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ON STALLINGS' UNIQUE FACTORISATION GROUPS

DONALD I. CARTWRIGHT AND BERNHARD KRON

Let r be a group and E a symmetric generating set for F. In 1966, Stallings called F
a unique factorisation group if each group element may be written in a unique way as
a product ai... om, where a* € E for each t and OjOj+i 0 E U {1} for each t < m. In
this paper we give a complete combinatorial proof of a theorem, not explicitly stated
by Stallings in 1966, characterising all such pairs (F, E). We also characterise the
unique factorisation pairs by a certain tree-like property of their Cayley graphs.

1. INTRODUCTION

Let F be a group and E a generating set for F. We always assume that E is symmetric
(E"1 = E) and that 1 £ E. We do not assume that E is finite. Let E* denote the set of
all words over E. We write ( a i , . . . , Om) for a word, and a.i... am for the group element
this word represents. The empty word represents 1. Let Lz denote the set of the words
(au • • •, am) 6 E* in which Ojai+i g EU{1} for alii < m (together with the empty word).
Given g e T, any word in E* of minimal length representing g is in LE. Modifying [7]
slightly, we call (F, E) a unique factorisation pair if for each g € F there is only one word
in £«£ which represents g. Equivalently:

DEFINITION 1: The pair (F, E) is called a unique factorisation pair if the map
(au ..., am) >-> a i . . . am is a bijection I E -> F.

One goal of this paper is to describe (in Theorem 1 below), up to isomorphism, all
possible groups F and all possible generating sets E on a given group F such that (F, E)
is a unique factorisation pair. The relevant notion of isomorphism here is the obvious
one: (Fi, Ei) and (F2, E2) are isomorphic if there is a group isomorphism / : Fi -> F2

such that f(Ei) = E2.

A second goal is to characterise (in Theorem 2 below) the Cayley graphs of unique

factorisation pairs in terms of a "tree-like" property they have.

We start by listing some examples of unique factorisation pairs (F, E). We shall

check that Examples 2 and 3 are unique factorisation pairs in Lemma 2.6 below.
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28 D. Cartwright and B. Kron [2]

EXAMPLE 1. Let G be a group. Then (G, G \ {1}) is a unique factorisation pair.

EXAMPLE 2. Let F be a free group, with free generators y*, k € K, for some set K.
Write yo = 1- Let E consist of the elements y^yi, where k,( € Kli {0}, k ^ I. Then
it is not hard to show that (F, E) is a unique factorisation pair by appealing to the fact
that (F, Eo) is a unique factorisation pair, where Eo = {yfl : k € K}.

EXAMPLE 3. Let G be a group, and let F be as in Example 2. Let E denote the set
of elements in the free product G * F, other than 1, of the form y^gyt, where g € G
and k,£ € K U {0}. Then (G * F, E) is a unique factorisation pair (see Lemma 2.6).
Examples 1 and 2 are the special cases K = 0 and G = {1}, respectively, of this example.

EXAMPLE 4. Let (r,, E,-), j € J, be a family of unique factorisation pairs. Let F denote
the free product of the F/s, and let E denote the union of the sets E;. Then (F,E) is a
unique factorisation pair. We shall write (I\ E) = *jej(Tj, E,-).

THEOREM 1 . Let (F, E) be any unique factorisation pair. Then (F, E) is isomor-
phic to a free product *jej(Fj, Ej), where each (Fj, Ej) is as in Example 3.

Stallings' paper [7] is mostly concerned with "partial groups" and their "universal
groups". It concludes with a terse discussion of the structure of these partial groups, with
only a brief proof sketch. From this discussion, using universal groups it is not a large
step to arrive at our Theorem 1, though this is not done in [7]. We feel that the result is
of sufficient interest to warrant a clear statement and the complete proof we present in
Section 2, particularly as there has been renewed interest in these groups amongst people
studying random walks on groups; Mairesse and Matheus [4, 5] were able to perform very
explicit calculations concerning random walks on these groups in which the transitions
are of the form g t-+ ga (g G F, a € E). Our proof uses several of the ideas indicated by
Stallings [7], but takes a more direct combinatorial group theory approach, rather than
using the methods of partial groups and their universal groups.

It follows from Theorem 1 that if (F, S) is a unique factorisation pair and E is finite,
then F is plain, that is, a free product G\ * • • • * G, * Fr of finitely many finite groups
Gi,...,G, and a free group Fr (where r,s > 0). This much had been deduced from
Stallings' results and written down explicitly by Haring-Smith [3], and used by him and
others subsequently (for example, [1, 2]). But Theorem 1 provides more, giving precise
information about the generating set E. In particular, for each plain group F, there are,
up to isomorphism, only finitely many generating sets E for which (F, E) is a unique
factorisation pair.

EXAMPLE 5. Let r ^ 1, and let FT denote the free group on r free generators. Given
any integers r\ ^ • • • ^ rk ^ 1 such that n H H r* = r, for j = 1, . . . , A;, let Erj be the
generating set on Frj described in Example 2. Form *j=l(Frj,l£Tj), in the notation of
Example 4. By Example 4, this gives a unique factorisation pair (Fr, E). By Theorem 1,
any generating set E on the free group Fr such that (Fr,E) is a unique factorisation
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pair is of this type. Since the numbers r* are the sizes of the equivalence classes [a]
(see Lemmas 2.3 and 2.6 below), distinct partitions correspond to non-isomorphic unique
factorisation pairs. So up to isomorphism, the number of distinct E's on FT is the number
of distinct partitions of r. The usual generating set of FT (that is, a set of free generators
and their inverses) corresponds to the partition 1 + \-1 of r.

Recall that the Cayley graph Cay(F, E) of a group F with respect to the symmetric
generating set E, with 1 £ E, is the undirected graph having vertex set V = F, and edge
set E consisting of the pairs {g,ga}, where g 6 F and a € E. If 51,52 S F, let ds(51,52)
denote the distance from 51 to g2 in Cay(F, E).

In Section 3, we shall characterise the Cayley graphs of unique factorisation pairs. As
we shall see below, if (F, E) is a unique factorisation pair, then we obtain an equivalence
relation on E by writing a ~ b if and only if a~xb € E U {1}. This means that the
equivalence class [a] of a, together with 1, spans a complete subgraph of Cay(F, E). Since
left multiplication by group elements is a graph automorphism, the family

(1.1) C

consists of non-empty subsets C of F with the following properties: (i) each edge {x,y}

is contained in some C € C, and (ii) each C spans a complete subgraph.

If X = (V, E) is any connected undirected graph, and if C is a family of non-empty
subsets of V with property (i), then we can form a connected graph Xc = (Vc, Ec) with
vertex set VU C and edges {x, C} , where C € C and x € C. We shall show in Theorem 2
below that if (F, E) is a unique factorisation pair then Cay(F, E)c is a tree, and that this
property characterises unique factorisation pairs.

The Cayley graph of a unique factorisation pair (F, E) has other tree-like features. As
remarked in [4, Section 3.3], the removal of any vertex disconnects the graph, provided
that (F, E) is not as in Example 1. We shall show in Proposition 2 below that the
Cayley graph Cay(F,E) of a unique factorisation pair (F,E) is "2-bounded by a tree".
Agostino [2] called a graph X h-bounded by a tree if it has a spanning tree T such that
the end points of an arbitrary edge of X are at distance at most h in T. Not every pair
(F, E) whose Cayley graph is 2-bounded by a tree is a unique factorisation pair. For
example, F = Z, E = {±1 , ±2} .

Since any word of minimal length representing a given group element is in L E , the
evaluation map ( o i , . . . , a m ) »->• ai...am from L% to F is surjective for any (F,E). It
also follows that any unique factorisation pair (F, E) has the property that each 5 € F is
represented by a unique word in E* of minimal length. The characterisation of the pairs
(F, E) with this last property remains an open problem (see [6]).

2. P R O O F O F T H E O R E M 1

Throughout this section, let (F, E) be a unique factorisation pair.
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LEMMA 2 . 1 . If a, b, c, ab, be G £ U {1} and b ^ 1, then obceEl) {1}.

PROOF: We may assume that a,c,ab,bc ^ 1. If g = abc were not in E U {1}, then
(ab, c) and (a, be) would both be in LE and both would represent g. D

LEMMA 2 . 2 . Let H be a group, and let f0 : E U {1} ->• i / be a map such that
/o(l) = 1 and /o(a&) = /o(a)/o(6) whenever a, 6 G E and ab G E U {1}. Then there is a
unique group homomorphism f :T —¥ H which extends /o-

PROOF: If w = (ai , . . . ,am) € £*, define f'(w) = / 0(ai) . . ./o(am), and define
/*(0) = 1, where 0 denotes the empty word. Now f*(w) depends only on the group
element w represents. For w can be reduced to a word in LE representing the same
element by a succession of steps w' >-+ w" in which a subword (a, b) (where a, 6 G E)
of w' is replaced by the word (ab) of length 1 if ab G S or by the empty word if
ab = 1. The condition of this lemma implies that f*(w') = f*(w"). If wi,w2 € E*
both represent g ET, then the words in L% to which they reduce must be the same, by
the unique factorisation property. So /*(wi) = f'(w2). So we may define f(g) = f'(w)
for any w G E* which represents g. It is clear that / is a group homomorphism, and is
the only one which extends f0. D

DEFINITION 2: Let a, b G E. We write a ~ b if a~lb G E U {1}.

LEMMA 2 . 3 . The relation ~ is an equivalence relation on E.

PROOF: If a ~ b and b ~ c, then a"^ = (OC&X&^c) G E U {1} by Lemma 2.1. D

Let X denote the set of distinct equivalence classes [o]. Write [a] « [b] if [a] = [b] or
if there is a c e E such that [a] = [c] and [6] = [c~1]. Note that [a] w [a"1].

LEMMA 2 . 4 . The relation « is an equivalence relation on X.

PROOF: Suppose that [a] « [6] and [6] « [c], with [a] ^ [b] and [6] ̂  [c]. Then there
exist u, v G E such that [a] = [u], [b] = [u~l], [b] = [v] and [c] = [ir1]. Then u""1 ~ v, so
that u n e E U {1}. If uv = 1, then [c] = [a]. If uu ^ 1, then uu ~ u and (uv)"1 ~ i r 1

shows that [a] = [uv] and [c] = [(uu)"1]. D

LEMMA 2 . 5 . Suppose that (T, E) is a unique factorisation pair. Let [xi], i G /,
be representatives of the distinct « classes. Let E; = {6 G E : [6] w [ij]}. Then each set
Ei is symmetric, and E is the disjoint union of the sets Ej. Let F* denote the subgroup
of F generated by Ej. Then (r\, E<) is a unique factorisation pair, and (F, E) is isomorphic
to the free product *i6/(Fj, E,).

PROOF: If 6 G EJ, then [b~l] « [6] « [XJ], and so 6"1 G Ej, and E, is symmetric. It
is clear that the sets E, are pairwise disjoint and have union E.

Let w = (ai , . . . ,am) G LEv. U j < m, then a;aJ+i / 1. If ajaj+l G E, then
ajaj+i ~ a,, so that [a^a^i] = [aj] w [XJ]. Hence aj-aj+i G E,-, contradicting w G LE(. SO
Lzt C LE, and from this it is clear that (Fi.Ej) is a unique factorisation pair.
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To see that (F, E) is isomorphic to the free product * ie / ( I \ ,Ei ) , regard E U {1}

= {1} U (J E, as a subset of * i e / F< in the usual way. Let / 0 : E U {1} —> * i 6 / Fj denote

the inclusion map. Let us check the condition of Lemma 2.2. Suppose that a, 6 G E and
that aft G E U {1}. If aft = 1 and a € Ej, then ft = a"1 6 E< too, and /o(a)/o(ft) = ab

— l = fo{ab). If ab G E and o g E j , then at ~ a shows that [ab} = [a] w [xt] and aft € £*.
So (ab)-1 G Ei, and ft"1 ~ ft^a"1 shows that [ft"1] = [(aft)"1] » [x4]. Thus ft"1 € E<, and
so 6 G E, too. So a, 6, aft € Ej, and /o(a)/o(ft) = aft = /o(aft). So by Lemma 2.2, there is
a unique homomorphism / : F —• * i e / Fj extending f0.

Let E' = U Ej, regarded as a subset of * i e / Fj. It is evident (Example 4) that
i€l

(*j6 /Fj ,E ') is a unique factorisation pair. Let h0 : E' U {1} -* F map each a e E<,
regarded as an element of the free product, to a, regarded as an element of F. Clearly
h0 satisfies the condition of Lemma 2.2. The unique extension h of h0 to * i e / Fj is the
inverse of / , because of the uniqueness in Lemma 2.2, since hoofo is the identity on E
and fooho is the identity on E'. Notice that / ( S ) = E', and so / is an isomorphism of
unique factorisation pairs. D

LEMMA 2 . 6 . The pair (G * F, E) of Example 3 is a unique factorisation pair, and
for any a, ft € E we have [a] w [6]. If G = {1} and \K\ = r < oo, then each [a] has
r elements.

P R O O F : A proof that (G * F, E) is a unique factorisation pair can be given by
showing that G * F is a universal group of the partial group E, and appealing to [7,
Proposition 2.2]. We shall instead give a more direct proof.

Let Eo = (G \ {1}) U {y*1 : k € K}. By the uniqueness of normal forms in a free
product and by the evident fact that (F, {y^1 : k € K}) is a unique factorisation pair, it
is clear that (G * F, Eo) is a unique factorisation pair.

Let w = (aij-.-jOm) 6 L^. represent g e G * F. For each i, write at = u , - 1 ^ ,
where gt G G and Ui,Vi G {y* : k G K U {0}} for each i. If i < m then
r«ui+i 7̂  1> since otherwise atOi+i = u'1 gigi+\vi+i is in EU{1}. From w, form the word w

= (ui\ gu vi, U21, g2, • • •, 5m, vm), w h i c h h a s l e t t e r s i n E o U { 1 } . L e t wo = {xu..., xt) b e
the word obtained from w by discarding all l's. We claim that w0 G LE0. Notice that
if a, ft G Eo and also aft G Eo, then a, 6 must both be in G \ {1}. So if XiXi+\ G Eo for
some i < 6, then i j = Oj, Vj = 1, uj+j = 1 and i j + i = Oj+1 for some j < m. But this
is impossible because VJUJ^ ^ 1. If instead ijij+i = 1, then the pair (xi,xi+i) is either
(yk, yj^1) or (y^1, yk) for some k, or (g, g~l) for some g G G, and these possibilities are all
excluded because a, ^ 1 and ajUj+i & E U {1} for each j .

Notice that the first letter x\ of ty0 is either uf1 (if Ui ^ 1), g\ (if ui = 1 and g\ ^ 1)

or Vi (if Ui = 1 and g\ = 1).

Suppose that there is an element o G G*F which is represented by two distinct words,

w = ( a l t . . . , a m ) and w' = (a\,..., a'm,) in Z,E. Write Oj = u,"1^,- and â  = u j " 1 ^ - as
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above. Starting from w and w', we get words WQ = (x i . . . ,xi) and w'o = (tui,..., w'e)
in LE 0 as above. Choose such a g so that the number £+£' of Uj's, g^s, et cetera, which are
not 1 is minimal. By the unique factorisation property of (G * F, Eo), we have WQ = w'o.
By considering the first letter xi of wo, we see that ut ^ 1 if and only if u[ ^ 1, in which
case ui = u[. Cancelling uf' from both a,\ and a[, we find that U\g is represented by
two distinct words in LE in which the total number of Ui's, et cetera, is smaller than
in w and w', contradicting the minimality in our choice of g. The same contradiction is
reached in the case ui = u\ = 1 and gi,g[ ^ 1 and in the case ux = u\ = 1, gi = g[ = 1
and V\, v[ ^ 1. So (G * F, E) is a unique factorisation pair.

If G / {1}, fix g0 e G \ {1}. If a € E has the form gyt, then [a] = [g] = [g0]. If
instead a = y^gyi where k 6 K, then [g0] = [yk) and [a] = [y^1], so that again [a] « [g0].
If G = {1} but K ^ 0, fix kx e K. If a = yt for some i € K, then [a] = [ykl]. If
a = Vklyi w i t h fc ^ °' t n e n [ffl] = b^1] M d [Vki\ = [j/*]. so that again [a] « [yfcl]. Since
yJxykVki ^ E U {1}, a ^ [ykx] in the second case. Hence [j/*,] has exactly r elements if
\K\ = r < oo. Similarly, each [y^1] has r elements. D

By Lemma 2.5, to prove Theorem 1 we may suppose that [a] « [b] for all a, b e E.
Fix OQ 6 E. We can choose representatives x^ l (k € A", say) of the distinct classes [a]
other than [OQ] such that [ao] = [x*] for each A;. We also write Xo = 1.

LEMMA 2 . 7 . The set U = {1} U {o e E : a ~ ao and o"1 ~ ao} is a subgroup

o/T.

P R O O F : Suppose that o, 6 € II \ {1}. Then a"1 ~ ao ~ b and so aft € E U {1}. If
ab ^ 1, then ah G E and ab ~ a ~ ao and (aft)"1 ~ 6"1 ~ OQ. SO a6 € II. D

LEMMA 2 . 8 . Each a € E can be written in a unique way as a product x^gxi,

where k, I e KU {0} and g € II. Moreover, [a] = [xj1] if a / ao and [a"1] = [x^1] if

a~l / a0.

P R O O F : If a e II, take k = £ = 0 and </ = a. If a 6 E satisfies a ~ OQ but a"1 •/- a0,
then there is an I € K such that [a"1] = [x^1]. Write 5 = axj 1 . Then a = yx< = x^'^x^.
Also, g ~ a ~ ao and g"1 ~ xt ~ ao shows that g € II. Similarly, if a / a0 and a"1 ~ ao,
then writing [a] = [1*1], we have a = xk

lgx0 for some g 6 II.

If a € E and a, a"1 / ao, then [a] = fo1] and [a"1] = [x^1] for some k,£e K. Then
a, x/t, x/, Xfca and ax^1 are in E U {1} and o ^ l . Hence x^ax^"1 = (xfca)(a~1)(ax71)
e E U {1} by Lemma 2.1. Write Xjtax "̂1 = g. Then a = x^lgxe. Also, g e n. For
i - 1 ^ = axj1 e E U {1} shows that 5 ~ xk ~ a0, and ^x< = x*a e E U {1} shows that
g~y ~ x< ~ ao. If also a = x^g'xe, and fc' ^ 0, then x^a = g'x/< G E U {1} because
g' ~ ao ~ x<> if 5' ^ 1 and £' ^ 0, while x^a = 5'x/' G E U {1} is clear if g' = 1 or
/?' = 0. Thus [x^1] = [a] = [x^1] and k' = k. If k' = 0, then a = g'x</ ~ ^' ~ ao, contrary
to hypothesis. Similarly £' = £, and therefore g' = 5. The uniqueness when a ~ ao or
a"1 ~ ao is shown in a similar way. D
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PROPOSITION 1 . Suppose that (F, E) is a unique factorisation pair and that

a0 € E, with [a] « [oo] for all a € E. Let U and {i* : k 6 i f } be as above. Let F denote

the subgroup ofT generated by the Xk 's. Then F is a free group, with free generators Xk,

k € K, and the pair (F, E) is isomorphic to the pair of Example 3, where G = U and the

yk 's there are the z* 's.

PROOF: Let F' be a free group on a set {j/* : k € K} of free generators in one to
one correspondence with {z* : k e K}. Let y0 = 1. Let E' denote the generating set
of Example 3, where G and F there are II and F'. Define a function f0 : E -* n * F'
by writing each a e E in its unique form x^gxt (k,£ e K U {0}, g € II), and defining
/o(o) = y^gyt, regarded as an element of the free product. We now check the condition
of Lemma 2.2.

Suppose that a, ft € E and that aft e E U {1}. Write a = x^gxt and 6 = x^g'xn as
in Lemma 2.8. Assume first that i, m ^ 0. Then xj1 ~ a"1 ~ b ~ a;"1, and so i = m and
aft = x^lgg'xn. li£ ^ 0 and m = 0, then xj1 ~ a~l ~ b = gfxn ~ ao, which is impossible.
Similarly, if £ = 0 and m ^ 0, then OQ ~ ^ z * = a"1 ~ 6 ~ z"1 is impossible. Finally,
if £ = 0 = m, then aft = x^lgg'xn. Thus in all cases, £ = m and aft = x^lgg'xn. So
/o(a)/o(ft) = {ykl9Vi)(yml9'yn) = V^Sg'Vn = fo(ab). By Lemma 2.2, /<, lifts uniquely to
a group homomorphism / : T —> U * F'. Notice that /(E) = E'.

Let ho : S' —• T denote the map which sends each y^gyi to x^lgxi 6 F. As before,
one checks that it satisfies the conditions of Lemma 2.2. Since (II * F', E') is a unique
factorisation pair by Lemma 2.6, ho extends to a group homomorphism h : II * F' —> V.
Since /o and ho are mutually inverse bijections between E and E', their extensions are
mutually inverse group isomorphisms, by the uniqueness part of Lemma 2.2. D

3. CAYLEY GRAPHS OF UNIQUE FACTORISATION PAIRS

Throughout this section, let (F, E) denote a unique factorisation pair, and let
X = Cay(F, E) be its Cayley graph.

LEMMA 3 . 1 . If a e E, then ada.-1} U {1}) = [a] U {1}.

PROOF: Let ft 6 [a"1] U {1}. We claim that aft e [a] U {1}. This is clear if ft = 1
or ft = a"1, so assume otherwise. Then 6 ~ a"1 and so aft 6 E. Also, a~l(ab) = ft € E,
and so aft € [a]. Hence a([a-1] U {1}) C [a] U {1}. Replacing a by a"1, we get the reverse
inclusion. D

The fact that ~ is an equivalence relation implies that each set in the family (1.1)
spans a complete subgraph of X. The vertices g, ga of any edge in X are both contained
in g([a] U {1}) € C. The next lemma shows that this is the only C EC containing them
both.

LEMMA 3 . 2 . If C, D e C and \C n D\ > 2, then C = D.
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PROOF: If g G r \ { l } , a G E and 1 6 ff([a]u{l}), then g~l G [a]. So by Lemma3.1,
g([a] U {1}) = giig'1] U {1}) = [g] U {1}. Thus the only sets in C containing 1 are the
sets [a] U {1}, a G E. Now let C,D € C with \C f~l D\ ^ 2. Picking any 5 6 C D £>, let
C = 5~XC and £>' = g~lD. Then 1 e CD1 G C, and so C = [o]u{l} and £>' = [6]U{1}
for some a, b G E. Since |C" D £>'| > 2, there i s ac j^ l i n C ' n D ' . Hence a ~ c ~ b, so
that [a] = [b], C = £>' and C = D. D

Recall that a circuit in a graph is a path (io,^ii • • • ,xn) whose vertices are distinct
except that xn = XQ. We shall always assume that n ^ 3.

LEMMA 3 . 3 . Let (g0,gi, • • •, gn = go) be a circuit in X. Then there is a C &C
which contains each g{. IfScT spans a complete subgraph of X, then S C C for some
C€C.

P R O O F : Let TT = (go,gi, • • •,gn = 9o) be a shortest circuit which is not contained
in any C € C. If n = 3, then go19i,9il92,92lgo G S, and so g^lg2 and g^gi are
~-equivalent. Hence g0, <7i,ff2 € ffo([ffo"1ffi]U {1})- So n ^ 4 must hold.

If gt and gi+2 are adjacent in X for some i^n-2, then (go,-.-,9t, &+2 , . . . , gn = go)

and (g^gi+i, gi+2, gt) are circuits in X which are shorter than w, and so must be contained
in distinct C,D G C. But git gi+2 € C D D, and so Lemma 3.2 shows that C = D, a
contradiction.

So <fr and <fc+2 are not adjacent in X for any i < n - 2 . So (g~*gi+i)(g^+\gi+2) & E u { l }
for each i ^ n - 2. This shows that the word (<fo'1<?i,• ••.0n-i5n) is in Lx, even though
it represents ^ ' ^ n = 1- This contradicts the unique factorisation property, and so any
circuit in X is contained in some C G C.

Now let 5 C F span a complete subgraph of X. We may assume that | 5 | ^ 3.
Pick any so,Si G 5 and C G C containing so,Si. If S £ C, pick s2 G 5 \ C As 5
spans a complete subgraph, s0, «i, «2 are the vertices of a circuit, and so there is a D G C

containing them all. Then s0, Si G CC\D, and so Z? = C by Lemma 3.2. This shows that
s2 G C, a contradiction. So 5 must be contained in C. D

D E F I N I T I O N 3: Let X = (V", E) be any undirected connected graph and let C be a
family of non-empty sets of vertices such that (i) for each edge {x, y}, there is a C G C

such that x,y € C, and (ii) each C G C spans a complete subgraph of X. We define a
graph Xc by setting Kc = C U V and Ec = {{x,C} : C G C, 1 G C}.

It is easy to see that Xc is connected (hypothesis (ii) is not needed for this).

THEOREM 2 . If (F, E) is a unique factorisation pair, and if

is the family defined above, then Cay (F, E)c is a tree. Conversely, if F is a group generated

by a finite symmetric subset E, with 1 £ E, and if Cay (F, E)c is a tree for some family

C, then (F, E) is a unique factorisation pair.
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P R O O F : Suppose there is a circuit in Cay(F, E)c- Then there is also a circuit of the

form

"• = (5o, Ci, gi, C2, • • •, Cn, gn = g0),

where n > 2 and & € F and C* G C for each i. The elements g^gi+2, 0 ^ i ^ n - 2,
cannot be in E. For otherwise &, <fc+1 and (ft+2 would be pairwise adjacent, and so in C for
some C G C, by Lemma 3.3. But |C,-+i n C|, \Ci+2 n C| ^ 2, so that Ci+i = C = Ci+2 by
Lemma 3.2. This contradicts IT being a circuit. Thus the word (go~

19i,9i192,• • -,9n-i9n)
is in LE, is nonempty, and represents 1, contradicting the unique factorisation property.

Conversely, suppose that X = Cay(F, E) is a Cayley graph and that Xc is a tree. Let
<7 G F and let (oi, a2, •. •, am) € Z-s represent 5. For i = 1 , . . . , m, the vertices a! . . . Oj_i
and a i . . . ai are adjacent in X and so are contained in some Ai G C. Then

7r = (a0 = 1, Auai,A2,a^,... ,>lm,a1a2.. .am)

is a path (w0, «i> • • •. "2m) in Xc- We claim that ?r is a geodesic. Since Xc is a tree, it
is enough to show that u* ^ M/t+2 for each k ^ 2m — 2. So suppose that uk = ufc+2- If
A; = 2i, then a i . . . Oj_i = Oi . . . a*, which is impossible, as a* ^ 1. If A; = 1i + 1, then
Ai+\ = Ai+2 = C, say, and so a i . . . Oj, a i . . . aj+i, a i . . . at+2 are all in C. Now C spans a
complete subgraph, by hypothesis, and so a i . . . a< and a i . . . Oi+2 are equal or adjacent
in X. But then ai+iai+2 G E U {1}, contradicting (ai, a2 , . . . , om) G L j .

Since Jfc is a tree, there is only one geodesic from 1 to g. So there is only one word
in Ls representing g, and (F, E) is a unique factorisation pair. D

We conclude this section with a result mentioned in the introduction:

PROPOSITION 2 . / / (F ,E) is a unique factorisation pair, then X = Cay(F,E)
is 2-bounded by a tree.

P R O O F : Let Eo denote the set of all edges {ai . . .Om.j .oi . . . a m } of X, where
(a ! , . . . , a m ) G L E has length m ^ 1. That is, £0 consists of the edges {x,y} of X
for which ds( l , x) ^ d^(l, y). Now Xo = (F, ̂ o) is a tree. For if TT = (50, • • •, <7n = ffo) is
a circuit in Xo, we may choose the numbering so that d^(l, g0) ^ ds{l,gi) for i = 0 , . . . , n.
But go has only one neighbour g in Xo satisfying ds(l> ff) < ^ ( 1 , go), namely 0 1 . . . om_i
if (o i , . . . , am) represents go- So </i = gn-i, in contradiction to ?r being a circuit. So Xo

is a spanning tree for X.

Let {x, y} be an edge in X. If d s ( l , x) ^ dE(l , y), then {x, j/} G £0 and dXo(x, y) = l.

If ds(l , x) = dz(l, y), then x = a i . . . am and y = a.\... ama for some {ax,..., am) G LE

and a G E such that ama G E. So for z = ai... am_!, (x, z, y) is a path in Xo of length 2,
and so dxo(x, y) = 2. So X is 2-bounded by a tree. D
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