e ]}Z +1/Oj+ {a<0, b=0} do (3.11)

i\ 1Bk

where limu_)_ipj (u + i,oj)lpr'“(u) =d;p;iand the d; are given in (3.3). For I < k < vy and
1 < & < ny, our results follow by differentiating both sides of (3.11) £ — 1 times at u = —if.
(c) Note that we have

2w — oy b 12 ip;
(u) = . 3.12
) ﬂ( — ) E,Hiﬁj (3.12)

k=1

Also, if @ > 0 and b = O then o = Y ;2 €k; otherwise, o = Y ;2 € + 1. Applying
fractional decomposition to the right-hand side of (3.12) gives

v2 u — o by M2 115] 4 ~]p]( ) . _ X
[1(— [1—5 =t I}Z utip, | a0, b=0} do, (3.13)
. _ J
j =

—1x u 1
k=1 k U tipj

where lim,_, _j5, (u + oY (u) = (—i)c?j[)j and the c?j are given in (3.1). For 1 < p < vy
and I < m < £, our result follows by differentiating both sides of (3.13) m — 1 times at
u = i(xk.

(d) Observe that

- 1 1 1 1
(]X:; (O(p + ,5,])‘1(0(1, + a))m—q-H Cw— /577 <(05p + ﬁn)m B (ap + w)m)

Given any complex numbers A, ,, and w, we have

- Ap, md,],on( 1 B 1 )
Z Z Z w — Py (ap + o)™ (ap + )™

n=1 p=1m=1

-

Ap, m‘?n/}n
- Z Z Z Z (ap + pp) (@ + w)ym= q+1

n=1 p=1m=1gq=1
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"2

LI &77'577
= Z ZZ (Ol +w)m q+1 (; (ap+ﬁn)q)

p=1m=1¢g=1

(%) 14 )4

=y )y —n (a,,+ o) (do 140, p=0)

p=1lm=1

where the last equality follows from (3.6).
(e) It is clear from (3.4) and (3.5) that

H1  H2

ZZ dspsAs dnpn
S=1 n=1 (ps — ;017)
(Br) exj = (@p)™Cpm b p?
—A — — aps
[ ;;(ﬁk—ﬁ’)] ;mZ:l(aerp)’” RO
L (B O @) bzﬁ,%)]
— | =x 7 A —
( ;;(ﬁk—ﬁnﬂ Zz(aerp)m T
=0.

This together with (3.7) yields (3.8).
(f) From Theorem 2.2, we have the following results.

V] v2

= n, and puy=y Ly+1 ifa<0, b=0, (3.14a)
p=1 m=1
V] V2

/u:an+1 and M:Zem ifa >0, b=0, (3.14b)
V] v2

=Y np+1 and pp=Y Lu+1 ifb#0. (3.14c)
p:l m=1

By applying the Wiener—Hopf factorization formula and combining (3.11) and (3.13), we see
that, for b = 0,

ro T e iBp) " Tl (= o)
V@ (i) [T @+ ip) TTE, (u + i)

pil
(1{M1>1}Z 0! + 1{a<0, b= 0}d0>

+ip;
w25 .
djpj(—i) ~
X | Lpo>1y L 4 14420, p=0 do | (3.15)
< 2 = u—+1p;
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and, for b # 0,
r _ 1’]_[;1 L +iBp)"tr ]_[v2 (1 — iy, )tm
r—y@) b2/2)]_[ Lu4ip) T2, (e +i51)
_ (i dipjt. )( —df'ﬁf'(_i)). (3.16)
e u+ip; st u—+1ip;

For the b = 0 case, our results follow by multiplying both sides of (3.15) by u, letting u — o0,
and using (3.14). For the b # 0 case, we obtain our result by multiplying both sides of (3.16)
by u?, letting u — 00, and using (3.14).

Observe thatif vy > 1 (i.e. there are upside jumps for the process X) then the function v (iz)
is a real analytic function in (—p1, 0) with ¥(0) = 0 and lim,_g, ¥ (iz) = oo. Hence, we
have 0 < p1 < 1.

Definition 3.1. We write g € mg if the function g: R — R is absolutely continuous on every
compactinterval and there exist A1 > 0, Ay > 0,and 6 € (0, p1) suchthat |g(x)| < A1+ Aref™
for all x € R.

For any g € 7o, we define Q,4(x) by

5 o~ 1 ng J j
5 MBIk g
Qg<x>—1mz>uZ - "{Z X GG

k=1 j=1¢=1

x /Oo(y —x)/ (e dy

o)
<<a + T)é’(x) + 58 (x)

c?o v ng _A(ﬁk) Ckj ﬂkx/ = o
+"{,;]Z_; (- D! (u —x)" " g(uye” ™" du

+A+u+rgx) — ag/(X)} 1450, b=0} - (3.17)

We show below that Q, is a solution of the averaging problem (2.1).
Theorem 3.1. For any g € mo andr > 0, we have E[Q (M, + x)] = g(x) forall x e R.
Proof. Observe that

EQ¢M, +x) = fo Qe(y+x)fu(y)dy = / Qg () fp(u — x)du,

where p
1
I, (2) = L{a<0, p=0y dodo(dz) + L{y,>1) Zdjpje_p-fz 150y (3.18)
j=1
We write

Qg (x) = 11,,=1(Q" (¥) + 0P (x) + 0P (x))
+ 114=0,5=0) (05 (¥) + 0 (¥) + 0L (x)), (3.19)
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where
L2 oy [ e —1(Br)’ ck; > j
1) — nimn J x — )/t —Bry
Qg (x)—);1 , {;;lek—pn)%—ﬂ)' / =)/ ge dy},
(3.20)
2 5 o~ 2
dnpy\ b,
0y (x) = (—; ”r”)gg ), (3.21)
n2 5 ~ b2~
Q?)(x>=—2d”f ”(a+ S ")g(x) (3.22)
n=1
0¥ (x) = %{ZZ% ﬁk*/ (u — x)/ Vg (u)ePru du} (3.23)
k=1 j=1
do(—
0 (x) = Mgm, (3.24)
and
do(n
0 () = DETLI g (3.25)

Taking account of g € m( and using integration by parts, we obtain

o0 S .
ePsX / eBr—ps)u / (v — u)f_[g(y)e_ﬁky dydu
x u

| — Z | PsX o0 ‘
- m/ g(y)e ”dy
j—t+1 .
—( = Ot > j—l+1—& =B
! 521 =L+ 1= (B — ps) fx (v =)/ g (e P dy. (3.26)

For simplicity, we also write

) °° o »
[Y Lie= — ePs¥ / eBr—ps)u / (v — u)j*lg(y)e*ﬁky dy du
X u

and -~
2 i— — _
) g = / (y — ) " g (e P dy.
X

Using (3.18), (3.20), and (3.26), we obtain, for py > 1,

f N O () fur (u — x) du

Mol 0 B I dopsdnpn(—2)(Br)!
. {ZZZZZ (ngn_nn)e(J k )ij(s( k.j— 2)}

s=1n=1k=1 j=1{=1

+ 1{a<0, =0} do Q4 (x)
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dy o h(Br) ek
< (B — Pt — €+ 1-8)

y (i &) oo
— (B — py) ) KIS

H1o 2 .
—A(BK)! ckj
+ 1> dy psdnp (
= lel T ";Zl Z(ﬂk—pnwﬁk—pw o1
n J
X e"”‘/ g(y)e™"” dy}
X
+ a0, =0y d0 Q" (x). (3.27)
For p1 > 1, it follows from of Lemma 3.1(b) that, fork = 1,...,viand & =1, ..., ng,
i% _[1eondo ifa <0andb =0,
oy Br — pj)s o otherwise.

This implies that, for ur > 1,

vy ng j j—E+1

(B ¢ S~ dsps
L1 = ZZZZ Z (Bx — p’?)eﬂ (j _kg _,_kjl — &)l (Z Bk — ps)§>lk(,2;—£+l—§

T =1 =1 =1 =
= —1{a<0,5=0) A0 Q3" (x).

By this and the identity

X/: 1 R ( L )
—1 (ﬂk - ﬁr])e(ﬁk - ,Os)j_e_H - Ps — /57] (/3k - ;Os)j (/3k - ﬁn)j '

(3.27) becomes
/ " 00w fur e — x) du

w2 v j
s Os 7710’7 —)\.(,Bk)JCk] )‘-(,Bk)Jckj ) X
1 e L Ps
=) {ZZ (ZZ Ge—p) B-p )

vlr;lp_’on k=1 j=1

X /OO g(y)e 7 dy}. (3.28)

Again, by using integration by parts together with g € mp, we obtain

00 o
ef* / g e ™ dy = —g(x) + pse” / g(y)e™" dy. (3.29)
x X
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Combining (3.29) with (3.18) and (3.21) gives, for ur > 1,

/OO 0P () fu (u — x) du

H1 o H2 e’}
1u1>1}< )szbps npn(e“f g (e " dy)
X

s=1n=1

1% ~
= ( ) Z stps 77:0n< g(x) + pse* / g(y)e™?sY dy)

s=1n=1 x
b2 M1 K2

=iz 2280 Y Y dipsdnfy

s=1 n=1
Mmoo Q2

ds pg npn pAb ~ o
I D ( (s —pn)>e”"‘ / g(e Py, (330)
X

s=1n=1 Ps

Also, using (3.18), (3.21), and (3.22) we have, for uy > 1,

/ " 09 () fru — x) du

( 1 1231 b ~
==y —— Z Zd”o? 0Py (a + T) (epsx/ g(ye™Y dy)
X

s=1n=1
+ 1{4<0,p=0) doQ(3)(X)

1 25 b,o
_1{,L1>1}( )ZZ $s n/’r/( s + /Oznps —( n—i——z"))ep”‘

Ylnl'os

o
x / g(y)e ™V dy
X
+ 1{a<0,5=0) do QY (x). (3.31)
Combining (3.28), (3.30), and (3.31) gives, for ur > 1,

E[(QY + 0P + 09 (M, +x)1

2!

o0
IS g [y
X

S=1 n= I(Ps
[ AZZ By b}
po l(ﬂk—l)s)] 2
Jj=
S S ATR)
—ap, -0
=1 j= 1(,3/{_1071)] 2
K1 M2
+ 1a<0.5=0y d0 O (x) + 121 g(x)Zstps nBn-

s=1n=1
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Using Lemma 3.1(e), we obtain, for pup > 1,

EL(QY" + 0P + 0P (M, + 1)]

n1 o M2
= 1{4<0, p=0} doQi})(x) +1{u131} g(x)X:X:dhOY o
s=1n=1
1 v ~ -
(—=do)dspsir(ap)™c 00 -
+1{“131’“>0’1’=0}ZZ Z — pm pmepsx/ g(y)e Y dy.
r(op + ps) ¥

s=1 p=1m=1
(3.32)

Consequently, using (3.14), (3.9), and (3.19), we see that, for the b # O case,
»2 Hi M2
E[Q¢(M, +x)] =E[(QY" + 0P + 0D (M, +x)] = g(x)( D0 dyps npn) = g(x)
s=1n=1

and, for the case in whicha < Oand b =0,

—a)d Mn2 B
E[Q, (M, + x)] = E[(Q{" + 0P + 09 (M, + x)] = g(x)(( ‘;) ° Zdnﬁn) = g(x).

n=1

It remains to consider the case in whicha > 0 and b = 0. By (3.14), we have u; > 1. It
follows from (3.18), (3.23), and (3.26) that

/ " 09 W) fur u — x) du

V1 Nk d )\‘ j /Skx ds s o0 - 7 ,
-3 3y e (S 72s) [T tsome

k= 1, 15 Y
dod, ps (—0) (i) crjels* _
+ZZZ / g(y)e ¥ dy
=t =T LA
V] ng P
dody ps(— TepjePs* [ o
_ ZZ ods ps (—A) (Bk) jije / g(y)e™P dy. (3.33)

LT B \

The last equality follows from Lemma 3.1(b). Using (3.29), (3.18), and (3.24) we have

M1 [ee]
/ Q<5>(u>fM<u—x)du—( adO)stps( g(x)+psePfX/

X

g(y)e Y dy>~

(3.34)
By (3.18), (3.24), and (3.25), we have

) 3 M1 [e’e)
[ 0 s = au= DOTLED S g pren | e as)

r
s=1
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It follows, from (3.19), (3.32), (3.33), (3.34), and (3.35), that

E[Q; (M, + x)]

H1o5
dods psePs™ [ P
=1{a>o,b20}2% [ g(y)e ™V dy

s=1 x

+ 1{4>0, b=0} <Zdjp]>g(x)
v I4
(Br) Ckj 2 & (ap) ]
A A —ap;s |.
[T sy S i) 0

k=1 j=1 p=1m=1
By Lemma 3.1(a) and (f), we obtain E[Q¢ (M, + x)] = g(x). The proof is complete.

Remark 3.1. (a) We write g € R if g: R — R is an Lj-integrable function such that the
Fourier transform ¢, defined by ¢(w) = [ fooo e ¥ g (x) du, satisfies the integrability condition
ffooo(l + |a)|3)|§(w)| dw < co. As noted in [13], the set R belongs to the class of 6’2. This
implies that every element in R is also in 7ro. Surya [13] showed that, if g € R, the function
(1/27) [ fo x5 (w)/ ¥~ (w)) dw solves the American put-type averaging problem. By using
the Fourier inversion formula, we can verify by direct calculation that, for g € R, the function
(1/2m) fi’ooo(ei“”C ¢(@) /¥ (w)) dw coincides with Q4(x). Moreover, we have the following
identity

vy Nk

d —A
W (@) = a0, 5-0) —[Z Z (B’ e —law+ (A +p+ r):|

e (JETOY
L& dypy [ . [ —iwb? b2p
+1{u221}_2 = [(lw—Pn)< > —a—7n>

= iw — py
—)»(ﬂk)jCk] MBr) ek )}
(Z Z (Bx — iw)/ (,Bk Al

k=1 j=1

(b) It is interesting to note that if g(x) = Znnle hpme?* with 0 < max{6,: 1 <m < M} < p;
then

M
Qe (x) = > hpe* (yF (=i6u) .
m=1
The result is consistent with those in [4], [10], and [13].
In the following we study some properties of Qg(x). We write g € 7g if g € mp is
nondecreasing, {g > 0} = (a, +00) for some @ < oo, and g € C!(a, +-00). In the remainder

of the paper, we consider the model X with ¢;; > 0, B > 0,and ), > Ofor1 <k <v;,1 <
j<ng,and1 < p <.

Proposition 3.1. Consider the reward function g € 7o with {g > 0} = (a, 00) and Q, given
by (3.17). Then the following statements hold.

(a) If there exists @ > 0 such that lim,_, oo Qg(x) > « then there exists x* > a such that

Q0 (x*) = 0.
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(b) If (g(u + x)/g(x)) < 0and (g'(x)/g(x)) < 0 forany x > a and u > 0, then there
exists at most one x* € (a, +00) such that Q¢(x*) = 0.

(¢) If both conditions in (a) and (b) hold, then there exists a unique x* € (a, +00) such that
Q¢ (x*) = 0. Moreover, Q,(x) is increasing for x > x* and Q4(x) < 0fora < x < x*.

Proof. Observe that

I )&(ﬁk) Ck] ~npr/ 5
Qg (x) = E E E L1y E e — G —5)¢ + a0, =0, ¢=1} do
=1

k=1 j=1 r(j -

0 .
X / w " g(u + x)e Pt du:|
0
b2 (A - ady
[1{m>1 (Zd p > + 1{a>0,6=0 ]g (x)

dypy(a + b5, /2) d
- [l{uzzl}z 0P . Pl — 140, b=0) 70()»+M+r)i|g(x). (3.36)
n=1

We first show that lim,_, 3+ Q,(¢) < 0. To do this, we first claim that, for o > 1 and b # 0,

2 ILZ

~ —pj
dypy = >0 (3.37)
=R | T @
and, fora > 0and b =0,
Mz
- —pj
Also, we will show that, for1 <k <wvjand1 <¥{ < ng,
,o -
1{M2>1} b 14a=0, p=0) Lye=1) do > 0. (3.39)
(,Bk - n)e

From identities (3.12) and (3.13), we obtain

ul v2 u+ o M2 _,5j Mn2 d'] 5] 5
E[e""] = 1_[ ” 1_[ = /5/' = 1{,>1) Z L ;5/' + 1450, b=0} do. (3.40)
k=1 j=1 : =1

‘We obtain (3.37) by multiplying both sides by u, letting © — o0 in (3.40), and using the fact
that uy = 2122:1 £y + 1. Similarly, (3.38) follows by letting # — oo in (3.40) and using the
fact that yuy = ZZZZ 1 Lk To verify (3.39), we note that differentiating both sides of (3.40) &
times at u = B implies that

w2
dyp
E[([r)Eeﬁklr] = l{mzl}(—l)s E ﬁ + 140, b=0} 1ig=0 d()
=1

This yields (3.39). Using (3.37)—(3.39) and (3.36), we obtain lim,_, ;+ Qg(¢) < 0.
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To prove (a), note that, by the assumption in (a), we have lim, _, ;o Q,(x) > Oand Q,(x) €
C(a, 4+00). These together with lim,_, ;+ Q¢ (#) < 0 and the intermediate value theorem, imply
that there exists at least one x™ in (@, 00) such that Q. (x*) = 0.

To prove (b), we write Q¢ (x) = g(x)h(x) for x € (a, 0o), where

P (A ady g (x)
h(x) = _|:1{M221} 5(2 dnﬂn) + Lia>0,5=0) —]g(x)
n=1

v ng

L —A(B) N
L2 o (e Z e onsaticn )

k=1 j=1 =1
x/ooujfewefﬂk” du
0 g(x)

n2 3 ~ 2~ ~
d,p b p do
- [l{uzzl} Z %(d + T”) — {40, =0} 7()» +u+ r)}.
n=1

Taking account of (3.37)—(3.39), and the conditions (g(u+x)/g(x)) < Oand (g'(x)/g(x)) <0
for any x > a and u > 0, we see that #’'(x) > O for any x > a. This implies that there exists
at most one x* € (@, oo) such that 2(x*) = 0. Hence, Q¢ (x) = 0 has at most one solution in
(a, +00).

To prove (c), by (a) and (b) we see that there exists only one x* € (a, 0o) such that Q, (x*) =
0. Furthermore, since lim,_, 5+ Q4(t) < 0, Q, is continuous on (a, 00) and Q4(x) = 0 has
a unique solution on (4, 0o), we have Q,(x) < 0 for x € (a,x*). For x > x*, we have
Q¢ (x) = g(x)h(x) and, hence, Qg,(x) = g'(x)h(x) + g(x)h’(x). Since each term on the right-
hand side is nonnegative, and g(x) and h’(x) are positive, we obtain Q:g, (x) > 0 for x > x*
and, hence, Qg (x) is increasing on (x*, 00).

Combining Theorem 2.1, Theorem 3.1, and Proposition 3.1 gives the following main result.

Theorem 3.2. Consider a reward function g(x) € 7o with {g > 0} = (a, 00) and Q4 (x) given
by (3.17). Assume that the following conditions hold.

(a) There exists o > 0 such that lim, .o Q,(x) > a.
(b) (g(u+x)/gx)) <0and (g'(x)/g(x)) <O foranyx > aandu > 0.

Then the value function for the optimal stopping problem (1.1) is given by

o
V(x) =Ex(e™"" g(X1+)) = Qg (x +m) fm, (m) dm.
x*—x
Here x* is the unique solution of the equation Q4(x) = 0in (a, o0), v* = inf{t > 0: X; > x*},
and fy, is given by (3.2).
4. Examples

In the following, we first reproduce the results of Kyprianou and Surya [8], Novikov and
Shiryaev [12], and Deligiannidis et al. [6].
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Example 4.1. (Option with power function.) Consider the optimal stopping problem (1.1) with
g(x) = (x7)”, y > 1. According to (3.17), Qg (x) is given by

vp o g

i L .
Qg(x)_l{“2>”z e [Zzzwk—;f)’i JCkiE)'/ Wt e+ )

k=1 j=1¢=1

b b*
— <<a + %)x” + ?yxyl>i|

- s j .
+1 {a>0, b=0} _{Z Z ](IB_k)l)C;kj /0 u 71e7ﬂk”(u + x)y du

k=1 j=1

+ A+ p+r)x? —ayx?! }

Moreover, we have

J (B ers %5
Jim Qe (0)x™7 = 1{M2>1}Z Dby {ZZZ PO - (“ + %)}
k=1 j=

=1 (B — pn)gﬂ] —

do
+ 1{4>0, p=0) T(M +r).

By using the identity
vl Mg —)\.(,Bk)JCk/ ) ( v  ng _)\'(ﬂk)]ckl )»(lgk)fck/ )
; ;(Z (B — ) (B — 05T )~ 6 — 5, Z Z B0V " B b

and Remark 3.1(a), we see that limy_ 00 Qg(x)x™7 = (" (0)~! = 1. Also, observe that,
forx > Oand u > 0, (g(u + x)/g(x)) = (1 +u/x)")Y = y(A +u/x)? ' (—u/x?) < 0
and (g'(x)/g(x)) = (yx~'Y = —yx~2 < 0. By Theorem 3.2, there exists a unique x* such
that Qg (x*) = 0 and t* = inf{t > 0: X; > x*} is the optimal stopping time for the optimal
stopping problem (1.1) with g(x) = (x )7, y > 1.

Remark 4.1. (a) Assume that g(x) = (x™)", where n € N U {0}. Write 0, (x) = Qg (x).
Direct calculations show that O, (x) satisfies Qp(x) = 1, dQ,(x)/dx = nQ,_1(x), and
E[Q,(M,)] = 0. Hence, the functions Q, (x) are just the Appell polynomials for the random
variable M, in [8]. For Appell functions of any order y # 0 and related works, see [6] and [12].

(b) For the perpetual American call options, by using a similar approach and Remark 3.1(a),
we obtain the optimal stopping boundary x* and the pricing formula in terms of Q. and fy, .
By a different approach, the solution was obtained earlier by Mordecki [10] for general Lévy
processes.

In the following example we consider a special jump-diffusion model so that we can obtain
a simple form for the value function.

Example 4.2. C0n51der the case where g(x) = (xT)Y withy > 1, and X; = ar + Z N Yﬂ,
where ¢ < 0 and {Y i =1,2,...} is a sequence of independent exponentially dlstrlbuted
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random variables with parameter 8. Under these model assumptions, we have 1 (z) = iaz —

Az/(z +1p) and fiy, (y) = dodo(dy) + d1p1e””Y dy, where di = (B — p1)/B, do = p1/B,
and {—ip;, —ip1} are the solutions of r — ¥ (z) = 0. Also, we have

_5 A o
0,(x) = (- p_ We PO 4y _ ax
r B—p1 Jx

for every x > 0. Hence, for each x < x*, the value function is given by

—(8 — 5 o0 , A [,
V(x) = Mepm/ e~ P1Y (_ayy — 'B~ eby / Ve Pz dz) dy.
,3}’ x* :3 — P1 y

oo oo 1 ] " oo
/ eB=P)y / Ve Pidzdy = </ e P1Zy _ o(B—pi)x / e Py dz),
x* y B — o1 \Jx x*

a=—M/(B—p1)(B—p1),and Q(x*) =0, we see that

—(B — p)p1p1 op1x
Br

i) [
X[( “ (ﬁ—m)(ﬁ—ﬁl)) e o0

L (B—p1)x* /Oo —Bz Vd]
TSt e T E

ap1p1 eP1(x—x

Br

Furthermore, since ¥ (0) = 0 and r — ¥ (2) = (—ia)(z +ip1)(z +ip1)/(z + iB), we have
ap1p1/Br = 1 and, hence, V(x) = e”! =x") (x*yy Clearly, V is continuous at the optimal
boundary x*. Since V'(x*7) = p;(x*)? and g'(x*) = y(x*)? !, there is no smooth fit at x*
as x* # y/p1. (To show that x* # y/p;, we set

—)\.,B ] z Y B
Fx)= ——— 1+= Pz qz.
) a(B—p1) Jo ( +X> o

Vix) =

D).

Then, using the inequality (1 + z/x)?” < e”*/*, we observe that

AB 1
(—a)B—p)B—v/x
This implies that F(y/p1) < AB/(—=a)(B — p1)(B — p1) = 1 and, hence, Q,(y/p1) > O.
Consequently, x* < y/p;.) Note that {0} is not regular for the half-line (0, co) for the process

{X:}. Our results show no contradiction with the general results of Theorem 5.1 of [13]. Similar
results were obtained for the r = 0 case by Moddecki and Salminen [11].

F(x) <

Example 4.3. Consider the optimal stopping problem (1.1) with g(x) = In(x + 1) 1{x>0).
To check conditions (a)—(b) of Theorem 3.2, we first substitute g(x) = In(x + 1) 1{x>0) into
(3.17). Multiplying both sides of (3.17) by (In(x + 1))~!and using Remark 3.1(a), we see that
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limy 00 Qg (x)(In(x + 1)1 = (¢,;5(0))~! = 1, which implies that lim,_, s Q¢(x) = co.
Next, observe that, for x > O and u > 0,

0

(g(u +x)>’ I+ 1)/@+x+1) —Inw+x+1)/(x+1) -
g(x) B (In(x 4 1))?

and

(g’(X))’ =@+ DI+ ) -+ D7?

g )~ (In(x + 1)) 2 =0

By Theorem 3.2, there exists a unique x* > 0 such that Qg(x*) = 0 and 7* := inf{tr >
0: X; > x*} is the optimal stopping time for the optimal stopping problem (1.1) with g(x)
In(x + 1) 1(x>0).
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