
THE PERMANENT FUNCTION 

MARVIN MARCUS* AND F. C. MAYf 

1. Introduction. Let X be an ^-square matrix with elements in a field F. 
The permanent of X is defined by 

(1.1) per ffl=Zn **,«, 

where a runs over the symmetric group of permutations on 1, 2, . . . , n. This 
function makes its appearance in certain combinatorial applications (13), and 
is involved in a conjecture of van der Waerden (6; 9). Certain formal proper­
ties of per (X) are known (1), and an old paper of Pôlya (12) shows that for 
n > 2 one cannot multiply the elements of X by constants in any uniform 
way so as to convert the permanent into the determinant. In a subsequent 
paper we intend to investigate this problem for more general operations on X. 

The purpose of this paper is to characterize those linear operations on 
matrices which leave the permanent unaltered. This problem and its generali­
zations have been considered for the determinant function by Frobenius (3) 
and Kantor (5), later by Schur (14), Morita (11), Dieudonné (2), Marcus 
and Moyls (8), Marcus and Purves (10), and Marcus and May (7). In view 
of the result of Pôlya (12), it does not seem likely that many of the techniques 
used in the above papers can be used to investigate the permanent function. 
Most of these rely heavily on certain properties of the determinant function 
which are no longer valid for the permanent function. For example, it is in 
general false that per (AB) = per (A) per (B). 

In § 2 we introduce some notation and state our main result. In § 3 we 
prove this result in a sequence of lemmas, some of which may be of interest 
in themselves. 

2. Notation. Let Mmt7l denote the vector space of all m X n matrices over 
F, with the natural basis of unit matrices Eih (i = 1, . . . , m; j = 1, . . . , n), 
where Etj is the matrix with 1 in position (i, j) and 0 elsewhere. In the sequel 
r will denote an integer satisfying 2 < r < min (m, n). A convenient notation 
for dealing with index sets is the following: QnfT will denote the totality of 
strictly increasing sequences of integers satisfying 1 < i\ < ii < . . . < iT < n. 
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178 MARVIN MARCUS AND F. C. MAY 

As usual, a = (iu . . . , iT) G Qn>r precedes /3 = (ju . . . ,jT) G Qn>r in the lexi­
cographic ordering, a < 0, if there is a t such that it <jt and is < j s for 
all s < t. 

Let X G -M"m,n. We define the rth permanental compound of X, denoted by 
Pr(X),\nM (m\ /«\ as follows : if co = (ii, . . . , ir) G <2m,r and r = ( j i , . . . ,j r) G (?Wfr, 

than the (co, r) entry (in the doubly lexicographic ordering) of Pr{X) is 
Xœ) where Xwi is the permanent of the matrix in MTtr whose (s, t) entry is 

%isjti \$i t = 1-1 • • • i ?)' 

If xa = (Xai, • • • , %an)i (a = 1, . . . , r ; r < ra), are any vectors over F, we 
define x± V . . . V xr to be the (?)-vector whose co = ( j \ , . . . , jT) G Qn,r 
co-ordinate is 

Per (*«,„), (a= 1, . . . , r; 0 = 1, . . . , r) 

in the lexicographic ordering. The notation £WT designates the (co, r) unit 
matrix in ikf /m\ /w\. 

We denote the rank of X by p(X), the transpose of I by I ' , the ith row 
of X by X(Î ) and the j th column of X by X(j\ Let i be an 5 X / matrix, 
0;fcf(7 the k X 1 zero matrix; if &, g > 0 we define 

A + 0ktQ = 

if k = 0 or g = 0 we let A + Ofc,? be 

U 0,., 

4̂ 0,., 
*,« U ^ , Î 

or 
^ 
0,,, 

respectively. If u = (wi, . . . , un) and z; = (z/i, . . . , z;n) are ^-vectors, the 
symbols u _L v and w || v will indicate respectively that ^u^i = 0 and that 
u and y are linearly dependent. If C G M"m>7Z and X G M"m,w we define the 
Hadamard product of C and X to be the matrix Y = C * X G M"m,w given 
by ;y -̂ = CijXij} (i = 1, . . . , m; j = 1, . . . , « ) . 

Next, let 7" be a linear map of ikfm>n into itself and let P and Q be per­
mutation matrices in ikTm>m and AfWfTO respectively. In the sequel we shall 
have occasion to use maps </> obtained from T as follows: 

4>(X) = PT(X)Q, all X G AfTO,n. 

We shall say that such a map <j> is the same as T to within permutation. 
In the case m = n = 2 we shall need the special map A defined on ikf2,2 

as follows: 

(0 n / A ( E „ ) = £<* if i <j 
{ZA) W 2 1 ) = - E21. 

Clearly if X G M2,2 then det(X) = per(A(X)) where det(X) denotes the 
determinant of X. Moreover, A = A-1, where A -1 denotes the inverse of A. 
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THE PERMANENT FUNCTION 179 

Our main results are contained in the 

THEOREM. Let T be a linear map of Mm>n into itself, and let r be an integer 
satisfying 2 < r < min (m, n). Suppose that the ground field F contains at 
least r elements, and is not of characteristic 2. Assume that there exists a non-
singular linear map ST of M çm\ rn\ into itself such that 

(2.2) Pr(T(X)) = Sr(Pr(X)) 

for all X Ç MmtU. Then, ifm + n^5, there are permutation matrices P Ç Mm>m, 
Q 6 Mn>n and diagonal matrices D £ Mm,m, L Ç Mn>n such that for m ^ n, 

(2.3) T(X) = DPXQL 

for all X Ç Mmin; if m = n (> 2), T has the form (2.3) or 

(2.4) T(X) = DPX'QL 

for all X Ç MmtTl. If m — n — 2, we have 

(2.5) [ATA](X) = AXB 

for all X Ç M2,2 or else 

(2.6) [ATA](X) = AX'B 

for all X Ç M"2>2, where A G M"2,2, 5 G M2,2, and àet{AB) 7* 0. 

We note here that in case r = m = n > 2 and Sn = 1, this result tells us 
that the only linear operations which hold the permanent fixed, that is, 

(2.7) per ( T O ) = per(X) 

for all X Ç MntW, ra^s/ &e obtainable (to within taking the transpose) by pre-
and post-multiplication of X by diagonal matrices whose product has permanent 
1 together with pre- and post-multiplication of X by permutation matrices. 

3. Proofs. 

LEMMA 1. Let X Ç Mm,n let Q £ Mm,m be a permutation matrix, and let 
D Ç Mm,m be a diagonal matrix. Then 

(a) PriQX) = Pr(Q)PT(X) 

(b) PADX) = Pr(D)Pr(X) 

(C) Pr(X') = (Pr(X))' 

Proof. First note that if xu = (xuh . . . , xun), u = 1, 2, . . . , r are any 
^-vectors, then Xi V . . . V xT = x\<\) V . . . V X\rr) for any permutation X on 
1,2, . . . ,r. In particular, if co = (ii, . . . , ir) £ (?m,r then 

-X'(ii) V . . . V X(ir) — X(\(iX)) V . . . V -X"(\(*r)) 

for any permutation X on ilf i2, . . . , ir- This is an immediate consequence of 
the fact that the permanent of a matrix is unaltered by a row (or column) 
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permutation. Let a be the permutation corresponding to Q. The rows of QX 
are X^d», . . . , X(a(m)). Let ek denote the unit vector (of appropriate length) 
with 1 in position &, 0 elsewhere. Now row co of Pr(Q) is 

e*tn) V . . . V eff(ir). 

Let iai, . . . , iar be the rearrangement of ii, i%, . . . , iT such that 

<r(iai) < vttai) < . . . < <r(iar). 

Then 

0er(ii) V . . . V ^(T(ir) = ^<r(<oi) V . . . V £<r(*ar) 

is the unit (y)-vector with 1 in position 

0 ( 4 i ) , • • • , 0-(iar)) G (?m,r 

and zero elsewhere. Thus row co of Pr(Q)PT(X) is 

-̂ (<r(*ai)) V . . . V X(a(tar)) = X^Ui)) V . . . V X((T(ir)), 

which is obviously row co of Pr(QX). Thus (a) is established. 
Let T = (ji, . . . ,jr) G Qn,r> Then row r of Pr(X') is 

X°'° V . . . V X°' r ) . 

On the other hand, row r of (PT(X))' is column r of PT{X) which is again 
clearly 

xUl) v ... v xUr\ 
Thus (c) is proved. 

Let <rk be the diagonal element in row k of D. Let co = (ii, . . . , ir) £ Qm,r. 
Now Pr(D) is again a diagonal matrix whose diagonal element in row co is 

au • ai2 - . . . • air. 

Part (b) follows at once from the fact that the permanent function is linear 
in each row (and column). In particular, 

(o'ii ' 0i2 ' • • • ' Vi^Xitx) V . . . V X(ir) = o-iiXdi) V . . . V airX(ir) 

which is row co of PT(DX). The lemma is proved. 

COROLLARY. Let X £ Mm,n, let Q be a permutation matrix in Mntn, and let 
D be a diagonal matrix in Mn>n. Then 

(a') Pr(XQ) = Pr(X)Pr(Q) 

(b') Pr(XD) = Pr(X)Pr(D). 

Proof. An identical computation proves both (a') and (b'). We prove (a')-

pT{XQ) = (Pr((XQY)y = (Pr(Q'X')y 

= (Pr(Q')Pr(x'))' = ((pr(Q)y(pr(x)yy = pr{x)pT(Q)-
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LEMMA 2. T is non-singular. 

Proof. Suppose that T(U) = 0. Then for any X € Mm„ we have, from 
(2.2), 

Sr(PT(U + X)) = Pr(T(U + X)) = Pr(T(U) + T(X)) 
= Pr(T(X)) = ST(Pr(X)). 

Since Sr is non-singular, 

(3.1) Pr(U + X) = Pr{X) 

holds for all X G Mmtn. For any permutation matrices P and <2 of appro­
priate sizes, Lemma 1 and its corollary tell us that 

Pr(PUQ + PXQ) = Pr(P(U + X)Q) 
= Pr(P)Pr(U + X)Pr(Q) = Pr(P)Pr(X)Pr(Q) 
= Pr(PXQ). 

Now as X runs over Mm,n so does PXQ. It suffices then to show that (3.1) 
implies uu = 0. Choose X G Mm,n such that 

i n = 0 

%kic = t UjcJc, 2 ^ K ̂  r 
Xij = — uij} i ^ j and 1 < i, j < r 
%ij = U, 

otherwise. Then the (1, 1) entry of PT(U + X) is U\,\tT~x. On the other hand, 
the (1, 1) entry of Pr(X) is a polynomial in / of degree at most r — 2. Since 
i7 contains at least r elements, we conclude that U\\ = 0. 

LEMMA 3. Let s be an integer satisfying 1 < 5 < min(m, n). Then there is a 
basis for M/m\ sn\ of the form 

ps(x), x G Mm,n, 

Proof. L e t co = (ih . . . , is) G Qm,s a n d l e t r = (jh . . . ,js) G QntS. If 
X G I m , m is the matrix with 

%it3t = > £ = 1 , . . . , S 

and xap = 0 otherwise, then clearly Pr(X) = EUT. 

LEMMA 4. There exists a non-singular linear map S2 of M/m\ /n\ such that 

(3.2) P2(T(X)) = 52(P2(X)) 

for a// X G Mro.n- 7"Aâ  w, if (2.2) holds for r > 2, it holds for r = 2 as well. 

Proof. Let F = T(X). Using (2.2) we can write 

(3.3) YUT — 2~/ ^ ' , 7 ^ 
octQm,r 
0eQn,r 
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for any « Ç. Qm,r and T £ Q„IT. In (3.3) the scalars 

s a J > 

are the entries in the matrix representation of Sr with respect to the natural 
basis in M/m\ /n\, ordered doubly lexicographically. Since T is non-singular 

we may write 
m,n 

%st = 2~/ &s,t Jp 

where the scalars 

P=l,Q=l 

P.Q 

are the entries in the matrix representation of T~l with respect to the natural 
basis in Mmt7l. Now (3.3) may be regarded as a polynomial identity in the 
variables ytj. 

We compute that 
dYur _ y \ afi dXaQ 

Vjpt cteQm.r Qjpt 
peQn,r 

E a,0 V^ dXuv dXqQ 

oceQm,r w=l,»=l°'3 ,P t O^uv 
0eQn,r 

m,n ^v 

Z V ^ / a.j8 . P,t\ a^aB 

Z~i \S<a,r ' gu.v) ~ y 
oceQm,rU=l,V=l OXuv 
0*Qn,r 

where we take p G o> and t G r. Now 
a,(3 # p , « 

S CO , T ' £u,V > 

the coefficient of 

uXun 

in the last expression of this equation, is a scalar independent of X and F. 
We conclude that any (r — 1)-order permanental minor of Y = T{X) is 
expressible as a fixed linear combination of the (r — 1)-order permanental 
minors of X. In other words, there is a linear map RQ of M/m \ rn \ into 

itself such that 

(3.4) Pr-^TIX)) = Ro(Pr-l(X)) 

for all X G Mm>n. Since 2" is non-singular, we see from (2.2) that 

(3.5) PT(T-\X)) = S;\Pr(X)) 

for all X G Mm%n. By the above reasoning applied to (3.5) we conclude that 
there is a linear map R° of M tm \ (n \ into itself such that for all X G Mm%n 

Pr^T-^X)) = R\Pr^(X)). 
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That is, for all X G Mm,n we have 

(3.6) i V i ( X ) = R°(Pr-i(T(X))). ' 

Combining (3.4) and (3.6) we have 

(3.7) Pr-l(X) = RORoiPr^X)) 

for all X 6 Mm%n. Lemma 3, with s = r — 1, tells us that R°Ro is the identity 
map of M/m ) (n \ onto itself. Consequently R0 is non-singular in (3.4), 

and we set Sr-i = Ro. Then, using (3.4), we proceed to reduce r — 1 to 
r — 2, etc., finally obtaining (3.2). 

Let A 6 Mm%n. If A has at most one non-zero row (column), we shall call 
A a row (column) matrix. If A is a row (column) matrix, then the number 
of non-zero entries in A will be denoted by h (A). 

LEMMA 5. Let A £ Mmtni and suppose that P2(A) = 0. Then p(A) = 0, 1, 
or 2. Moreover, if A has rank 1 then A is a row (or column) matrix; if A has 
rank 2, then to within permutation of the rows and columns of A, A has the 
form 

(3.8) 
a /3 
7 ô 

where aô + fiy = = 0, ad - 0 7 * 0. 

+ 0m_: 'm-2,n-

Proof. Assume that A ^ 0. Suppose first that p(A) = 1. We may assume 
without loss of generality that row t of A is some multiple of a fixed vector 
z = (zi, Z2, . . . , s»), say ctz, t = 1, 2, . . . , m. Since P2^4) = 0, we see that 
2ctcsZiZj = 0 if / 7^ s and i 9^ j . Since T7 is not of characteristic 2, we have 
ctcsZiZj = 0 if t 7e s and i ^ j . Since A 9e 0, some ctQ ^ 0 and some z*0 5̂  0. 
If there is j 9^ i0 for which ziQZj 9^ 0, then cs = 0 whenever 5 ^ to. 

Suppose next that p(A) > 1. By a suitable permutation we may bring A 
to the form 

A = 

a p ax #2 • • an-2 

7 8 h 6 2 . . . bn-2 

Cl dx 
C2 d% 

H 

I Cm-2 dm—2 

where i l Ç Mro_2f»-2, «5 5* 0, aô - 07 s* 0. 
We have 

abt + yat = 
pbt + da 

ads + ^cs = 0 I 
7^ + Sct = 0 J ' 

= 0 / ' * = 1 . . . 

5 = 1 , . 

. ,n - 2 

. ,m — 2 
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But ad — Py 9^ 0. Hence cs = ds = 0, s = 1, . . . , m — 2 and at = bt = 0, 
t = 1, . . . , » — 2. Therefore 5A^ = 0 for each element A^ of iJ. Since 5 ^ 0 
we have H = 0. Also, we note that a/fyô ^ 0. This proves Lemma 5. 

COROLLARY. Le/ F ^ = T(Etj). Then p{FtJ) = 1 or 2. 

Proof. From (3.2) we see that 

P 2 ( ^ ) = 5 2 (P 2 (E 0 ) ) = S2(0) = 0. 

Lemma 5, together with its corollary, enables us to describe partially the 
structure of the images Ftj of the unit matrices EtJ in MmfTl. 

Lemmas 6 and 7 are devoted to obtaining the exact structure of Ftj. 

LEMMA 6.* p(Fij) = 1. 

Proof. Since T is non-singular, Ftj ^ 0. Suppose that p{Fi3) = 2. We lose 
no generality in assuming that i = j = 1 and that Ftj has the form (3.8). 
Consider Flt, 2 < t < n. Since P2(En + ^Eit) = 0, all X, we have 
PiiFw + XFit) = 0, all X. Since afiyô ^ 0 in (3.8) we see at once that 
h(Fit) = 2 if p(Fit) = 1, and moreover, F\t is zero outside positions (1, 1), 
(1,2), (2, 1), (2, 2). If p(Fit) = 2 then by letting X vary over F we see again 
that Fit is zero outside these same positions. A similar argument leads to 
the same conclusions concerning Fsi, s — 2, . . . , m. 

We next show that F\u t = 1, . . . , n and Fs\, s = 1, . . . , m all lie in a 
space spanned by the following three matrices; 

G2 = 

a P 
0 0 

0 0 
lo Ô 

a 0 
7 0 

+ 0m-2,n-2 

+ 0W_2 > W_2 

+ o^_2(W_2 

Observe that 

and that 

G4 = 
0 0 
7 ô 

+ 0W_2)W_2 = C72 + G% + Gi, 

Pu — G\ + G4 — C72 + G3. 

First let us assume that p(Flt) = 1. We may further assume without loss 
of generality that bubii 7^ 0 and &i2 = £22 = 0, where 

Flt = 
611 612 

^21 022 
+ 0, 

T h e authors are indebted to B. N. Moyls for simplifying the original proof of this lemma. 
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Then P2(Fu + Fu) = 0 implies that bnô + b2ifi = 0, and hence Fu is a 
multiple of G3. For (in, i2i) ± (5, (t) _L (a, 7), whence (in, b2i)\\(a, 7)- Next 
assume that p(Fi t) = 2. We have inii2i2ii22 5̂  0 a n d P 2 ( ^ n + ^ H ) = 0 shows 
that in5 + b22a + ii27 + 2̂i/5 = 0. Now aô + /3y = ini22 + 1̂2̂ 21 = 0. So 
there are non-zero constants c and d such that 7 = ca, 8 = — c/3, i2i = d in , 
i22 = — dbi2. Consequently we have 0 = inô + i22<* + ii 27 + b2i/3 
= (c — d){ab\2 — /5in). Thus either c = d or aii2 = /3in. If c = d we have 
(ii2, i22) J_ (7, a) ± 03, à) and ( i n , *2i) ± («, j8) i- (a, 7), whence (i12, i22)|| 
(iS, 5) and (in, i2i)||(a, 7). Therefore if c = d we can find constants & and X 
such that Fu = kG2 + XG3. In case aii2 = /3bn we conclude similarly that 
there are constants k0 and Xo such that Fu = koGi + X0G4. Thus the matrices 
Fit, t = 1, . . . , n and similarly, the matrices Fsi, s = 1, . . . , m, all lie in a 
space of dimension 3 spanned by Gi, G2, and G3. But m + w — 1 > 3. We 
have thus contradicted Lemma 2. Hence p(Fij) = 1. 

Lemmas 5 and 6 tell us that each Ftj is either a row or column matrix. 

LEMMA 7. h{Fi3) = 1. 

Proof. We lose no generality in assuming that i = 7 = 1 and that Fu is a 
row matrix with its non-zero row in row 1. By a suitable permutation of 
columns we may assume that row 1 of Fu has the form (ah a2t . . . , ah, 
0, 0, . . . , 0) where we have set h = h(Fu) for brevity. Then 

h 

T\at9*0. 

If h > 3, then Fiu t = 1, . . . , n and Fsi, s = 1, . . . , m would all be row 
matrices lying in row 1. This is an immediate consequence of Lemma 5, for 
we have P2(Fn + Flt) = F2(Fn + Fsi) = 0. Since m + n — 1 > n, we 
have contradicted Lemma 2. 

Suppose then that h = 2. We have 

Fu = [aia2] + 0m-itn-2 

with aid2 9e 0. We first show that Fi2 is a row matrix lying in row 1. If not, 
then by permuting the last m — 1 rows, we can take Fi2 in the form 

1° ° I 
I i i b2\ 

where i i i 2 J* 0 and aii2 + a2ii = 0. We next remark that 

(3.10) P2(T\X)) = S2(P2(T(X))) = Sl(P2(X)) 
for all X Ç MMtn. Consequently all our results concerning the nature of T 
apply equally well to T2. In particular, T2(Eu) is either a row matrix or 
a column matrix. But 

(3.9) + 0; 'm-2,n-2 

T2(Eu) = T(Fu) = T(aiEn + a2Eu) = aiFn + a2F12 = 
2 

# 1 CLiCL2 

a2bi a2b21 

+ 0m_2,n-2. 
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However, b2aia2bi ^ 0. Thus F12 is a row matrix lying in row 1. Consider 
now Fu, t > 2. If i^u is not a row matrix lying in row 1, we may clearly 
assume that Fu has the form (3.9). Then again, (au a2) J_ (b2fbi). From 
iM^i2 + Fit) = 0 we see immediately that Fn has the form 

[ClC2] + 0m_i,w_2 

with cic2 7^ 0. So (ci, c2) _L (02, 01). But this implies that Fu is a multiple 
of T̂ ii and we contradict Lemma 2. 

Now by Lemma 2, F2i cannot lie in row 1. We may assume, from 
i M ^ n + ^21) = 0, that F21 has the form (3.9). By an argument exactly 
analogous to that given above, we see that each of F2u t = 1,. . . , n is a row 
matrix lying in row 2. There are two cases left to consider. 

(i) m = 2, n > 3 
(ii) m > 3. 

In case (i) there is jo > 1 such that Fij0 has a non-zero entry in column 3. 
Now from 

we see that the non-zero entries of F2j0 lie in precisely the same columns as 
do those of FijQ. Moreover, 

h(Fij0) = h(F2j0) < 2. 
But 

P2(En + E2i + \Eij0 — XE2j0)
 = 0» 

all X. Consequently 

i M F n + F21 + \FtjQ - \F2j0) = 0, 

all X. This contradicts Lemma 5. 

If m > 3, case (ii), then note that P2(En + E21 + XE31) = 0, all X. Then 
Pi(Fii + F2i + XF31) = 0, all X shows that, by Lemma 5, F31 lies in the 
first two rows. This contradicts Lemma 2 once again. Thus h = 1. 

Lemma 7 tells us that if m + n > 5, we have T(Eij) = c^Ei* j>. By Lemma 
2, Cij ^ 0, and, moreover, (i, j ) ^ (5, 2) implies that (i',f) ^ ( / , tf). We set 
*' = M&j) and / = X(i, j ) , so that T (E 0 ) = C^MU.JOACÎ,;-)-

LEMMA 8. Let m + n > 5. If m ^ n, then there are permutation matrices 
P Ç M"W|W awd Q Ç. Mntn, and a matrix C = (ci3) Ç Mm,n with c^ 9^ 0 all i,j, 
such that for all X Ç Mm,n 

(3.11) T(X) = C*(PXQ). 

If m = n (> 2) then T has the form (3.11) or e/se 

(3.12) T(X) = C*(PX'Q) 

/or a// X e Mm>n. 
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Proof. We may assume without loss of generality t h a t m < n. Now by a 
suitable permuta t ion of T we may assume tha t ju(l, 1) = 1 and X(l, 1) = 1. 
Now P2CE11 + £22) ^ 0 shows t h a t P2(Fn + F22) 9* 0 and so /z(2, 2) > 1, 
X (2, 2) > 1. By a suitable permutat ion of the last n — 1 rows and w — 1 
columns, we m a y assume tha t /x(2, 2) = 2 and À (2, 2) = 2. Similarly P2CE11 
+ £33) 5* 0 and P2CE22 + £33) 5* 0 shows t ha t ju(3, 3) > 2, X(3, 3) > 2 and 
we may assume t h a t /z(3, 3) = 3, X(3, 3) = 3. Proceeding in this fashion, it 
is clear t h a t we may assume n{i, i) = X(i, i) = i, i = 1, 2, . . . , m. 

Fix a < ra, P < m so tha t a 9^ p. Now P2(Eaa + -E«/s) = 0 implies t h a t 
/x(a, 0) = a or X(a, P) = a. Also P2{E^ + Eap) = 0 shows t h a t /z(a, P) = P 
or X(ce, /3) = £. Therefore either 

(3.13) /x(a, 0) = a and X(a, P) = 0, 

or 

(3.14) M («, 0) = 0 and X(a, /3) = a 

for the non-singularity of T shows t ha t we cannot have /*(<*, /3) = X(a, /3). 
Suppose first t ha t (3.13) holds. Let 7 < n, y 5* a, y 9^ p. From 

P2(Eaj3 + Eay) = 0 we have/z (a, 7) = «orX(a;, 7) = 0. FromP2(Eaa + £ a 7 ) = 0 
we have fj,(a, 7) = a or X(a, 7) = a. I t follows t ha t n{a, 7) = a. We see t h a t 
if 7 9^ a, y y£ P, y < n then /*(«, 7) = a, under the hypothesis (3.13). If in 
addit ion we have 7 < m then P2(Eay + E7 7) = 0 shows t ha t /*(«, 7) = 7 or 
X(a, 7) = 7. Hence X(a, 7) = 7. 

Let k 9e- a and consider Ekp. From P2(Ea0 + E ^ ) = 0 we conclude t h a t 
/z(&, jo) = a or X(&, j8) = 0. Now /z(fe, P) 9e a because n(a, t) = a, t = 1, . . . , n 
and 7" is non-singular. Hence X(&, /3) = p. But P2(Ekk + Efc/3) = 0 shows t h a t 
/z(fe, P) = & or X(k, P) = k. Hence n(k, P) = k. Consequently u(k, P) = k> 
\(k, P) = p. If we repeat this argument now with k replacing a in (3.13) we 
conclude t h a t 

(3.15) »(i,j) = i, \(i,j) = j, (i = 1, . . . , m\j = 1, . . . , m) 

Moreover, if j > m, the non-singularity of T ensures t ha t \(i,j) > m. Now 
we already know tha t /x (i, j) = i for such j . Fur thermore , 

P2(EUj + Ei2j) = 0 

shows t h a t \(ii, j) = \(i2,j). Thus , if (3.13) holds, T may be reduced to the 
form (3.11) by a suitable permutat ion of the last n — m columns of X. 

Suppose next t h a t (3.14) holds. We show t h a t actually m = n and t ha t 

(3.16) fi(ij) = j , \(i,j) =i, (1 < i,j < m). 

From P2(Ea/3 + Eak) = 0 we have fx(a, k) = P or X(a, k) = a. Also P2(Eaa 

+ Eajc) = 0 shows t ha t n(a, k) = a or X(a, k) = a. I t follows t ha t X(a, k) = a, 
k = 1, . . . , n, because a 9e P. T h u s m = n, for T maps row a, an w-dimen-
sional space, into column a, an w-dimensional space. 
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We conclude also, from P2(Ealc + Ekk) = 0, that fi(a, k) = k or X(a, k) = k. 
Since À (a, fe) = a it follows that n(a, k) = k, k = 1, . . . , m. Thus (3.16) is 
established and T has the form (3.12). 

LEMMA 9. p(C) = 1. 

Proof. Let 1 < i < 5 < m, 1 < j < J < w. If (3.11) holds, choose X so 
that PXQ = £ t i + £ < t - ESJ- + E, t , and if (3.12) holds, choose X so that 
PX'Q = Etj + E ^ — Es;- + Est. In either case, Pt{X) = 0 shows that 
P2(T(X)) = P2(cijEij + citEit — csjEsj + c8tEst) = 0. Hence ci}c8t — citcsj 

= 0. Thus each second-order subdeterminant of C vanishes. 
Using Lemma 9 we can write that ctj = diqjy (i = 1, . . . , m;j = 1, . . . , n). 

We set D = diag(di, . . . , dm) G Mm,m, L = diag(gb . . . , qn) 6 Mn%n. By 
Lemma 8 we can write (2.3) for m ^ n and (2.3) or (2.4) for m = n ( > 2). 
The proof of the theorem is complete for the case m + n > 5. 

Suppose that m = n = 2. Then (2.2) reduces to the equation 

per( r (X)) = aper(X) 

for all X £ 1/2,2, where a is some non-zero scalar in F. Using (2.1) we see 
that 

det[ArA(X)] = per[A2rA(X)] = per|TA(X)] 
= aper[A(X)] = a det[X] for all X Ç M"2,2. 

Now det[A7^A(Z)] = a det[X] for all X £ Af2,2 shows that ATA preserves 
the rank of each matrix in ikf2f2; moreover, (ATA) -1 = AT - 1 A exists and has 
the same property. Consequently, we may appeal to a theorem of Jacob (4) 
to conclude that ATA has the desired form. The proof of the theorem is 
complete. 

We note that if m ^ n, we have 

Pr(T{X)) = Pr(DPXQL) = Pr(D)Pr(P)Pr(X)Pr(Q)Pr(L) = Sr(Pr(X)) 

for all X Ç Mm,n- By Lemma 3 it follows that 

(3.17) Sr(Y) = Pr(D)PT(P)YPr(Q)Pr(L) = D0PoYQ0L0 

for all F £ Af/mwn\, and 5 r has the same form as T. If m = n ( > 2) and 

if T has the form (2.4), then Sr(Y) = DoPoY'QoLo for all F in M^y^y 

Consequently if m = n (> 2) then 5 r has the form (3.17) or else 

(3.18) Sr(Y) = DoPoY'QoLo 

for all F G M ^ . ^ y 
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