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Introduction

There is an extensive literature concerning groups in which the extrac-
tion of roots is always possible. Among the various classes of groups that
have been studied is the class of those groups in which the extraction of
roots is not only possible but is also unique. More precisely, let @ be a non-
empty set of primes: then we shall call (using the notation of G. Baumslag)
a group G a ZDzgroup if the equation

=g (pea, geG)

is always uniquely solvable in G. It is with groups of this kind that we shall
be concerned in this paper. However, the set @ of primes turns out to be
immaterial as far as this work is concerned, in the sense that our theorems
are valid for every set @ of primes. Therefore we have found it expedient
to confine ourselves to the case where @ is the set of all primes, and hence-
forth we shall omit the suffix @. Thus, if G is a 2-group, then the equation

" = g (n a natural number, g eG)

is always uniquely solvable in G; we shall call the solution z the #* root of
g and write g/* = z, and if » = m/n where m is an integer, g" = (g¥/")™.

The starting point for the present considerations is the notion of a
free @-group, which was introduced and studied by G. Baumslag [1].
Let us call a subgroup H of a @-group G a Z-subgroup if the roots of the
elements of H lie in H; a set S of elements of G will be said to &-generate
G if every 9-subgroup of G containing S coincides with G. Then a 9-group
F is free if it possesses a set S of elements, called free generators of F,
such that
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(1) S P-generates F
(2) for every Z-group G and every mapping 0 of S into G, there is a
homomorphism ¢ of F into G that coincides with 6 on S.

It turns out that the cardinality of S, the so-called rank of F, is an
invariant [2]. It is not difficult to show that there is a free @-group of rank
m for every cardinal number m [2].

We shall call a normal subgroup N of a 2-group G an ideal if G/N
is itself a Z-group. Now let G be any given 2-group; then G ~ F|N for
some suitably chosen free Z-group F and some ideal N of F (the choice
of F and N are of course not unique). If F can be chosen to be of finite rank,
we shall say G is finitely &-generated or that G is a finitely generated 2-
group. If F and N can be chosen so that there exists a finite set of elements

Wl’ W2J Y Wm EN

such that every ideal of F containing these elements contains N itself,
then we shall say that G is a finitely related 2-group. If G is a finitely
generated and finitely related 2-group, then we call G a finitely presented
Z-group.

In order to avoid such awkward locutions as “‘the set S Z-generates
the 2-group G”’, we shall strictly adhere to the following convention: S
gemerates the D-group G means the same as S D-generates G, whereas S generates
G means the subgroup of G generated by S is G ttself. Likewise, the D-group
G is finitely generated means G is D-generated by a finite set. It is important
to keep this convention in mind so that no confusion will arise for a Z-
group G, between these notations for G qua 2-group and for G qua group.

More generally, we would like to define the concept of a presentation
for a @-group. To this end, let us notice that if F is a free 2-group with
a set of free generators a,, a,, * * -, then every element W e F can be written
as an expression, or word, involving the generators a,, 4,, * - -. To see this,
we define a word of weight # in F as follows: First we shall call the free
generators a,, 4, * + - words of weight 1. Having defined words of weight
less than #, we define (UTV*)?, where U and V are words of weight less
than # and 7, s, ¢ are rational exponents, to be a word of weight #. The
collection of words of weight #, as # ranges over the natural numbers,
constitutes the set of words. Since the elements a,, 4,, - + - Z-generate F,
every element can be written as a word in 4,, a,,---. If W e F can be
expressed as a word in a4y, 4,, * * -, 4,,, then we shall indicate this by writing
W=W(a,,a,,- -, a,).

Now let G be any given 2-group. Let F be a free Z-group and N an
ideal of F such that F/N 2 G. Let a,, a,, - - - be a set of free generators
of F and let a,Np = g;. If the elements
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Wilay, ap), Wylar, *, ap), - " €N

are such that every ideal containing these elements contains N, then we

shall write
(*) G= Q'gﬁ <g11 82, """ Wl(glx Y gml) =1, W2(g1» Y gm,) =1,
where W,(gy, -, gm,) is the expression obtained from W,(ay, - -, a,)

by replacing each a; by g;,. We shall call (*) a presentation for G, and we
shall call the expressions

Wilgy, - gml) =1, Walgr, - gm,) =1

defining relations in the generators gy, g», - -+ of the Z-group G.

It is well known that every countable group G can be embedded in
a 2-generator group G’, and that if G is given by » defining relations then
G’ can be chosen so as to be defined by # relations (see [4]). We shall show,
similarly, (Theorem 4) that every countable Z-group H can be embedded
in a 3-generator Z-group H’, and that if the &-group H can be given by
7 defining relations then the Z-group H' can be chosen so as also to be
defined by # relations — this is our main theorem. Whether 3 can be
decreased to 2 here is as yet an unsolved problem.

Theorem 4 enables us to “‘count’” the number of 3-generator &Z-groups:
(Theorem 5) the number of 3-generator Z-groups is the power of the
continuum. Thus in spite of the apparently severe restrictions of existence
and, more important, uniqueness of roots, this class of groups turns out to
be very large. Moreover, the structure of even a finitely generated 2-
group can be quite complicated. Indeed, suppose we term a Z-group
simple if it has no proper ideals. Then we shall show, by a non-constructive
existence proof, that there is a 5-generator non-abelian simple Z-group.
One might ask whether there exist 2-groups which are simple in the group
theoretic sense, i.e. which possess no proper normal subgroups; we know
of no example.

Preliminaries

The following theorem is well known (von Dyck):
If the group G has a presentation

G=¢gp<88 " Rilgy, " 8m) =L Ra(gr, """, 8m) = 10D
and H is a group containing elements hy, hy, * - - such that
Ry(hy, - hp) =1, Ry(hy, =+ hyp) =1,

then the mapping @ : g, - h;, 1 = 1, 2, - - - can be extended to a homomorphism
of G into H.
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The analogous theorem holds also for Z-groups:
If the D-group G has a presentation

G=D-¢p<g1, 8 s Ralgr - gm) =1, Ral&s, """ 8m)) =1,
and H is a D-group containing elements hy, hy, - - - such that
Rl(h'lr Y h'ml) = 1’ R2(h1’ Y hm’) = 1: Y

then the mapping ¢ 1 g, — h;, 1 = 1, 2, - - - can be extended to a homomorphism
of G into H.

In this paper we shall make repeated use of the free product with
an amalgamated subgroup, also called the generalized free product. We
shall mention without proof a number of statements, the proofs of which
may be found in [5].

Let F be a group, F; and F, subgroups of F and let F; n F, = G.
We shall call F the generalized free product of F; and F, (or the free
product of F, and F, with amalgamated subgroup G) if

(1) F is generated by its subgroups F, and F,, and
(2) For every group H and every pair of homomorphisms
o Fy—>H, 9,: F,~H
which agree on G, there exists a homomorphism ¢ : F — H that coincides
with @; on F,. We shall write
F ={F, = F,;G}.

Suppose groups F,; and F, are given, G, a subgroup of F; and G, a
subgroup of F,, and Gy & G,. Then there exists a group F which is the
generalized free product of its subgroups F, and F,, F, 2 F,, F, & F,,
such that (P, n F,)p;, = G, and if fe P, n F, then

for9 = fo,.

In this case we shall identify F, with F;, P, with F,, and G, with G,
(via the isomorphisms ¢,, @,, and ¢) and again call F the generalized free
product of F, and F,. We shall use the following notation:

F = {F, * F;; G, = G,).

If G, is generated by elements g, g,, - - - and if g, = g/, we shall sometimes
write
F={F +«Fyg=¢,8=28" "}
Now let
F = {F, = F,; G}.

The elements in F can be represented by a normal form: We choose in
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F, (i = 1, 2) a system S, of left coset representatives modulo G containing
the unit element; thus every element f e F; can be uniquely represented
in the form

[ =sg (seS;, gei).

We call the following string of symbols

$18g° " Saf
a normal form if
(1) Every term s, is a representative # 1 belonging to one of the S;.
(2) Successive components s; and s,,, belong to different systems of
representatives, i.e., if s, € S; and s,,, € S;, then 7 #£74.
(3) geG.

If we interpret this string of symbols as a product, we obtain an
element f = s;5,°--s,g, and we say s;5,°-*5,g is the normal form of
the element f. Every element is represented by one and only one normal
form. We call » the length of f and write A(f) = n.

Every element fe F can be written as f = f;f,- - - f., where each f,
is in F, or in F,, since F, and F, together generate F. We will describe
the procedure by which the normal form of f can be obtained. First, f can
be written in the form

(*Y f=hyhy--+h,, whereeach s, in F, or F,, but A; and h;; not in a
common factor F;, and with m < #.

For if f; and f,,, both lie in F, or both lie in F,, then we may write

f= flfz e fi—lf:fi+2 S

where f; = f;f;,1, which is an element in one of the factors; we may continue
in this manner, at each step decreasing the number of terms until we have
written f in the desired form (*): f = h,hy - - - h,,. Notice that if m > 1
then &, ¢ G for any 7, for then &, and A,,; (or h; and 4, ;) lie in a common
factor. Now if m = 1 and f e G, then the normal form of f is f itself. If
/¢G, then hye F;—G for 1=1 or ¢ = 2, and

hy = s8¢ (1#£s,€8;,8€0G).
Thus if m = 1 and f ¢ G, then s,g, is the normal form of f. If m > 1, then
f=s1(81h3) * * * B
Now hy e F;—G (7 # 1) and so gy, € F;—G; therefore
g1hy = S8, (1#s,€8;,8,€6).

If m = 2, then f = s;5,g, and s;5,g, is the normal form of /. If m > 2, then
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f = s152(g2h3) * * * By-

Continuing in this way, we will arrive at the normal form of f:

f = 8183 *" smgm’

and we note that A(f) = m provided that m > 1.
Therefore if

f=hiz I

where each f; is in F; or F,, but {; and f,,, are not in a common factor,
then the length of fisn if # > 1, the length of fis 1if » =1 and f ¢ G,
and the length of fis0if x =1 and feG.

Now suppose that

f= (uty: - tag) (kg - - ky,)

where %1, - - - £,g is a normal form, each %; is in F, or F,, and %, and &,,,
do not lie in a common factor F,. If also ¢, and %, are not in a common
factor, then it is clear from the above procedure that the normal form
of fis

f=tty bty tpim’
for some representatives?, ., -, ., and some g’ € G. This fact is frequently
used in this paper.

Suppose f = f,f; - - - f, where each f; is in F, or F,, but {, and f,
are not in the same factor F,. Suppose & = hih,- - - h, where each #,
is in F, or F,, but 4; and 4,,, do not lie in a common factor. If also £,
and %, do not lie in a common factor, then A(f4) = A(f)+A(%); we shall
sometimes write

fh=f1f2' ”fn/\h’lh2' “h'm or f/\h’

to indicate that f, and A4, do not lie in a common factor.
The element f is cyclically reduced if none of its conjugates in F has
smaller length than itself. If f is cyclically reduced and

f=f1f2"'fn

with # > 1, each f; in F, or F,, but f, and f,,; not in the same factor F,,
then £, and f, belong to different factors F,. Conversely, if { is of the above
form and f; and f, belong to different factors, then f is cyclically reduced.

NoTATION. We list here some of the notations used.
A group G is called an R-group if the equation

=g (» a natural number, geG)

has at most one solution z in G.
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If G is a group and g € G, the centralizer of g in G, written C(g, G)
is {zxeGlalgr = g}

I' is a multiplicative copy of the additive rationals. For definiteness,
we may take the elements of I" to be the formal symbols 2", where 7 runs
through the additive rationals, and multiplication is defined by 272* = 27+,

If S is a subset of a D-group G, then the intersection of all the
D-subgroups of G containing S is itself a @-subgroup and contains S.
This @-subgroup is called the Z-subgroup gemerated by S and we shall
denote it by D-gp(S). If S = {ay, a,, a5, - - -} we shall sometimes write
D-gp(ay, a, ag - - +) for D-gp(S).

If G is a group, then

H<G

means H is a (not necessarily proper) subgroup of G.

1

Our primary aim in this paper is to embed every countable &-group
in a 3-generator Z-group. The procedure we have adopted is modelled on
earlier work of G. Higman, B. H. Neumann, and H. Neumann [4] and
G. Baumslag [1] making use of free products with amalgamations. In
particular, we make frequent use of a theorem of Baumslag [1] (Theorem
1 below) that states that every group in a certain class &2, whose definition
can be couched in terms of the centralizers of group elements, can be
embedded in a Z-group. For this reason we have found it essential to carry
out a careful analysis of certain kinds of generalized free products. By
keeping track of centralizers, we are able to show that certain generalized
free products of groups in & also are in & (Theorem 2 and Theorem 3).
This procedure turns out to be useful in determining the number of finitely
generated Z-groups.

Before we can state Theorem 1 more exactly, it is necessary to first
define and discuss the notion of the free P-closure of a group.

Let G be a subgroup of a Z-group G*. G* is called the free Z-closure
of the group G provided that

1. the @-subgroup of G* generated by G is G* itself,
2. for every homomorphism ¢ of G into a @-group H there exists a
homomorphism ¢* of G* into H that coincides with ¢ on G.

Now, if G is a given group we say that the free P-closure of G exists
if there is a monomorphism p of G into a @-group G* such that G* is the
free @D-closure of Gpu; in this case we identify G with Gu and we say that
G* is the free @-closure of G. It is not difficult to see that if it exists the
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free @-closure of a group is unique up to isomorphism. Also, it is not dif-
ficult to see that if G is a group that can be embedded in some Z2-group
then the free P-closure G* of G exists and that G* has the presentation

G* =‘@-g¢) <a1’ s, """, Rl(ali Ay, ", aml) = 1’ R2(alJ Ao, ", a-m,) = 1, °c ‘>:
if
G=¢gp<ay, a5, s Ry(ay, a5, 8, ) =1, Ry(ay, 85,7, 8y )) =1,
is a presentation for G.

To verify this remark let us suppose that G is a subgroup of a -
group H, and let

G =g¢ <al' aZ’ Tt Rl(ali a2’ Y aml) = 1’ R2(a1! az» tty ams) = l: o .>
be a presentation for G. We define
G* =D-gp{oy, 09,5 Ry(og, 005, ", 0ty ) = 1, Ryfotg, g, "+, 0ty ) = 1,70+,

Now by the theorem of von Dyck there is a homomorphism ¢ mapping G
into G* determined by

aiq)za‘i? 1‘21,2,"‘,

because R;(a,9, 429, * =, @ @) = 1 for the defining relations R; of the
group G. By the corresponding theorem for £-groups there is a homo-
morphism g mapping G* into the @-group H determined by

%Y = ay, i1=12--

because Rj(aqy, aap, * ) &y y) = 1 for the defining relations R; of the
D-group G*. gy is a homomorphism of G into H, and a,py = a, for
i =1,2,---. gy acts as the identity on a set of generators of the group G
implies that ¢y is the identity mapping of G; therefore ¢ is a monomorphism,
and so G can be embedded in G*, identifying a; with «; ( =1, 2, - ).

Since G* is Z-generated by o, = a,, a3 = a,, - -+, the Z-subgroup
of G* generated by G is G* itself. Now suppose that # is a homomorphism
of G into a Z-group K. Because 5 is a homomorphism, R;(a;, s, **, 4, ) = 1
implies that R,(a,7, asn, * - *, 4, m) = 1; however, the R, are the defining
relations of the &-group G*, and so by the analogue for @-groups of the
theorem of von Dyck # can be extended to a homomorphism #* of G* into
K. This establishes that G* is in fact the free Z-closure of G.

We now define the class of groups that Baumslag has shown can be
embedded in Z-groups; he has given a procedure for constructing the free
D-closure of a group in this class.

Let & be the class of groups G such that

1. G is an R-group.
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9. If & e G and % does not have an #' root for some natural number #,
then

a) C(h, G) is isomorphic to a subgroup of I', and

b) if f1A*f = h* for some fe G and integers £ and /, then 2 = 1.

THEOREM 1 (Baumslag [1]). Every group G in P can be embedded in a
D-group. For G a group in P and G* the free D-closure of G:

If 15£heG and h has an n™ root in G for every n, then C(h,G*) =
C(h, G).

If 1 £ h e G* and % is not conjugate tn G* to an element of G having an
ntt yoot in G for every n, then C(h, G¥) =~ I

We now state Theorems 2 and 3; the proofs of these theorems appear
after a number of lemmas. The proofs of the two theorems are patterned
after the proof of the theorem just quoted.

THEOREM 2. Let A = {G, * Gy; U}. Suppose that for each non-trivial
element we U one of the following holds:

(@) {geGlrluxeU}=U or (b) {reGylelureU}=U.

Then the centralizer of an element in A is either infinste cyclic or is isomorphic
to C(g, G,) for some element g in one of the factors G,.

More specifically:

If 1£ueU and (a) holds for u, then C(u, A) = C(u, Gy).

It 1 £ ueU and (b) holds for u, then C(u, A) = C(u, Gy).

If g e G, and g is not conjugate in G, to an element in U, then C(g, A)
= C(g , Gy).

If he A and h is not conjugate in A either to an element in G, or an
element in Gy, then C(h, A) is infinite cyclic.

The following special case of this theorem turns out to be particularly
useful:

Let A = {G, = Gy; U}. Suppose that if 1 AueU and geG,—U then
g lug ¢ U. Then for he A the centralizer C(h, A) is either infinite cyclic or
1s isomorphic to C(g, G;) for some element g in one of the factors G,.

THEOREM 3. Let A = {G, * G,; U} where G, and G, are in P. Suppose
that if wue U, u 1, then either {xe G, |z lux e U} =U or
{xeGy|zlur e U} =U. Then A is in 2.

Before proving Theorem 2, we state and prove three lemmas.

LEMMA 1. Suppose A = {G, # G,; U}. Suppose also that for each non-
irivial element w e U one of the following holds:

(@) (xeGlzxtuxeU}=U or (b) {xeGylzlurxeU}=U.
Let 1s£ueU; +f (a) holds for u then

https://doi.org/10.1017/51446788700004201 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700004201

384 Tekla Lewin [10]

{xed|zuxe U} CG,,
and if (b) holds for w then
{red|zluxeU}CG,.

ProOF. Let 1 5= u e U and, for convenience, assume (a) holds for «.
Let x € 4 such that x'uxeU. If x € G,, then there is nothing to prove.
z ¢ G;—U, because (a) holds for u. So let = 2, - z,, » = 2, where
each z; in one of the factors but z; and z,,, not in a common factor.

rlux = a7t e uwx, - - .

If 2, € G,—U, then 27 ux, € G;—U and A(xtux) = 2(n—1)+1 = 3, which
is impossible because zlux e U and so A(x~lux)=0. If 2, € G,—U and
27 uz, € G,—U, then A(xux)=2(n—1)+1 =3, which is again im-
possible.

If x, € G,—U and a7 ux, € U, then (a) holds for z;'ux, since (b) cannot
hold for 7 ux, because x, (x; uz,)2;* €U and 2, € G,—U. Now z, € G,—U,
so xyt (w7 ua, )z, ¢ U; therefore A(x—luz) = 2(n—2)+1 = 1, which is im-
possible.

LEMMA 2. Let A = {G, % G,; U}.
If ge G, (¢ =1 or 2) and g is not conjugate in G, to an element in U,
then {xe A |z gxeG}CG,.

Proor. For convenience suppose g € G; and g is not conjugate in G,
to an element in U, in particular g ¢ U, and that 2 'gz € G,. So A(g) =1
and A(x1ge) = 1. Let # = 2%, ¢ - - x, where z; in G, or G, but z; and
%,,, not in the same factor.

Then xlgx = x;! - - - axtay g2y - * - 7,

If , € G,—U, then A(zlgz) = 2n+1 = 3, which is a contradiction.

If * = x, € G, there is nothing to prove.

If 2, €G,, n=2, then 2" gz, ¢ U because g is not conjugate in G,
to an element of U; so a7'gr,e G;—U and A(wigr) =2(n—1)+1 =3,
which is a contradiction.

LeMMA 3. Let A = {G, * Gy; U}. Suppose that if ge A and g lies in
one of the factors, then C(g, A) is conjugale to a subgroup of one of the factors.
If g € A and g is not conjugate to an element in one of the factors, then C(g, A)
is infinite cyclic.

The proof of Lemma 3 is broken up into four steps.

(i) It is sufficient to prove the statement for elements g that are
cyclically reduced of length = 2.

Proor. For let ge A, g not conjugate to an element in one of the
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factors. Then g = x~1hx for some element 4 that is cyclically reduced of
length = 2. Therefore C(g, 4) = " 1C(h, 4)=.

(ii) Let g e 4, g cyclically reduced of length = 2. If e C(g, 4), then
h is cyclically reduced of length = 2.

Proor. Let ke C(g, A). The length of 4 must be = 2. For otherwise
k is in one of the factors G; and so C(#, 4) is conjugate to a subgroup of
one of the factors; g e C(h, A), therefore g is conjugate to an element in
one of the factors — this, however, is impossible because g is cyclically
reduced of length = 2.

Now g can be written g = g,g, - - - g, Where n = 2, each g, lies in one
of the factors, and g; and g,,; do not lie in the same factor. Because g is
cyclically reduced, g, and g, lie in different factors. 4 can be written
h = hhy-- - h, where m = 2, each A, lies in one of the factors, and 4,
and k,,, do not both lie in the same factor. If 4 is not cyclically reduced,
hy and h,, lie in the same factor. Now suppose that %4, and 4,, do lie in the
same factor G;. Either g, or g, lies in G, also, say g, € G,, and so g, ¢ G;.

Then gh = g8y * - gutihs " « + h,,, and since g, and &, lie in different
factors, A(gh) = n-{-m.

hg = hyhy c By 1 (Bin81)82" * * Bns (Bn81) € Gy,

so A(hg) = n+m—1. This, however, is impossible because gh = hg. So
hy and h,, lie in different factors, and % is cyclically reduced.

ms

(iii) If ge A and g is cyclically reduced of length at least 2, and if
h 5= 1is such that [k, g] = 1, then g and 4 are powers of a common element:
3 such that f* = h and f/ = g for some integers ¢ and j.

PRrOOF. Suppose the statement is false. Let g* be an element of minimal
length in

g is cyclically reduced of length at least 2;
ge | 3% %1 such that [h,gl=1 but g and %2 ).
are not powers of a common element

Let 4* be an element of minimal length in

{heAIh#l;[k,g*]:lbutg*andh }
are not powers of a common element

h* is cyclically reduced of length =2 by (ii); therefore A(h*) = A(g*)
because of the choice of g*. Let the normal form for g* be g* = s;5,- - - 5,,%4;;
without loss of generality we may assume that s, € G; and s, € G,. Let the
normal form for 2* be h* = t,t, - - - {,u,; we may also assume ¢ € G; and
ty € G, (if not, consider A*! which also commutes with g*).

Now g*h* = s;55* + - 5, (uy8y)ty + - t,04,, so the normal form for g*a*
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is g*h* = 5,8, * * Syt ty - - - b’ for some representatives ¢, 4, « - -, 4, and
some %' € U. Similarly the normal form of A*g* is h*g* =#,¢, - - - £,57- - s 0’
for some s;, * -+, s,, #'’. Because g*h* = h*g*, these normal forms are the

same. B = A(h*) = A(g*) =n. So s, =14;, Sy =15 --, and s, = ¢,.

-— X -1 —~1 « . s -] —~1 . e e
gFIh* = uils, Sp ST ity Lty
— 41 ce
= UL pyy " bty

and
Alg*1h*) = k—n < k.

Now g*—1h* = 1 because then g* and A* are certainly powers of a com-
mon element; g**h* commutes with g* because A* does, and its length is
less than that of 2*. So it must be that g*~1A* and g* are powers of a common
element (otherwise the choise of 4* is contradicted); however, this implies
that g* and A* are powers of a common element, contrary to the choice
of h*.

(iv) If ge A and g is cyclically reduced of length at least 2, then
C(g, 4) is infinite cyclic.

Proor. Let f* be a non-trivial element of minimal length in C(g, 4).
If h#£1, heC(g, A), then h is a power of f*.
Suppose not. Let A* be an element of minimal length in

{heC(g, A) | k£ 1, h not a power of f*}.
A(*) = A(f*) by the choice of f*.

By (iii) 3 f such that f* = f* and f’ = g for some integers ¢ and j.
f# 1 and f commutes with g, so f is cyclically reduced of length at least 2
by (ii). Therefore A(f*) = |i|A(f); if || > 1, then A(f*) > A(f), which is
contrary to the choice of f*. This means ¢ = 1 or 7 = —1, and so g = f*m
for some integer m; we may assume m > 0.

Again by (iii) 3 /2 such that A* = A* and A’ = g for some integers s
and 4. £ 1 and % commutes with g, so 4 is cyclically reduced of length
at least 2 by (ii). Suppose |i| > 1. Then A(h*) = |¢|A(h) > A(h). Since
heC(g, A) and of shorter length than 4*, it must be that 4 is a power of
f*, for otherwise the choice of 4* is contradicted. But this implies A* = A*
is a power of f¥, which is also contrary to the choice of 4*. So [¢| = 1 and
g = h*" for some integer #; we may assume % > 0.

If f* = s;55 - - s, is the normal form of f* and

h* =ity - - - t,u, is the normal form of A*,
then
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m

S1Sg * * Skty)(S1Sg " ¢t Skty) * o (S182 7t Sety)
=g = (ttp - tyug) (byty - - - Lytag) =+ Yoyt s o < Biy).

n

Because f* and A* are cyclically reduced, the normal form for g is
$1Sp ¢t SkS1Sy c * v S’ for some coset representatives sy, Sy, S
and some %' € U and also ¢ty - -ttty - - t1,u” for some &, t5, -, ¢,
and some #'’. Since
k=A%) < A0%) =1,
it must be that
S =10, Sy=1ly," ", Sx=1.
So
PR = utst syt by = U ey Bt
and
A(f*1h*) =1—Fk < I since & = 2.

F*1h* commutes with g because both f* and 2* do. f*~1A* =1 contradicts
the choice of #*, for in this case i* is a power of f*. Therefore, unless f*~14*
is a power of f*, the choice of A* is contradicted; but if f*14* is a power
of f* so is A*, again contrary to the choice of A*. So C(g, 4) = gp(f*).
f* is not of finite order, because A(f*")} = |n| A(f*), which is zero only if
n = 0; therefore this subgroup is infinite cyclic.

We are now in a position to prove Theorem 2.

THEOREM 2. Let A = {G, = G,; U}. Suppose that for each non-trivial
element w e U one of the following holds:

(@) {#xeGlzluxeU}=U or (b) {xeG,|zuxeU}="U.

Then the centralizer of an element in A is either infinite cyclic or is isomorphic
to C(g, G;) for some element g in one of the factors G,;.

More specifically:

If 12 ueU and () holds for u, then C(u, A) = C(u, G,).

If 152 u €U and (b) holds for u, then C(u, A) = C(u, G,).

If geG, and g is not conjugate in G, to an element in U, then
Clg. 4) = C(g. G,).

If he A and h s not conjugate in A either to an element in Gy or an
element in Gy, then C(h, A) is infinite cyclic.

Proor. Let u e U, u 5 1, and suppose (a) holds for . By Lemma 1
{xed|xluxe U} C G,; since Cu, A)C{wed |xuxeU}, Cu, A) CG,
and therefore C(u, 4) = C(u, G,).
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By symmetry if v €U, 4 % 1, and (b) holds for #, then C(4, 4) =
C(u, G,).

If ge G, and g is not conjugate in G, to an element in U, then by
Lemma 2 {red|z'gzeG,}CG,;. Since C(g, A)C{red|zlgreG},
C(g, A) C G,. Therefore C(g, 4) = C(g, G,).

Now, every element { in one of the factors G, is conjugate to an element
g of one of the three preceding kinds; therefore C(f, 4) is conjugate to
C(g, A), and we have just shown that C(g, 4) = C(g, G,) for one of the
factors G;. Thus if fe 4 and f lies in one of the factors, then C(f, 4) is
conjugate to a subgroup of one of the factors. Therefore, by Lemma 3 if
heA and & is not conjugate to an element in one of the factors, then
C(h, A) is infinite cyclic.

This completes the proof of the theorem because every element of
A is conjugate to an element # of one of the preceding four kinds and so
has centralizer isomorphic to C(x, 4).

We now give two more lemmas needed to prove Theorem 3.

LEMMA 4. Suppose
A = {G, % G,; U}

where Gy and G, are in P. Suppose also that each non-trivial element in one
of the factors is conjugate in A to an element [ in one of the factors G, such
that C(f, A) = C{{, G,).

Then

1. If g € A and g does not have an n'® root in A for some natural number
n, then C(g, A) is isomorphic to a subgroup of I

and

2. 4 is an R-group.

ProOOF OF 1. Suppose g does not have an #* root in A for some natural
number # and g is conjugate to an element % in one of the factors. 4, and
so also g, is conjugate to an element f in one of the factors G, such that
C(f, A) = C(f, G,). Since g fails to have an #™ root in A for some natural
number #, f fails to have an # root in A for that same #; a fortiori, f fails
to have an »' root in G,. Since G, is in &, C(f, G,) is isomorphic to a sub-
group of I'; therefore so is C(g, A), which is conjugate to C(f, 4) = C(f, G,).

If g is not conjugate to an element in one of the factors, then by Lemma
3 C(g, A) is infinite cyclic, and so isomorphic to a subgroup of I

PROOF OF 2. Suppose 2" = y™ = g in 4. 4 is torsion-free because G,
and G, are, and a generalized free product of torsion-free groups is torsion-
free;soif g = 1thenz = y = 1. Assume g # 1. Bothzand y arein C(g, 4).
If g is conjugate to an element in one of the factors, then, as in the proof
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of 1., C(g, 4) is conjugate to C(f, G;) (for some f in one of the factors
G,), a subgroup of G; since G, is in &, every subgroup is an R-group —
hence C(g, A) is also an R-group. If g is not conjugate to an element in one
of the factors, then C(g, 4) is infinite cyclic by Lemma 3, so z = y.

LEMMA 5. Suppose A = {G, * Gy; U} where G, and G, are in P. Suppose
also that if 1 4~ ueU then either

{xeG o luxeUt=U or {geGyjztuxecU}=U.

If g€ A, g does not have an n'* root for some natural number n, and for
some ye A y gty = g, then k= 1.

ProoF. The proof of Lemma 5 is broken down into four cases:

a. gteU. If gt =1 and so g' = y gty =1 then & = I = 0, because
A is torsion-free and g 5= 1. If g* 3£ 1 and g* e U also, then y and g are both
in {red |z gtz e U}, which is contained in G, or G, by Lemma 1; so this
is an equation in a group in &, hence k = I. But if g' ¢ U, we may consider
instead the equation y—1g¥'y = g*, which is a consequence of the above
equation. g*" and g* are in U, so by the foregoing k2 = kl; g* # 1 implies
k0, hence k= 1.

b. g* in one of the factors but g* not conjugate to an element in U.
g* is in one of the factors implies g is also in one of the factors G;; therefore
g* and g’ both in G,. By Lemma 2 y € G;. So this is an equation in a group
in #, hence k = 1.

c. g* is cyclically reduced of length at least 2. Then also g and g* are
cyclically reduced of length at least 2.

We can assume %k > 0. Suppose also / > 0. Then we may assume
k=1; for if not we could consider the equation yg'y = gF. Let
g = 818, * * Sy, S; in one of the factors, but s, and s,,, not in the same
factor, gt = #,¢,- - - £, ¢, in one of the factors, but ¢, and ¢,,; not in the
same factor, ¥ = 9,9, * - ¥;, ¥, in one of the factors, but y; and y,,, not
in the same factor. Now s, and s, lie in different factors, so either ¥, is
not in the same factor as s, or y, is not in the same factor as s,,. If y, is
not in the same factor as s;, consider the equation

Ui YR YT ASISy Sy = YT =gy =ty eyt
This implies j+m = Aty - £,y71 - - - y7t) S nd-f, or kA(g) =m < n=IA(g),
which implies 2 < 1. So & = . If y, is not in the same factor as s,,, consider
the equation

$1S2° " SmAYL Yy =gY =Yg = y¥a" Yty b

This implies m4-7 = A(y1 95 * - Y;l1ts -+ £,) < §+n; as before this implies
k=1
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Now assume 2 > 0 but / < 0. Then
Yty =y gyl = v ety = (yigty)t =gt
Since %2 > 0 and /2 > 0, by what we have just shown k2 = [2; therefore
! = —k. Now y gty = g~* implies
YRy =y gy = (ygty) T = g5

i.e. y? commutes with g*¥ though ¥ does not. It follows from Theorem 2
that each non-trivial element in one of the factors is conjugate to an element
/ in one of the factors G; such that C(f, 4) = C(f, G,). Therefore by Lemma
4 A is an R-group, and in an R-group, if # and y™ (» a non-zero integer)
commute then x and y commute (see [1]). Thus we have a contradiction.

d. In all other cases either g* is conjugate to an element in one of the
factors or to an element cyclically reduced of length at least 2;say 21 g*z € G,
or z71g¥z is cyclically reduced of length at least 2. y'g*y = g' implies
(z7lyz)H(z'gz)* (2 yz) = (¢ 1gz)}, and by a or borc, k=1

We will now restate and prove Theorem 3.

THEOREM 3. Let A = {G, * G,; U} where G, and G, are in P. Suppose
that if weU, u £ 1, then either

{xeGylztuxeU}=U or {geGy|lzluxelU}="U.
Then A is tn 2.

Proor. It follows from Theorem 2 that each non-trivial element %
in one of the factors is conjugate to an element f in one of the factors G,
such that C(f,A) = C(f, G,): for if, for example, % € G,, then either A
is not conjugate in G; to an element in U so that C(k, A) = C(h, G,) or
else & is conjugate to an element u e U and C(%, 4) = C(4, G,) for s =1
or ¢ = 2. Therefore by Lemma 4

1. A is an R-group, and
2. (a) If e A and & does not have an #™ root in 4 for some natural
number #, then C(k, A) is isomorphic to a subgroup of I

And by Lemma 5

(b) If he A and % does not have an #* root in A for some natural
number # and f1A*f = A for some fe 4, then & = 1.

2

In this section it is shown that every countable “-group A can be
embedded in a 3-generator Z-group 4’; if 4 is a finitely related 2-group,
say given by # defining relations, then the 2-group A’ can be chosen so
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as to be defined by # relations (Theorem 4). It follows (Theorem 5) that
there are at least continuously many non-isomorphic 3-generator Z-groups.
Now every countable Z-group is a homomorphic image of a fixed free 9-
group F of countably infinite rank. Since F is itself countable, the number
of subsets of F is ¢, the cardinality of the continuum, and so the number of
ideals of F can be no more than ¢. Consequently, there are at most ¢ countable
D-groups and, in particular, there are at most ¢ 3-generator 2-groups.
Putting this together with Theorem 5 yields:

THEOREM 5'. The number of 3-generator (and indeed the number of
countably generated) D-groups is the power of the continuum.

The number of 2-generator Z-groups is still unknown.

G. Higman, B. H. Neumann, and H. Neumann have shown that any
countable group G can be embedded in a 2-generator group G', and that if
G is defined by # relations, then G’ can be chosen so as to be defined by »
relations [4], and the proof of Theorem 4 utilizes in part their embedding
procedure. The proof of Theorem 4 was greatly simplified by a suggestion
of Professor Baumslag. It is not known whether every countable 2-group
can be embedded in a 2-generator Z-group.

THEOREM 4. Every countable D-group A can be embedded in a 3-generator
D-group A'. Moreover, if the D-group A is finitely related, say by n defining
relations, then the D-group A’ can be chosen so as to be finitely related, also
given by n relations.

ProOF. Suppose S = {4y, a5, a3, * -} is a set of generators of the
D-group A, that is, A = D-gp(a,, a,, a3, *--). We may assume that
a; # 1 for any ¢ and that a, # a,, a, # a;" for 7 # 4. For if S fails to satisfy
these conditions, there is some subset S’ of S that &-generates 4 and that
does satisfy these conditions; we may replace S by S’. We may also assume
that S is infinite. For if S is finite, we will consider (4 % F)* instead of A4,
where F is a free 9-group of countably infinite rank and (A4 = F)* is the
free Z-closure of A % F. This makes sense because the free product of two
2-groups is in &, by Theorem 3. The mapping that sends each element
of 4 into 1 and each element of F onto itself can be extended to a homo-
morphism of 4 % F; any homomorphism of 4 % F into a &-group can be
extended to a homomorphism of (4 % F)*; therefore F is a homomorphic
image of (4 * F)*. It follows that (4 % F)* cannot be finitely 2-generated
because F, a homomorphic image, is not. Notice that the number of relations
needed to define A with the set S’ is no more than the number of relations
needed to define A4 with the set S; and in replacing 4 by (4 * F)*, the
number of relations has not been increased.

Let F; be a free group, freely generated by x and y, let F, be a free
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group freely generated by # and v. We wish to consider a certain generalized
free product of F,; and F, = 4.

The subgroup of F, generated by =, yay, y2xy?, y3zy3, - - - is freely
generated by these elements. The subgroup of F,* A generated by u,
vlua v, v2ua,v?, v3uasvd, .- is freely generated by these elements.
For if it is not, there is some non-trivial word R (%, v ua,v, - - -, v"™ua,,v™)
in these generators that is equal to 1. But if ¢ is the endomorphism of
F,* A that is the identity on F, and maps every element of 4 onto 1,
we have

1= 1¢p = R(#, vluav, - -+, v"™ua,v™)p = R(u, vluv, - - -, v""uy™),

which is impossible since the subgroup generated by u, v-luv, v—2u2?, - - -
is freely generated by these elements.
Therefore, we may form

H={F, % (Fy,xA);, W}
where
W = gp(z, y oy, y2xy2, - - ) = gp(u, viua,v, viua,v?, - - +)
and the identifications
z=u and ytzy' = v*ua,vt for i =1,2,---

are made.

We will establish later that H is in &. It follows that H*, the free
D-closure of H, is a Z-group containing 4. We now show that H* is a 3-
generator Z-group: we show that

H* = 9-gp(z, y, v).

Now x =wu, so D-gp(x,y,v)>u; therefore D-gp(x, y, v) contains both
F, and F,. y~zy* = v~'ua,v’ implies that

a; = u—lviy—ixyiv—-i —_ x—lviy—ixyiv—i;

hence 2-gp(x, y, v) contains {a,, a,, - - -} — therefore Z-gp(x, y, v) contains
2-gp(a,, ay, - -} = A. Since D-gp(x,y,v) contains F,, F,, and 4, it
contains all of H and therefore contains Z-gp(H) = H*.

We shall now show that if

A=Dgp<ay, 8y, Ry(ay, -+, aml) =1, Ry(ay, ", am,) =1,
then

H* =2-gp(x, y, v; Ry(@ vy taeyv?, - - -, a7 o™iy~ may™o™) =1,
Rz(x—lvy—lxyv—l’ RN x—lvm,y-—m,xym,v—m,) —_ l, .o .>.
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To see this let

B=2gp(X,Y,V; Ry (XVY1XYV, - - -, XAVmY-mXYmP-m) =1,
Ry(X-1VY- XYV, o, XAV mXY™P—m) =1, - -,

There is a homomorphism ¢ of B into H* determined by X¢ =z, Yo =y,
Ve = v by the analogue of von Dyck’s theorem for Z-groups since

R((Xg)ytWo(Yo) X¢Yp(Ve)™, - -,
(Xe) (Vo)™ (Yo)™Xe(Ye)™(Ve)—™)

— R’(x—lvy—lxyv—l, ce, x“lvmly—mlxymlv*ml) — R’(al, e a =1

m,)

for j=1,2---
Let 3, and y, be the homomorphisms of the free groups F, and F,,
respectively, into B determined by
zp =X, yp =Y,
uyp, =X, vy, =1V.

There is a homomorphism y, of the Z-group 4 into the Z-group B such that
apy = X IVY-iXYiV—¢ for ¢=1,2,---
by von Dyck’s theorem for Z-groups because

Ri(al‘/’a» Tt am,ws) = 1: 1 = 1: 2: et

There exists a homomorphism y of the free product F, * A into B
that coincides with g, on F, and with p, on 4. A straightforward verification
will show that y; and o coincide on

r = u, yley = vluav, yiay? = v2uay0l, - -,
the generators of W; hence y, and v coincide on W. Therefore there is
a homomorphism 5 of H = {F, # (F,+ A); W} into B that agrees with
y, on F, and with y on F, + A. Any homomorphism of H into a &-group

can be extended to a homomorphism of H*. So  can be extended to a
homomorphism #* of H* into B.

Xon* = an* = o = 2y, = X,

Yon* =yn* =yn =9y, =Y, and
Ven* =um* = =vy =ovp,=V.

Since gn* is the identity map on the 2-generators of B, gn* is the identity
mapping of B. Since ¢ is onto, it follows that ¢ is an isomorphism, and so
H* has the presentation we claimed.

Therefore, if the 2-group A is given by = defining relations
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Ri(ay, @)+ Rolay, -+, 4, ), the D-group H* is presented on 3
generators and » relations.

It remains to verify that H is in £. Now any free group is in £, so
F, and F, are in &, also any 2-group is in &. F, « A is therefore in 2,
being the free product of two groups in &. These statements follow from
Theorem 3, but a more direct proof can be found in [1]. The following
lemma shows that {xeFy+A4 | 'wexe W} =W for each non-trivial
element w € W. Therefore, by Theorem 3, H = {F; % (Fy % A); W}is in Z.
The lemma completes the proof of the theorem.

LEMMA. Let F be a free group freely generated by u and v. Let A be a group
and {a,, a;, - - -} be a subset of A such that a; # 1 for any i and a; # a,
a; # a7t for any i ~j. Let

G=F=A4
and let
W = gp(u, v-iua,v, v-2ua,v?, - - +).

If1£weW and gwgleW for geG, then geW.

Proor. As we have already pointed out, W is freely generated by «,
v~lua, v, v2ua,v?, - - -. Therefore any element w € W can be written uniquely
as

w = ukx(1)—‘1ua'.l«vil)mluk:(y—ilua{’v‘a)m: N u"ﬂ(v—‘nua,”v‘-)’”"u"'-“
= uPrv~ (ua, )Mot (ua, Jmvts - - wFoie (ug, mevinytent
where the 7, are positive integers, the m; are non-zero integers, the %, are
integers, and if 2, = 0 then 4, ; # 7,. Since a; # 1 for any ¢, it can be seen
by inspection that if w,w, - - - w, is the free product normal form for w, then
w, = uM and I=1 if #»n=0,
w; =uhvy and wy,=a, if m >0,
w, =whv™ and w,=a;' if m <O.

We wish to show that if 1 xweW, geG and gwge W, then ge W;
so let us suppose that this is false. Let

T={geG-W|3weW,w # 1, such that gwgle W},
and let
p=min {A(g) |ge T}
Let g be an element of length p in T, let 1 = w € W be such that gwg—1e W,
and let
8§=28182"""'&»

W=w W,y W

be the normal forms for g and w.
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First let us notice that if p = 2, then the first two terms, g, and g,,
of g are not the same as the first two terms w, and w, of any word w’ e W.
For if this were false then either g, = #*v—*u and g, = a, (for some 7, k)
or g, = w*v—* and g, = a;* (for some 4, k). Thus suppose

g, = v~y and g, =a,.
Set
¢ = (wv-tuan) g,

g ¢ W since w*v—*ua;v*e W and g¢ W. Now
g'wg'' = (Wv—ua,v*)(gwg ) (uFvua,vt),

and this element is in W because gwg—' e W and (u*v—ua,v’) e W. gwg™ £ 1
because w % 1. Thus g'eT — but g’  =vif p=2and g =v"%gy-*- g,
if p > 2; in either case A(g’) < p, which is a contradiction. The supposition
that g, = #*v—* and g, = 4;* leads in the same way by consideration of
the element g’ = (v—*ua,v*u*)g to a contradiction of the minimality of p.

Now g1 is also an element of length p in T: for gl (gwg')g =we W,
gwgte W by assumption, gwg—! # 1 because w ¢ 1, g—1 ¢ W because
g¢W, and A(g™!) = A(g) = p. So if p = 2 then g;* and g;?; are not the
same as the first two terms of any word in W.

It follows that if p = 2 it cannot be that g, or g3 is left uncancelled
and unamalgamated in the product

BUET =818 By Wyt WiE, gy 8T

For if g, is left uncancelled and unamalgamated, then g; and g, are the
first two terms of gwg, an element in W; if g;* is left uncancelled and
unamalgamated, then g, and g, are the ﬁrst two terms of (gwg—l)—1 which
isin W. Also, if p = 2,1 = 2, and g, = w7, then g, , # w;"; ; and if p = 2,
!=2, and g, = w,, then g, ; # w, , (because w;' and w}", are the first
two terms of »1).

The first and last terms of any element in W lie in F. It follows that
&y € F. For suppose g, e A. Then in the product

BUgT =818y g, Wy Wig BT L
there is no cancellation and no amalgamation. Since g, cannot be left
unaffected, this implies p = 1 and g = g, € A. Therefore the first term of
gwg™ is in A, which is impossible because gwg—1e W.
We have already observed that g—! is also an element of length $ in
T, and it follows that gi* and so also g, is in F.
Because both g and w begin and end with terms in F, A(w) and A(g)
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are odd. We will consider separately various cases depending on i(w) =/
and A(g) = p.
(@) £ = 1. In this case w = u*, £ # 0. Thus
gog™ = g1 8ra (8ot ey )8 8

u* #% 1 implies g u,g,# 1. So gy, * + +, g,_, are left uncancelled and unamal-
gamated; hence p < 2 (because g, cannot be left unaffected). p s~ 2 because
pisodd. Therefore,p =1,andg =g, € F;sogwgte F.Nowgwge FnW
means gwg~! = u™ for some integer m. So we have

gutg~l = u™.

Such an equation in a free group implies # = m and so g € C(«*, F). Since
u belongs to a set of free generators of F,

C(u*, F) = gp(u).
Thus g egp(w) << W, which is a contradiction.

(b) I =3. w = w,w,w,.
First we will establish that w,; # w;'. Now either w; = w*v—*4 and
wy, = a; or Wy = u*v~* and w, = 4;'. In the first case

wwawyt = wrv—tuaulviuk,

and if this were in W then the element (#*v—*ua,v*)'w,w,wy* =v—*ulviy—*
would also be in W. But the only elements of length 1 in W are powers
of u. In the second case

w0, w; " = wrv—talviuk,

and if this were in W then also (v—*ua,v'u—*)w,w,w;? = v—*uv*u—* would
be in W, but it is not. Hence w; # wi’, as we claimed.
We have

gug™t =g g (g, w1)wa(ws 851850 < - - &1

Either g, # wi! or g, # w,; for convenience we may assume g, # wy*
(otherwise instead of g, w, and gwg—! we could consider g, w~?, and gw-1g-1).
Even if g, = w,, the term w, is at most amalgamated, so the first $ terms
of gwg= are g,,- -+, 8,4, (g,@,); therefore p < 2. But p #* 2 because p
is odd, so p = 1. Therefore g =g, e F, and

gwg™ = (gw,)w,(wsg7?),

where gw, and wyg~! are in F and gw, # 1.
Thus the first two terms of gwg—1 are gw, and w,. Now, either w, = w*v—u
and w, = a, or w; = %*v~* and w, = a;. Suppose w; = w*v—*u and w, = a;.
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Because a; # a;* for any § and a, # a, for ¢ # §, the fact that the second
term of gwg—! is a; implies that the first term of gwg~! is ¥™v—*u for some .
Therefore
umviu = gw, = gutv—tu;
hence
g — um—k’

which is in W, a contradiction. So it must be that w; = #*v—* and w, = a;*.
That the second term of gwg—! is a;* implies that the first term of gwg-!
is u™y—* for some m. Hence

umv— = gw, = gutv—,
and so
g — um—k

which is an element of W, and this again is a contradiction.
(c) 1 =5, p=1. In this case g =g, e F.

gwg™t = (gwy)w, - - - w4 (w,87Y).

If g = w;?, than the first term of gwg—! is w,, which is in 4; this is
impossible; so g # wy'. Therefore, as in the case just examined, the first
term of gwg~! is gw, and the second is w,; as before this leads to the con-
clusion g = #™* for some integers m and %, which is a contradiction.

(d) I =5, p = 3. Let us assume in addition that we have chosen w
to be of minimal length among all non-trivial elements @’ in W such that
g'w'g'~t e W for any element g’ of length » not in W.

g0g = g1 8pa(gyw) Wy - - Wy 1 (@i )8 g

If g, #wi', then g, , is uncancelled and unamalgamated; since
p—1 = 2, this means g, is uncancelled and unamalgamated — but we have
shown that this cannot happen. Likewise, if g, 7 w,, then g;1, is left
unaffected and so also g;' is left unaffected — but we have shown that
this cannot happen.

Therefore g, = w;' = w,. This means that g, , is amalgamated with
w,, w,_; is amalgamated with g;!;, and the other terms are unaffected
because / = 5. That g, , is unaffected implies p—2 < 2 and so p = 3.
Therefore

gUE™ = 81828310y * * - W, w85 857187 = 81(gat0r)ws - - - (w1 820)ET

Either w,w, = w*v~'ua, or w,w, = u*v-'a;’. If w,w, = vw*v-rua,,

set z = w,wyv* = u*v~—*ua,v’, which is in W. Let #’ = z7lwz; w’ is also
in W. We will show that the length of w’ is shorter than the length of w
and that there exists g’ of length p not in W such that g'w'g’1e W. Now
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, a1 . » .
W' = v Wy W W Wy W 0,0, W0 = (V) - - (W w,)0,

since w, = wy*. So A(»’') < A{w)—2, since v—* and w, lie in the same factor
and w,_; and w, lie in the same factor. That w # 1 implies that w’ % 1.
Let g’ = gz; g’ ¢ W. However,

gwg = (gz)zlwz(gz)! = gwgleW.
Now
g = 8182830 WV° = gy(8,w0,)07,

because g, = wi'; therefore A(g’) = 3 = p. This, however, is in contradic-
tion to the minimality of w.

If w,w, = u*v—"a;*, set z = w w,u1v?; by the same argument one is
again led to a contradiction.

In every possible case we have arrived at a contradiction; so there
can be no element g e G—W such that gwgeW for 1 FweW.

THEOREM 5. There are al least continuously many non-isomorphic 3-
generator Z-groups.

Proor: Let a be a subset of the natural numbers containing 1. For
each such set « we will construct a 2-group G¥ and then by the procedure
of Theorem 4 embed G¥ in a 3-generator P-group HY. We will show that
H?} is not isomorphic to H} if « # f; this will prove the theorem since there
are continuously many such sets «.

Now let

G, =TI+ I*
kea
where I'* is the direct product of % copies of I'. I'* is a @-group and so is
in #. The free product of two groups in £ is itself a group in &, as a special
case of Theorem 3, and by an induction so is the free product of countably
many groups in £ itself a group in £. So G, is in & and can be embedded
in the D-group G}, its free D-closure.

By Theorem 2 (and again an induction), if 1 % g € G, then either
C(g, G,) is infinite cyclic or C(g, G,) is isomorphic to C(k, I'*) for some
kea. C(h, I'*) = I'*; so if 1 # g € G, then either C(g, G,) is infinite cyclic
or C(g, G,) is isomorphic to I'* for some % € «. It follows that the elements
of G, having »'® roots for every # are just those elements having centralizers
isomorphic to I, & € a.

By Theorem 1 if 1 # g e G, and g has an #' root in G, for every #,
then C(g, G¥) = C(g, G,); in this case C(g, G,) is isomorphic to I'* for
some k e «, so C(g, G¥) is isomorphic to I'* for some ke «. If 1 #geG%
and g is conjugate in G} to an element 4 e G, having all its roots in G,,
then C(g, G¥) is isomorphic to C(k, G}) and this is isomorphic to I'* for
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k € «. Again by Theorem 1 if g € GF and g is not conjugate in G¥ to an
element of G, having all its roots in G,, then C(g, G¥) is isomorphic to I.
I' =TI, and 1 € «. Thus we have shown that if 1 + g € G¥, then C(g, G¥)
is isomorphic to I'* with % € .

G?¥ is countable because it is countably generated. Let us recall that
G¥ can be embedded in a 3-generator @-group HY¥, the free D-closure of a
group H,:

H, = {Fy » (Fy = G2); W},

(see Theorem 4) where F,, F,, and W are free groups, and if 1 #we W
then {r e F, » G¥ |2—'wx e W} = W. The centralizer in F, of each non-
trivial element in F, is infinite cyclic, and the centralizer in G} of a non-
trivial element in G?¥ is isomorphic to I'®, & € «. Therefore, by Theorem 2,
the centralizer of any non-trivial element in F, % G¥ is either infinite cyclic
or isomorphic to I'*, k € «. The centralizer of a non-trivial element of F,
is infinite cyclic. Since {x € F, * G¥ |z lwxe W} =W for 1 AweW, it
follows from Theorem 2 that the centralizer of a non-trivial element in
H, is either infinite cyclic or isomorphic to I'™*, & € «. It follows that the
elements of H, having #' roots for every # are just those elements having
centralizers isomorphic to I'* with % € a.

HY is the free 9D-closure of a group H, in &, and by Theorem 1, we
see that: if 1 £ g e HY and g is conjugate to an element 4 € H, having n'®
roots in H, for every %, then

C(g, H*) = C(h, H*) = C(h, H,) ~ I'*, where ke,

while if 1 £ g e H¥ and g is not conjugate to an element % e H, having
n'® roots in H, for every #, then

Clg, HI) =T

Since 1 € «, in any case C (g, HY¥) is isomorphic to I'* for some % € «, provided
g # L

Now suppose « and 8 are two different subsets of the natural numbers
containing 1. We wish to show that H} is not isomorphic to H}. Either «
contains a number not in § or § contains a number not in «; for convenience
let us suppose m ew, m ¢ p. Now Hj contains no element g such that
C(g, H}) is isomorphic to I'™; so if we can show that there is an element
g € H¥ such that C (g, HY) is isomorphic to I'™, then H cannot be isomorphic
to Hj.

Now I'" < G, < H}. Let g be any non-trivial element in I'™.
C(g, G,) = C(g, I') = I'™, by Theorem 2. g has an #' root in G, for every
n, so by Theorem 1 C(g, G¥) = C(g, G,) = I'™. Again using Theorem 2,
Clg, Fa+G2) = Clg, G) = I'™
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H,={F,* (Fy+G}); W}, and by Theorem 2 either C(g, H,) =
C(g, Fy#GY) or g is conjugate in F, # G¥ to an element in W. But it cannot
be that g is conjugate in F, * G} to an element w e W. For if g is conjugate
to w, then w £ 1 and so by Theorem 2 C(w, H,) = C(w, F,), which is infinite
cyclic because F, is a free group. However g is conjugate to w implies that
C(g, H,) is also infinite cyclic, and this is impossible because C(g, H,)
contains C(g, Fy # GF) = I'™. Therefore C(g, H,) = C(g, Fy % G¥) = I'™.
Since g has an #'® root in H, for every natural number %, C(g, H¥) =
C(g, H,) = I' by Theorem 1. This shows that H¥* is not isomorphic to
H} if ap. '

3

In 1951 Graham Higman gave the first example of a finitely generated
infinite simple group [3]. This section will be concerned with a similar
example for Z-groups. We will show, by a non-constructive proof, that there
is a 5-generator non-abelian simple Z-group, that is to say a £-group with
no proper ideals.

We begin by constructing five isomorphic copies of the following
group

G =gpLT, z;x 2w =22 for all zeI').

G is a splitting extension of I'" by an infinite cyclic group generated by
2. Now let G, be an isomorphic copy of G for i =1, 2, 3, 4, 5; if geG,
the corresponding element of G, will be denoted by g,. We choose now

arbitrarily an element y in I', y 7 1. The order of y is infinite, and so we
may form the generalized free products

H = {Gy # Gy y; = 75},

K = {G3 * G; y; = z,}, and

L = {K % Gg; yy = x5}.
Now, in H,

8P (@1, ¥2) = 8P (@) * £P(¥2),
(see [5] for a proof); therefore gp(xy, ¥,) is a free group freely generated
by #, and y,. Similarly, the subgroup of L generated by z; and y; is a free
group freely generated by these elements. Therefore, we may form
M = {H * L;xy = y5, Y, = 3}

We show later that M is in & and therefore can be embedded in M*,
its free P-closure. The group M is generated by the elements z, = y;,
Ty = Yy, T3 = Yy, £y = Y3, and x; = y,, together with their roots; therefore
the @-group M* is generated by =, %,, z;, #, and ;. For convenience
we put
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a=x=1Y;, b=Ty=19;, €=2T3=1y,,
d=x,=1y,, and e = z; = y,.

Now since yeI', zlyx = 4%, hence z;ly,x; =193 for i1 =1,2, 3,4,5.
Therefore the following relations hold among these generators of M*:

atba = b2, b lch =2 cldc=d2? dled=c¢e? e lae= a’

By Zorn’s lemma we may choose in M* a maximal ideal not containing
a; let I be such an ideal. Set A = M*/I. It is this D-group A that turns
out to be non-abelian and simple. A is non-abelian because

(eI)™(al)(el)=(al)?, and al #1I.

Now if A were not simple, 4 would contain a proper ideal, and so M*
would have a proper ideal J properly containing I. J properly contains
I implies that a € ], because of the choice of I. Now, for ge M*,let § = gJ;
in M*/] we have
i=1=b=aBa=0b0=b=
Similarly
=l=>é=1>d=1=é=1.

Thus, the Z-group M*/] is trivial because its generators, &, b, ¢, d and ¢,
are all trivial. Therefore, J coincides with M*. Thus 4 contains no proper
ideal and so is simple.

It remains to verify that M is in &, this is the difficult part of the
proof, and we will continue by a number of lemmas.

LEMMA 1. G=gp (I, x;xl2x = 22 for all z in T is in P.

PrOOF. G is a splitting extension of I" by an infinite cycle generated
by z, since z — 22 for z in I'" is an automorphism of I". #~'zx = 22 implies
x*z2% = 22" for k any positive integer, and hence #*zz—* = 22", So for any
integer k, x—*zz* = 22",

Choose y e I', y = 1. Every element g € G can be written uniquely as

g = 2*y", k an integer, r rational.

First, we will show that G is an R-group, and to this end we now
investigate the #'® roots of a*y". Suppose that (z'y*)" =a*y", n a natural

number.
n
(@'y)" = (='y") (='y*) - - - (='y")
— xnl(x—(n—l)lysx(n—l)l) (x—-(n—Z)lysx(n—z)l) e (x—lysxl)ys

— xﬂlyz(n—l)l‘yz(n—!)l‘ e y2‘¢y8
— xnlys(z‘"‘”‘+2‘"*’"+~--+2l+1).
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Thus #l =k and s(2(*- 1420204 ... 4214 1) =7, So if x*y" has an
n® root, n|k. Whether %/n is positive, negative, or zero,

2(n—1)k/n+2(n—-2)k/n+ P +2k/n+1 ;é 0

because the complex solutions of the equation z#-14-2%24 - .. 241 =0
are the #'™® roots of unity different from 1. So (z'y*)" = 2*y" if and only
if n|k, I = k/n, and

_ r

- Q(n—L0k/n_{ o(n—2)[n_ ... | Qkn{] :

Thus whenever n|k, z*y" has a unique #' root; if # 1 &, «*y" has no nt®
root. This establishes that G is an R-group.

We will now show that if g € G and g fails to have an #% root in G
for some # then (a) C(g, G) is cyclic and (b) if A-1g?h = g for heG and
integers p and g, then p = ¢. First let us notice that the elements y" have
n' roots in G for all #, so that we are only trying to prove these statements
for elements g of the form g = x*y" where & # 0. Now, in an R-group G,
if g = A" n 5 0, then C(g, G) = C(h, G); so that it is sufficient to establish
(a) and (b) for the elements zy, since z*y" = (zy*)* for some s. ay" is con-
jugate to z, since

yrzy—r — xy2f—f — Zy';
and so it is sufficient to establish (a) and (b) for g = 2.
Suppose z'y* € C(z, G). Then

xlys — x—l(xlys)x = gt (x—lysx) — xlyzs'
Therefore s = 0, which means that C(x, G) =gp (x}. Now suppose A-1a?h =21
for some 4 = «'y*. Then
20 = (x‘y")—lx”(x‘y‘) — y“x"x"x‘y’ = Yyl aPyt = xpy—z"u,-,
and we see that p =g¢.
LEMMA 2. The groups H = {G, * Gy; Yy = 25}, K = {Gg % G; y; =z}
and L = {K = Gg; y, = x5} are in 2.

Proor. The groups G, are isomorphic to G, so by Lemma 1 they are
in #. We have just shown that A—'a?% = 2? for s € G and integers p and ¢
implies p=g¢, and so heC(x® G)=gp(x). This means that if
1~ gegp(e) that

{heGlhghegp(a)} = gp(2)-
In the isomorphism of G and G xz corresponds to =z,; therefore if
1 #£gegp(x;) then
{heGlhghegp(x)} =gplx
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In H the amalgamated subgroup is gp(x,), in K it is gp(x,), and in L it is
gp(x;). Therefore, by Theorem 3, H, K, and L are in 2.
Finally we come to the most troublesome lemma of all,

LEMMA 3. The group M = {H = L; 2, = y5, Yy = %3} 15 in P.

Let U = gp(x,, ¥2) = g0 (Y5, 35). The proof of Lemma 3 will be broken
up into two parts. First we will show that if # € U and # is not conjugate
in U to a power of y;, then

{heLlh'uheU} =U.
Then we will show that if 1 % % € U and # is conjugate in U to some power

of z;, = y;, then
{heHhuheU} =U.

By Theorem 3, this will establish that M e .

1. If ueU =gp(ys, x;) and % is not conjugate in U to a power of
¥5, then

{heL\huheU}=U.
ProoOF. Let us recall that
C=2a;, d=2,=Y;, e=x;=19,, and a =y;.

Thus G; is a splitting extension of I'; (isomorphic to I'), which contains
an element 4, by an infinite cycle generated by ¢. G, is a splitting extension
of I'y, which contains an element e, by the infinite cycle generated by 4. So

K = {Gy x Gy; gp(d)}.

G is a splitting extension of I';, which contains an element a, by the infinite
cycle generated by e. Hence

L = {K = Gy; gp(e)}-
U = gp(a, ¢), and we have already remarked that this group is free and
freely generated by 4 and ¢. We wish to show that if % € U, # is not con-
jugate in U to a power of a, and Auk e U, then % € U; so let us suppose
this statement is false.
For heL let A(h) be the length associated with the factorization

L = {K % Gg; gp(e)}-
Let

= min { A(h) heL—-U, 3ueU, u not conjugate in U

to a power of g, such that AluheU

Let # be an element of length p in L—U and # € U, # not conjugate in
U to a power of «, such that Aluh e U. Let w = A~1uh. Because # and w
are in U, they can be written uniquely as

https://doi.org/10.1017/51446788700004201 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700004201

404 Tekla Lewin (30]

U= Uty * * * U,,,
W= W,W, - W,,
where each #; and each w;, is either a power of a or a power of ¢, but #;
and %, , not both powers of a nor both powers of ¢, w; and w,,; not both
powers of a nor both powers of ¢. This means that each , is either in K
(in case %, is a power of ¢) or in Gy (in case %, is a power of a) but #, and
#;,, Dot both in the same factor; therefore A(#) = m. Similarly, A(w) = 1.
Now suppose that p = 1. Then

ho=lhhyh,,

where %, is in one of the factors K or G, but k; and 4, , not both in the
same factor. It cannot be that 4, = ¢*x where % is an integer and z is a
power of a or a power of ¢. For if this were so, then 4" = Az~ ¢ U because
2 ¢ U and x € U, while

B lub' = x(huh)z1,

which is in U because A'uh €U and 2z e U; however
Bo=hy by yhyg™ =Dy (By1€"),

so A(h') = p—1, a contradiction. Furthermore, %, # ze* where %k is an
integer and x is a power of @ or a power of ¢. For if &, =z¢*, then 4’ =214 ¢ U,
' =gz 'ux e U, and #' is not conjugate in U to a power of a because u
is not. Now

Wluw'h' = hte(xux)xh = h—1uh,

which is in U. But
e h =a hhy - h, = (hy) -+ h,,

so A(h') = p—1, a contradiction.
We will consider separately various cases depending on the lengths
of # and h.

a) p>1, m>1

WyWy W, =w = hubh=h BT AT g uy by by
Because %, # xe* where z is a power of a or a power of ¢, A7 u, ¢ gp(e) and
u,, i, ¢ gp(e); therefore after all cancellations and amalgamations have
taken place in this product the initial term A,' is unaffected. But
Awi'w) = A(w)—-1 and

wilw = wit At - b hT ug g by by,

imply that w4, € gp(e), and so h, = e*wi* for some integer %; but w;™
is either a power of a or a power of ¢, and we have seen that this is im-
possible.
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(b} p=1, m > 1.
W Wy W, = w = hluh = hluu, - - - u,kh.

If 4 is in a different factor than «,, then A2~ is unaffected in the product
h-luh, and so by the argument used in case (a) w;*4 ! e gp(e). But this
means b = h, = ¢*w;! for some %k, which is impossible.

If 4 is in the same factor as u,, A~1u, ¢ gp(e) (otherwise b= h; = u,é*
for some &), and this initial term A%, is unaffected after all cancellations
and amalgamations in the product have taken place. Therefore wy A1y, = *
for some k. Let &' = u; hw, = ¢*; &’ is not in U and A(k') = 0. Let
w' = u7 uu; w' e U because #, #, e U, and #' is not conjugate in U to a
power of a because % is not.

— -1z —1 -1 —17,—
WAuw'h' = wi hlug (0 wu,)uy ey, = wit (B-luh)w,,

and this is in U because w; e U and A'uheU. But this contradicts the
assumption p = 1.

) p>1, m=1.

We have assumed that # is not conjugate in U to a power of «; in
particular « is not a power of a. Therefore, since A(#) = 1, # = ¢" for some
n # 0.

WyWy W, =W = hluh = k' - - - hg hitc by - - - by,

If 4; and c" lie in different factors, then no terms in this product are
affected, and as before we can conclude that wi'%," e gp(e), which implies
h, = e*wi* for some k, a contradiction.

Therefore A, lies in the same factor as ¢”, namely in K. If
hi'c™hy ¢ gple), then

Btub =Bt - - - Bt A (BT ) A by - - - By

thus A, is unaffected after all cancellations and amalgamations have
taken place, and as before w4, egp(e), which leads to a contradiction.
Hence

-1 — pk
hitc™hy =¢

for some %, and we wish to show that such an equation in the group
K = {G; * G,; gp(d)} is impossible. G, is a splitting extension of I'y, which
contains ¢, by the cycle generated by 4. Therefore G, possesses an en-
domorphism ¢ that maps d onto itself and each element of I'y onto 1.
The identity map of G, coincides with ¢ on the amalgamated subgroup. It
follows that K has an endomorphism # that is the identity on G, and agrees
with ¢ on G,. Now
ekn = etp =1,
and
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. (B er by = ()= (c™n) (hyn) = (Bym) 2™ (hyn).
(o]

1=y = (h'c"hy)n = (hyn) " (hyn),
but this implies ¢® = 1, or # = 0, which is a contradiction.

dp=1 m=1
Since A(#) = 1 and # is not a power of 4, u = c™, n # 0.

W, Wy * W, = w = h7lc"h.

If 4 and c" lie in different factors, then as before wy'k1egp(e), which
leads to a contradiction.
Thus % lies in the same factor as ¢*; that is, # € K. Hence A~1c™k is in
K ngpla,c) =gp(c), so
h-lc*h = c*

for some integer 2. We now examine this equation in the group
K = {Gg * G,; gp(d)}. G4 is isomorphic to G with 2 — ¢, y — d. From the
proof of Lemma 1 we know that C(c, Gg) = gp(c), and c is not conjugate
in G4 to an element of gp(d) (because d has #' roots in G, for every #,
while ¢ does not). Therefore, by Theorem 2 C(c, K) = C(c, G3) = gp(c).
This implies ¢ does not have, for example, a square root in K; therefore,
since K is in & (Lemma 2) and A 'c¢"h = c*, it follows that » =% and
so heC(c, K) = gp(c) < U. This is a contradiction.

() p =0, m > 1. In this case 5 = ¢*, & a non-zero integer.
WWy - W, =w = hluh = (e Fuu, - (4,e€").
This means that / = m, w; and #%, in the same factor and
wile*u, = em, #n an integer.
If w, and #, lie in K, then wy! = ¢! and %, = ¢/ for some non-zero
integers ¢ and §; we have
ceFcle™ =1, 1#£0, R#0, §#0,

an equation in K = {G; = G,; gp(d)}. However, this is impossible, because
cte Gy—gp(d), e* € G,—gp(d), ¢ € Gg—gp(d), and e~ e G,; such an element
cannot be 1 in a generalized free product.

Thus w, and u, lie in G5. Therefore w;! = a* and %, = a’ for some
non-zero integers ¢ and 4, and so

_ ; -k
e" = wile*u, = a‘e*a’ = e*a®> !

(because e~lae = a?, e*a‘e* = q® "t — see Lemma 1). So n = —k. Now,
l=m> 1. If ] > 2, then we have
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Wy Wy = (W MUy ¢ ¢ (U€) = eFUy - ¢ (U 6F).
This implies
wyle*u, = ¢%, g an integer.

Now w, and #, lie in K and so w;* = ¢!, u, = ¢/ for non-zero integers s
and 7. Thus in K we have the equation

cle¥cle =1, 1#£0, B+#0, %0,

and we have already remarked that such an equation is impossible in K.
Therefore ] = m = 2, and we have

Wy = (W e u,) (uye*) = e *u, e~

Since w, and wu, are in K, w;! = ¢! and u, = ¢/ for non-zero integers.
This gives us the equation

cetcler =1, i£0, E£0, {#£0,
which is impossible.

(f) j) = 0, m = 1,

In this case h = ¢, k #0, and % = ¢", n % 0 (because # is not a
power of a). Thus A—'uh=e*c"e*. ¢ and c are in K, so h'uh e K n gp(a, ¢)
= gp(c). Therefore for some integer ¢ we have

e*enek =¢?, k#0, n#0,

and as we have shown, such an equation is impossible in the generalized
free product K = {G4 * G,; gp(d)}-
This completes the proof of part 1 of Lemma 3.

2. If ueU = gp(x,, y,) and # is conjugate in U to a power of z,,
then
{heHhuheU} =U.

ProoF. Let us recall that a =2, b=2,=19,, and c=y,. G, is a
splitting extension of I, which contains b, by the infinite cycle generated
by a. G, is a splitting extension of I',, which contains ¢, by the cycle
generated by b. Thus

H = {G, = Gy; gp(b)}.

For h e H let A(h) be the length associated with this factorization. We wish
to show that if ¥ e U = gp(a, c), # is conjugate in U to a power of a, and
h'uh e U, then heU. Suppose we can show that if A-a"he U (n # 0)
then h eU; it follows from this that if ve U and A-'(v-'a"v)h e U then
vh e U and so & € U. Thus it is sufficient to show that if A1a"heU, n %0,
then A eU. Let us suppose then that this is false.
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Let
# = min {A(k)|he H—U, h'a"heU for some n # 0}.

Let % be an element of length p in H—U and n 5 0 such that Aa"he U.
If p =1, then % can be written in the form

Bo=hyhyh

»

where %, is in one of the factors G, or G, but k4, and A, , are not in a common
factor. Let w = h~1a"h. Since w € U, which is freely generated by a and ¢,
w can be written uniquely in the form

W =W Wy~ - " Wy,
where each w, is either a power of a or a power of ¢, but not both w, and
w,,, powers of a, not both w, and w,,; powers of ¢. This means that each
w, is either in G, (in case w, is a power of &) or in G, (in case w, is a power
of ¢) but #, and #,,, not both in the same factor; therefore i(w) = I.

If p =1, it cannot be that A,z egp(b) where  is a power of a or a
power of ¢. For if A,z = b*, k an integer, let &' = hx; 4’ ¢ U because x € U
and A ¢U.

Aah' = ziha he = 2 (h~la"h)z,

and this is in U because A 1a"h e U and e U. But
ha =hy Ry g by =Ry (B bF),

and so A(kx) = p—1 because b* is in the amalgamated subgroup. And
this is in contradiction to the minimality of .
Let us consider separately various cases.

(@) h, € Gy-gp(d). In this case we have
WWy - w,=w=hluh=h-hlaa"Ahy- b,
It follows that wilh;egp(d), or h,w; € gp(b); however, as we have just
shown this is impossible because w, is either a power of a or a power of c.
(b) AyeGy, p> 1L
W, Wy W, = w = hluh = k' BN (W7 Ay)hy - by
ha™h, ¢ gp(b) because b has n' roots for every » in G, while a does not,
so no power of a can be conjugate in G, to a power of b. Therefore

hi'a"h, € Gi-gp(b), and the terms A%, - - -, k" are unaffected by amal-
gamations. Hence w4, € gp(b), which we have shown is impossible.

(c) heG,. Both a® and heG, implies A 'la"heG,. Therefore
h7a"heG;n U = gp(a). But in the proof of Lemma 1 it was shown that
h7a"h = a* implies % € gp(a), which is contrary to assumption.
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