RATIONAL APPROXIMATION WITH SERIES

D. FENNA

(received 22 July 1960)

The Siegel conjecture on the rational approximation to algebraic numbers
was proved a few years ago by K. F. Roth [1] with the following theorem:
Let « be any algebraic number, not rational. If

has an infinity of solutions in integers 4 and ¢ (g > 0), then « < 2.

This result, which gives a best-possible bound for «, improved on earlier
results of Liouville, Thue, Siegel, and Dyson.

The analogous problem of approximating to algebraic functions, with
degree replacing absolute value, was considsred by B. P. Gill [2], who ob-
tained a result corresponding to that of Siegel. In this paper we improve on
Gill’s result by proving the analogue of Roth’s theorem, so obtaining a
best-possible result.

Let f denote an arbitrary field of zero characteristic and z an indetermi-
nate. Then the set & of all formal Laurent series

T=az2% + oy L4,
where
og, %g_q, "€l
is a field. Further, the sets £ = ¥z] and R = ¥(z) form a subring and a sub-
field of ® respectively, with
2R
If z € & then we denote by deg x the degree of z, i.e.

degz = —o0 if 2= 0,
= d if a; is the leading non-zero coefficient in = £ 0.

The n-dimensional space of all vectors (z,, #,, - - - 2,), where the z, ¢ &, is
denoted by B,.
We prove the following theorem.

107

https://doi.org/10.1017/51446788700026409 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700026409

108 D. Fenna 2]

THEOREM 1.1. Let ¢ e ® be algebraic over ¥ but not in R. If
(1.2) deg (t — 1‘—) < —vdegv
Py

for infinitely many «/v e R, then » < 2.
[Note. It is taken throughout this paper that, in such a representation u/v
of an element of R, the %, v are relatively prime elements of $.]

This result is clearly best-possible for ». For if 4 is a positive integer there
exists a non-trivial set a4, 2;_;, - - - «y 0of & 4+ 1 elements of f such that, if v
is the polynomial

g ooy 287 - -,

then the coefficients of z—* in the product v¢ vanish for ¢ = 1, - - - 4. Putting
# equal to the polynomial part of v# we then have

deg (vt — u) < —d = — deg,
ie.

deg (t — Z) < —2deguw.
v

Since ¢ is not rational it follows that, by allowing 4 to range over all positive
integers, we obtain an infinity of distinct solutions #/v of (1.2) with » = 2.

For the case where the ground field f is of positive characteristic p Mahler
[3] has shown that the equivalent bound for » is » < p, which is again best-
possible.

In the proof of our theorem certain details are omitted because of the
essential similarity between our case and that of Roth.

2. Let 2, -+ - x,, be m indeterminates and let

F=F(@,- -z, Rz, - -z,],

i.e. F is a sum of terms of the form
a(il, .. im)xil ... x:.'r,
where the a = a(7,, - - - 4,,) ¢ ®. We extend the notation deg = defined above
for z ¢ & to include
deg F = — 0 if F=0;

= max {deg a(?,, - * - %,)} if F £ 0,
where the maximum is taken over all non-zero a. Clearly this is consistent
with our earlier notation, since it merely means that z%8F is the largest
power of z that occurs with non-zero coefficient in F. If F itself is in  then
the two notations agree.

Obviously, if
F'(xl’ e zﬁl) e@[xl’ .o xm]’
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then
deg (F 4+ F’) < max {deg F, deg F'}
and
deg (FF') = deg F + deg F'.
We consider differential operators of the form
it Hip
- oxy -+ -+ Oxim
and call (¢; + --- + 4,,) the order of 4.
For a positive integer 4, let
¢ﬂ(x1’.”xm)€@[xlr”'xm] (ﬂ=0, 1"“}1’—1)’
and let 4,, (x=0,1,---% — 1), be operators on z,, - - -z, of order at
most «. Then we call the determinant
G(zli e xm) = {Aa¢ﬂ(x1) R xm)}a,ﬂ-=0,1,---h—1
a generalized Wronskian of ¢g, ¢,, - é,_;.
LEMMA 2.1. The necessary and sufficient condition that
‘ﬁﬂ(xl".'xm)e@[xlr'.'zm] (ﬂ=0’l"“h_l)
are linearly independent over ¥ is that at least one of their generalized
Wronskians is non-zero.

Lemma 2.2. Let R(w,, - - - z,,) be a polynomial in # = 2 variables, with
coefficients in ¥, which is not identically zero. Let I be of degree at most 7,
inz;, (=1, ---m). Then there exists an integer 4 satisfying

1<h<r,+1

and there exist differential operators 4,, (A=0,1,---%4 — 1), on the
variables z,, - - - z,,_,, of order at most A, such that, if

0*R
Flay, - @) = det ‘Al ox* }A =01, A1

then (i) F has coefficients in $ and is not identically zero;
(ii) F(zy, - 2p) = Uy, Tpy) * V(@)
where U and V have coefficients in &, U is of degree at most 47, in z,,
(j=1,---m— 1), and V is of degree at most &7, in z,,.
The proofs of these two lemmas are omitted as they are very similar to

those of Roth.
With F, A and R as defined above we prove the following inequality.

LEMMA 23. deg F < h-deg R
ProoFr. Put
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0*R
e AA
oxkh

Now R is the sum of terms of the form

Ry

a(sl’ DRI sm)x;l 0. x:':n.
Differentiation with respect to any z,, - - - z,, of such a term will not in-
crease the degree of the coefficient a(s,, - - - s,). Hence
deg R, , = deg R Apup=01---h—1)
On the other hand, F is the sum of 4! terms, each of which is a product of
the form
ﬂ:RAo,o R,\l,l e R/\h_l,h—l'
It follows that
deg F < h - max {deg R, ,},
where the maximum is taken over 4, 4 =0, 1, - - - # — 1. Hence the asser-
tion.
3. Let P(z,,---x,) € R[,, - z,] and, further, let a,,--- 4, ¢® and
let r,, -7, be any positive numbers.
Definition 3.1.
The index
H{P} = O{P’ (aI’ o 'am);rl! T 'rm}
of P at the point (a,, - -a,) B, relative to »,,---7, is put equal to
+ o0 if P = 0, otherwise
6{P) =min{.7_1_|_ _,_7_'1}
4}

m

for all sets of non-negative integers 4, * - - 7,, for which
Pt tHa p

{31:11 st 81",,;-}(4;1,---«,,‘)

The index then has the following properties [Q(z,, - - - #,,) being a second

polynomial in z,, - - + ,,, and the indices being evaluated at (a,, - - a,)
relative to »,, - -7,].

#= 0.

(3.2) 6{P} =2 0, = 0 if and only if P(a,,---a,) # 0.
(3:3)  6{P + Q} = min (6{P}, 6{Q}).
34) e{P Q) = 2N} 0
(3.5) If
Jerte s+ P
Q o o for some %, k., =0,
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then

k R

6{Q} = 6{P} —(—l-{-"‘ +—)~
£ Tm
Also, if P is actually a function of less than m of the variables z,, - - - z,,,
say P is independent of z,, then
O{P; (@), @m); 71, "~ T} = O{P; (@1, " " - @y} 71, " * * P}

Hence, in particular, if P is a function of z,, - - - z,,_, only and Q is a func-
tion of z,, only, then, from (3.4),

0{PQ» (@1, = @p); 7y, 00 rm}
=0{P; (ay, " ** Amey); 71, Tt} + 0{Q; (@) 7}
4. Let »,, - - - 7,, be m positive integers and let p be a non-negative num-
ber. We denote by

(3.6)

5Bm = %m(P; 71, e m)

the set of all polynomials R(x;,---=2,) e[z, - x,] which satisfy the
conditions

(i) R #0;
(ii) R is of degree at most 7, in z;, (=1, m);
(ili) deg R < p.
Let v,, - - - v, €T be of positive degree. We put
Qm{P;vl» .. .vm;yl, .. .rm} — supB{R; (b, .. ollh) ; 71, . .,m}’
Uy Um
where the supremum is takenoverall R €8, and over #,, - - * u,, ¢ T satis-
fying (u;,v;) =1, (¢t =1,---m).
We now obtain an upper bound for @, by induction with respect to m.
For m = 1 we have the following inequality.
LeMMma 4.1.

P

O,{p; v1; 7} =, deg v,

Proof. By the definition of #, the polynomial R(z,) is divisible by
(x, — u,fv,)r, - 6{R}. Applying Gauss’s theorem on factorization, we have
R(z)) = (v, — u)" *5Q (x,)

where Q(z,) € T[x,]. The leading coefficient of R is therefore divisible by
;1 %R} whence

7,0{R} deg v, < deg R =< p,
and the assertion follows.

LeEmMMA 4.2, Let m = 2 be an integer and let 7,, - - - 7., be positive integers
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satisfying
Vm > 10071, 7, , > 7,671 for 1 =2,---m,
where 0 << § << 1. Also, let v, - - v, €T be of positive degree. Then
(4.3) O, {p; vy, Vs ¥y, 7} < 2 - max (@ + OF 4 8Y)
where the maximum is taken over all integers % satisfying
1<h<r,+ 1,
and where
(44) D= 0O\{hp; v, hry} + O y{hp; vy, - Vs By, - By, )
We again omit the proof because of its similarity to that of Roth. Note
that if
Flzy, - 2,) = Uy, o thps) V(@)
is the function defined in lemma 2.2 then
max (deg U,deg V) < deg F < hdeg R < hp,
by lemma 2.3. It follows from this and lemma 2.2 that
Uy, tny) € Boa(hps iy, - - )

and
V(xm) € !’Bl(hp: hrm)‘

We now restrict 6, v, - v,,7, " *%,, glVve p a particular value, and
obtain an explicit upper bound for @,{p; vy, - ¥y;7;, - 7,} in terms
of m and 4.

LeMMA 4.5. Let m be a positive integer and let é satisfy
0<do<m
Let »,, - -7, be positive integers satisfying
Ym > 1067, 7, >7,671 forj=2---m.
Let v,, - - v, € ¥ have positive degree and satisfy
(4.6) r,degv; = 7, deg v, G=2---m).
Then
O, {07, deg vy vy, + VU 7y, v 0 7} < 1OmED™,

ProoF. If m = 1 then, by lemma 4.1,

or, deg v,

= § < 106%.
7, deg vy

O, {0r;deg vy; vy 7} =

Assume, now, that m = 2 and that the lemma holds if m is replaced by
m — 1. Note that the hypothesis remains valid if we replace m'by m — 1
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and 7, by hr;,, (j =1,---m —1). Now, by lemma 4.1,
ohry deg v, <
hr,, degv,, —

by (4.6). Hence, if @ is the sum defined in (4.4), we have, by the inductive
hypothesis,

©,{6hr, deg vy; v,,; b7} =

D < 6+ 10m1- 6B™T < 2(10m-16D™7),
Now the hypotheses of lemma 4.2 are less stringent than those of lemma 4.5.
Hence lemma 4.2 is applicable and, by (4.3),
O, {0r, deg vy, vyt Up 7y, 7 V)
< 2{2-10m 16" | gk 10m-v2gd™ 4 gh

._}_} 10m 6™
102

<2 {—2— + 2 +
10 10
< 10m o™,
Thus lemma 4.5 holds for m and the induction is complete.
5. LEmMMA 5.1. Let #n = 2 and let
fx) = agz™ + ayx™1 + - - 4 a,, where a5 # 0,
and

glx) =box* + by2* 14 -+ b,
be two elements of E[x], of degree « and § in z tespectively. Suppose that
d is a non-negative integer such that

d=s—n-+1
and let A(z) ¢ T[x] be of degree at most (» — 1) in x and satisfy
dg@) =h(z), mod f(z).
Then h(z) is of degree at most (8 + da) in z.

Proor. If s <# — 1 the lemma is trivial. We complete the proof by
induction on s.

Assume that s = n, whence d = 1, and assume that the lemma holds for
(s — 1) instead of s.

Put

g*(z) = apg(x) — byx*~"f(x).
Then g*(z) is of degrees at most (s — 1) in  and at most (8 + «) in 2. Also
adlg* (z) = alg(z) = h(x), mod f(z).
Then, by the inductive hypothesis, 4(z) is of degree at most
B+ea)+(@—1a=p+ da

in z.
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6. Let ¢ = £(z) € & be algebraic, of degree at least 2, over ¥, and suppose
that the inequality (1.2) is satisfied by infinitely many #/v ¢ R. Then we
wish to show that » < 2.

We may assume that ¢ is of negative degree in 2. For if not, let ¢’ be the
polynomial part of £, and put £* = ¢ — #’. Then #* is also algebraic and of the
same degree as #, and is of negative degree in z. Further u/v satisfies (1.2) if
and only if

deg (t* — -:‘)—) < vdeguv,
where
uw=u—uvt'el.
Now ¢ is the root of some irreducible polynomial
f(x) = agz™ + ayz™ ! + - - - + a, e T[x],
where a, # 0, n = 2. Let f(z) be of degree &« = 0 in 2.
We now prove our final lemma.

Let m be a positive integer, and let 8,7,,---7,,v,, - - - v,, satisfy the
following conditions

(6.1) 0 < 6 < min (m1, «™1),

(6.2) 1076P™ 4 2(1 + 8)mmt < im,

(6.3) Tm > 10671, 7, , > 7,672 G=2--m),
(6.4) 82 deg v, > m,

(6.5) 7,deg v, = r, deg v, G=2 - m).

Note that these conditions are stricter than those of lemma 4.5. Define the
integer p’ by

p=éorydegv, < p + 1,
whence, by (6.4),

(6.6) p+1>481rym.

Define the numbers 4, y, 5 by

(6.7) 1=4(Q + é)nmi

(6.8) y = §(m — 2)

(6.9) n = 10m§H"

Note that (6.2).is then equivalent to
n<y.

LeMMA 6.10. Suppose that the conditions (6.1)— (6.5) are satisfied, and
suppose that %,, * - - u,, € T are relatively prime to v,, - - - v,, respectively.
Then there exists a polynomial
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Q(xl» oo xm) € i[xlt e xm]
of degree at most 7, in z,, (f =1, ---m), such that

(i) 6{Q; ¢t - --8);ra, -} =y —m;

@ o2, 2=) 2o
(iii) for all
iy,
(6.11) Q{l,---i,,,(xl, T Zy,) 0

oxp .- oxim ©’
where 1, - - - 4,, are non-negative integers,

Q‘l'.,,im(t, )
is of degree at most p’ in z.

Proor. We consider polynomials W(z,,---z,) e X[z, - - 2,] of the

form
[ Ty Ton
W(xl, . .xm) — z 2 P zg(do, dl’ e dm)zdl)xldl “ .. x:.u.
m=0

dg=0 d;=0 d
Here the total number of coefficients &(dy, d;,---d,) et is

(6.12) (" +1)(ry+1)--: (r, + 1), = M say.
Denote by j), (¢ =1, --- D), the D sets of integers 7y, - - - §,, satisfying

0<j<r, 0=<j. <7, and%l——|—---+7—"'§%(m—l).
1 m
By a result of Roth, ([1], lemma 8)
6.13 D<2mdat(r, 4+ 1)--: (r, + 1),
(6.13) — 2mia-1(p’ + 1)1M by (6.12).

For i=1,---D, put

Frt - Ha

33;;1 e 3133,'." ’

where ) = (j;, - - - 1,,). Then, for each such derivative, we form the poly-
nomial

Wooley, - 2) =

W,m(x, s x) € i[z],
which is of degree at most (r, + - - - + 7,,), = mr,, in z and, also, of degree
at most p’ in z.
Now, let
T,m(W; x) € fl[x]
be that element, of order at most » — 1in z, which satisfies

ap"Wan(z, - - - ) = T;0(W; ), mod f(z).
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Since mr, = max {0, (mr; — »n 4+ 1)}, we have, by lemma 5.1,
deg Tyw = p’ + mrya.
Hence, for a given ), the polynomial T,w(W; x) is defined by at most

n(p’ + mrya + 1)
elements of L
Therefore, for each W, the set T,w(W;z), ({ =1, - - - D), is defined by at
most

Dn(p’ + mrya + 1)

elements of f. Obviously these elements are combinations of the &(d,, d,, - - -
d,,), the integers, and the known elements of ¥ involved in f(z). However, they
are linear and homogeneous in the unknowns &(d,, 4,, - - - d,,) occurring in
W. But

p + mrioa + 1)
————=——) by (6.13),
P y (6.13)

mr,o
< (1 1 )b 6.7),
=209 +P,Jrl y (6.7)

< M by (6.1) and (6.6).

Dn(p' + mria + 1) < 2miMn}.‘1(

It follows that W may be chosen so that
T,w(W;z)=0, mod f(x) (¢#=1,---D).
Since a, # 0 we then have
Wio(, -+ -2)=0, mod f(z) (#=1,---D)
and, since f(¢) = 0 by definition of f, the derivatives W (z,, - - - z,,) satisfy

Wn(t,---t) =0 (6 =1,---D).

Hence

H{W;t,.-.t;fl,...rm} g%(m—l)

=y by (6.8).
Now, also,
Wy, - z,)eB,(0r,degvy; 7y, - - 7).
By lemma 4.5
Y e L PP }
B{W’ (”1 ’ u,,.) SLURLT N

where 7 is defined in (6.9). Hence, there exists non-negative integers
ky, -k, such that
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and if
3k1+"‘+km W
Q@ -+ - %) = o - o
then
ul um)
1. 0.
Q (1),1 ’ vm :’é

Then, by (3.5),
O{Q’ (t"“t);rln°“rm} Zy—1
and so Q satisfies parts (i) and (ii) of the lemma.

It also satisfies part (iii). For both Q(z,,---,) and the derivative
Qi,--.1, defined in (8.11) are clearly elements of E[z,, - - - @,] of degree at
most p’ in z. Then, since ¢ is of negative degree,

deg Q;,...¢ (&, - 2) = p".
This completes the proof of lemma 6.10.
7. Proor oF THEOREM 1.1. We suppose that v >> 2 and that the inequality

(.1) deg (t ~ %) < —vdegv

has infinitely many solutions #/v ¢ R.

We can show (after Gill [2]) that for any integer u = 0 there is at most one
solution v of (7.1) for which deg v = u. For suppose that »/s is also a
solution, with deg s = u. Then (7.1) implies

deg (s —7v) < —vu + degs +degv=pu(2 —») <0

since u =0 and » > 2. But 7,s,%,ve¢Z whence su —rw el and so is
identically zero. Since s, v 7 0 this implies that »/s and #/v are identical.
From this it follows that an infinity of solutions of (7.1) implies solutions
for which deg v is arbitrarily large. We deduce a contradiction of this.
We first choose m so that
m > dnmt, and 2m(m — dnmi)~1 > v,
If & is sufficiently small we then have
m— 4(1 4+ 8)nmt — 29y < 0,
which is the same as (6.2). We choose § to satisfy also the inequality (6.1)
and further to satisfy
2m(1 + 28)
m — 4(1 + 8)mmt — 2y

<< 7.

This inequality is equivalent to
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14 26
m__ii__). < (7]
Yy—n
Now let «, /v, be a solution of (7.1), with (%,,v,) = 1, and so that v, satisfies

(6.4). Let uyfv,, - - - u,[v, be further solutions of (7.1) with (¥,,v;) =1,
(¢=2,---m), such that

deg v; > 261 deg v, Gg=2---m).

(7.2)

Now take 7, to be an integer satisfying
7, deg v, > 10671 deg v,,,,

and define 7,,-- -7, by

7y deg v, r, degv,
7.3 = 1 =2, -
( ) deg 'U’ = rf < + deg 7)} (7 m)
Then (6.5) is satisfied. Also
7, deg v, deg v; deg v, é
7.4 ——— 14+ ——"-=<1 14+—<1 d.
(7.4) 7 degv1< +rl deg v, — +rldeg v1< T 10< t

The conditions (6.3) are satisfied, since
7y deg v,

deg v,

7, deguv; ( o )*1 _

—2 (1 +=) >oéL.

7; = deg v, , * 10

Now let Q(zy, - - - ) € E[xy, - - - x,,] be the polynomial of lemma 6.10.
Since Q is of degree at most 7, in z,, (f = 1, - - - m), and is non-zero for

x; = u,fv;,, ((=1,---m), we have

> 1061

m =

and

U U,

1 m
v;l"'v'“Q(-—,"'_)GS:,¢O.

Um

U

Thus,
(7.5) deg Q(%l—, .. -:—"')g—(rldegvl—i—' -++7,degv,)=—mr;(146)degy,,
1

m

by (7.4). On the other hand,
u Ul 1 Im u h Yo im
Q(_l,..._)=z...zoivm‘_”(t,...t) .(_l_t) °-'(——t)
U Upm. =0  §,=0

where, by (i) of lemma 6.10, the terms with

i im
S4 Ty —y
61 Tm
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vanish. In every other term we have

%, g U, fm . .
deg (—-_—) "'(-——t) <—""("'1deg7)1+"'+$mdegvm)

vm
< —vri(y — ) deg vy, by (7.3).
By (iii) of lemma 6.10, it follows that
“ Uy , _
ag (2, 22) < o — iy — ) dego,

1 U
= drydeg v, —vry(y — n) degvy.

Comparing this with (7.5) we have
vwy(y — n) deg v, < orydeg vy + (1 + 8)mr, deg v,,
< m(l 4 26)r, deg v,
since m = 2. Now deg v; % 0, hence
1426
, oML+ 2)
Yy—n
contrary to (7.2), and the proof is complete.
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