THE PERMANENT FUNCTION
MARVIN MARCUS* axp F. C. MAY#t

1. Introduction. Let X be an n-square matrix with elements in a field F.
The permanent of X is defined by

(1.1) per (X) = Z kll Ko (k)
where ¢ runs over the symmetric group of permutations on 1, 2, ..., n. This

function makes its appearance in certain combinatorial applications (13), and
is involved in a conjecture of van der Waerden (6; 9). Certain formal proper-
ties of per (X) are known (1), and an old paper of Pélya (12) shows that for
n > 2 one cannot multiply the elements of X by constants in any uniform
way so as to convert the permanent into the determinant. In a subsequent
paper we intend to investigate this problem for more general operations on X.

The purpose of this paper is to characterize those linear operations on
matrices which leave the permanent unaltered. This problem and its generali-
zations have been considered for the determinant function by Frobenius (3)
and Kantor (5), later by Schur (14), Morita (11), Dieudonné (2), Marcus
and Moyls (8), Marcus and Purves (10), and Marcus and May (7). In view
of the result of Pélya (12), it does not seem likely that many of the techniques
used in the above papers can be used to investigate the permanent function.
Most of these rely heavily on certain properties of the determinant function
which are no longer valid for the permanent function. For example, it is in
general false that per (AB) = per (4) per (B).

In § 2 we introduce some notation and state our main result. In § 3 we
prove this result in a sequence of lemmas, some of which may be of interest
in themselves.

2. Notation. Let M, , denote the vector space of all m X # matrices over
F, with the natural basis of unit matrices Ei;, 1 = 1,...,m;j=1,...,n),
where E;; is the matrix with 1 in position (7, j) and 0 elsewhere. In the sequel
r will denote an integer satisfying 2 < » < min (m, z). A convenient notation
for dealing with index sets is the following: Q,,, will denote the totality of
strictly increasing sequences of integers satisfying 1 < 4, <. < ... <, < n.
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Asusual, @ = (41,...,%) € Qn, precedes 8 = (j1,...,r) € Qn.rin the lex:-
cographic ordering, o < B, if there is a ¢ such that 7, < j, and 7, < j; for
all s < t.

Let X € M,, .. We define the rth permanental compound of X, denoted by
P.(X),in M('r"),(?) as follows:if w = (41, ...,%,) € Qn.,and 7= (j1,...,7:) € Qn.r,

than the (w,7) entry (in the doubly lexicographic ordering) of P,(X) is
X.; where X, is the permanent of the matrix in M, , whose (s, t) entry is

Xisjey (s,t=1,...,7).
If X = K1, -+ ., %an), (@=1,...,7;7 < n), are any vectors over F, we
define x; V ...V x, to be the (%)-vector whose w = (ji,...,7;) € Qn,,
co-ordinate is
Per (Yajg),  (a=1,...,7B=1,...,7)

in the lexicographic ordering. The notation E,, designates the (w, 7) unit
matrix in M () ()"

We denote the rank of X by p(X), the transpose of X by X’, the ith row

of X by X(» and the jth column of X by X, Let 4 be an s X ¢ matrix,
0., the B X 1 zero matrix; if k, ¢ > 0 we define

. A 0
A+ 0, = e
T Ore 0x,: Ok,
ifk=0o0rq=0weletAd+0,,be
A
\A 0, or 0 .
respectively. If # = (uy,...,u%,) and v = (v1,...,9,) are m-vectors, the

symbols # 1 v and % || v will indicate respectively that > #2; = 0 and that
u and v are linearly dependent. If C € M, , and X € M,,, we define the
Hadamard product of C and X to be the matrix ¥V = CxX € M, , given
by yi; = cixey G =1,...,m;j=1,...,n).

Next, let 7" be a linear map of M, , into itself and let P and Q be per-
mutation matrices in M,, , and M, , respectively. In the sequel we shall
have occasion to use maps ¢ obtained from I as follows:

¢(X) = PT(X)Q, all X € M, ,.

We shall say that such a map ¢ s the same as 1T to within permutation.
In the case m = n = 2 we shall need the special map A defined on M,
as follows:
{A(E”) =Ey of i<j
A(Ey) = — Eo.
Clearly if X € M, then det(X) = per(A(X)) where det(X) denotes the
determinant of X. Moreover, A = A~!, where A~! denotes the inverse of A.

(2.1)

https://doi.org/10.4153/CJM-1962-013-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1962-013-4

THE PERMANENT FUNCTION 179

Our main results are contained in the

THEOREM. Let T be a linear map of M, . into itself, and let v be an integer
satisfying 2 < r < min (m, n). Suppose that the ground field F contains at
least r elements, and is not of characteristic 2. Assume that there exists a non-
singular linear map S, of M (™ (%) into itself such that

(2.2) P(T(X)) = S;(P,(X))

forall X € M, n. Then, if m + n > 5, there are permutation matrices P € My ,
Q € M, and diagonal matrices D € My m, L € M, , such that for m #= n,

(2.3) T(X) = DPXQL

for all X € My n;if m = n (> 2), T has the form (2.3) or
(2.4) T(X) = DPX'QL

for all X € My . If m = n = 2, we have

(2.5) [ATA](X) = AXB

for all X € M, o or else

(2.6) [ATA(X) = AX'B

for all X € My, where A € My B € M, and det(4AB) = 0.

We note here that in case r = m = n > 2 and S, = 1, this result tells us
that the only linear operations which hold the permanent fixed, that is,

2.7) per (I'(X)) = per(X)

for all X € M, ., must be obtainable (to within taking the transpose) by pre-
and post-multiplication of X by diagonal matrices whose product has permanent
1 together with pre- and post-multiplication of X by permutation matrices.

3. Proofs.

LeMMA 1. Let X € My, let Q € My be a permutation matrix, and let
D € M,n be a diagonal matrix. Then

(a) P,(QX) = P,(Q)P,(X)

(c) P (X") = (P,(X))

Proof. First note that if x, = (xu1,...,%um), # =1,2,...,r are any
n-vectors, then 2y V ... V &, = 2y V ... V %y for any permutation A on
1,2,...,r In particular, if w = (¢1,...,4,) € Qn., then

Xy V.eoo VXay =Xoum V... VXauy
for any permutation X\ on %3, %s, . . ., ¢,. This is an immediate consequence of

the fact that the permanent of a matrix is unaltered by a row (or column)

https://doi.org/10.4153/CJM-1962-013-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1962-013-4

180 MARVIN MARCUS AND F. C. MAY

permutation. Let ¢ be the permutation corresponding to Q. The rows of QX
are X (1), - - - » Xcom)). Let e denote the unit vector (of appropriate length)
with 1 in position k, 0 elsewhere. Now row w of P,(Q) is

€o(i1) V...V €o(ir).

Let 44, ..., %, be the rearrangement of iy, 45, ..., s, such that

0(lay) < 0(tay) < oo < 0(lay).
Then
€o(i1) V...V Cs(iy) = Col(iay) V...V €o(lay)
is the unit (%)-vector with 1 in position
(U(ial)r sy O'(ia,,)) E Qm,r
and zero elsewhere. Thus row w of P,(Q)P,(X) is
Xetay V ooo VXatian) = Xean Vo V X

which is obviously row w of P,(QX). Thus (a) is established.
Let 7 = (ji,...,7s) € Qu,». Then row 7 of P,(X’) is

X(il) V...V X(]'r)-

On the other hand, row 7 of (P,(X))’ is column 7 of P,(X) which is again
clearly

X(]'l) V...V X(jr).

Thus (c) is proved.
Let o, be the diagonal element in row k2 of D. Let w = (¢1,...,%,) € Qu.r.
Now P,(D) is again a diagonal matrix whose diagonal element in row w is

Oi; " 049 "« v Ogpe

Part (b) follows at once from the fact that the permanent function is linear
in each row (and column). In particular,

(6 0s vt 0i) Xy V..o V Xin=0uXup V... Vo, Xu,
which is row w of P,(DX). The lemma is proved.

COROLLARY. Let X € M, ,, let Q be a permutation matrix in M, ., and let
D be a diagonal matrix in My ,. Then

(") P(XQ) = P, (X)P,(Q)
Proof. An identical computation proves both (a’) and (b’). We prove (a’).

P(XQ) = (P((XQ))" = (P.(Q'X"))
= (P(Q)P(X") = (P.(Q)(P:(X))) = P.(X)P.(Q).
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LEMMA 2. T is non-singular.

Proof. Suppose that T'(U) = 0. Then for any X € M,,, we have, from
(2.2),

S, (P (U + X)) = P(T(U + X)) = P.(T(VU) + T(X))
= P.(I'(X)) = S:(P.(X)).
Since S, is non-singular,

holds for all X € M,, . For any permutation matrices P and Q of appro-
priate sizes, Lemma 1 and its corollary tell us that

P,(PUQ + PXQ) = P,(P(U + X)Q)
= P.(PXQ).

Now as X runs over M, , so does PXQ. It suffices then to show that (3.1)
implies #;; = 0. Choose X € M, , such that

l

x11=0

Xpp = b — Uy, 2<EkELy

Xi; = — Uy i#]. and 1<’L,j<7’
x,-j=0,

otherwise. Then the (1, 1) entry of P,(U 4+ X) is u1;¢"~1. On the other hand,
the (1, 1) entry of P,(X) is a polynomial in ¢ of degree at most r — 2. Since
F contains at least 7 elements, we conclude that #;; = 0.

LeEMMA 3. Let s be an integer satisfying 1 < s < min(m, n). Then there is a
basis for M ™ (1) of the form
P(X), X € M, ..

Proof. Let w = (i1,...,%5) € Qu,s and let 7= (Ji,...,7s) € Qu,s. I
X € M, is the matrix with

X445, = 1, t=1,...,s
and x.,s = 0 otherwise, then clearly P,(X) = E,-.
LEMMA 4. There exists a non-singular linear map Ss of M ). such that
(3.2) Py(T(X)) = S2(P2(X))
for all X € M, n. That is, if (2.2) holds for r > 2, it holds for r = 2 as well.
Proof. Let Y = T'(X). Using (2.2) we can write
(3.3) Vor = 2 507 Xap

a€eQm,r

BeQn,r
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for any w € Qn,; and 7 € Q,.,. In (3.3) the scalars
a,B

Sw,r

are the entries in the matrix representation of .S, with respect to the natural
basis in M (™) (1) ordered doubly lexicographically. Since T is non-singular

we may write

m,n
X5t = Z lgls],'gyzw

p=1,0=

where the scalars
?.q

gs,1

are the entries in the matrix representation of 7—! with respect to the natural
basis in M, . Now (3.3) may be regarded as a polynomial identity in the
variables y,;.
We compute that
9o _ > sah L€
pe  aigm.  9Vpe

€Qn,r

m,n
a,B axuv aXaB
T szp 35 S e
a€Qm.r u=1,v=16ypt axuv
BeQn,r

m,n
> X g G
Sw,r gu,v (9 y
a€Qm,ru=1,v=1 Xuv
BeQn,r

where we take p € wand ¢ € 7. Now

SRR A
the coefficient of

9Xap

axuv
in the last expression of this equation, is a scalar independent of X and Y.
We conclude that any (r — 1)-order permanental minor of ¥V = T(X) is
expressible as a fixed linear combination of the (» — 1)-order permanental
minors of X. In other words, there is a linear map R, of M(m ) (") into

r—1/ s \p—1

itself such that

(3.4) P, (T(X)) = Ro(Pr-1(X))
for all X € M, ,. Since T is non-singular, we see from (2.2) that
(3.5) PATTH(X)) = STH(P:(X))

for all X € M,, . By the above reasoning applied to (3.5) we conclude that
there is a linear map R° of M(m ).(n ) into itself such that for all X € M, ,
r—1/\r—1

Py (T71(X)) = R°(Pr-1(X).
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That is, for all X € M, , we have

(3.6) P,y (X) = RY(P—1(T(X))).
Combining (3.4) and (3.6) we have
(3.7 P, 1(X) = R°Ry(P-1(X))

forall X € M, . Lemma 3, with s = r — 1, tells us that R°R, is the identity
map of M ™). onto itself. Consequently R, is non-singular in (3.4),

— r—

and we set S,_; = Ro. Then, using (3.4), we proceed to reduce » — 1 to
r — 2, etc., finally obtaining (3.2).

Let A € M, If A has at most one non-zero row (column), we shall call
A a row (column) matrix. If A is a row (column) matrix, then the number
of non-zero entries in 4 will be denoted by %(4).

LEMMA 5. Let A € My, and suppose that P2(A) = 0. Then p(4) = 0, 1,
or 2. Moreover, if A has rank 1 then A is a row (or column) matrix; if A has
rank 2, then to within permutation of the rows and columns of A, A has the
form

(3.8)

“ ﬁl _i"Om—Z,n—‘zy
v 6

where ad + By =0, a6 — By # 0.

Proof. Assume that 4 # 0. Suppose first that p(4) = 1. We may assume
without loss of generality that row ¢ of 4 is some multiple of a fixed vector
2= (21,%8...,2), say €2, t = 1,2,...,m. Since Ps(4) = 0, we see that
2c,c:23; = 0 if £ # s and ¢ # j. Since F is not of characteristic 2, we have
cisziz; = 01if ¢t 5 s and ¢ # j. Since 4 # 0, some ¢, # 0 and some z; # 0.
If there is j % 4o for which z,2; # 0, then ¢, = 0 whenever s 5 f,.

Suppose next that p(4) > 1. By a suitable permutation we may bring 4
to the form

«a 8 a; Az...0,-2
Y ) b ba...bys
C1 dl
4 = Co d2
H
Cm—2 dm—2

where H € My _9,-2, a8 # 0, ad — By # 0.

We have
abz+'yaz=0} _ B
Bb,+ b2, =0 t=1,...,n— 2
ads+ﬂcs=0} _ B
vd, + 06, =0 §° s=1,...,m—2
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But a6 — By # 0. Hence ¢, =d, =0, s=1,...,m —2 and ¢, = b, = 0,
t=1,...,n — 2. Therefore ék;; = 0 for each element %,; of H. Since § # 0
we have H = 0. Also, we note that «8y6 # 0. This proves Lemma 5.

COROLLARY. Let F;; = T(Eyy). Then p(Fiy) = 1 or 2.
Proof. From (3.2) we see that
Py(Fij) = So(P2(Eqy) = S:2(0) = 0.

Lemma 5, together with its corollary, enables us to describe partially the
structure of the images F;; of the unit matrices E;; in M, .
Lemmas 6 and 7 are devoted to obtaining the exact structure of F,;.

LEMMA 6.% p(Fy;;) = 1.

Proof. Since T is non-singular, F;; # 0. Suppose that p(F;;) = 2. We lose
no generality in assuming that ¢ = j = 1 and that F;; has the form (3.8).
Consider Fi;, 2 <t < n Since P3(E;; + NE;,) =0, all A\, we have
Py(F11 + NFy,) =0, all \. Since afyd # 0 in (3.8) we see at once that
h(F1,) = 2 if p(F1,) = 1, and moreover, Fy, is zero outside positions (1, 1),
(1,2), (2, 1), (2,2). If p(F1,) = 2 then by letting N\ vary over F we see again
that Fi, is zero outside these same positions. A similar argument leads to

the same conclusions concerning Fy, s = 2, ..., m.
We next show that Fi,t=1,...,n and Fg,s=1,...,m all lie in a
space spanned by the following three matrices;
Gl = g g _i_ Om—2,n—2
0 .
G2 = 0 i + 0m—2,n—2
ol .
G3 = “ + 0m~2,n—2
¥y O

Observe that

ol .
G = lg BI F Opesps = Go + G + G,
and that
Fi1=G1 4+ Gy = Gy + Gs.

First let us assume that p(F;;) = 1. We may further assume without loss
of generality that b11bs1 # 0 and by2 = b2 = 0, where

bll b12
ba1 bae

Flt = "i" Om—2,n—2c

*The authors are indebted to B. N. Moyls for simplifying the original proof of this lemma.
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Then Py(Fi + Fi;) = 0 implies that 8116 + 6218 = 0, and hence Fy, is a
multiple of G;. For (b11, b21) L (8, 8) L (e, v), whence (b11, ba1)|[ (e, v). Next
assume that p(Fy,) = 2. We have b11012021022 # 0 and P(Fi; + Fi,) = Oshows
that 116 + basa 4+ by2y + 8218 = 0. Now ad 4 By = b11das + b12da; = 0. So
there are non-zero constants ¢ and d such that v = ca, § = — ¢8, b2y = d b1,
bse = — dbja. Consequently we have 0 = ;16 + bseax + b12v + 6218
= (¢ — d)(ab12 — Bbu). Thus either ¢ = d or abi;s = Bbi1. If ¢ = d we have
(b12, b22) 1 (’Y, Ot) €1 (B, 5) and (blly bgl) 1 (5, ﬁ) L (O[, ’)’), Whence (blz, bzz)“
(8, 8) and (b11, ba1)|| (@, v). Therefore if ¢ = d we can find constants k and A
such that Fy; = kG, + AGs. In case ab;s = Bb11 we conclude similarly that
there are constants k¢ and A\ such that Fy;, = k¢G1 + MG4. Thus the matrices
Fi, t=1,...,n and similarly, the matrices Fgy, s = 1,...,m, all lie in a
space of dimension 3 spanned by Gi, Gi, and Gs;. But m +# — 1 > 3. We
have thus contradicted Lemma 2. Hence p(F;;) = 1.

Lemmas 5 and 6 tell us that each F,; is either a row or column matrix.

LemMa 7. h(Fy) = 1.

Proof. We lose no generality in assuming that ¢ = j = 1 and that Fi; is a
row matrix with its non-zero row in row 1. By a suitable permutation of

columns we may assume that row 1 of Fi; has the form (ay, as, ..., as
0,0,...,0) where we have set £ = k(Fy;) for brevity. Then

h

[Ta.=o0.

=1
If >3, then Fi, t=1,...,nand Fy, s =1,...,m would all be row

matrices lying in row 1. This is an immediate consequence of Lemma 5, for
we have Po(Fy + Fi,) = Po(Fyu+ F) =0. Since m+n — 1> n, we
have contradicted Lemma 2.
Suppose then that & = 2. We have
Fu = [611(12] + Om—1,n—2

with aas % 0. We first show that Fys is a row matrix lying in row 1. If not,
then by permuting the last m — 1 rows, we can take Fy» in the form

0o 0| .
(3'9) bl b2 +Om—-2,n-2
where b0, # 0 and aibs + as2b; = 0. We next remark that
(3.10) Py(T*(X)) = So(Po(T(X))) = Sa(Py(X))

for all X € M, ,. Consequently all our results concerning the nature of I°
apply equally well to 72 In particular, T%(Eq;) is either a row matrix or
a column matrix. But

’ 2
T2(E11) = T(Fu) = T(dlEu + 112E12) = a1F11 + aeF = . @iz
(Izbl dzbz
"i_ 0m—2,n—2-
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However, bsa1a:b; % 0. Thus Fj. is a row matrix lying in row 1. Consider
now Fi, t> 2. If Fy, is not a row matrix lying in row 1, we may clearly
assume that Fi, has the form (3.9). Then again, (ai, as) L (bs, b;). From
Py(Fis 4+ Fi;) = 0 we see immediately that Fj; has the form

[c1ca] + Om—1,n2
with ¢ics # 0. So (cy, ¢2) L (bs, b1). But this implies that F;, is a multiple
of Fq; and we contradict Lemma 2.

Now by Lemma 2, Fs cannot lie in row 1. We may assume, from
Ps(F11 + Fas1) = 0, that Fs; has the form (3.9). By an argument exactly
analogous to that given above, we see that each of Fao,, t = 1,...,n is a row
matrix lying in row 2. There are two cases left to consider.

1) m =2, ny>3

(i) m > 3.

In case (i) there is jo > 1 such that F;; has a non-zero entry in column 3.
Now from

Py(Fijo — Faz) =0
we see that the non-zero entries of Fsj, lie in precisely the same columns as
do those of F,;. Moreover,
h(Fijo> = h(Fm) < 2
But
P2(E11 + Eo + >\Eijo - )\EZjo) =0,

all A. Consequently
Py(Fiy + Fay + NFyj0 — NFay) = 0,
all A. This contradicts Lemma 5.

If m > 3, case (ii), then note that Ps(E1; + E21 + AEs;) = 0, all A. Then
Pg(Fn + F21 + >\F31) = 0, all N shows that, by Lemma 5, F31 lies in the
first two rows. This contradicts Lemma 2 once again. Thus # = 1.

Lemma 7 tells us that if m + # > 5, we have T'(E;;) = ¢;E+ . By Lemma
2, ¢4 # 0, and, moreover, (4, 7) # (s, t) implies that (¢, ;') & (s, ¢'). We set
i = u(,j) and j' = A(3, 7), so that T(E:;) = ciEuci, pri,p-

LeMMA 8. Let m +n > 5. If m # n, then there are permutation matrices
PeE Mymand Q € M,,, and a matrix C = (cy;) € My, with ¢,y % 0 all 1, j,
such that for all X € M, ,

(3.11) T(X) = C+(PXQ).
If m = n (> 2) then T has the form (3.11) or else
(3.12) T'(X) = Cx(PX'Q)

for all X € M, ,.
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Proof. We may assume without loss of generality that m < #. Now by a
suitable permutation of 7" we may assume that u(1,1) = 1 and X(1,1) = 1.
Now Py(Ei1; + Esz) # 0 shows that Pa(Fi; + F22) % 0 and so u(2,2) > 1,
N(2,2) > 1. By a suitable permutation of the last # — 1 rows and # — 1
columns, we may assume that u(2,2) = 2 and A(2, 2) = 2. Similarly Ps(E;
+ E33) # 0 and P2(Eqs + E33) # 0 shows that u(3,3) > 2, A(3,3) > 2 and
we may assume that p(3,3) = 3, A(3, 3) = 3. Proceeding in this fashion, it
is clear that we may assume u(z,7) = N(¢,2) =4,1=1,2,...,m.

Fix a < m, 8 < m so that a # B. Now P2(E. + E.s) = 0 implies that
ula, B) = a or Ma, B) = a. Also Py(Egs + Eas) = 0 shows that u(e, 8) = 8
or A(a, 8) = B. Therefore either

(3.13) pla, 8) =a and Me, B) = B,
or
(3.14) ple,8) =8 and Ne,B) =«

for the non-singularity of 7" shows that we cannot have u(a, 8) = A (o, B).

Suppose first that (3.13) holds. Let v <%, v#«a, v 8. From
Py(Eap + Eoy) = Owehave u(a, v) = aorX(e, v) = B. From Py(Eee + Euy) =0
we have u(a, v) = a or AMa, v) = a. It follows that u(e, v) = «. We see that
if v #a,v#06, v <nthen p(a, v) = @, under the hypothesis (3.13). If in
addition we have vy < m then P2(E.y + E,,) = 0 shows that u(e,vy) = v or
M a, v) = v. Hence A, v) = .

Let & 5# o and consider Es. From Ps(E.s + Ei) = 0 we conclude that
w(k,B) = aor\(k, B) = B. Now u(k, B) # abecause u(a, t) = a,t =1,...,n
and T is non-singular. Hence A(k, 8) = 8. But P2(Ew; + Eis) = 0 shows that
w(k,B8) =k or Nk, B) = k. Hence u(k, 8) = k. Consequently u(k, 8) = k&,
Nk, B) = B. If we repeat this argument now with & replacing « in (3.13) we
conclude that

(3.15) uw(j) =4, NG =4 G=1,...,mj=1,...,m

Moreover, if j > m, the non-singularity of 7" ensures that A (7, j) > m. Now
we already know that (7, j) = ¢ for such j. Furthermore,
Pz(Em' + Em) =0

shows that A (71, 7)) = A(2s, 7). Thus, if (3.13) holds, 7" may be reduced to the
form (3.11) by a suitable permutation of the last # — m columns of X.
Suppose next that (3.14) holds. We show that actually m = % and that

From Py(Eus + Ea) = 0 we have u(e, k) = 8 or Ao, k) = a. Also Py(Eee
+ E.:) = 0shows that u(a, k) = aor A, k) = a. It follows that N (e, k) = «,
E=1,...,n, because a # 3. Thus m = n, for T maps row «, an n-dimen-
sional space, into column «, an m-dimensional space.
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We conclude also, from Py(E. + Ex) = 0, that u(a, k) = kor Ao, k) =k.
Since M (a, k) = a it follows that u(e, k) =k, B =1,...,m. Thus (3.16) is
established and T has the form (3.12).

LEmMMA 9. p(C) = 1.

Proof. Let 1 <1 <s<m, 1 <j<t<<n If (3.11) holds, choose X so
that PXQ = E;; + E;;, — E;; + E;, and if (3.12) holds, choose X so that
PX'Q=E;;+E; — E;; + E;,. In either case, Ps(X) = 0 shows that
P2(T(X)) = P2(CijEij +ciBy — CsjEsj + ¢5E5,) = 0. Hence CijCsy — CitCsj
= 0. Thus each second-order subdeterminant of C vanishes.

Using Lemma 9 we can write that¢;; = dygy, ¢ =1,...,m;7=1,...,n).
We set D = diag(dy,...,dn) € My n L =diag(qy,...,q) € M, By
Lemma 8 we can write (2.3) for m # n and (2.3) or (2.4) for m = n (> 2).
The proof of the theorem is complete for the case m + n > 5.

Suppose that m = n = 2. Then (2.2) reduces to the equation

per(T(X)) = a per(X)

for all X € M, ., where a is some non-zero scalar in F. Using (2.1) we see
that

det[ATA(X)] = per[A2TA(X)] = per[TA(X)]
= aper[A(X)] = adet[X] for all X € M.

Now det[ATA(X)] = adet[X] for all X € M, s shows that ATA preserves
the rank of each matrix in M, .; moreover, (ATA)~! = AT-!A exists and has
the same property. Consequently, we may appeal to a theorem of Jacob (4)
to conclude that ATA has the desired form. The proof of the theorem is
complete.

We note that if m # n, we have

P(T(X)) = P,(DPXQL) = P,(D)P,(P)P,(X)P,(Q)P,(L) = S, (P, (X))
forall X € M, ,. By Lemma 3 it follows that
(3.17) S, (V) =P, (D)P,(P)YP,(Q)P,(L) = DyPoYQoLy
for all ¥ € M(T)'('})’ and S, has the same form as 7. If m = n (> 2) and
if T has the form (2.4), then S,(YV) = DyPoY'Q¢L, for all ¥ in IW(,T"),(?).
Consequently if m = n (> 2) then S, has the form (3.17) or else
(3.18) S(Y) = DoPoY'QoLy
forall Y € M('r")’('})'
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