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GOTTLIEB SETS AND DUALITY IN HOMOTOPY
THEORY

[. G. HALBHAVI AND K. VARADARAJAN

Introduction. Evaluation subgroups of the homotopy groups have been
objects of extensive study recently by Gottlieb, Haslam, Jerrold Siegel, G. E.
Lang (Jr), etc. In [8] one of the authors has introduced the notions of ‘cyclic’
and ‘cocyclic’ maps and studied generalizations of evaluation subgroups and
their duals in the set up of Eckmann-Hilton duality. This paper continues the
study of these generalized Gottlieb and dual Gottlieb subsets. All the spaces,
except the function spaces, will be arc connected locally compact CW-com-
plexes with base point at a vertex. For any X, Y the set of base point pre-
serving homotopy classes of maps of X to Y is denoted by [X, ¥]. The subset
of [X, Y] represented by ‘“cyclic’” maps of X to ¥ in the sense of [8] will be
referred to as the Gottlieb part of [X, ¥] and will be denoted by % (X, ).
Similarly the subset of [X, V] represented by ‘““cocyclic’” maps of X in ¥ will be
referred to as the dual Gottlieb part of [X, Y] and will be denoted
by 2% (X, V).

In Section 1 we prove that an element « € [4, X] lies in ¥ (4, X) if and
only if there exists a Hurewicz fibration p : E — ZA4 over £A4 with fibre X
satisfying the condition that d[e,] = « in the Eckmann-Hilton exact sequence
of the fibration p : E — 24 where e: A — QZA4 is the map adjoint to the
identity map 24 — ZA4 and 9 : [4, Q24] — [4, X] the boundary homomor-
phism in the Eckmann-Hilton exact sequence (Proposition 1.2). This gen-
eralizes a result of G. E. Lang (Jr) [6].

In Section 2 we deal with the following problem. Let a € % (4, X) and
¢: X X A— X amap “affiliated” to a, namely ¢|X = 1y and ¢|4 represents
a. Let

b x
be a fibration. Under what conditions can we say that there exists a map
¢: EX A — E with g|E = 15 and

EXASE

1;0 Alf)

XxXxA4A38x
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commutative? In case 4 = S? and p : E — X is induced from the standard

contractible path space fibration PB ‘—1—1>B with B a product of Eilenberg-
Maclane spaces G. E. Lang finds sufficient condition for the existence of such a
@ [6, Theorem 3.1]. In case 4 = S? and B is a single Eilenberg-\aclane space,
D. Gottlieb gives a necessary and sufficient condition for the existence of such
a ¢ [4, Theorem 6.3]. In Section 2 we prove a necessary and sufficient condition

P
for the existence of such a ¢ with 4 arbitrary and E — X induced from

PBQB

where B is any product of Eilenberg-Maclane spaces (Theorem 2.1). From our
result we show how the earlier results of Gottlieb and Lang can be deduced.
Actually when 4 = S? our necessary and sufficient condition appears to be
weaker than the sufficient condition given by G. E. Lang. However when B is
a single Eilenberg-Maclane space and 4 = S? our condition exactly agrees
with Gottlieb’s necessary and sufficient condition.

In Section 3 we deal with the dual question. Let o € 9% (X, 4) and
¢: X—>X V A a map ‘“co-affiliated”’ to «, namely p,0jy 40 ¢ ~a and
Px Ojx.a 0@~ 1y where jy4: X VA—>X X A denotes the inclusion,
px: X X A—> Xand ps: X X 4 — 4 denote the respective projections. Let
w: X — Y be a cofibration. Under what conditions can we say that there
exists a map x : ¥ — Y V 4 such that py 0 jy 4 0 x ~ 1y and making

x8xv4

Ml l# V1,

vXvva

commutative? We answer this question when the cofibration u : X — Y is the
push-out of the standard cofibration e, : B — CB (e:(b) = (b, 1) where CB
is got from B X I by collapsing B X 0 U4 X I to the base point) by means of
amap f: B — X with

B = \/ K'(ﬂ, )
AeA

a wedge of Moore-spaces, each n, being an integer = 3 (Theorem 3.1). The
proof of Theorem 3.1 is not completely dual to the proof of Theorem 2.1. Some
complicated homotopies are involved in the proof and we had to also have a
recourse to the stronger form of Puppe exact sequence.

In conclusion we want to point out that it is not clear to us whether the dual
of Proposition 1.2 is true. The dual result, if it is true, will be the following:

An element o € [X, 4] lies in 29 (X, A) if and only if there exists a
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q
cofibration @4 — E with cofibre X such that d[7,] = « where
d:[2(QA4), 4] —» [X, 4]
is the boundary homomorphism in the Puppe-exact sequence corresponding to

the cofibration Q24 i E— X and 7, : 2QA4A — A4 is the canonical retraction
which is adjoint to the identity map Q4 — Q4.

Our proof of Proposition 1.2 relies on the existence of Guy Allaud’s clas-
sifying space for Hurewicz fibrations. There is no satisfactory theory of
“classifying spaces’’ for cofibrations.

1. Relationship between ¥ (4, X) and Guy Allaud’s classifying space.
Throughout this and subsequent sections all spaces, except function spaces,
are assumed to be path connected locally compact CW complexes with base
point at a vertex. With the exception of elements of function spaces and
homotopies between them, all maps and homotopies preserve base points.

Results of this section have been established for the particular case of
evaluation subgroups by D. Gottlieb and G. E. Lang (Jr) in their papers [4]
and [6].

Given X let B, be Guy Allaud’s classifying space for (Hurewicz) fibrations
with fibre X and p,, : E_, — B_ be the corresponding universal fibration [1].

ProrposiTioN 1.1. For any space A, in the Eckmann-Hilton exact sequence for
the fibration p,, : E, — B, we have

a4, OB, = G (4, X)

Proof. Let Ly be the space of all maps X — E_ which are homotopy equiva-
lances from X into any fibre of p, : E, — B, and 1, : X S E_ the base
point of Lj.

Define ¢ : Ly — B, by o(f) = pof (x0).

Let X* be the space of all homotopy equivalences of X into itself with base
point 1x.

Let w: X* - X and w, : Ly — L_, be the evaluation maps. Then we have a
commutative diagram:

le

X*—= X

i T

L# o

B, —

18

o
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¢ is known to be a Serre fibration [4]. Since 4 is a CW complex there is an
exact sequence
cemm s (4,08 25 14, x4 2 (4,10 2 (4, B

Similarly there is an exact sequence

______ (4,981 -2 (4, x] 2=*, (4, E.] £=% (4, B.]

and the following diagram is commutative.

[4,QLt] — [4,0B ]—> [4,X*] = [4, L] =5

O e

4, Q) — [4, 98] -2 [4,X] 2=, (4, E.) 2=% 14, B.)

Diagram 1

It is known that for any CW complex B, [B, L] = 0 [4]. Hence [4, QL4] =
0 = [4, L4] and 9 is a bijection [4, QB,] ~ [4, X*].

Let L(X, X; 1x) be the path connected component of X* containing 1.
Since 4 is path connected we have

G (A, X) = wy[A4, L(X, X; 1x)] = ws[4, X*].

From Diagram 1 we get d[4, QB,] = ¥ (4, X) in the lower horizontal
sequence. This completes the proof of Proposition 1.1.

Let ey : A — QZA be the adjoint of 13,4, i.e., e, be defined by ey (a)(t) =
(a,t)foralla € 4 and t € I.

PrOPOSITION 1.2. Let o € [A, X]. Then a is in G (A, X) if and only if there
is a fibration p : E — ZA with fibre X such that dles] = a in the Eckmann-
Hilton exact sequence for the fibration p : E — Z4.

Proof. That dles] € 9 (A, X) follows from [8, Theorem 6.4].

We only have to prove that if a ¢ % (4, X) there exists a fibration p : E —
2A with dey = a.

By Proposition 1.1, ¥ (4, X) = 9[4, QB_]. Let y ¢ [4, QB_] be such that
8y = a and h: A — QB,_, represent y. Let & : 24 — B, be the adjoint of h.
Let p : E — ZA be the fibration induced by % from the fibration p,, : E, — B,,.

From the commutative diagram

[4,024] -2 (4, X] — [4,E] 2% (4, 24

i Lk

(4,9B.] -2 (4, X] — [4, E) P=% 14, B.)
we have d[es] = 9Qhyles] = (k] = 9y = a.
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For the proof of the following lemma with 4 = S, Lang [6] refers to [7].
But to our knowledge an explicit proof is not found in [7]. Since we feel that
this needs a proof we include it here.

Let p: E— 24 be a fibration with fibre X. Let d[e,] = o € [4, X]. From
Proposition 1.2 we know that « € % (4, X).

Write £4 as C;4 U C_4 with C;4 N C_4 = A. Then there exist fibre
homotopy equivalences

g pH(CiA) > X X CyA4, f_: X X C_A — p~1(C_A4)
satisfying the additional requirements that
gix: X —>X and fox:X—-X

are homotopic to the identity map.

The map p: X X 4 — X defined by (u(x, a), a) = gif-(x, @) for x € X
and a € A iscalled the clutching function for the fibration p : £ — ZA4. Clearly
u,x ¢ X — X is homotopic to 1x.

PROPOSITION 1.3. ;4 : A — X represents a.

Proof. Let Q, = {(e, w) € EX (Z4)7/w(0) = p(e)}. Define ¢: X — Q,
and k: 224 — Q, by
qx) = (v, we) and k(w) = (xo, w)
where wy is the constant path at *, the base point of £4. The ¢ is a homotopy

equivalence and 9 is defined by the commutative diagram

4, 054] —2 5 (4, x)

k* ‘)‘EZ*
\[A, Qp]/

Hence it suffices to prove that koey ~ go (u/4).
Define F': y ~ 1¢_sand G : lc 4 ~ & by

F({a, t), s) = (a, sty and G({a,t),s) = {a,t + (1 — t)s).

Since p is a fibration the dotted arrows exist in the following commutative
diagrams.

XXCA ————P—l—-—> p~HC_A) pHCA) =—— pHC,A4)
>

F - G ’,f’a
’_/” ’,” p

- 1 -
XXC_AXIE;X—iC_AXI?C_A P (C+A)XImC+AXI—G—>C+A

where p; stands for projection to ith factor.
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Then f_ and g, are defined by f_ = F," and g, (¢) = (G (¢), p(e)) and hence
p(xo, @) = Gi'Fi (%0, {a, 3)).

Define a homotopy H : A X I — E from the constant map A — E to the
composite of

AMA N g
by
Fl(xov <d, %>y 2t)v lft

IIA
[N

Ha,t) =
Gl(Fll(xov <(l, %))! 2t — l)r if ¢ = %

Define a homotopy L : A X I — (Z£4)7 from e, to the constant map w, by
Lia, t)(s) = {a, t + (1 — t)s).

Thenforallt € I, pH(a,t) = {(a,t) = L(a,t) (0). Hence there exists K : A X
I — @, such that K(a, t) = (H(a, t), L(a, t)). Clearly K is a homotopy from
koe, togo (u/A). Hence the result.

2. Lifting ¢ : X X 4 — X affiliated to « ¢ % (4, X). For any space X
let PX be the space of all paths in X starting at the base point and
d, : PX — X be the fibration defined by d,(») = »(1) for all v € PX. Let

B =[] K(r;mn))
€T
where J is any indexing set, #; = 1 and =, abelian for j € J. Let p : E > X
be a principal fibration induced by a map 6: X — B from the fibration
d; : PB — B. Suppose there is a map ¢ : X X A — X such that ¢/X = ljx.
Under what conditions does there exist a map ¢ : E X A4 — E such that
¢/E = 1g and the following diagram is commutative?

EXASE

lpxllp
Xx45%x

This problem was considered by D. H. Gottlieb [3] and Lang [6] for the case
A = S". We obtain a necessary and sufficient condition for such a ¢ to exist
and from that derive the results of [3] and [6].

Forj € Jlets; € HY(K(mrj, n;); m;) be n;-characteristic for K(r;, n;). Let
CA be the cone over 4, i.e., A X I with * X I U A X 0 collapsed to a single
point. Let 8, = p, 0 6 where p, is the projection B — K(r;, n;).

THEOREM 2.1. With the above notation, there exists ¢ : E X A — E such that
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¢/E = 15 and making the diagram

EXA_°5F

lpxu lp

XxXA4-5x
commutative if and only if (p X lea)* d¢* 6,%(;) =0 in HYH(E X CA,
L X A;7;) forall j € J where

d: HY(X X A; 7)) > H Y X X CA, X X 4; ;)

s the boundary map in cohomology.

Proof. Assume that the condition (p X 1¢a)*d¢,*(2;) = 0 is satisfied for
allj € J.Then (p X 1)*¥ 0 ¢*008,*(1;) € HY(E X A; m;) gets mapped into 0
byd: HY(E X A;7;) > HTY(E X CA,E X 4; ;). Hencef,0 00 (p X 14)
can be extended to a map E X CA — K (=, n;) [7, Theorem 8.1.12]. Thus for
j€ Jwehaveamap F;: EX 4 X I — K(wj, n;) such that

File,a,1) = 0;00(ple), a), File, a,0) =0;p(e)

and Fj(e,*,t) = 6,p(e) forall t € I

Let § : E— PB be the canonical map with d;0f = #op and let §; =
p; 08 where p, is the projection

PB = H PK (m;, n;) — PK(m;, n;).

i€

Define H;: E X A X I — K(mj, n;) by
6;(e)(2t), ift <

[N

Hi(e, a, t) = {
File,a, 2t — 1), iftz= 4
Then H (e, a, 0) = 0;(e)(0) = s for all e € E and a ¢ A. Hence H; gives
rise to a map H;: EX A — PK(wr;, n;). Define H:E X A— PB by
p;oH = H; for all j ¢ J. Since djoH =600¢o (p X 1,), there exists
@ :E X A— E such that §o ¢ = H and the following diagram is com-
mutative:

EXA_ Y, E
L
LDX 4 iP

X xA4-5X.
A homotopy G : E X [ — Efrom 15 to ¢'/E can bedefined by p o G(e, s) =
ple) and 8 G(e, s)(t) = He, ) (/2 + st/2).
Let L:X X A4 X I — X be the constant homotopy from ¢ to ¢. Define
V:EXAXOUEXx X I—Eby

vie,a,0) = &' (e,a) and yle, *,t) = Gle, 1 — t).
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Then the following diagram is commutative:

EXAXONEX*XT ¥

| I

EXAX[——+— X XAXI->X.
X A X 5% 1o X 4 X i

So ¢ can be extended to a map ®: E X A4 X I — E such that po ® =
Lo (p X lsx). Then ¢ = &, is the required map.
The converse is clear.

Let us now consider the special case 4 = S% ¢ = 1. Since H*(S%; Z) is
torsion free we have from the Kunneth relations

H*(X X 8% @) ~ H*(X; 7) @ H*(S;, Z)

for any coefficient group . Thus given a generator s of H/(S%; Z) = Z any
element of H"(X X S% =) can be written uniquely as x X 1 + y X s where
x € HY(X; ),y € H(X; 7) and X denotes the cohomology cross product.
Since ¢/X = 1y, for any u € H*(X; m) we have in H"(X X S% 7) ¢*(u) =
u X 14 v X s for somewv € H%(X; ). The element v is denoted by X ().
Then X : H*(X; 7) — H*(X; «) is a group homorphism of degree — g¢.

COROLLARY 2.2. Under the situation as in Theorem 2.1. with 4 = S* and
n; 2 2,1f N0,*@1;)) = 04dn HY9(X; «) for all j € J then there exists g : E X
S — E such that /X = 1y and the following diagram is commutative.

Ex S%E
p X lsal l?
XX S"—>X
)
Proof. We have ¢*0,*(i;) = 0,*(i;) X 1 4+ X(0,*(4;)) X s. Hence from the
properties of cohomology cross product we have in H*+1(X X E1 X X S%x;),
9e*0,*(1;) = (—1)"60,*(1;) X 91 + (—1)"~N\;(0,*(¢;)) X 9s.
Since H'(E**!, S%; Z) = 0, 91 = 0. Therefore,
9¢*0,*(1;) = (—1)"=N(8,*(3;)) X 9s.
Since X (6,;*(z;)) = 0 for all j € J, we have
(b X 1ger1)*00*0,(i,) = 0 in HY*'(E X E*L, E X S% )

forallj € J
Hence the result follows from Theorem 2.1.

Let p : E— X be a principal fibration induced by a map 8 : X — K(r, %)
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where n = 2. Let 1 ¢ H*(K(w, n); m) be n-characteristic for K(r, n). Let

¢: X X S”— X beamap such that ¢/x = 1x. Let X : H*(X; n) —» H*(X; 7)
be the homorphism of degree —¢q defined by ¢ as above.

COROLLARY 2.3. With notations as above, there exisis a map ¢ : E X S*— E
such that ¢/E = 1z and making the diagram

Ex S SE

p X 154 lP

Xxs'5x
commautative if and only if X(6* (1)) = 0 in H9(X; 7).

Proof. As in the proof of Corollary 2.2, we have in H"*1(X X E®! X X
St ),

Ap*0* (i) = (—1)"\(6*(4)) X ds
and therefore
(0 X 1ger1)*a*0* (i) = (—1)""p*A(6*(4)) X 9.
Since 9s is a generator of H1([E S Z) = Z it follows that
(P X 1pat1)*9¢*6* (1) = 0

in H"1(E X E*1 E X S% ) if and only if p *X(0*()) = 0 in H*(E; ).
Hence by Theorem 2.1, a map ¢ : £ X S? — E with required properties exists
if and only if p*X(6*(2)) = 0 in H*%(E; ).

The fibreof p: E— X is a K(w, n — 1) and hence n — 2 connected with
n — 2 = 0. By Lemma 2.4 below, p* : H(X; ) —» H'(E; ) is a monomor-
phism for all » < n — 1. Hence the result.

LEMMA 2.4. Let p : E — B be a fibration with n connected fibre I'(n = 0). Then
for any coefficient group w

p* H(B; 7) —» H(E; 7)
is an 1somorphism for ¢ < n and a monomorphism for ¢ = n + 1.

Proof. Consider the homotopy exact sequence of the fibration p : £ — B

— — o 7(B) —a——> T (F) — 7, (E) p—) m.(B) —i) Te1(F)— — —

Since 7, (F) = 0 for all ¢ = n, p#: 7, (E) — m,(B) is an isomorphism for
¢ = n and an epimorphism for ¢ = n 4+ 1. Hence by Whitehead’s theorem
(7, Theorem 7.5.9],

Py o Ho(E) — Hy(B)

is any isomorphism for ¢ £ # and an epimorphism for ¢ = n + 1.
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By the universal coefficient theorem we have the following commutative
diagram with exact rows

0 — Ext (H,(E), ) » H*Y(E; 7) » Hom (H 1 (E), 7) =0

| | |

0 — Ext (H,(B), m) » H"*'(B; m) —» Hom (H,.1(B), ) —» 0

where all the vertical maps are induced by p.

Ext (H,(B), =) — Ext (H,(E), =) is an isomorphism for ¢ < n and
Hom (H,(B), m) — Hom (H,(E), w) is an isomorphism for ¢ £ » and a
monomorphism for ¢ = # + 1. Now the result is evident.

Corollary 2.2 is Theorem 3.1 of [6] and Corollary 2.3 is Theorem 6.3 of [4].

3. Extending a map ¢ : X — X Vv 4 “co-affiliated” toa ¢ Y (X, 4).
In this section we consider the question dual to the one in Section 2.
Let

B=V K’ (m, m)

AeA

be a wedge of Moore spaces with each #, = 3. Let e, : B — CB be the canonical
inclusion given by e;(b) = (b, 1). Let u : X — ¥ be the cofibration induced
from the cofibration e, : B — CBbyamap8: B— X. Letj : K'(m, m) = B,
Jxa: XV A—->X X Abeinclusionsand px : X X 4 > X, p,: X X 4 - A4
be projections. Let 6y = 6 0 jr. Suppose ¢ : X — X V 4 is a map such that
Px OJx.4 0 ¢ ~ lx. We are interested in finding conditions under which there
exists a ¢: V— YV V A such that pyojys0¢ ~ 1y and the following
diagram is commutative.

x8xv4

1 s

vy&vva4a

For this purpose we recall the homotopy exact sequence of a map for
homotopy groups with coefficients in an abelian group ({2] or [5]).

Let 7 be an abelian group. For any space S and an integer & = 2 7, (r; S),
the kth homotopy group of S with coefficients in 7 is defined to be [K' (7, k), S].

For any two spaces R and S and any map h: R — .S, m(w; h), the kth
homotopy group of % with coefficients in w(k = 3) is defined to be the set of
homotopy classes of map pairs (#, v) where

K'(r b —1) %R

1h

CK'(m b — 1) S
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is commutative. Then for & = 3, m(7; S) = m(w; O5) where Oy is the unique
map * — S.
The commutative diagram

*_9R
| s
S=3S

defines a homomorphism J : 7, (7; S) — m(w; k) and there is an exact sequence

— M1 (1 h) — 7 (7 1 R) —}ifa m(m 2 S) ——5 m(r i h) — ... ...
Now we are ready to state the following theorem.

THEOREM 3.1. With notation as described in the beginning of this section, there
existsay : YV — YV A such that p, 0 jy 4 0¥ ~ 1y and making the diagram

xXZ2xv4a

1 v

Vo> ¥V A
v

commutative if and only if J((n V 1a)xexbh (0)) = 0 1wy (mn; IV dy) for all X,
where iy € my (ma; K'(my, ma)) = [K'(my, ma), K’ (m\, ma)] is the homotopy class
of the identity map, di : PA — A is defined by d1(c) = o(1) and J 1s the homo-
morphism wy (mn; ¥V A) = my (mn; 1y V di) in the homotopy exact sequence of
the map 1y V dy: YV PA— Y V 4.

Proof. Assume J((p V 14)s040\(12)) = 0 for all \. Since the sequence

) _(k__\/ d1)x

wn)\(wn; Y v PA Tox (10 YV 4) ——J——-> 7!'")\(71',,; 1y V d1)

is exact and J{(u V1) o0¢00b] = J((r V 100 (n)) = 0 there is
v K'(m, m) — Y V PA such that the diagram

YV P4

/ lly V dy

K’ (m, m) (e V 110 006 yv4

is homotopy commutative.
Let Ly : K'(m\, ma) X I — ¥V V A4 be a homotopy with

Ly, 0) = (1y Vdy) on(u) and Ly(u, 1) = (u V 14) 0 ¢ 06x(1)
for all u € K'(my, ny).
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Letl: YV PA— (Y V A)! be given by
I(y) = the constant path at y forall y € V
and
I(e) = o foralle € PA.
The composite K'(m, m) = ¥V PA'— (¥ v 4)f gives a map
M :K(m,m) XI—->YVA4
such that

NMi(u, 0) = pyojypaon(u) and Ny(u, 1) = (1y V di) on(u)
for all u € K'(m, na).
Let K: X X I — X be a homotopy with

K(x,0) =x and K(x,1) = pxojx..0e(x) forall x € X.

Let 7, be the inclusion CK'(m\, m) — V CK'(m\, m) = CB.Let§: CB— YV
be the canonical map with §oe; = o6 and put fy = 8, = § 0.

Define Hy : CK'\(m\,, ma) = Y V 4 by

(B {u, 5t), *), 0st=st

(K (00(un), 5t — 1), *), §St=%

Hy(u, t) =< (py0jy.a0La(u,3 —5t), %), 2=t=34%
lzwu, 5t — 3), e

Ly(u, 5t — 4), 1t <1 =1,

Let H: CB— Y V A be such that H|CK'(m\, m
(m V 1,) 0 ¢ 06. Since

B Yx
1

CB—Y
6

~—

= Hy. Then Hoe, =

is a push out diagram there existsa ® : ¥ — ¥V V 4 such that
o0 =H and ®ou= (g V 1) 0e.

Thus we have a commutative diagram

X L xvabxolngy

1 e )

Y—— S VYVA—— 7.
$ PyOJy,a
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Consider the commutative diagram

X, Vv 4] rodras vy

E J1e

v, v v A] —Brodra) 1y oy

v lv

(3B, vV v 4] —Lroira) (s y)

where 7 : ¥V — ZB is the collapsing map (collapsing p(X)). The columns are
parts of Puppe exact sequences.

Since py 0jy s 0Pou = uopy0jy.a 0¢ and px 0jx.4 O ¢ ~ Ix we have
w¥projrao® = [u] in [X, V]. Also u*[1y] = [u]. Therefore there exists
@ € [ZB, Y] such that a - [py 0jy.4 0 ®] = [1y] where - denotes the action
of (2B, Y]on [Y, ¥]. (See [7, 7.2.18]. Note that ¥ is the mapping cone of
6:8B—X. Clearly (pyojyr.a)s:[ZB, YV Al —[ZB, Y] is onto. Choose
B € [ZB, YV A] such that (py 0jy.4)s(B) =a. Let x: ¥ — YV V A4 repre-
sent the element 8- [®] of [V, ¥ V A]. Then we have

(Pyiv.a)slx] = Py 0jr.a)s(B) - (Pyr OJv )l ®]
=a- (py OjY,A>*[‘I>]
= [lY]

and  w¥[x] = p*(B - [®]) = p*[®] = [(0 V 14) 0¢] in [X, ¥V A]. Thus
pyojyras0ox~1yand xou~ (uV 1,) 0¢. Since p: X — V is a cofibra-
tion there exists a ¢ : ¥ — ¥ V 4 such that ¢ ~ x and the diagram

xXExv4

1

VoV VA
v

is commutative. Clearly py 0 jy 4 0 ~ 1y.

The converse is clear.

Remark 3.2. In Section 3 we could only deal with a wedge

V K’ (m, m)

AeA
of Moore spaces with each #y, = 3 because the homotopy groups m,(m; k) of a
map k with coefficients in 7= can be defined only when k& = 3. In fact the
definition of 7, (w; k) involves a K'(w, k — 1) space and we are sure of its
existence only when & — 1 = 2 {9].
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