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Homology of the Fermat Tower and
Universal Measures for Jacobi Sums

Noriyuki Otsubo

Abstract. We give a precise description of the homology group of the Fermat curve as a cyclic module
over a group ring. As an application, we prove the freeness of the profinite homology of the Fermat
tower. This allows us to define measures, an equivalent of Anderson’s adelic beta functions, in a man-
ner similar to Ihara’s definition of `-adic universal power series for Jacobi sums. We give a simple proof
of the interpolation property using a motivic decomposition of the Fermat curve.

1 Introduction

Let XN be the Fermat curve over C defined by xN
0 + yN

0 = zN
0 and put GN = (Z/NZ)⊕2.

By identifying Z/NZ with the group of N-th roots of unity, GN acts on XN and the
homology group H1(XN ,Z) becomes a module over the group ring Z[GN]. Rohrlich
[15] proved that it is a cyclic module generated by the Pochhammer contour (writ-
ten κr,s in this paper, see Section 2), and gave generators of the annihilator. As far
as the author knows, Guàrdia [7] and Kamata [10] were the first to give a Z-basis
of H1(XN ,Z) and compute its intersection numbers. In this paper, we compute the
intersection numbers among κr,s and construct a basis from them (Theorem 4.1).
While the papers cited above use topological arguments, we start by computing the
cup products of a standard basis of H1(XN ,C) (written ωa,b, see Section 2) repre-
sented by rational 1-forms (this computation was used in [13], [14]). Then we de-
termine the Z-module structure of the annihilator (Proposition 4.4), giving a precise
description of H1(XN ,Z).

If N divides M, the natural maps XM → XN and GM → GN are compatible and
the projective limit H1(X∞, Ẑ) ∶= lim←ÐN

H1(XN ,Z/NZ) becomes a module over the

completed group ring Ẑ[[G∞]] ∶= lim←ÐN
Ẑ[GN]. We will prove the following (see The-

orem 6.1).

Theorem 1.1 The group H1(X∞, Ẑ) is a free cyclic module over Ẑ[[G∞]].

This has an application to the theory of Ihara [8] and Anderson [3] (see also
[2, 5, 9]). For a prime number `, the freeness of H1(X`∞ ,Z`) ∶= lim←Ðn

H1(X`n ,Z/`nZ)
over Z`[[G`∞]] ∶= lim←Ðn

Z`[G`n] was proved by Ihara [8] in his study of the pro-` fun-

damental group of P1−{0, 1,∞}. The freeness was used to define the `-adic universal
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power series for Jacobi sums. Anderson [3] defined his adelic beta functions by using
the freeness over Ẑ[[G∞]] of the profinite relative homology of affine Fermat curves
(proved in [1]). While Z`[[G`∞]] is isomorphic to a power series ring of two variables
(see Remark 6.3), Ẑ[[G∞]] does not have such a simple expression, and we need a
precise study of the annihilators.

We use Theorem 1.1 to define universal measures for Jacobi sums, which agree
up to “cyclotomic units” with Anderson’s adelic beta functions. Since H1(XN , Ẑ)
is isomorphic to the Tate module of the Jacobian variety, or to the étale homology
by Artin’s theorem, and XN is defined over Q , it has an action of the absolute Galois
group GQ . By Theorem 1.1, the GQ -action is converted to an action of Ẑ[[G∞]]×, and
we obtain a continuous map GQ → Ẑ[[G∞]]×; σ ↦ Fσ. This map is in fact a cocycle in
the sense of group cohomology. Each Fσ is naturally regarded as a Ẑ-valued measure
on G∞. Then it defines a function (Q/Z)⊕2 → (Qab ⊗ Ẑ)× by integrating a character
of G∞ indexed by (α,β) ∈ (Q/Z)⊕2 (see Section 7). Our measures Fσ interpolate all
the Jacobi sums ja,b

N (v) (see Section 8 for the definition). The following is a special
case of Theorem 8.1.

Theorem 1.2 Let v ∤ N be a prime of Q(µN) and let σ ∈ GQ(µN)
be a lift of Frobenius

at v. For any a, b ∈ Z/NZ with a, b, a + b /= 0, we have

π`(Fσ(
a

N
,

b

N
)) = ja,b

N (v) ⊗ 1

for any ` /= char(Fv), where π`∶Qab ⊗ Ẑ→ Qab ⊗ Z` denotes the projection.

When N is a power of `, the `-part of the formula above is due to Ihara [8]. The
general case can be deduced from Anderson’s result [3] on values of his hyperadelic
gamma functions (see Remark 8.2). So our novelty lies in the simplicity of the proof.
Instead of the Tate modules of the Jacobians, we will use the motivic decomposition
of the Fermat curves studied in [12], whose essential idea goes as far back as Weil
[16]. An advantage here is that we only need to treat projective curves and the usual
homology (without boundary).

This paper proceeds as follows. In Section 2, we introduce the cycles κr,s and also
cycles γr,s with Q-coefficients. Then we give a basis of H1(XN ,Q) and its annihilator.
In Section 3, we compute the cup products among ωa,b and the intersection numbers
among κr,s and γr,s. In Section 4, we give a basis of the integral homology H1(XN ,Z),
reprove Rohrlich’s cyclicity, and determine the structure of the annihilator. In Sec-
tion 5, we study the homology and relative homology of affine Fermat curves. In
Section 6, we let N vary and obtain the freeness of the projective limit. In Section 7,
we define our measures and discuss how they relate to the Ihara–Anderson theory.
In Section 8, we prove the interpolation of Jacobi sums.

2 Cycles and Periods

Fix an integer N > 2, and let X = XN and G = GN be as in the introduction. By the
Riemann–Hurwitz formula, the genus of X is (N −1)(N −2)/2. We write an element
(r, s) ∈ G also as gr,s and the addition multiplicatively, i.e., gr,sgr′,s′ = gr+r′,s+s′ . We fix a
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primitive N-th root of unity ζ = exp(2πi/N) and let G act on X by

gr,s(x0 ∶ y0 ∶z0) = (ζrx0 ∶ζ s y0 ∶z0).
The commutative group ring Z[G] acts on the homology (resp., cohomology) groups
by the push-forward (resp., pull-back). Define a path δ∶ [0, 1] → X by

δ(t) = ( t1/N ∶(1 − t)1/N ∶1) ∈ X(R).
If we put

κr,s = (1 − gr,0)(1 − g0,s)δ,
it becomes a cycle and defines a class in H1(X,Z), which we denote by the same letter.
By definition, κr,0 = κ0,s = 0. Define elements of H1(X,Q) by1

γ = 1

N2 ∑
(r,s)∈G

κr,s, γr,s = gr,sγ ((r, s) ∈ G).

Define elements of Z[G] by

t = ∑
r,s

gr,s, v = ∑
s

g0,s, h = ∑
r

gr,0, d = ∑
r

gr,r.

There are obvious relations:

t = vh = hd = dv, v2 = Nv, h2 = Nh, d2 = Nd,(2.1)

tgr,s = t, vgr,s = vgr,0, hgr,s = hg0,s, dgr,s = dgr−s,0.

Define an element of Q[G] by

p = 1

N2 ∑
r,s

(1 − gr,0)(1 − g0,s) = 1

N2
(N2 −Nh −Nv + t).

Then, by definition, γ = pδ. Using (2.1), one easily sees that p is an idempotent,
i.e., p2 = p. In particular, pγ = γ and pγr,s = γr,s. We can recover κr,s from γ; since
(1 − gr,0)(1 − g0,s) = (1 − gr,0)(1 − g0,s)p by (2.1), we have

(2.2) κr,s = (1 − gr,0)(1 − g0,s)γ.
For a ∈ Z/NZ, let ⟨a⟩ ∈ {0, 1, . . . ,N − 1} denote its representative. For each

(a, b) ∈ G, define a rational differential 1-form on X by

(2.3) ωa,b = x⟨a⟩y⟨b⟩−N dx

x
= −x⟨a⟩−N y⟨b⟩

dy

y
= −uN−(⟨a⟩+⟨b⟩)v⟨b⟩−N du

u
,

where x = x0/z0, y = y0/z0, u = z0/x0, v = y0/x0. It is an eigenform for the G-action:
gr,sωa,b = ζar+bsωa,b. Define a subset of G by

I = {(a, b) ∈ G ∣ a, b, a + b /= 0} .
It is clear from the above expression that ωa,b is a differential of the second kind if
and only if (a, b) ∈ I, and is of the first kind if and only if ⟨a⟩+⟨b⟩ < N. For (a, b) ∈ I,
we denote the cohomology class of ωa,b in H1(X,C) by the same letter. Almost by
definition, we have for (a, b) ∈ I,

Ωa,b ∶= ∫
δ
ωa,b = 1

N
B( ⟨a⟩N , ⟨b⟩N

)

1The use of γ was suggested by Kenichi Bannai.
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where B(α,β) = ∫
1

0 xα−1(1 − x)β−1 dx is the beta function ([15, 17]).

Lemma 2.1 (i) For any (a, b) ∈ I, we have ∫γ ωa,b = Ωa,b.

(ii) The set {ωa,b ∣ (a, b) ∈ I} is a basis of H1(X,C).

Proof By adjointness, we have ∫γ ωa,b = ∫δ pωa,b and (i) follows, since

pωa,b = 1

N2 ∑
r,s

(1 − ζar)(1 − ζbs)ωa,b = ωa,b.

Since Ωa,b > 0, ωa,b ∈ H1(X,C) is non-trivial. Since ωa,b are proper vectors for the
G-action with different characters and ∣I∣ = dim H1(X,C), we obtain (ii).

Let Ann(X,Q) ⊂ Q[G] be the annihilator of H1(X,Q). Put

vr = vgr,0, hs = hg0,s, dt = dgt,0 (r, s, t ∈ Z/NZ).
Note that t = ∑r vr = ∑s hs = ∑t dt .

Proposition 2.2 (i) The group H1(X,Q) is a cyclic Q[G]-module generated by γ.
(ii) The set {t, vr,hs,dt ∣ r, s, t /= 0} is a basis of Ann(X,Q).
(iii) The set {γr,s ∣ (r, s) ∈ I} is a basis of H1(X,Q).

Proof Since ∫γr,s ω
a,b = ζar+bsΩa,b, the set

{ 1

N2 ∑
r,s

ζ−(ar+bs)γr,s ∣ (a, b) ∈ I}

is a basis of H1(X,C) dual to {(Ωa,b)−1ωa,b ∣ (a, b) ∈ I}, hence (i) follows. We show
that t, vr,hs,dt ∈ Ann(X,Q). Using (2.1), one sees easily that tp = vrp = hsp = 0,
hence tγ = vrγ = hsγ = 0. On the other hand, since

∫
dtγ
ωa,b = ζat ∑

r

ζ(a+b)rΩa,b = 0

for any (a, b) ∈ I, we have dt ∈ Ann(X,Q). Since the numbers of elements in the
set of (ii) and {gr,s ∣ (r, s) ∈ I} sum up to N2 = dim Q[G], we are left to show their
independence. Suppose that

at +∑
r

brvr +∑
s

cshs +∑
t

dt dt = ∑
r,s

er,sgr,s (a, br, cs,dt , e
r,s ∈ Q)

with b0 = c0 = d0 = 0 and er,s = 0, unless (r, s) ∈ I. First, e0,0 = 0 (resp., er,0 = 0, e0,r = 0,
er,−r = 0) implies a = 0 (resp., br + dr = 0, cr + d−r = 0, br + c−r + d2r = 0), so we have
d2r = 2dr for all r. Let N = 2eM with odd M. If M = 1, we have 2edr = d2er = d0 = 0,
hence dr = 0. If M > 1, let f be a positive integer such that 2 f ≡ 1 mod M, so that
2e+ f ≡ 2e mod N. Then we have 2 f d2er = d2e+ f r = d2er, which implies d2er = 2edr = 0.
In any case, we have dr = 0, and hence br = cr = 0 for all r. Therefore, er,s = 0 for all r,
s, and we are done.

Corollary 2.3 For any m ∈ Z/NZ, we have ∑r∈Z/NZ κ
r,r+m = Nγ. In particular,

Nγ ∈ H1(X,Z).
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628 N. Otsubo

Proof Since∑r∈Z/NZ(1− gr,0)(1− g0,r+m) = N − v− h+ d−m, this follows from (2.2)
and Proposition 2.2 (ii).

3 Intersection Numbers

The general reference for this section is [6, Chap. 0]. For u, v ∈ H1(X,Z), let u ♯ v ∈ Z
denote the intersection number. Let

⟨ ⋅ , ⋅ ⟩∶H1(X,C) ×H1(X,C) Ð→ C

be the canonical pairing. By the Poincaré duality, for any u ∈ H1(X,Z), there is a
unique element ηu ∈ H1(X,C) satisfying ⟨u, ω⟩ = deg(ηu ∪ ω) for all ω ∈ H1(X,C),
where ∪ is the cup product and

deg∶H2(X,C) ≃Ð→ C, ϕz→ 1

2πi ∫X
ϕ

is the degree map. Then we have

(3.1) u ♯ v = 1

2πi
deg(ηu ∪ ηv) =

1

2πi
⟨u, ηv⟩.

If ω, η are differential forms of the second kind, then we have

(3.2) deg(ω ∪ η) = ∑
P∈X

ResP(η∫ ω) .

Here, ∫ ω is a primitive function of ω on a small neighbourhood of P, and ResP

denotes the residue at P, which does not depend on the choice of ∫ ω.

Proposition 3.1 For any (a, b), (c,d) ∈ I, we have deg(ωa,b ∪ ωc,d) = 0 unless
(c,d) = (−a,−b), and

deg(ωa,b ∪ ω−a,−b) = 1
⟨a⟩
N + ⟨b⟩N − 1

.

Proof The first assertion is clear, since

ωa,b ∪ ωc,d = gr,sωa,b ∪ gr,sωc,d = ζ(a+c)r+(b+d)sωa,b ∪ ωc,d

for all (r, s) ∈ G. By (2.3), both ωa,b and ω−a,−b are holomorphic except at Rn =
(1 ∶ξζn ∶0) (n ∈ Z/NZ), where we put ξ = exp(πi/N). At Rn, u = z0/x0 is a local
parameter, and we have

∫ ωa,b = −1

N − (⟨a⟩ + ⟨b⟩)uN−(⟨a⟩+⟨b⟩)v⟨b⟩−N , ω−a,−b = −u⟨a⟩+⟨b⟩−N v−⟨b⟩
du

u
.

Therefore, we have

ResRn(ω−a,−b ∫ ωa,b) = 1

N − (⟨a⟩ + ⟨b⟩)(ξζ
n)−N = −1

N − (⟨a⟩ + ⟨b⟩)
for each n, hence the second assertion follows using (3.2).
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Lemma 3.2 Let γ ∈ H1(X,Q) be as defined in Section 2. Then we have

ηγ = ∑
(a,b)∈I

( ⟨a⟩
N + ⟨b⟩N − 1)Ω−a,−bωa,b.

Proof By Lemma 2.1, we can write ηγ = ∑(a,b)∈I ca,bωa,b. By Proposition 3.1 and
(3.1), we have

Ω−a,−b = ⟨γ,ω−a,−b⟩ = ca,b deg(ωa,b ∪ ω−a,−b) = ca,b

⟨a⟩
N + ⟨b⟩N − 1

.

Hence, the lemma follows.

Proposition 3.3 For any (r, s) ∈ G, we have:

2N2(γr,s ♯γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if r = 0, s = 0,

(N − 1)(2⟨s⟩ −N) if r = 0, s /= 0,

(N − 1)(2⟨r⟩ −N) if r /= 0, s = 0,

2(N − ⟨r⟩ − ⟨s⟩) if r /= 0, s /= 0.

Proof First, we have

γr,s ♯γ =
1

2πi
⟨γr,s, ηγ⟩ =

1

2πi
∑
(a,b)∈I

ca,b⟨γr,s, ωa,b⟩

with ca,b as in the proof of the lemma above. Then, by the compatibility of the
G-action on homology and cohomology under the pairing, we have

⟨γr,s, ωa,b⟩ = ⟨γ, gr,sωa,b⟩ = ζar+bs⟨γ,ωa,b⟩ = ζar+bsΩa,b.

Hence, we have

γr,s ♯γ =
1

2πi
∑
(a,b)∈I

ζar+bs( ⟨a⟩
N + ⟨b⟩N − 1)Ω−a,−bΩa,b.

By using the functional equations

B(α,β) = Γ(α)Γ(β)
Γ(α + β) , Γ(α + 1) = αΓ(α), Γ(1 − α)Γ(α) = π

sinπα
,

we have

( ⟨a⟩
N + ⟨b⟩N − 1)Ω−a,−bΩa,b = − π

N2

sin( ⟨a⟩N π + ⟨b⟩N π)
sin( ⟨a⟩N π) sin( ⟨b⟩N π)

= 2πi

N2

1 − ζa+b

(1 − ζa)(1 − ζb) = πi

N2
( 1 + ζa

1 − ζa
+ 1 + ζb

1 − ζb
) .

Therefore, we have

2N2(γr,s ♯γ) = ∑
(a,b)∈I

ζar+bs( 1 + ζa

1 − ζa
+ 1 + ζb

1 − ζb
) = ∑

a,b/=0

ζar+bs( 1 + ζa

1 − ζa
+ 1 + ζb

1 − ζb
)

= ∑
b/=0

ζbs∑
a/=0

ζar 1 + ζa

1 − ζa
+∑

a/=0

ζar ∑
b/=0

ζbs 1 + ζb

1 − ζb
.

https://doi.org/10.4153/CMB-2016-012-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-012-0


630 N. Otsubo

Now the result follows, since

∑
a/=0

ζar 1 + ζa

1 − ζa
=
⎧⎪⎪⎨⎪⎪⎩

0 (r = 0),
2⟨r⟩ −N (r /= 0).

Corollary 3.4 (i) For any (r, s), (k, l) ∈ G, we have

2N2(γr,s ♯γk,l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if r = k, s = l,

(N − 1)(2⟨s − l⟩ −N) if r = k, s /= l,

(N − 1)(2⟨r − k⟩ −N) if r /= k, s = l,

2(N − ⟨r − k⟩ − ⟨s − l⟩) if r /= k, s /= l.

(ii) For any r, s, k, l /= 0, we have

κr,s ♯κk,l =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if ⟨r⟩ ≤ ⟨k⟩, ⟨s⟩ < ⟨l⟩ or ⟨r⟩ < ⟨k⟩, ⟨s⟩ ≤ ⟨l⟩,
−1 if ⟨r⟩ ≥ ⟨k⟩, ⟨s⟩ > ⟨l⟩ or ⟨r⟩ > ⟨k⟩, ⟨s⟩ ≥ ⟨l⟩,

0 otherwise,

i.e., for a fixed (k, l),

(κr,s ♯κk,l)r,s =

l
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 ⋯ 1 1 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
1 ⋯ 1 1 0 ⋯ 0

k 1 ⋯ 1 0 −1 ⋯ −1
0 ⋯ 0 −1 −1 ⋯ −1
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 −1 −1 ⋯ −1

.

Proof Since γr,s ♯γk,l = (g−k,−lγr,s) ♯(g−k,−lγk,l) = γr−k,s−l ♯γ, (i) follows from the
proposition, from which (ii) follows using κr,s = γ0,0 − γr,0 − γ0,s + γr,s.

4 Basis of the Integral Homology and the Annihilator

Theorem 4.1 For any i /= 0, any one of the sets

{κr,s ∣ r, s /= 0, r /= i} or {κr,s ∣ r, s /= 0, s /= i}
is a basis of H1(X,Z).

Proof We only consider the set {κr,s ∣ r, s /= 0, s /= N − 1}; the other cases are similar.
By the existence of a symplectic basis, it suffices to show that the determinant of the
intersection matrix is 1. Renumber the elements by the lexicographic order:

κ1 = κ1,1, . . . , κN−2 = κ1,N−2, κN−1 = κ2,1, . . . , κ(N−1)(N−2) = κN−1,N−2.

Let M = (κi ♯κ j)i, j be the intersection matrix. By Corollary 3.4(ii), we have M =
U − t U, where we put an (N − 2) × (N − 2) matrix (resp., (N − 1) × (N − 1) block
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matrix) as:

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1
0 1 ⋱ ⋮
⋮ ⋱ ⋱ 1
0 ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

U U ⋯ U
0 U ⋱ ⋮
⋮ ⋱ ⋱ U
0 ⋯ 0 U

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The determinant ∣M∣ is computed as follows. Put

J = −U−1 ⋅ tU =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
⋱ ⋱

0 1
−1 ⋯ −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

By the Cayley–Hamilton theorem, we have ∑N−2
i=0 Ji = O (the zero matrix). By the

multilinearity of the determinant, we have (I is the unit matrix and the blank is O)

∣M∣ =

RRRRRRRRRRRRRRRRRR

I + J I ⋯ I
J I + J ⋱ ⋮
⋮ ⋱ ⋱ I
J ⋯ J I + J

RRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRR

I + J I ⋯ I
−I J

⋱ ⋱
−I J

RRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRR

O ⋯ O ∑N−1
i=0 Ji

−I J
⋱ ⋱

−I J

RRRRRRRRRRRRRRRRRR

= ∣
N−1

∑
i=0

Ji∣ = ∣ I + J
N−2

∑
i=0

Ji∣ = 1.

Hence, the theorem is proved.

Remark 4.2 For a specific N, one easily finds a symplectic basis of H1(X,Z) by
using the computation of M as above. See Guàrdia [7] and Kamata [10] for related
works.

Corollary 4.3 (Rohrlich [15]) If r, s ∈ (Z/NZ)×, then H1(X,Z) is a cyclic Z[G]-
module generated by κr,s.

Proof Let κk,l denote the class of κk,l in H1(X,Z)/Z[G]κr,s. Since

gk,lκr,s = κk+r,l+s − κk+r,l − κk,l+s + κk,l

for any (k, l), (r, s) ∈ G, we have

gmr,nsκr,s = κ(m+1)r,(n+1)s − κ(m+1)r,ns − κmr,(n+1)s + κmr,ns.

Therefore, κ(m+1)r,ns = κmr,(n+1)s = κmr,ns = 0 implies κ(m+1)r,(n+1)s = 0. By induction
starting with κr,0 = κ0,s = 0, we obtain κmr,ns = 0 for any m and n. Since r, s are
invertible, it follows that κk,l = 0 for any (k, l) ∈ G.

We determine the annihilator Ann(X,Z) ⊂ Z[G] of H1(X,Z). By Corollary 4.3,
for any r, s ∈ (Z/NZ)×, we have an exact sequence

0Ð→ Ann(X,Z) Ð→ Z[G] ⋅κr,s

Ð→ H1(X,Z) Ð→ 0.
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By Proposition 2.2(ii), the set {t, vr,hs,dt ∣ r, s, t /= 0} generate a submodule L ⊂
Ann(X,Z) of finite index. If we put

s = ∑
0≤r<s<N

gr,s ∈ Z[G],

then one easily verifies

(4.1) Ns = − ∑
0<r<N

r(vr − hr − dr).

In particular, s ∈ Z[G] ∩ Ann(X,Q) = Ann(X,Z). Rohrlich [15, Note 1] stated that
Ann(X,Z) is generated by L and s. A proof is provided by Lim [11, Proposition 4.1].
We prove the following refinement.

Proposition 4.4 The group Ann(X,Z)/L is cyclic of order N, generated by s.

Proof By Proposition 2.2(ii) and (4.1), s is of exact order N mod L. If g ∈ Ann(X,Z),
there exists an integer n such that ng ∈ L; let

ng = at +∑
r

brvr +∑
s

cshs +∑
t

dt dt

with b0 = c0 = d0 = 0. By comparing the coefficients of g0,0, we have a ≡ 0 (mod n).
Similarly, we obtain br + cs + dr−s ≡ 0 (mod n) for all r, s ∈ Z/NZ. This implies
br ≡ −cr ≡ −dr (mod n) and hence br ≡ bs + br−s (mod n). It follows that br ≡ rb1

(mod n), hence Nb1 ≡ 0 (mod n). Therefore, we have

ng ≡ b1∑
r

r(vr − hr − dr) ≡ −Nb1s (mod nL),

hence g ≡ −Nb1

n s (mod L).

5 Affine Curves and Relative Homology

Let Y ⊂ U be open subvarieties of X defined respectively by

Y ∶ x0 y0z0 /= 0, U ∶ z0 /= 0,

and put Z = X −Y , V = X −U , W = U −Y . These are stable under the G-action. Put

Pn = (0 ∶ζn ∶1), Qn = (ζn ∶0 ∶1), Rn = (1 ∶ξζn ∶0),
where ξ = exp(πi/N) as before. Then we have

V = {Rn ∣ n ∈ Z/NZ}, W = {Pn,Qn ∣ n ∈ Z/NZ}, Z = V ∪W.

5.1 Homology of U

First, consider the exact sequence of Z[G]-modules

(5.1) 0Ð→ H2(X,Z) Ð→ H0(V,Z) Ð→ H1(U ,Z) Ð→ H1(X,Z) Ð→ 0.

It follows that H1(U ,Z) is a free Z-module of rank (N−1)2. The cycles κr,s and hence
γ, γr,s are already defined on U . By abuse of notation, we also write their classes in
H1(U ,Z) or H1(U ,Q) by the same letter. Let Ann(U ,Q) ⊂ Q[G] be the annihilator
of H1(U ,Q).
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Proposition 5.1 (i) The group H1(U ,Q) is a cyclic Q[G]-module generated by γ.
(ii) The set {t, vr,hs ∣ r, s /= 0} is a basis of Ann(U ,Q).
(iii) The set {γr,s ∣ r, s /= 0} is a basis of H1(U ,Q).

Proof One shows as in Lemma 2.1 that H1(U ,C) is generated by {ωa,b ∣ a, b /= 0}.
Note that, even if a + b = 0, ωa,b (a, b /= 0) is holomorphic on U with logarithmic
poles along V and Ωa,b = ∫γ ωa,b is a positive real number. One proves similarly as
before that {γr,s ∣ (r, s) ∈ G} generate H1(U ,Q), from which (i) follows. The proofs
of (ii) and (iii) are also similar (and easier).

Proposition 5.2 (i) The set {κr,s ∣ r, s /= 0} is a basis of H1(U ,Z).
(ii) If r, s ∈ (Z/NZ)×, then H1(U ,Z) is a cyclic Z[G]-module generated by κr,s.

Proof (i) The image of H0(V,Z) → H1(U ,Z) is generated by the classes ε(Rn) of
small loops around Rn (n ∈ Z/NZ) in the positive orientation. By (5.1) and Theo-
rem 4.1, it suffices to show that ε(Rn) is a Z-linear combination of κr,s’s. First, one
computes

∫
ε(Rn)

ωa,b =
⎧⎪⎪⎨⎪⎪⎩

2πi(ξζn)⟨b⟩ (a + b = 0),
0 (a + b /= 0).

On the other hand, by Propositions 2.2(ii) and 5.2(ii), Ker(H1(U ,Q) → H1(X,Q))
is generated by {dtγ ∣ t ∈ Z/NZ}, and

∫
dtγ
ωa,b = ζat ∑

r

ζ(a+b)rΩa,b =
⎧⎪⎪⎨⎪⎪⎩

ζ−btπ/sin ⟨b⟩πN (a + b = 0),
0 (a + b /= 0).

Comparing these, we have ∫ε(Rn)
ωa,b = ∫d−n−1γ−d−nγ

ωa,b for any a, b /= 0, hence

ε(Rn) = d−n−1γ − d−nγ. Since

d−n−1 − d−n = ∑
r

{(1 − g−n−1+r,0)(1 − g0,r) − (1 − g−n+r,0)(1 − g0,r)} ,

we have d−n−1γ − d−nγ = ∑r(κ−n−1+r,r − κ−n+r,r) by (2.2), and (i) is proved. Then (ii)
follows from (i) exactly as in the proof of Corollary 4.3.

Remark 5.3 In a similar manner to the proof of Proposition 4.4, we can show
that the annihilator Ann(U ,Z) ⊂ Z[G] of H1(U ,Z) is a free Z-module generated by
{t, vr,hs ∣ r, s /= 0}.

5.2 Relative Homology of (U ,W )

Second, consider the exact sequence of Z[G]-modules:

0Ð→ H1(U ,Z) Ð→ H1(U ,W ; Z) ∂Ð→ H0(W,Z) degÐ→ H0(U ,Z) Ð→ 0.

It follows that H1(U ,W ; Z) is a free Z-module of rank N2. The path δ defines a class
in H1(U ,W ; Z), also denoted by the same letter, such that ∂(δ) = Q0 − P0.

Proposition 5.4 (Anderson [1, Theorem 6]) H1(U ,W ; Z) is a free cyclic Z[G]-mod-
ule generated by δ.
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Proof Since ∂(gr,sδ) = Qr−Ps, it follows that Z[G]δ surjects to Ker(deg). By Propo-
sition 5.2, H1(U ,Z) is generated by κr,s ∈ Z[G]δ. Therefore, H1(U ,W ; Z) is gener-
ated by δ as a Z[G]-module, and it is free for the rank reason.

Remark 5.5 The above sequence with Q-coefficients is an exact sequence of mixed
Hodge structures, and H1(U ,Q) ≃ W−1H1(U ,W ; Q), where W● is the weight filtra-
tion. Therefore, p gives a retraction of the filtration, sending δ to γ, and induces an
isomorphism GrW

−1 H1(U ,W ; Q) ≃ H1(X,Q).

5.3 Homology of Y

Finally, consider the exact sequence of Z[G]-modules

0Ð→ H0(W,Z) εÐ→ H1(Y,Z) Ð→ H1(U ,Z) Ð→ 0,

where the map ε sends the class of P ∈ W to the class ε(P) of a small loop around P
in the positive orientation. It follows that H1(Y,Z) is a free Z-module of rank N2+1.
The following is immediate from Proposition 5.2.

Proposition 5.6 For each (r, s) ∈ G, choose a lifting κ̃r,s ∈ H1(Y,Z) of κr,s ∈ H1(U ,Z).

(i) The set {ε(Pn), ε(Qn), κ̃r,s ∣ n, r, s ∈ Z/NZ, r, s /= 0} is a basis of H1(Y,Z).
(ii) If r, s ∈ (Z/NZ)×, then H1(Y,Z) is generated by {ε(P0), ε(Q0), κ̃r,s} as a

Z[G]-module.

If we work with Q-coefficients, there is a canonical choice of the lifting. Since p
annihilates H0(W,Q), the map

p̃∶H1(U ,Q) Ð→ H1(Y,Q); c z→ pc̃,

where c̃ ∈ H1(Y,Q) is any lifting of c, is well defined and gives a section of the Q[G]-
homomorphism H1(Y,Q) → H1(U ,Q).

Proposition 5.7

(i) As a Q[G]-module, H1(Y,Q) is generated by {ε(P0), ε(Q0), p̃γ}.
(ii) The set {ε(Pn), ε(Qn), p̃γr,s ∣ n, r, s ∈ Z/NZ, r, s /= 0} is a basis of H1(Y,Q).
(iii) The set {dx/x,dy/y, ωa,b ∣ (a, b) /= (0, 0)} is a basis of H1(Y,C).

Proof Part (i) is obvious, and the others follow from the following table of the
canonical pairing H1(Y,Q) ×H1(Y,C) → C:

dx
x ω0,b (b /= 0) dy

y ωa,0 (a /= 0) ωa,b (a, b /= 0)
ε(Pn) 2πi 2πiζbn 0 0 0
ε(Qn) 0 0 2πi 2πiζan 0

p̃γr,s (r, s /= 0) 0 0 0 0 ζar+bsΩa,b
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6 Projective Limits

Now, we let N vary and study the projective systems of homology groups. All the
objects studied earlier are written with the subscript N , e.g., XN , gr,s

N ∈ GN , ζN , δN , κr,s
N ,

γr,s
N . If N divides M, we have a morphism

πM/N ∶XM Ð→ XN ; (x0 ∶ y0 ∶z0) z→ (x
M
N

0 ∶ y
M
N

0 ∶z
M
N

0 ) .

It is compatible with the natural surjection GM → GN and respects all the subvarieties
defined in Section 5. Since πM/N ○ πL/M = πL/N , the curves XN form a projective
system. For a ring R, we define H1(X∞,R) = lim←ÐN

H1(XN ,R). It has the natural

structure of a module over the completed group ring R[[G∞]] ∶= lim←ÐN
R[GN]. We

apply similar notations for other (relative) homology groups.
For N ∣ M, the image of δM under πM/N is clearly δN . The ring homomorphism

Q[GM] → Q[GN] sends gr,s
M (resp., pM) to gr,s

N (resp., pN ). Hence, we have elements

δ∞ ∶= (δN)N ∈ H1(U∞,W∞; Z), κr,s
∞
∶= (κr,s

N )N ∈ H1(U∞,Z),
γ∞ ∶= (γN)N , γ

r,s
∞
= (γr,s

N )N ∈ H1(U∞,Q),

where r, s ∈ Ẑ ∶= lim←ÐN
Z/NZ. By abuse of notation, the images of κr,s

∞
, γ∞, γr,s

∞
in the

homology of X∞ are written by the same letters. By Proposition 5.4, for any ring R,
H1(U∞,W∞; R) is a free cyclic R[[G∞]]-module generated by δ∞.

Theorem 6.1 Let R be a profinite ring.

(i) For any r, s ∈ Ẑ×, H1(X∞,R) is a free cyclic R[[G∞]]-module generated by κr,s
∞

.
(ii) The natural maps H1(Y∞,R) → H1(U∞,R) → H1(X∞,R) are isomorphisms of

R[[G∞]]-modules.

Proof Let R = lim←Ðλ
Rλ with Rλ finite. Since H1(XN ,R) = lim←Ðλ

H1(XN ,Rλ), we can

assume that R is finite. (i) Consider the exact sequence

0Ð→ Ann(XN ,R) Ð→ R[GN]
⋅κr,s

NÐ→ H1(XN ,R) Ð→ 0.

Since H1(XN ,R) are finite, the functor lim←ÐN
preserves the exactness, so we are re-

duced to showing that lim←ÐN
Ann(XN ,R) = 0. By Proposition 4.4, Ann(XN ,R) is gen-

erated by tN , vN,r, hN,s, dN,t and sN . If M = dN, the homomorphism Z[GM] → Z[GN]
sends tM , vM,r, hM,s, dM,t , sM to d2tN , dvN,r, dhN,s, ddN,t , dsN + 1

2(d − 1)dtN , respec-
tively. Hence, we have

⋂
d∈Z>0

Im[Ann(XdN ,R) Ð→ Ann(XN ,R)] = ⋂
n∈Z>0

n Ann(XN ,R) = 0,

and the assertion follows. (ii) We prove the second isomorphism; the other one is
similarly proved. By (5.1), we have the following commutative diagram with exact
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rows for M = dN:

0 // ( ⊕
m∈Z/MZ

Rε(Rm))/R∆M
//

��

H1(UM ,R) //

��

H1(XM ,R) //

��

0

0 // ( ⊕
n∈Z/NZ

Rε(Rn))/R∆N
// H1(UN ,R) // H1(XN ,R) // 0,

where we put ∆N = ∑n ε(Rn). Since the ramification index of XM → XN at each Rm

is d, the class ε(Rm) maps to dε(Rn). Therefore, by applying the functor lim←ÐN
, we

obtain the isomorphism similarly as above.

For r, s ∈ Ẑ, write

gr,s
∞
= (gr,s

N )N ∈ lim←Ð
N

GN .

Since H1(U∞, Ẑ) = (1 − gr,0
∞
)(1 − g0,s

∞
)H1(U∞,W∞; Ẑ) for any r, s ∈ Ẑ× and it is free

by Theorem 6.1, we obtain the following corollary.

Corollary 6.2 For any r, s ∈ Ẑ×, (1 − gr,0
∞
)(1 − g0,s

∞
) ∈ Ẑ[[G∞]] is not a zero-divisor.

Remark 6.3 For a prime `, the same proof as above applies to the `-adic version.
For any r, s ∈ Z×` , we have isomorphisms

H1(Y`∞ ,Z`)
≃Ð→ H1(U`∞ ,Z`)

≃Ð→ H1(X`∞ ,Z`)
of free cyclic Z`[[G`∞]]-modules generated by κr,s

`∞ = (κr,s
`n)n. This gives an alternative

proof of the freeness of H1(X`∞ ,Z`) due to Ihara [8]. In [3, Section 13.4], Anderson
gives another proof starting with the freeness of H1(U`∞ ,W`∞ ; Z`). Similarly as the
standard Iwasawa algebra of one variable, we have an isomorphism

(6.1) Z`[[G`∞]] ≃Ð→ Z`[[S,T]]

sending gr,s
`∞ to (1−S)r(1−T)s. Since (1− g1,0

`∞)(1− g0,1
`∞) corresponds to ST, which is

not a zero-divisor, the freeness of H1(U`∞ ,Z`) follows. This argument is particular
to the `-adic case.

7 Definition of Measures

Let Q be the algebraic closure of Q in C and put Qab = ⋃N Q(µN). For a subfield
K ⊂ Q , let GK = G(Q/K) denote the absolute Galois group.

Recall Artin’s isomorphism between étale and singular homology [4, Exposé XI]

ι∶H ét
1 (XN ,Z/MZ) ≃Ð→ H1(XN ,Z/MZ).

Since XN is defined over Q , GQ acts on the left member. Since the ι are compatible
with πM/N , GQ acts on the limit

H ét
1 (X∞, Ẑ) ∶= lim←Ð

N,M

H ét
1 (XN ,Z/MZ).

https://doi.org/10.4153/CMB-2016-012-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-012-0


Homology of the Fermat Tower and Universal Measures for Jacobi Sums 637

Fix r, s ∈ Ẑ× and put κét = ι−1(κr,s
∞
) ∈ H ét

1 (X∞, Ẑ). By Theorem 6.1, we can define a
continuous map

F∶GQ Ð→ Ẑ[[G∞]]×; σ z→ Fσ

by σκét = Fσκét. Identifying GN ≃ µN
⊕2, GQ acts on GN via the cyclotomic character

χ∶GQ → Ẑ×, i.e., σgr,s
N = gχ(σ)r,χ(σ)sN , hence GQ acts on Ẑ[[G∞]]. Then F becomes a

cocycle in the sense of group cohomology, i.e.,

(7.1) Fστ = σFτ ⋅ Fσ.

In particular, the restriction GQab → Ẑ[[G∞]]× is a continuous homomorphism. This
is the adelic generalization of Ihara’s `-adic universal power series for Jacobi sums [8]
(recall (6.1) for the wording “series”).

Using δ∞ instead of κr,s
∞

, a cocycle

B∶GQ Ð→ Ẑ[[G∞]]×; σ z→ Bσ

is similarly defined. This is Anderson’s adelic beta function [3]. As is clear from the
definitions, we have

(7.2) (1 − gr,0
∞
)(1 − g0,s

∞
)Fσ = (1 − gχ(σ)r,0

∞
)(1 − g0,χ(σ)s

∞
)Bσ.

By Corollary 6.2, Fσ and Bσ characterize each other. In particular, if σ ∈ GQab , then
Fσ = Bσ and Fσ does not depend on the choice of r, s ∈ Ẑ×.

Following Anderson, we regard an element of Ẑ[[G∞]] as a function on (Q/Z)⊕2

as follows. It is natural to identify an element F ∈ Ẑ[[G∞]] with a Ẑ-valued measure
µF on G∞; if F = (∑r,s∈Z/NZ cr,s

N gr,s
N )N , then for any gr,s

∞
∈ G∞,

µF(gr,s
∞
+NG∞) = cr,s

N .

For α,β ∈ Q/Z, define a character by

ϕα,β ∶G∞ Ð→ (Qab)×; ϕα,β(gr,s
∞
) = exp 2πi(rα + sβ).

We define a function F∶ (Q/Z)⊕2 → Qab ⊗ Ẑ, written by abuse of notation using the
same letter, by

F(α,β) = ∫
G∞

ϕα,β dµF.

If Nα = Nβ = 0, then ϕα,β factors through GN and defines a ring homomorphism
ϕα,β ∶ Ẑ[GN] → Q(µN) ⊗ Ẑ. Then F(α,β) is nothing but the image of F under ϕα,β

composed with the natural projection Ẑ[[G∞]] → Ẑ[GN]. Moreover, the restriction

GQ(µN)
Ð→ (Q(µN) ⊗ Ẑ)×; σ z→ Fσ(α,β)

is a homomorphism. We also have

(τF)(α,β) = F(χ−1(τ)α,χ−1(τ)β) , τ(F(α,β)) = F(χ(τ)α,χ(τ)β)

for any τ ∈ GQ . Here, τF means the function corresponding to τF ∈ Ẑ[[G∞]].
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If α = 0 or β = 0, then Bσ(α,β) = 1 ⊗ 1 for any σ ∈ GQ [3, Theorem 1 (I)].
Therefore by (7.2), we have for α = a/N, β = b/N ∈ Q/Z − {0}

Fσ(α,β) = ( 1 − ζχ(σ)ar
N

1 − ζar
N

1 − ζχ(σ)bs
N

1 − ζbs
N

⊗ 1)Bσ(α,β),

Fσ(α, 0) =
1 − ζχ(σ)ar

N

1 − ζar
N

⊗ χ(σ), Fσ(0, β) = 1 − ζχ(σ)bs
N

1 − ζbs
N

⊗ χ(σ),

Fσ(0, 0) = 1⊗ χ2(σ).

Note for example that, for a positive integer c ≡ χ(σ) (mod N), we have

ϕα,0( 1 − g0,χ(σ)s
N

1 − g0,s
N

) ≡ ϕα,0(1 + g0,s
N +⋯ + g0,(c−1)s

N ) ≡ c (mod N).

8 Interpolation of Jacobi Sums

Let K ⊂ Qab be a subfield containing µN and let v ∤ N be a prime of K. Let Fv denote
the residue field at v and put N(v) = ∣Fv∣. Then the N-th power residue character
χv∶F×v → µN is defined by χv(x) ≡ x(N(v)−1)/N (mod v). For a, b ∈ Z/NZ, the Jacobi
sum at v is defined by

ja,b
N (v) = − ∑

x,y∈F×v ,x+y=1

χa
v(x)χb

v(y) ∈ Q(µN).

If only one of a, b is 0, then ja,b
N (v) = 1. If a /= 0, then ja,−a

N (v) = χa
v(−1). Otherwise,

we have ∣ ja,b
N (v)∣2 = ja,b

N (v) j−a,−b
N (v) = N(v). For a prime number `, let π`∶Qab ⊗ Ẑ→

Qab ⊗ Z` denote the projection.

Theorem 8.1 (Anderson [3]) Let a, b ∈ Z/NZ satisfy a, b, a + b /= 0. Let K be a
number field, v ∤ N be a prime of K and σ ∈ GK be a lift of Frobenius at v. Let w be a
prime of K(µN) above v and put q = N(v), f = [Fw ∶ Fv]. Then we have

π`(
f−1

∏
i=0

Fσ(
qia

N
,

qib

N
)) = ja,b

N (w) ⊗ 1

for any ` /= char(Fv).

Remark 8.2 When N is a power of `, the formula for the `-component was proved
by Ihara [8, Theorem 7]. The theorem can also be derived from [3, Theorem 6]
using a decomposition of Bσ (resp., Jacobi sum) into hyperadelic gamma functions
(resp., Gauss sums), the cocycle property (7.1) for Bσ , the relation (7.2) between Fσ
and Bσ , and the Davenport–Hasse relation.

Proof By (7.1), we have Fσ f = ∏ f−1
i=0 σ

iFσ . Since

(σiFσ)(α,β) = Fσ(χ−1(σi)α,χ−1(σi)β) = Fσ(q−iα, q−iβ),
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we are reduced to the case where f = 1, i.e., µN ⊂ K. For any a, b ∈ Z/NZ, define a

projector to the ϕ
a
N ,

b
N -isotropic component by

ea,b
N = 1

N2 ∑
r,s

ζ
−(ar+bs)
N gr,s

N ∈ Q(µN)[GN].

We regard an element of GN as an algebraic correspondence from XN (over Q(µN))
to itself by taking the graph. The pair (XN , ea,b

N ) defines a Chow motive over Q(µN)
with coefficients in Q(µN) (see [12, Section 2.1]). Then we have a decomposition in
the same category

h1(XN) = ⊕
a,b,a+b/=0

(XN , ea,b
N )

[12, Section 2.8], which yields an isomorphism of GQ(µN)
-modules

H ét
1 (XN ,Z`) ⊗ Q(µN) = ⊕

a,b,a+b/=0

ea,b
N (H ét

1 (XN ,Z`) ⊗ Q(µN)) .

By [12, Section 3.4], each component of the right member is one-dimensional over
Q(µN), and the Frobenius at v ∤ N acts on it as multiplication by ja,b

N (v) (see the
remark below). Hence the theorem follows.

Remark 8.3 By the Poincaré duality, we have an isomorphism H ét
1 (XN ,Z`) ≃

H1
ét(XN ,Z`(1)). Here, Z`(1) denotes the Tate twist, on which GQ acts via the cy-

clotomic character. These are also isomorphic to the `-adic Tate module of the Ja-
cobian of XN . By [12, Section 3.4], the geometric (=inverse) Frobenius at v acts on
ea,b

N (H1
ét(XN ,Z`) ⊗ Q(µN)) by ja,b

N (v). Since the action of g ∈ GN on the homology
corresponds to the action of g−1 on the cohomology, the Frobenius at v acts on the
homology by N(v)/ j−a,−b

N (v) = ja,b
N (v).

Recall that, by Weil [16], for a, b ∈ Z/NZ such that a, b, a + b /= 0, ja,b
N defines a

Hecke (quasi-) character ja,b
N ∶GQ(µN)

→ Q(µN)× of conductor dividing N2 which
sends any Frobenius at v ∤ N to ja,b

N (v).

Corollary 8.4 Let a, b ∈ Z/NZ satisfy a, b, a + b /= 0. Then the homomorphism

GQ(µN)
Ð→ (Q(µN) ⊗ Ẑ)×; σ z→ Fσ(

a

N
,

b

N
)

coincides with the Jacobi-sum Hecke character ja,b
N .

Proof For each prime `, the coincidence of the `-component on a Frobenius at v is
proved in Theorem 8.1 for all primes v of Q(µN) not dividing `N. By the Chebotarev
density theorem, we obtain the coincidence on the whole GQ(µN)

.
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