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Introduction

There is an extensive literature concerning groups in which the extrac-
tion of roots is always possible. Among the various classes of groups that
have been studied is the class of those groups in which the extraction of
roots is not only possible but is also unique. More precisely, let a> be a non-
empty set of primes: then we shall call (using the notation of G. Baumslag)
a group G a ^j-group if the equation

x* = g (j> e &, g e G)

is always uniquely solvable in G. It is with groups of this kind that we shall
be concerned in this paper. However, the set a> of primes turns out to be
immaterial as far as this work is concerned, in the sense that our theorems
are valid for every set co of primes. Therefore we have found it expedient
to confine ourselves to the case where a> is the set of all primes, and hence-
forth we shall omit the suffix w. Thus, if G is a ^-group, then the equation

xn = g (« a natural number, g e G)

is always uniquely solvable in G; we shall call the solution x the n01 root of
g and write g1/" = x, and if r = m\n where m is an integer, gr = (g1/n)m.

The starting point for the present considerations is the notion of a
free S-group, which was introduced and studied by G. Baumslag [1].
Let us call a subgroup H of a ^-group G a ^-subgroup if the roots of the
elements of H lie in H; a set S of elements of G will be said to ^-generate
G if every ^-subgroup of G containing S coincides with G. Then a ^-group
F is free if it possesses a set S of elements, called free generators of F,
such that
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(1) S ^-generates F
(2) for every ^-group G and every mapping 0 of S into G, there is a

homomorphism q> of F into G that coincides with d on S.

It turns out that the cardinality of S, the so-called rank of F, is an
invariant [2]. It is not difficult to show that there is a free i^-group of rank
tn for every cardinal number nt [2].

We shall call a normal subgroup N of a ^-group G an ideal if G/N
is itself a .0-group. Now let G be any given S-group; then G ~ FjN for
some suitably chosen free ^-group F and some ideal N of F (the choice
of F and N are of course not unique). If F can be chosen to be of finite rank,
we shall say G is finitely ^-generated or that G is a finitely generated 2-
group. If F and N can be chosen so that there exists a finite set of elements

W1,W2,--;WmeN

such that every ideal of F containing these elements contains N itself,
then we shall say that G is a finitely related i^-group. If G is a finitely
generated and finitely related S-group, then we call G a finitely presented
i^-group.

In order to avoid such awkward locutions as "the set S ^-generates
the ^-group G", we shall strictly adhere to the following convention: S
generates the 3>-group G means the same as S ̂ -generates G, whereas S generates
G means the subgroup of G generated by S is G itself. Likewise, the 2-group
G is finitely generated means G is ^-generated by a finite set. I t is important
to keep this convention in mind so that no confusion will arise for a Q-
group G, between these notations for G qua i^-group and for G qua group.

More generally, we would like to define the concept of a presentation
for a i^-group. To this end, let us notice that if F is a free ^-group with
a set of free generators ax, a2>- • •, then every element W e F can be written
as an expression, or word, involving the generators a1; a2, • • •. To see this,
we define a word of weight n in F as follows: First we shall call the free
generators ax, a2, • • • words of weight 1. Having defined words of weight
less than n, we define (VV*)*, where U and V are words of weight less
than n and r, s, t are rational exponents, to be a word of weight n. The
collection of words of weight n, as n ranges over the natural numbers,
constitutes the set of words. Since the elements at, a2, • • • ^-generate F,
every element can be written as a word in al3 a2, • • •. If W e F can be
expressed as a word in alt az, • • •, am, then we shall indicate this by writing
W = W{alt a2> • • -, am).

Now let G be any given ^-group. Let F be a free ^-group and N an
ideal of F such that F/N Z G. Let a1} a2, • • • be a set of free generators
of F and let a(N(p = g(. If the elements
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W1(a1, • • •, ami), W2(ai,'-;amt),--'eN

are such that every ideal containing these elements contains N, then we
shall write

(•) G = ®-gp (glt gt, • • •; W^, • • •, gmi) = 1, W2(gl, • • -, gmi) = 1, • • •>

where Wt{gx, • • •, gm/) is the expression obtained from Wj(a1,---,am)
by replacing each a( by g4. We shall call (*) a presentation for G, and we
shall call the expressions

W1(g1, • • •, gmi) = 1, W2(gl, • • •, gmi) = 1, • • •

defining relations in the generators g\,gi,"' of the i^-group G.
It is well known that every countable group G can be embedded in

a 2-generator group G', and that if G is given by n defining relations then
G' can be chosen so as to be defined by n relations (see [4]). We shall show,
similarly, (Theorem 4) that every countable i^-group H can be embedded
in a 3-generator ^-group H', and that if the i^-group H can be given by
n defining relations then the i^-group H' can be chosen so as also to be
defined by n relations — this is our main theorem. Whether 3 can be
decreased to 2 here is as yet an unsolved problem.

Theorem 4 enables us to "count" the number of 3-generator ^-groups:
(Theorem 5) the number of 3-generator ^-groups is the power of the
continuum. Thus in spite of the apparently severe restrictions of existence
and, more important, uniqueness of roots, this class of groups turns out to
be very large. Moreover, the structure of even a finitely generated @>-
group can be quite complicated. Indeed, suppose we term a ^-group
simple if it has no proper ideals. Then we shall show, by a non-constructive
existence proof, that there is a 5-generator non-abelian simple ^-group.
One might ask whether there exist ^-groups which are simple in the group
theoretic sense, i.e. which possess no proper normal subgroups; we know
of no example.

Preliminaries

The following theorem is well known (von Dyck):
/ / the group G has a presentation

G = gp <&, g,,'' •; # i ( g i , • • •, gmi) = 1, R2(gi, • • ; gmi) = ! . • • • >

and H is a group containing elements hx, h2, • • • such that

then the mapping q> : gf~> h{,i = 1,2, ••• can be extended to a homomorphism
of G into H.
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The analogous theorem holds also for ^-groups:
/ / the 2-group G has a -presentation

G = ®-gp <g1( &,•••; R ^ , • • •, gmi) = 1, Rt(glt • • •, gm%) = 1, • • •>

and H is a @>-group containing elements hx, h%, • • • such that

fo mapping <p : gi^> ht, i = 1, 2, • • • caw Je extended to a homomorphism
of G into H.

In this paper we shall make repeated use of the free product with
an amalgamated subgroup, also called the generalized free product. We
shall mention without proof a number of statements, the proofs of which
may be found in [5].

Let F be a group, F1 and F2 subgroups of F and let Fj^n F2 = G.
We shall call F the generalized free product of Ft and F2 (or the free
product of -Fx and F2 with amalgamated subgroup G) if

(1) F is generated by its subgroups Fx and F2, and
(2) For every group H and every pair of homomorphisms

which agree on G, there exists a homomorphism q> : F -> H that coincides
with <pt on Ft. We shall write

F={F1*F2;G}.

Suppose groups Ft and F2 are given, Gx a subgroup of F1 and G2 a
subgroup of F2, and Gx Z G2. Then there exists a group F which is the
generalized free product of its subgroups fix and t2, ^ ^ F1, fi2 SJ F2,
such that {fx n $2)<Pi = G< and if / e $x n P2 then

f<Pi<P = f<Pz-

In this case we shall identify f1 with Flt fi2 with F2, and Gt with G2

(via the isomorphisms cplt <p2, and 93) and again call F the generalized free
product of Fx and F2. We shall use the following notation:

If Gj is generated by elements glt g2, • • • and if gtf — g't, we shall sometimes
write

F = {F1* F2; gx = g'lt g2 = g2, • • •}.
Now let

F = {Fx * F2; G}.

The elements in F can be represented by a normal form: We choose in
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[5] Finitely generated ^-groups 379

Fi {{ = 1,2) a system S< of left coset representatives modulo G containing
the unit element; thus every element / e F( can be uniquely represented
in the form

f = sg {seSit geG).

We call the following string of symbols

SiS2 • • • sng
a normal form if

(1) Every term sk is a representative =£ 1 belonging to one of the S<.
(2) Successive components sk and sk+1 belong to different systems of

representatives, i.e., if sk e S{ and sk+1 e Sj, then i ^ j .
(3) geG.

If we interpret this string of symbols as a product, we obtain an
element / = sxs2 • • • sng, and we say s ^ • • • sng is the normal form of
the element /. Every element is represented by one and only one normal
form. We call n the length of / and write X{f) = n.

Every element / e F can be written as / = /1/2 • • • / „ , where each /4

is in Fx or in F2, since Fx and F2 together generate F. We will describe
the procedure by which the normal form of / can be obtained. First, / can
be written in the form

(*) / = hxh2- • • hm, where each h{ in Fx or F2, but h( and hi+1 not in a
common factor F}, and with m ^ n.

For if fi and fi+1 both lie in i ^ or both lie in F2, then we may write

/ = 1112 ' ' ' fi-lfifi+2 ' ' ' fn>

where /< = /< / m , which is an element in one of the factors; we may continue
in this manner, at each step decreasing the number of terms until we have
written / in the desired form (*): / = hxh2- • • hm. Notice that if m > 1
then hf^G for any i, for then ht and hi+1 (or ht and /&,-_!) lie in a common
factor. Now if m = 1 and / e G, then the normal form of / is / itself. If
f $ G, then hx e F{—G for i = 1 or i = 2, and

Thus if m = 1 and / $ G, then s ^ is the normal form of /. If m > 1, then

f = sl(jg1ht) • • • h m .

Now h2e Fj—G (j ^ i) and so gxh2 e -F̂ —G; therefore

If m = 2, then / = s^ga aXi^- sis2#2 is t n e normal form of /. If m > 2, then
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Continuing in this way, we will arrive at the normal form of /:

f = s1s2---smgm,

and we note that X(f) = m provided that m > 1.
Therefore if

where each ji is in F1 or F2, but f( and fi+1 are not in a common factor,
then the length of / is n if n > 1, the length of / is 1 if » = 1 and / $ G,
and the length of / is 0 if n = 1 and / e G.

Now suppose that

/ = {hh---t«g){kxK---km)

where ttt2 • • • tng is a normal form, each kf is in Ft or F2, and k{ and ki+1

do not lie in a common factor F}. If also tn and kt are not in a common
factor, then it is clear from the above procedure that the normal form
of / is

/ = hh • • • tnt'n+i • • • t'«+mg'

for some representatives t'n+1, • • -, t'n+m and some g' 6 G. This fact is frequently
used in this paper.

Suppose / = /x/2 • • • /„ where each ft is in Fr or F2, but ft and fi+1

are not in the same factor F}. Suppose h = h-Ji^ • • • hm where each h{

is in Fx or F2 , but ht and hi+1 do not lie in a common factor. If also /„
and \ do not lie in a common factor, then A (fh) = A(/)+A(A); we shall
sometimes write

fh = hfi • • • /„ A KK • ' * K or / A A

to indicate that /„ and hx do not lie in a common factor.
The element / is cyclically reduced if none of its conjugates in F has

smaller length than itself. If / is cyclically reduced and

with n > 1, each /, in F1 or F2 , but /t and fi+1 not in the same factor Fjr

then /x and /„ belong to different factors Ft. Conversely, if / is of the above
form and fx and /„ belong to different factors, then / is cyclically reduced.

NOTATION. We list here some of the notations used.
A group G is called an R-growp if the equation

x" = g (n a natural number, g e G)

has at most one solution x in G.
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[7] Finitely generated ^-groups 381

If G is a group and g e G, the centralizer of g in G, written C(g, G)
is {x e G | x~xgx = g}.

F is a multiplicative copy of the additive rationals. For definiteness,
we may take the elements of F to be the formal symbols zr, where r runs
through the additive rationals, and multiplication is defined by zrz* = zr+'.

If S is a subset of a ^-group G, then the intersection of all the
^-subgroups of G containing S is itself a ^-subgroup and contains S.
This ^-subgroup is called the ^-subgroup generated by S and we shall
denote it by @-gp(S). If S = {alt az, a3, • • •} we shall sometimes write

If G is a group, then

means H is a (not necessarily proper) subgroup of G.

Our primary aim in this paper is to embed every countable S-group
in a 3-generator £^-group. The procedure we have adopted is modelled on
earlier work of G. Higman, B. H. Neumann, and H. Neumann [4] and
G. Baumslag [1] making use of free products with amalgamations. In
particular, we make frequent use of a theorem of Baumslag [1] (Theorem
1 below) that states that every group in a certain class 0>, whose definition
can be couched in terms of the centralizers of group elements, can be
embedded in a S-group. For this reason we have found it essential to carry
out a careful analysis of certain kinds of generalized free products. By
keeping track of centralizers, we are able to show that certain generalized
free products of groups in 3P also are in & (Theorem 2 and Theorem 3).
This procedure turns out to be useful in determining the number of finitely
generated ^-groups.

Before we can state Theorem 1 more exactly, it is necessary to first
define and discuss the notion of the free ^-closure of a group.

Let G be a subgroup of a ^-group G*. G* is called the free ^-closure
of the group G provided that

1. the S-subgroup of G* generated by G is G* itself,
2. for every homomorphism <p of G into a i^-group H there exists a

homomorphism q>* of G* into H that coincides with q> on G.

Now, if G is a given group we say that the free ^-closure of G exists
if there is a monomorphism fi of G into a ^-group G* such that G* is the
free ^-closure of Gfi; in this case we identify G with Gfi and we say that
G* is the free ^-closure of G. It is not difficult to see that if it exists the
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free ^-closure of a group is unique up to isomorphism. Also, it is not dif-
ficult to see that if G is a group that can be embedded in some ^-group
then the free ^-closure G* of G exists and that G* has the presentation

G*=3-gp <«!, alf • • •; .RxK, a2, • • •, amj = 1, #2(a1( a2, • • •, amt) = 1, • • •>,
if

G = g ' p < a 1 , a 2 , • • • ; R 1 ( a 1 , a 2 , • • • , a m i ) = 1 , R 2 { a l t a 2 , • • - , « „ , , ) = 1 , • • • >

is a presentation for G.
To verify this remark let us suppose that G is a subgroup of a 3>-

group H, and let

be a presentation for G. We define

G* = S-g£<oc1, a2, • • •; ^ ( a ^ a2, • • -, ami) = 1, 2?a(a1# a2, • • •, am2) = 1, • • •>.

Now by the theorem of von Dyck there is a homomorphism q> mapping G
into G* determined by

because R^a^, a2(p, • • -, am<p] = 1 for the defining relations Rs of the
group G. By the corresponding theorem for ^-groups there is a homo-
morphism y> mapping G* into the S-group H determined by

a tV = ai> * = 1. 2, • • •,

because Rjfaip, x2y), • • •, «m rp) = 1 for the defining relations Rf of the
S-group G*. (pip is a homomorphism of G into if, and at(pip = a( for
i = 1,2, •••. qnp acts as the identity on a set of generators of the group G
implies that q>rp is the identity mapping of G; therefore <p is a monomorphism,
and so G can be embedded in G*, identifying a{ with <x.{ (i = 1, 2, • • •).

Since G* is S-generated by a.1 = ax, oc2 = a2, • • •, the ^-subgroup
of G* generated by G is G* itself. Now suppose that r\ is a homomorphism
of G into a £F-group 2£. Because rj is a homomorphism, 2?^(«x, «2, • • •, amj) = 1
implies that Ri(a1ij, a2r/, • • •, amfr)) = 1; however, the R} are the defining
relations of the ^-group G*, and so by the analogue for ^-groups of the
theorem of von Dyck r\ can be extended to a homomorphism rj* of G* into
K. This establishes that G* is in fact the free ^-closure of G.

We now define the class of groups that Baumslag has shown can be
embedded in ^-groups; he has given a procedure for constructing the free
^-closure of a group in this class.

Let SP be the class of groups G such that

1. G is an .R-group.
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[9] Finitely generated ^-groups 383

2. If h e G and h does not have an »ffi root for some natural number n,
then

a) C(h, G) is isomorphic to a subgroup of F, and
b) if /-1A*/ = A* for some / e G and integers A and Z, then k = I.

THEOREM 1 (Baumslag [1]). Every group G in 0> can be embedded, in a
2-group. For G a group in gP and G* the free ^-closure of G:

If l^heG and h has an nth root in G for every n, then C(h,G*) =
C(h,G).

If l ^ h eG* and h is not conjugate in G* to an element of G having an
nth root in G for every n, then C(h, G*) ~ F.

We now state Theorems 2 and 3; the proofs of these theorems appear
after a number of lemmas. The proofs of the two theorems are patterned
after the proof of the theorem just quoted.

THEOREM 2. Let A = {Gx * G2; U}. Suppose that for each non-trivial
element u eU one of the following holds:

(a) {x e G1 \x-*ux eU} = U or (b) {a; e G2 \x~^ux eU} = U.

Then the centralizer of an element in A is either infinite cyclic or is isomorphic
to C(g, Gt) for some element g in one of the factors Gt.

More specifically.
If 1 ^ ueU and (a) holds for u, then C(u,A) = C(u, G2).
/ / 1 ̂  u eU and (b) holds for u, then C(u,A) = C(u, GJ.
If g eGt and g is not conjugate in G{ to an element in U, then C(g, A)

= C{g,Gt).
If he. A and h is not conjugate in A either to an element in G1 or an

element in G2, then C(h,A) is infinite cyclic.
The following special case of this theorem turns out to be particularly

useful:
Let A = {Gx * G2; U}. Suppose that if 1 7̂  u e U and g e Gx—U then

g^ug^U. Then for he A the centralizer C(h,A) is either infinite cyclic or
is isomorphic to C (g, Gt) for some element g in one of the factors G(.

THEOREM 3. Let A = {Gx * G2; U} where Gx and G2 are in £P. Suppose
that if ueU, u ^ 1, then either {x e G1 | x"xux eU} = U or
{x e G2 I x~xux eU} = U. Then A is in 0>.

Before proving Theorem 2, we state and prove three lemmas.

LEMMA 1. Suppose A = {Gx * G2; U}. Suppose also that for each non-
trivial element u eU one of the following holds:

(a) {a; e G1 \x^ux eU} = U or (b) {x e G21 x-lux eU} = U.

Let 1 ̂  ueU; if (a) holds for u then
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{xeA \z-1uxeU}QG2,

and if (b) holds for u then

{xeA \x~1uxeU}QG1.

PROOF. Let 1 # u e U and, for convenience, assume (a) holds for u.
Let xeA such that ar1uxeU. If x e G2, then there is nothing to prove.
x $ G1—U, because (a) holds for u. So let x = xxx2 • • • xn, n 2£ 2, where
each xt in one of the factors but xt and xi+1 not in a common factor.

x~xux = x~x • • • x2
xx\~1uxxx2 • • • xn.

If xx e G1—U, then xx
xuxx e G1—U and X{x~1ux) = 2(w—1) + 1 ̂  3, which

is impossible because x~xux e U and so X(x~xux) = 0. If x1eGi—U and
xx

xuxxeG2—£7, then X(x~xux) = 2(w—1) + 1 ^ 3, which is again im-
possible.

If x1 e G2—U and x^1ux1 e U, then (a) holds for x±1ux1 since (b) cannot
hold for x^xuxx because x^x^1 ux^x^1 e U and xx eG2—U. Now x2 eGx—U,
so x^1 (x^1 ux1)x2 $ U; therefore ^(x^ux) = 2(M—2) + l ^ 1, which is im-
possible.

LEMMA 2. Let A = {Gx * G2; U}.

If g e Gt (i = 1 or 2) awi g is not conjugate in G{ to an element in U,
then {xeA \x~rgx e G{] Q Gt.

PROOF. For convenience suppose g e Gx and g is not conjugate in Gx

to an element in U, in particular g $U, and that x"xgx e Gt. So A(g) = 1
and Xix-igx) ^ 1. Let x = xxx2 • • • xn where x{ in Gx or G2 but xi and
xi+1 not in the same factor.

Then x~xgx = x~l • • • x2
xx^1gxxx% • • • xn.

If xxeG2—U, then X{x"1gx) = 2n-\-\ ^ 3, which is a contradiction.
If x = xx e Glt there is nothing to prove.
If x1eG1, n 2s 2, then xx

xgxx $ U because g is not conjugate in Gx

to an element of U; so x\~xgx1e Gx—U and X{x"xgx) = 2(M—1) + 1 ^ 3,
which is a contradiction.

LEMMA 3. Let A = {Gx * G2; [/}. Suppose that if ge A and g lies in
one of the factors, then C(g, A) is conjugate to a subgroup of one of the factors.
If ge A and g is not conjugate to an element in one of the factors, then C(g, A)
is infinite cyclic.

The proof of Lemma 3 is broken up into four steps.

(i) It is sufficient to prove the statement for elements g that are
cyclically reduced of length S; 2.

PROOF. For let geA, g not conjugate to an element in one of the
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factors. Then g = x~xhx for some element h that is cyclically reduced of
length ^ 2. Therefore C{g, A) = x^CQi, A)x.

(ii) Let g e A, g cyclically reduced of length ^ 2. If h e C(g, A), then
h is cyclically reduced of length ^ 2.

PROOF. Let h e C(g, A). The length of h must be ^ 2. For otherwise
h is in one of the factors Gt and so C(h, A) is conjugate to a subgroup of
one of the factors; g e C(h, A), therefore g is conjugate to an element in
one of the factors — this, however, is impossible because g is cyclically
reduced of length ^ 2.

Now g can be written g — gxg2 • • • gn where n 2i 2, each gs lies in one
of the factors, and g{ and gt+1 do not lie in the same factor. Because g is
cyclically reduced, gx and gn lie in different factors, h can be written
h = hxh2 • • • hm where m ^ 2, each ht lies in one of the factors, and hi

and hi+1 do not both lie in the same factor. If h is not cyclically reduced,
hx and hm lie in the same factor. Now suppose that hx and hm do lie in the
same factor G<. Either gx or gn lies in Gf also, say gi e Git and so gn £ G{.

Then g/t = gxg2 • • • gnh^ • • • hm, and since gn and Ax lie in different
factors, X(gh) = n+tn.

hg = h^ • • • Am_1(Amg1)g2 • • • gn; (Amgx) e G<,

so A(Ag) fS M+W— 1. This, however, is impossible because gh = hg. So
hi and Am lie in different factors, and h is cyclically reduced.

(iii) If g E A and g is cyclically reduced of length at least 2, and if
h ^ 1 is such that [A, g] = 1, then g and A are powers of a common element:
3 / such that /* = h and /J' = g for some integers i and /.

PROOF. Suppose the statement is false. Let g* be an element of minimal
length in

( g is cyclically reduced of length at least 2; \
geA\ 3h=£l such that [h, g] = 1 but g and h .

are not powers of a common element J

Let A* be an element of minimal length in

heA\h^l; [h,g*] = 1 but g* and h
are not powers of a common element

A* is cyclically reduced of length ^ 2 by (ii); therefore X{h*) S; X(g*)
because of the choice of g*. Let the normal form for g* be g* = s ^ • • - s,,^;
without loss of generality we may assume that sx e Gx and sneG2. Let the
normal form for h* be h* = txt^ • • • tku2; we may also assume tx e G± and
th e G2 (if not, consider h*'1 which also commutes with g*).

Now g*h* = s1s2 • • • sn(u1t1)t2 • • • tku2, so the normal form for g*h*
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is g*h* = s ^ • • • snt[t% • • • t'ku' for some representatives t[, t'2, • • •, t'k and
some u' e U. Similarly the normal form of h*g* is h*g* = t^ • • • t^ • • • s'nu"
for some s'lt • • -, s'n, u". Because g*h* = h*g*, these normal forms are the
same, k = X{h*) S: X(g*) = n. So s1 = tlt s2 = t% • • •, and sn = tn.

g*-ih* = u^s-1 • • • s^s^hh • • • hu2

and
l(g*-ih*) = k—n < k.

Now g*-xh* ^ 1 because then g* and h* are certainly powers of a com-
mon element; g*~xh* commutes with g* because h* does, and its length is
less than that of h*. So it must be that g*-xh* and g* are powers of a common
element (otherwise the choise of h* is contradicted); however, this implies
that g* and h* are powers of a common element, contrary to the choice
of h*.

(iv) If g e A and g is cyclically reduced of length at least 2, then
C(g, A) is infinite cyclic.

PROOF. Let /* be a non-trivial element of minimal length in C (g, A).
If h # 1, he C(g, A), then h is a power of /*.

Suppose not. Let h* be an element of minimal length in

{h e C{g, A) | h ^ 1, h not a power of /*} .

X(h*) ^ X{j*) by the choice of /*.

By (iii) H / such that / ' = /* and fj = g for some integers i and /.
/ ^ 1 and / commutes with g, so / is cyclically reduced of length at least 2
by (ii). Therefore A(/*) = \i\X{f); if |*| > 1, then A(/*) > X{f), which is
contrary to the choice of /*. This means i = 1 or i = — 1, and so g = f*m

for some integer m; we may assume m > 0.
Again by (iii) 3 h such that h* = h* and h1 = g for some integers i

and /. h ^ 1 and A commutes with g, so A is cyclically reduced of length
at least 2 by (ii). Suppose \i\ > 1. Then X{h*) = \i\X(h) > X{h). Since
h eC(g, A) and of shorter length than h*, it must be that h is a power of
/*, for otherwise the choice of h* is contradicted. But this implies h* = h*
is a power of /*, which is also contrary to the choice of h*. So \i\ = 1 and
g = h*n for some integer n; we may assume n > 0.

If /* = s^z • • • Sj.% is the normal form of /* and

h* = t]t% • • • ttu2 is the normal form of h*,
then
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Because /* and h* are cyclically reduced, the normal form for g is
SiS2 • • • s*SiS2 • • • s'mku' for some coset representatives s[, s'2, • • •, s'mlc

and some u' eU and also kt2 • • • t^t'^ • • • t'lnu" for some t[, t'2, • • •, t'ln
and some u". Since

k = A(/*) ^ X{h*) = I,
it must be that

So

and
= l-h<l since k ^ 2.

f*-ifi* commutes with g because both /* and h* do. f*~xh* = 1 contradicts
the choice of h*, for in this case h* is a power of /*. Therefore, unless f*~xh*
is a power of /*, the choice of h* is contradicted; but if f*-1h* is a power
of /* so is h*, again contrary to the choice of h*. So C(g, A) = gp(f*).
f* is not of finite order, because X(f*n) = \n\ A(/*), which is zero only if
n = 0; therefore this subgroup is infinite cyclic.

We are now in a position to prove Theorem 2.

THEOREM 2. Let A = {G1 * G2; [/}. Su-p-pose that for each non-trivial
element u eU one of the following holds:

(a) {x e G1 | x-^ux eU} = U or (b) {xeG2\ ar1ux eU} = U.

Then the centralizer of an element in A is either infinite cyclic or is isomorphic
to C(g, G{) for some element g in one of the factors Gt.

More specifically:
If l zfc. u e U and (a) holds for u, then C(u, A) = C(u, G2).
If 1 ̂  u e U and (b) holds for u, then C(u, A) = C(u, Gx).
/ / g eGj and g is not conjugate in Gt to an element in U, then

C(g,A) = C(g,Gi).
If h e A and h is not conjugate in A either to an element in G1 or an

element in G2, then C(h,A) is infinite cyclic.

PROOF. Let u eU, u ^ 1, and suppose (a) holds for u. By Lemma 1
{x eA\ x~xux BU}Q G2; since C(u, A) Q {x e A \ x~xux e U}, C(u, A) QG2

and therefore C(u, A) = C(u, G2).
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By symmetry if u e U, u =£ 1, and (b) holds for u, then C(u, A) =
C{u,G2).

If g e Gt and g is not conjugate in G{ to an element in U, then by
Lemma 2 {x e A\x~xgx e GJ C Gf. Since C (g, 4̂) C {x e A \ x~*gx e G,},
C(g,A)QGi. Therefore C(g, 4 ) = C(g, Gt).

Now, every element / in one of the factors Grf is conjugate to an element
g of one of the three preceding kinds; therefore C[f, A) is conjugate to
C(g, A), and we have just shown that C(g, A) = C(g, G() for one of the
factors Gt. Thus if / eA and / lies in one of the factors, then C(f, A) is
conjugate to a subgroup of one of the factors. Therefore, by Lemma 3 if
h eA and h is not conjugate to an element in one of the factors, then
C(h, A) is infinite cyclic.

This completes the proof of the theorem because every element of
A is conjugate to an element x of one of the preceding four kinds and so
has centralizer isomorphic to C(x, A).

We now give two more lemmas needed to prove Theorem 3.

LEMMA 4. Suppose
A = {Gx * G2; U}

where Gt and G2 are in 3P. Suppose also that each non-trivial element in one
of the factors is conjugate in A to an element f in one of the factors G< such
that C{f,A) = C(f, Gf).

Then

1. If g eA and g does not have an nth root in A for some natural number
n, then C(g, A) is isomorphic to a subgroup of F.

and

2. A is an R-group.

PROOF OF 1. Suppose g does not have an ntb root in A for some natural
number n and g is conjugate to an element h in one of the factors, h, and
so also g, is conjugate to an element / in one of the factors Gt such that
C(f, A) = C(/, Gt). Since g fails to have an nth root in A for some natural
number n, f fails to have an n®1 root in A for that same n; a fortiori, / fails
to have an nib root in G{. Since Gt is in 2P, C(f, G,) is isomorphic to a sub-
group of F; therefore so is C(g, A), which is conjugate to C(f, A) = C(f, G4).

If g is not conjugate to an element in one of the factors, then by Lemma
3 C(g, A) is infinite cyclic, and so isomorphic to a subgroup of F.

PROOF OF 2. Suppose xn = yn = g in A. A is torsion-free because Gx

and G2 are, and a generalized free product of torsion-free groups is torsion-
free; so if g = 1 then x = y = 1. Assume g ^ 1. Both x and y are in C(g, A).
If g is conjugate to an element in one of the factors, then, as in the proof
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of 1., C(g,A) is conjugate to C(f,G{) (for some / in one of the factors
G{), a subgroup of Gt; since G{ is in 8P, every subgroup is an jR-group —
hence C(g, A) is also an i?-group. If g is not conjugate to an element in one
of the factors, then C(g, A) is infinite cyclic by Lemma 3, so x = y.

LEMMA 5. Sup-pose A = {Gx * G2; U} where Gx and G2 are in 0*. Suppose
also that if 1 ^ u eU then either

{x e Gx | x-xux eU} = U or {x e G2 | x~xux eU} = U.

If g e A, g does not have an nth root for some natural number n, and for
some y eA y~1gky = gl, then k — I.

PROOF. The proof of Lemma 5 is broken down into four cases:
a. g* eU. If g* = 1 and so gl = y~1gky = 1 then k = I = 0, because

A is torsion-free and g ^ 1. If g* ^ 1 and gl eU also, then y and g are both
in {x eA | x~~1gkx e U}, which is contained in Gx or G2 by Lemma 1; so this
is an equation in a group in 0, hence k = l. But if gl $ U, we may consider
instead the equation y~~xg**y = gkl, which is a consequence of the above
equation, g** and gkl are in U, so by the foregoing k2 = kl; gk ^ 1 implies
k =£ 0, hence k = I.

b. g* in one of the factors but gk not conjugate to an element in U.
gk is in one of the factors implies g is also in one of the factors Gf; therefore
gk and gl both in G,-. By Lemma 2 y e G{. So this is an equation in a group
in 0, hence k = I.

c. g* is cyclically reduced of length at least 2. Then also g and gl are
cyclically reduced of length at least 2.

We can assume k > 0. Suppose also I > 0. Then we may assume
k S: 1; for if not we could consider the equation ygly~x = g*. Let
g* = s i s 2 ' ' ' sm> si m o n e °f the factors, but s( and sj+1 not in the same
factor, g1 = ^ 2 •••<„, tt in one of the factors, but ^ and £i+1 not in the
same factor, y = yxy2 • • • yf, y{ in one of the factors, but yt and yi+1 not
in the same factor. Now st and sm lie in different factors, so either y1 is
not in the same factor as sx or yx is not in the same factor as sm. If yx is
not in the same factor as slt consider the equation

yj1 • • • yfyi1 A S ^ • • • sm = y -v = gV1 = M2 • • • ^^r1 • • • yr1-
This implies /+»» = A(^^ • • • tnyjx • • • y^1) ^ n-\-j, or feA(g) = m ^ n = ZA(g),
which implies ^ ^ I. So A = /. If yx is not in the same factor as sm, consider
the equation

SiS2 '-smAy1---yi = gky = yg*= yxy% • • • Vitxt% • • • tn.

This implies m+j = A(«/Xy2 • • • y , ^ ^ ' * •<« ) ^ / + » ; as before th i s implies
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Now assume k > 0 but / < 0. Then

2r2g*V = y~1{y~1gkyfy = y~xglky = {y~1gky)1 = g1'-

Since k2 > 0 and I2 > 0, by what we have just shown k2 — I2; therefore
I = — k. Now y~1gky = g~~k implies

sr*gV = yxg~hy = (irVy)-1 = £*;
i.e. y2 commutes with gk though y does not. It follows from Theorem 2
that each non-trivial element in one of the factors is conjugate to an element
/ in one of the factors G{ such that C(f, A) = C{f,Gi). Therefore by Lemma
4 A is an i?-group, and in an .R-group, if x and yn (n a non-zero integer)
commute then x and y commute (see [1]). Thus we have a contradiction,

d. In all other cases either gk is conjugate to an element in one of the
factors or to an element cyclically reduced of length at least 2; say z~1gkz e Gt

or z~xgkz is cyclically reduced of length at least 2. y~1gky = gl implies
{z~1yz)~1(z~1gz)k(z~1yz) = (z^gz)1, and by a or b or c, k = I.

We will now restate and prove Theorem 3.

THEOREM 3. Let A = {G1 * G2; U} where Gx and G2 are in 0*. Suppose
that if u eU, « ^ 1 , then either

{x eGx\ x~xux eU} = U or {x e G2 | x~xux eU} = U.

Then A is in &.

PROOF. It follows from Theorem 2 that each non-trivial element h
in one of the factors is conjugate to an element / in one of the factors G,-
such that C(f, A) = C{f,Gi): for if, for example, heGx, then either h
is not conjugate in Gx to an element in U so that C(h, A) = C(h, Gx) or
else h is conjugate to an element u e U and C(u, A) = C(u, G{) for i = 1
or i = 2. Therefore by Lemma 4

1. A is an 7?-group, and
2. (a) If h e A and h does not have an Mtt root in A for some natural

number n, then C (h, A) is isomorphic to a subgroup of F.

And by Lemma 5

(b) If h e A and h does not have an nth root in A for some natural
number n and /-1A*/ = hl for some / eA, then k = I.

In this section it is shown that every countable <^-group A can be
embedded in a 3-generator ^-group A'; if A is a finitely related ^-group,
say given by n defining relations, then the i^-group A' can be chosen so
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as to be defined by n relations (Theorem 4). It follows (Theorem 5) that
there are at least continuously many non-isomorphic 3-generator ^-groups.
Now every countable ^-group is a homomorphic image of a fixed free 3i-
group F of countably infinite rank. Since JF is itself countable, the number
of subsets of F is c, the cardinality of the continuum, and so the number of
ideals of F can be no more than c. Consequently, there are at most c countable
S-groups and, in particular, there are at most c 3-generator ^-groups.
Putting this together with Theorem 5 yields:

THEOREM 5'. The number of 3-generator (and indeed the number of
countably generated) ̂ -groups is the -power of the continuum.

The number of 2-generator ^-groups is still unknown.
G. Higman, B. H. Neumann, and H. Neumann have shown that any

countable group G can be embedded in a 2-generator group G', and that if
G is defined by n relations, then G' can be chosen so as to be defined by n
relations [4], and the proof of Theorem 4 utilizes in part their embedding
procedure. The proof of Theorem 4 was greatly simplified by a suggestion
of Professor Baumslag. It is not known whether every countable ^-group
can be embedded in a 2-generator ^-group.

THEOREM 4. Every countable Q-group A can be embedded in a 3-generator
3>-group A'. Moreover, if the 2-group A is finitely related, say by n defining
relations, then the 3)-group A' can be chosen so as to be finitely related, also
given by n relations.

PROOF. Suppose S = {ax, a2, a3, • • •} is a set of generators of the
i^-group A, that is, A = ^-gp(a1, a2, «3, * • •)• We may assume that
ai ?fc 1 for any i and that ai=£ as, a(^ aj1 for i ^ /. For if S fails to satisfy
these conditions, there is some subset S' of S that ^-generates A and that
does satisfy these conditions; we may replace 5 by S'. We may also assume
that S is infinite. For if S is finite, we will consider (A * F)* instead of A,
where F is a free i^-group of countably infinite rank and (A * F)* is the
free ^-closure of A * F. This makes sense because the free product of two
^-groups is in &, by Theorem 3. The mapping that sends each element
of A into 1 and each element of F onto itself can be extended to a homo-
morphism of A * F; any homomorphism of A * F into a i^-group can be
extended to a homomorphism of (A * F)*; therefore F is a homomorphic
image of (A * F)*. It follows that (A * F)* cannot be finitely ^-generated
because F, a homomorphic image, is not. Notice that the number of relations
needed to define A with the set S' is no more than the number of relations
needed to define A with the set S; and in replacing A by (A * F)*, the
number of relations has not been increased.

Let Ft be a free group, freely generated by x and y, let F2 be a free
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group freely generated by u and v. We wish to consider a certain generalized
free product of Fx and F2 * A.

The subgroup of Fx generated by x, y~xxy, y~2xy2, y^xy3, • • • is freely
generated by these elements. The subgroup of F2* A generated by u,
v~1ua1v, v~2ua.iv

2, v~3ua3v
s, • • • is freely generated by these elements.

For if it is not, there is some non-trivial word R(u, v^ua-^v, • • •, v~muamvm)
in these generators that is equal to 1. But if cp is the endomorphism of
F2 * A that is the identity on F2 and maps every element of A onto 1,
we have

1 = l̂ j = R(u, v^ua^v, • • •, v~muamvm)<p = R(u, v~xuv, • • •, v~muvm),

which is impossible since the subgroup generated by u, vxuv, v~2uv2, • • •
is freely generated by these elements.

Therefore, we may form

H = {FX* (F2*A); W}
where

W = gp{x, y~xxy, y~2xy2, • • •) = gf(u, v^u^v, v~2ua2v
2, • • •)

and the identifications

x = u and y~*xy* = v^ua^1 for i — 1, 2, • • •

are made.
We will establish later that H is in 0>. It follows that H*, the free

^-closure of H, is a i^-group containing A. We now show that H* is a 3-
generator £^-group: we show that

Now x = u, so @-gp(x, y,v) 3 u; therefore 3i-gp(x,y,v) contains both
Fx and Fz. y~ixyi = v^ua^1 implies that

a( = u~1viyixyiv~i = x~1viy~ixyiv~i;

hence 3)-gp{x, y, v) contains {ax, a2, • • •} — therefore 3-gp(x, y, v) contains
@-gp{ai> a2> " ' ') — -A. Since @-gp(x,y,v) contains Flt F2, and A, it
contains all of H and therefore contains 2-gp[fI) = H*.

We shall now show that if

A =®-gp <«!, a2, • • •; R ^ , • • •, ami) = 1, i?2(«i , ' ' " . «™,) = 1. • • •>.

then

y, v; R1(x
v-1, • • •, x-1vm*yrm*xym*v-m*) — 1, • • •>.
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To see this let

B =*9-gp(X, Y, V; R^X-WY-^XYV-1, • • -, X^V^Y-^XY^V'^) = 1,
, • • -, X-lVm'XYm*V~m») = 1, • • •>.

There is a homomorphism q> of B into H* determined by Xq> = x, Yep — y,
Vq> = v by the analogue of von Dyck's theorem for ^-groups since

•, x~xvm'y-mixym'v-m') = R ^ , • • -, amj) = 1

for j = 1, 2, • • •.
Let Y>I and ^2

 De the homomorphisms of the free groups Fx and F2,
respectively, into B determined by

xfx == X, yy>! = Y,
= V.

There is a homomorphism %p3 of the ^-group A into the ^-group B such that

aiWz = Z - i p y - I F F - * for » = 1, 2, • • •

by von Dyck's theorem for ^-groups because

• • '. amV3) = 1. / = 1, 2, • • •.

There exists a homomorphism y> of the free product F2* A into 5
that coincides with ip2 on F2 and with ip3onA.A straightforward verification
will show that y1 and y> coincide on

x = u, y~xxy = v~1ua1v, y~%xyi' = v~2ua2v
2, • • •,

the generators of W; hence y>x and y> coincide on W. Therefore there is
a homomorphism rj of H = {Fx * (F2 * A); W} into B that agrees with
rp-i on Fx and with ^ o n F 2 * 4 . Any homomorphism of H into a S-group
can be extended to a homomorphism of if*. So rj can be extended to a
homomorphism ^* of H* into B.

= XT]* = XT) = Xtfx = X,

Yq>rf = 2/j?* = yrj = yxpx = Y, a n d

= v?7* = wy = vy = u^2 = V.

Since 9^* is the identity map on the ^-generators of B, <pr\* is the identity
mapping of B. Since q> is onto, it follows that q> is an isomorphism, and so
H* has the presentation we claimed.

Therefore, if the i^-group A is given by n defining relations
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#i(«i. • * "> amj> * * *. ̂ n(«i. • • •• «»•,,). the S-group H* is presented on 3
generators and n relations.

It remains to verify that H is in 2P. Now any free group is in 0>, so
Fx and F% are in ^ ; also any ^-group is in 0*. F% * A is therefore in 3P,
being the free product of two groups in £P. These statements follow from
Theorem 3, but a more direct proof can be found in [1]. The following
lemma shows that {x e F 2 * A \ x-1wx e W} = W for each non-trivial
element weW. Therefore, by Theorem 3, H = {Fx * (F2 * A); W) is in &.
The lemma completes the proof of the theorem.

LEMMA. Let F be a free group freely generated by u and v. Let A be a group
and {ax, a2, • • •} be a subset of A such that at =£ 1 for any i and af ^ at,
at ^ aj1 for any i # /. Let

G = F*A
and let

W = gp(u, v-^ua^v, v~2ua2v
2, • • •).

/ / l / u e l f and gwg-1 e W for g e G, then geW.

PROOF. AS we have already pointed out, W is freely generated by u,
v~xuaxv, v~%ua2v

2, • • •. Therefore any element w e W can be written uniquely
as

w = •M*1(v"-'1Ma,-ia
il)miM*»(w-i»«0i fl<»)mi • • • wfc»(j>-'««aliii;

<»)m"«*;»+i

= «*»w- ' i («« , )mi«''iM**i;-<*(Mai )">«D<I • • • uknv~in(ua{ )m«»'»«*«+»

where the it are positive integers, the nij are non-zero integers, the ht are
integers, and if ks = 0 then is_x =£ ij. Since at ^ 1 for any *, it can be seen
by inspection that if w1w2 • • • wl is the free product normal form for w, then

wx = u*1 and 1=1 if n = 0,
wx = u^v-^u and w2 = at if mx > 0,
wx = uhlv~(l and zei2 = a^1 if mx < 0.

We wish to show that if I ^w eW, g eG and gwg-1 e W, then g e W;
so let us suppose that this is false. Let

T = {g e G—W | 3 w e W, w ^ 1, such that gwg~x e W},
and let

p = min mg) \geT}.
Let g be an element of length p in 7\ let 1 ̂  w e W be such that gwg-1 e
and let

w = wxw2 • • • w

be the normal forms for g and w.
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First let us notice that if p S: 2, then the first two terms, gx and g2,
of g are not the same as the first two terms w[ and w'2 of any word w' e W.
For if this were false then either gt = ukv~'u and g2 = at (for some i, k)
or gi = uhv-* and g2 = aj1 (for some i, k). Thus suppose

gt = ukv~*u and g2 = at.
Set

g' = (^w-'wa^*)-^;

g' £ W since w^^-'wa^' e W and g # W. Now

g'wg'-1 — (ukv-iuaiv
i)-1(gwg-1)(ukv-iuaiv

i),

and this element is in W because gwg-1 e W and (*t*t/-*«a<w') e W. gwg-1 ^ 1
because ze> ^ 1. Thus g' eT — but g' = TH if /> = 2 and g' = v~*g3 • - • gv

if p > 2; in either case A(g') < />, which is a contradiction. The supposition
that gx = tt^tH and g2 = a^1 leads in the same way by consideration of
the element g' = (v^ua^u^g to a contradiction of the minimality of p.

Now g-1 is also an element of length p in T: for g^igwg-^g = w eW,
gwg-1 e W by assumption, gwg"1 # 1 because w # 1, g-1 £ TF because
g $ W, and A(g-X) = A(g) = />. So if p ^ 2 then g"1 and g"^ are not the
same as the first two terms of any word in W.

It follows that if p S: 2 it cannot be that g2 or g^1 is left uncancelled
and unamalgamated in the product

For if g2 is left uncancelled and unamalgamated, then gx and g2 are the
first two terms of gwg-1, an element in W; if g^1 is left uncancelled and
unamalgamated, then g1 and g2 are the first two terms of (gwg-1)-1, which
is in W. Also, if p ^ 2,1 ^ 2, and g, = w^1, then gj,_x # te^1; and if p ^ 2,
/ 2: 2, and gv = wlt then g^_! # w,_x (because wf1 and z e ^ are the first
two terms of u)-1).

The first and last terms of any element in W lie in F. It follows that
gP e F. For suppose g9 eA. Then in the product

1 =gwg-1 =

there is no cancellation and no amalgamation. Since g2 cannot be left
unaffected, this implies p = 1 and g = gv e A. Therefore the first term of
gwg-1 is in A, which is impossible because gwg-1 e W.

We have already observed that g - 1 is also an element of length p in
T, and it follows that gf1 and so also gx is in F.

Because both g and w begin and end with terms in F, A(w) and A(g)

https://doi.org/10.1017/S1446788700004201 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004201


396 Tekla Lewin [22]

are odd. We will consider separately various cases depending on A(w) = /
and A(g) = p.

(a) 1=1. In this case w = uk, k ̂  0. Thus

gwg-i = g l . . . gJ_1(gvu
kg-1)g£1 • • • gj"1.

uk ^ 1 implies g"1*^,, ^ 1. So g1( • • -, g,,^ are left uncancelled and unamal-
gamated; hencep 5g 2 (because g2 cannot be left unaffected), p ^ 2 because
>̂ is odd. Therefore, p = l, and g = gx e F ; so gze'g"1 e F. Nowgwg-1 e F r\W
means gwg-1 = um for some integer m. So we have

gukg-x = um.

Such an equation in a free group implies k = m and so g e C(uk, F). Since
u belongs to a set of free generators of F,

C(u\F)=gp(u).

Thus gegp (u) < W, which is a contradiction.

(b) I = 3. w = wxwiwz.
First we will establish that w3 =£ w^1. Now either zê  = ukv~*u and

j£i2 = ai or wx = «*v~* and w2 = a"1. In the first case

^"1 = ukv~iuaiu~1viu~k,

and if this were in W then the element (ukv-iuaiv
i)~1w1w2Wi1 = jr'w-Mtr-*

would also be in W. But the only elements of length 1 in W are powers
of u. In the second case

and if this were in W then also (v~iuaiv
iu-k)wxwiw~[l = v~iuviu~k would

be in W, but it is not. Hence wz ^ w^1, as we claimed.
We have

= gl • • • gJ,-1(gvw1)w2{wzg-'L)g-l_x • • • &-1-

Either gv ̂  w^1 or gj,^w3; for convenience we may assume gv ^ w^1

(otherwise instead of g, w, and gwg-1 we could consider g, urx, and gw^g-1).
Even if gp = w3, the term w% is at most amalgamated, so the first p terms
of gwg-1 are glt • • -,&,_!, (^iPi); therefore /> ̂  2. But p # 2 because />
is odd, so >̂ = 1. Therefore g = gpe F, and

where ga^ and te/gg"1 are in F and gt^ ^ 1.
Thus the first two terms of gwg-1 are gw± and w2. Now, either wx — M*U-'' «

and w% = a4 or ie/x = ukv~* and te>2 = aj1- Suppose wt = M*U-'« and w2 = at.
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Because a{ =£ aj1 for any / and af ^ a, for i j± j , the fact that the second
term of gwg-1 is at implies that the first term of gwg-1 is umv-*u for some m.
Therefore

umi)-'u = gwx =
hence

g = um-*,

which is in W, a contradiction. So it must be that wx = «*«-* and w2 = ai
 x.

That the second term of gwg-1 is a"1 implies that the first term of gwg-1

is umv~* for some m. Hence

and so

g = ««-*,

which is an element of W, and this again is a contradiction,

(c) I 5: 5, p = 1. In this case g = gxe F.

If g = w^1, than the first term of gwg-1 is w2, which is in A; this is
impossible; so g ^ ze*̂ 1. Therefore, as in the case just examined, the first
term of gwg"1 is gwx and the second is w2; as before this leads to the con-
clusion g = um~k for some integers m and k, which is a contradiction.

(d) I ^ 5, p ^ 3. Let us assume in addition that we have chosen w
to be of minimal length among all non-trivial elements w' in W such that
g'w'g1'1 e W for any element g' of length p not in W.

gwg-1 = g1--- gJ,-1{gJ,w1)w2 • • • w^Wtg-^g-li • • • g?.

If gv =fc w^1, then gj,_i is uncancelled and unamalgamated; since
p — \ 2: 2, this means g2 is uncancelled and unamalgamated — but we have
shown that this cannot happen. Likewise, if gv ^w%, then g~^ is left
unaffected and so also g^1 is left unaffected — but we have shown that
this cannot happen.

Therefore gv = w^1 = w{. This means that gv_1 is amalgamated with
w2, Wj_i is amalgamated with g~*lt and the other terms are unaffected
because I Sg 5. That gv_2 is unaffected implies p—2 < 2 and so p = 3.
Therefore

Either wxwz = w^i^Mflj or zê Wjj = uFv-'dj'1. If ^i^a = u*v~iuai,
set z = w-iW^v* = ^v-'uciiV*, which is in W. Let w' = z"1^^; w' is also
in PF. We will show that the length of w' is shorter than the length of w
and that there exists g' of length p not in W such that g'w'g'-1 e W. Now
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w' = v-'w^w^w-^Wz • • • w,_1wlw1w2v
i = {v~{w3) • • • (w^w^v1,

since wt = w^1. So X{w') ^ A(w)—2, since v~{ and w3 lie in the same factor
and ie>t_] and w2 lie in the same factor. That w ^ 1 implies that w' ^ 1.
Let g' = gz; g' $ W. However,

g'w'g'-1 = (gz)z~1wz(gz)-1 = gwg~l e W.
Now

g' = * feK
because g3 = w^1; therefore A(g') = 3 = p. This, however, is in contradic-
tion to the minimality of w.

If w1w2 = ^v-'aj*, set z = W-LW^U-^V1; by the same argument one is
again led to a contradiction.

In every possible case we have arrived at a contradiction; so there
can be no element g eG—W such that gwg-1 e W for 1 ^ w e W.

THEOREM 5. There are at least continuously many non-isomorphic 3-
generator ^-groups.

PROOF: Let a be a subset of the natural numbers containing 1. For
each such set « we will construct a ^-group G* and then by the procedure
of Theorem 4 embed G* in a 3-generator i^-group H*. We will show that
H* is not isomorphic to H* if a ^ /3; this will prove the theorem since there
are continuously many such sets «.

Now let

where Fk is the direct product of k copies of F. F* is a i^-group and so is
in £P. The free product of two groups in & is itself a group in SP, as a special
case of Theorem 3, and by an induction so is the free product of countably
many groups in 0* itself a group in 0*. So Ga is in 0* and can be embedded
in the i^-group G*, its free ^-closure.

By Theorem 2 (and again an induction), if 1 =£geGa then either
C(g, GJ is infinite cyclic or C(g, Ga) is isomorphic to C(h,Fk) for some
k e a. C(h, Fk) = Fk; so if 1 ^ g eGa then either C(g, Ga) is infinite cyclic
or C (g, Ga) is isomorphic to Fk for some k e a. It follows that the elements
of Ga having nih roots for every n are just those elements having centralizers
isomorphic to Fk, k e a.

By Theorem 1 if 1 ^ g e Ga and g has an nth root in Ga for every n,
then C(g, G*) = C(g, GJ; in this case C(g, Ga) is isomorphic to Fk for
some k e a, so C(g, G*) is isomorphic to Fk for some k e a. If l ^ g e G J
and g is conjugate in G* to an element h eGa having all its roots in Ga,
then C(g, G*) is isomorphic to C(h, G*) and this is isomorphic to Fk for
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k EX. Again by Theorem 1 if g e G* and g is not conjugate in G* to an
element of Ga having all its roots in Ga, then C(g, G*) is isomorphic to F.
F = F1, and l e a . Thus we have shown that if 1 ̂  g e G*, then C(g, G*)
is isomorphic to Fk with k e a.

G* is countable because it is countably generated. Let us recall that
G* can be embedded in a 3-generator ^-group H*, the free ^-closure of a
group Ha:

(see Theorem 4) where Flt F2, and W are free groups, and if 1 ^ w e W
then {x e F2 * G* \ x~ywx e W} = W. The centralizer in F2 of each non-
trivial element in F2 is infinite cyclic, and the centralizer in G* of a non-
trivial element in G* is isomorphic to F", k e a. Therefore, by Theorem 2,
the centralizer of any non-trivial element in F2 * G* is either infinite cyclic
or isomorphic to Fk, k e a. The centralizer of a non-trivial element of Fx

is infinite cyclic. Since {x e F2 * G* | ar̂ zeix e W} = W for \ ^=w eW, it
follows from Theorem 2 that the centralizer of a non-trivial element in
Ha is either infinite cyclic or isomorphic to Fk, k e a. It follows that the
elements of Ha having nth roots for every n are just those elements having
centralizers isomorphic to Fk with k e a.

H* is the free ^-closure of a group Ha in 0*, and by Theorem 1, we
see that: if 1 ^ g e .ff* and g is conjugate to an element h e Ha having wtu

roots in Ha for every w, then

C(g, H*) - C(^, H*) = C(h, Ha) - Fk, where i e a ,

while if 1 7̂  g e if* and g is not conjugate to an element h e Ha having
«th roots in Ha for every n, then

Since 1 e a, in any case C(g, H*) is isomorphic to Fk for some ^ 6 a, provided

Now suppose a and /? are two different subsets of the natural numbers
containing 1. We wish to show that H* is not isomorphic to H*. Either a
contains a number not in /? or /? contains a number not in a; for convenience
let us suppose m e a, m ^ . Now #£ contains no element g such that
C(g, H*) is isomorphic to Fm; so if we can show that there is an element
geH* such that C (g, H*) is isomorphic to Fm, then H* cannot be isomorphic
to # ; .

Now Fm <Ga< H*. Let g be any non-trivial element in Fm.
C(g, GJ = C(g, Fm) = Fm, by Theorem 2. g has an nth root in Ga for every
n, so by Theorem 1 C(g, G*) = C(g, Ga) = fm. Again using Theorem 2,
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Ha = {F1 * {F2 * G*); W), and by Theorem 2 either C{g, Ha) =
C (g, F2*G*) or g is conjugate in F2 * G* to an element in W. But it cannot
be that g is conjugate in F2 * G* to an element w e W. For if g is conjugate
to w, then M> ^ 1 and so by Theorem 2 C (w, Ha) = C (a>, Fx), which is infinite
cyclic because Fx is a free group. However g is conjugate to w implies that
C (g, Ha) is also infinite cyclic, and this is impossible because C (g, Ha)
contains C{g, F2 * G*) = Fm. Therefore C(g, Ha) = C{g, F2 * G*) = Tm.
Since g has an nth root in Ha for every natural number n, C(g, H*) =
C(g, Ha) = Fm by Theorem 1. This shows that H* is not isomorphic to

In 1951 Graham Higman gave the first example of a finitely generated
infinite simple group [3]. This section will be concerned with a similar
example for ^-groups. We will show, by a non-constructive proof, that there
is a 5-generator non-abelian simple ^-group, that is to say a ^-group with
no proper ideals.

We begin by constructing five isomorphic copies of the following
group

G=gp (T, x; x~xzx = z2 for all z e T>.

G is a splitting extension of F by an infinite cyclic group generated by
x. Now let Gi be an isomorphic copy of G for i = 1, 2, 3, 4, 5; if g e G,
the corresponding element of G{ will be denoted by gt. We choose now
arbitrarily an element y in F, y =£ 1. The order of y is infinite, and so we
may form the generalized free products

H = {<?! * G2; yx = z2},
K = {G3 * G4; y3 = a;4}, and
L = {if * G5; y4 = x5}.

Now, in H,

(see [5] for a proof); therefore gp(x1, y2) is a free group freely generated
by xx and y2. Similarly, the subgroup of L generated by x3 and y5 is a free
group freely generated by these elements. Therefore, we may form

M = {H * L; xx = y5, y2 = x3).

We show later that M is in 0> and therefore can be embedded in M*,
its free S-closure. The group M is generated by the elements xx = ys,
X2 = V\> xz = Vi> xi = Vz> a n ( i X5 = 2/4. together with their roots; therefore
the ^-group M* is generated by xx, x2, x3, xt and x5. For convenience
we put
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a = x1 = ys, b = x2 = y1, c = x3 = y2,

d = xt = y3, and e = x5 = y4.

Now since y e F, x~xyx = y2; hence x^y^ = y\ for i = 1, 2, 3, 4, 5.
Therefore the following relations hold among these generators of M*:

= b2, b~lcb = c2, c^dc = d2, d~xed = e2, e~xae = a2.

By Zorn's lemma we may choose in M* a maximal ideal not containing
a; let / be such an ideal. Set A = M*\I. It is this ^-group A that turns
out to be non-abelian and simple. A is non-abelian because

(el)-1{al){el) = (al)2, and al # 7 .

Now if A were not simple, A would contain a proper ideal, and so M*
would have a proper ideal / properly containing / . / properly contains
/ implies that a e J, because of the choice of / . Now, for g e M*, let g = gj;
in M*IJ we have

a = 1 => 5 = ar^ha = b2 => B = 1.
Similarly

B=l=>c=l=>d=l=>e=l.

Thus, the S-group M*/J is trivial because its generators, a, b~, c, 3. and e,
are all trivial. Therefore, / coincides with M*. Thus A contains no proper
ideal and so is simple.

It remains to verify that M is in 0>; this is the difficult part of the
proof, and we will continue by a number of lemmas.

LEMMA 1. G = gp </", x; x~xzx = z2 for all z in ry is in 0*.

PROOF. G is a splitting extension of F by an infinite cycle generated
by x, since z -> z2 for z in F is an automorphism of F. x~xzx = z2 implies
x-T'zx* = z2" for k any positive integer, and hence x^zxr11 = z2~*. So for any
integer k, x~hzx* = z2*.

Choose y e F, y ^ 1. Every element g e G can be written uniquely as

g = x*yr, k an integer, r rational.

First, we will show that G is an i?-group, and to this end we now
investigate the nth roots of x*yT. Suppose that {xly')n = xhyr, n a natural
number.

n

-2)l) • • • (x~ly'xl)y'
«T cyln~l)l a aitl— 2 ) 1 - A ! - -

= xnly2 'y2 >...y* >y»
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Thus nl = k and s(2<"-"1+2in-vl-\ | -2 l+l) = r. So if x*yr has an
« t t root, n\k. Whether kjn is positive, negative, or zero,

2e>-i)*/"_^2(n-2)*/n+ • • • +2*/ n +l =£ 0

because the complex solutions of the equation zn~l-\-zn~2-{- • • • -\-z-\-l = 0
are the ri01 roots of unity different from 1. So (xly*)n = a^yr if and only
if n\k, I = kjn, and

S — 2<»-l>*

Thus whenever n\k, x*yT has a unique n^ root; if n \ k, x*yr has no nth

root. This establishes that G is an i?-group.
We will now show that ii g eG and g fails to have an «to root in G

for some n then (a) C(g, G) is cyclic and (b) if h-1gph = gt for heG and
integers p and <?, then p = q. First let us notice that the elements y" have
n^ roots in G for all«, so that we are only trying to prove these statements
for elements g of the form g — aPy* where k ^ 0. Now, in an i?-group G,
if g = hn, n r£ 0, then C(g, G) = C(A, G); so that it is sufficient to establish
(a) and (b) for the elements ay , since spy* = (xy*)h for some s. xyr is con-
jugate to x, since

yTxy-r — xy*'-* = xyr;

and so it is sufficient to establish (a) and (b) for g = x.
Suppose xly$eC(x, G). Then

xly* = x~1(xly')x = x^x^y'x) = xly2'.

Therefore s = 0, which means that C(x, G) =gp{x). Now suppose h~1xvh=x"
for some h = xly*. Then

x« = (xlys)-1xp(xly') = y-'x^x'x'y' = y~'xvy* = ar^y-^'-H,

and we see that p = q.

LEMMA 2. The groups H = {Gx * G2; j/i = x2}, K = {G3 * G4; y3 = xt}

and L = {K * G5; y4 = x5} are in 0>.

PROOF. The groups Gt are isomorphic to G, so by Lemma 1 they are
in &. We have just shown that h~1x"h = x" for heG and integersp and q
implies p = q, and so h e C{xp, G) — gp{x). This means that if
l^gegpfr) that

{heG\h-ighegp(x)} = gp(x).

In the isomorphism of G and Gt x corresponds to x(; therefore if
) t h e i*

{heGi\h-ighegp(xi)}=gp(xi).
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In H the amalgamated subgroup is gp(x2), in K it is gp{x^, and in L it is
gp{xB). Therefore, by Theorem 3, H, K, and L are in &.

Finally we come to the most troublesome lemma of all,

LEMMA 3. The group M = {H *L; xx — y5, y2 = xz} is in 0*.
Let U = gp{xlt y2) = gp(ys, x3). The proof of Lemma 3 will be broken

up into two parts. First we will show that if u e U and u is not conjugate
in U to a power of y5, then

{heL\h-luheU} = U.

Then we will show that if 1 ^ u e U and u is conjugate in U to some power
of xx = y5, then

{h e H\h-iuh eU} = U.

By Theorem 3, this will establish that M e 0>.

1. If we U — gp(y5, xa) and u is not conjugate in U to a power of
yb, then

PROOF. Let us recall that

c = x3, d = x4 = ys, e = xh = yit and a = yh.

Thus G3 is a splitting extension of /"3 (isomorphic to T), which contains
an element d, by an infinite cycle generated by c. Gi is a splitting extension
of Fit which contains an element e, by the infinite cycle generated by d. So

G5 is a splitting extension of F5, which contains an element a, by the infinite
cycle generated by e. Hence

L = {K*G5;gp(e)}.

U = gp{a, c), and we have already remarked that this group is free and
freely generated by a and c. We wish to show that if u e U, u is not con-
jugate in U to a power of a, and hrxuh e U, then h e U; so let us suppose
this statement is false.

For heL let X(h) be the length associated with the factorization
L = {K*Gi;gp(e)}.

Let
heL—U, 3u eU, u not conjugate in U
to a power of a, such that hrxuh e (7

Let A be an element of length p in L—U and u eU, u not conjugate in
C7 to a power of a, such that h~1uh e C7. Let w = h~xuh. Because u and w>
are in U, they can be written uniquely as

p = min I %(h)
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u = uxu2 •••um,

w = wxw% • • • wx,

where each uf and each wt is either a power of a or a power of c, but ut

and ui+1 not both powers of a nor both powers of c, w( and wi+1 not both
powers of a nor both powers of c. This means that each ut is either in K
(in case ut is a power of c) or in G5 (in case ui is a power of a) but uf and
w m not both in the same factor; therefore X(u) = m. Similarly, X(w) = I.

Now suppose that p 3; 1. Then

h = AXA2 • • • hj,,

where ht is in one of the factors K or G&, but hi and Aj+1 not both in the
same factor. It cannot be that hv = ekx where k is an integer and a; is a
power of a or a power of c. For if this were so, then h' = hx~x $ U because
h $ U and x e U, while

h'-i-uh' = zf*-1**)*-1,

which is in U because hrxuh e U and x e U; however

so A(A') =^>—1, a contradiction. Furthermore, h1^xek where & is an
integer and a; is a power of a or a power of c. For if hx = xek, then h' — x~xh $ U,
u' — x~xux e [/, and u' is not conjugate in U to a power of a because u
is not. Now

h'^u'h' = h-1x(x~1ux)x-1h = *-*«*,

which is in U. But

ar-i* = ar-iAjA, • • • \ = (e*h2) • • • h,,

so ?-(h') = p—1, a contradiction.
We will consider separately various cases depending on the lengths

of M and h.

(a) p > 1, m > 1.

ze'iZe'a • • • wt = w = h~xuh = A"1 • • • /^"1/^1w1w2 • • • u^-Ji^ • • • hv.

Because hx ^ xek where a; is a power of a or a power of c, h^1^ $gp{e) and
u

mh\£gp(e)'> therefore after all cancellations and amalgamations have
taken place in this product the initial term h~x is unaffected. But
X{w^lw) = X(w) — 1 and

imply that w^h'1 egp(e), and so hv = ekw^1 for some integer k; but w^1

is either a power of a or a power of c, and we have seen that this is im-
possible.
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(b) p = 1, m > 1.

wxw2 • • • Wf = w = ~hrxuh = h~1uxu2 • • • umh.

If h is in a different factor than ult then h"1 is unaffected in the product
hr^uh, and so by the argument used in case (a) w^h,-1 egp(e). But this
means h = hv= ekwx

1 for some k, which is impossible.
If h is in the same factor as ux, h~xux $gp{e) (otherwise h = hx = u^"

for some k), and this initial term h~xu, is unaffected after all cancellations
and amalgamations in the product have taken place. Therefore wx

xh~lux — e*
for some k. Let h' = ii[lhwx = e~k; h' is not in U and X(h') = 0. Let
u' = Uiluux; u' eU because u, uxe U, and u' is not conjugate in U to a
power of a because u is not.

and this is in U because wxeU and hrxuhe\J. But this contradicts the
assumption p = 1.

(c) p > 1, m = 1.
We have assumed that u is not conjugate in U to a power of a; in

particular u is not a power of a. Therefore, since A(w) = 1, u = cn for some
n =£0.

wxwi • • • wl = w = h~luh = h~x • • • h^1 k^cnh-Ji2 • • • hv.

If hx and cn lie in different factors, then no terms in this product are
affected, and as before we can conclude that wx

1h~x egp{e), which implies
hv = ekwx

1 for some k, a contradiction.
Therefore hx lies in the same factor as c", namely in K. If

hx
1cnhx$gp{e), then

A-1** = h-1 • • • hi1 A {hx
xcnhx) Ah2---hp;

thus h~x is unaffected after all cancellations and amalgamations have
taken place, and as before w^h'1 egp(e), which leads to a contradiction.
Hence

h\-xcnhx = e*

for some k, and we wish to show that such an equation in the group
K = {G3 * G4; gp{d)} is impossible. G4 is a splitting extension of JT4, which
contains e, by the cycle generated by d. Therefore G4 possesses an en-
domorphism q> that maps d onto itself and each element of Ft onto 1.
The identity map of G3 coincides with <p on the amalgamated subgroup. It
follows that K has an endomorphism r\ that is the identity on G3 and agrees
with q> on G4. Now

ekr) = e*<p = 1,
a n d
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So

but this implies c" = 1, or n = 0, which is a contradiction.

(d) /> = 1, m = 1.
Since X(u) = 1 and u is not a power of a, u = c", « ^ 0.

If A and c" lie in different factors, then as before w^hr1 egp(e), which
leads to a contradiction.

Thus A lies in the same factor as cn; that is, h eK. Hence h~^cnh is in
K ngp(a,c) =gp{c), so

h-tc'h = c*

for some integer k. We now examine this equation in the group
K = {G3 * GA; gp(d)}. Gz is isomorphic to G with x ->• c, y -+ d. From the
proof of Lemma 1 we know that C(c, G3) = gp(c), and c is not conjugate
in G3 to an element of gp(d) (because d has nth roots in G3 for every n,
while c does not). Therefore, by Theorem 2 C(c,K) = C(c, G3) = gp{c).
This implies c does not have, for example, a square root in K; therefore,
since K is in 2P (Lemma 2) and hrxcnh = c*, it follows that n = k and
so h e C(c, K) — gp(c) < U. This is a contradiction.

(e) /> = 0, m > 1. In this case h = ek, k a non-zero integer.

ẑ zeig • • • wl = w = h~xuh = (e~*«x)«2 • • • («me*).

This means that I = m, Wj and ux in the same factor and

ze»f1e~*M1 = en, n an integer.

If wx and «x lie in K, then ze^1 = c* and ux = c1 for some non-zero
integers i and /; we have

cie-hcie-n = 1 , i^O, k^O, j # 0,

an equation in i£ = {G3 * Gi;gp(d)}. However, this is impossible, because
c* e Gz—gp[d), er" e Gi—gp{d), c> e G3—gp(d), and e~n e G4; such an element
cannot be 1 in a generalized free product.

Thus wx and ut lie in G5. Therefore w^1 = a' and ux = a? for some
non-zero integers i and /, and so

e" = w\-re-hux = ate-* a1 = e-*«2"*<+i

(because ^-xae = a2, eka*e~k = a2"*' — see Lemma 1). So » = —k. Now,
/ = m > 1. If J > 2, then we have
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w2---wl = ( a ^ ^ W i K • • • (umek) = e~ku2 • • • (wme*).

This implies
w2

xe~ku2 = eq, q an integer.

Now w2 and u2]ie in K and so w2
x = c', «2 =

 c* f° r non-zero integers i
and /. Thus in K we have the equation

= 1 , * # 0, k =/= 0, / ^ 0,

and we have already remarked that such an equation is impossible in K.
Therefore I = m = 2, and we have

Since w2 and u% are in K, w^1 = c4 and u2 = c1 for non-zero integers.
This gives us the equation

= l i^Qt k^O, j ^ 0,

which is impossible.

(f) p = 0, m = 1.
In this case h = ek, k # 0, and « = c", « ^ 0 (because w is not a

power of a). Thus A~1«A = c~*c"efc. e and c are ini£, so hrluh eK n g/>(«, c)
= g/>(c). Therefore for some integer q we have

e-*cne* = c", k^0, n^0,

and as we have shown, such an equation is impossible in the generalized
free product K = {Gz * G4; gp(d)}.

This completes the proof of part 1 of Lemma 3.

2. If u e U = gp{xlt y2) and u is conjugate in U to a power of a;1(

then
{h e

PROOF. Let us recall that a = xx, b = x% = ylt and c = y2. Gx is a
splitting extension of i \ , which contains 6, by the infinite cycle generated
by a. G2 is a splitting extension of F2, which contains c, by the cycle
generated by b. Thus

For h e H let X(h) be the length associated with this factorization. We wish
to show that if « € U = gp{a, c), u is conjugate in U to a power of a, and
hrXiuh e U, then heU. Suppose we can show that if hrxanh eU (» ^ 0)
then heU; it follows from this that if v e U and A-1(«-1aBt»)A e U then
vheU and so A e U. Thus it is sufficient to show that if A"1*"*eU.n ^ 0 ,
then A e U. Let us suppose then that this is false.
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Let
p = min {?,{h)\h e H—U, h~xanh e U for some n ^ 0}.

Let h be an element of length p in H—U and n ^ 0 such that hrxanh e U.
If p 2; 1, then A can be written in the form

h = hx h2 • • • hp

where hi is in one of the factors G1 or G2 but h{ and hi+1 are not in a common
factor. Let w = hrxanh. Since w eU, which is freely generated by a and c,
w can be written uniquely in the form

w = w1w2 • • • wx,

where each wi is either a power of a or a power of c, but not both w( and
wi+1 powers of a, not both wi and wi+1 powers of c. This means that each
wf is either in Gx (in case wt is a power of a) or in G2 (in case zê  is a power
of c) but «,- and «<+1 not both in the same factor; therefore X(w) = I.

If p ^ 1, it cannot be that h^xegpfi) where a; is a power of a or a
power of c. For if hvx = V, k an integer, let h' = hx; h' $U because x e U
and A £ U.

h'~lanh' = x-^hr^anhx = x-^\)rxanh)x,

and this is in U because hrxanh,GU and xeU. But

hx = hx • • • hv_ihvx = ht • • • (*„_!&*),

and so X(hx) = p—1 because bk is in the amalgamated subgroup. And
this is in contradiction to the minimality of p.

Let us consider separately various cases.

hp.

(a) h^eG^-gpip). In this case we have

w1w2 • • • wl = w = hrxuh = A"1 • • • h^1 A an A hx • • • hp

It follows that w^h^egpib), or hJ>w1egp(b); however, as we have just
shown this is impossible because wx is either a power of a or a power of c.

(b) ^ e G x , p>\.

w1w2 • • • wt = w = h-ifth = h~x • • • h2
1(hi1a"h1)h2 • • • hv

h~lxanhx $gp{b) because b has n^ roots for every n in Glt while a does not,
so no power of a can be conjugate in Gx to a power of b. Therefore
A^1anA1eG1-g/)(6), and the terms h'1, • • •, fq1 are unaffected by amal-
gamations. Hence w~[xh~r egp(b), which we have shown is impossible.

(c) heG1. Both an and heG1 implies h^a^heG^ Therefore
hr1anheG1 nU — gp(a). But in the proof of Lemma 1 it was shown that
hrxanh = ak implies hegp(a), which is contrary to assumption.
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