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ON STALLINGS’ UNIQUE FACTORISATION GROUPS
DONALD I. CARTWRIGHT AND BERNHARD KRON

Let T be a group and ¥ a symmetric generating set for I'. In 1966, Stallings called T’
a untque factorisation group if each group element may be written in a unique way as
a product ay ...am, where a; € I for each i and aiai4+1 € ZU {1} for each i < m. In
this paper we give a complete combinatorial proof of a theorem, not explicitly stated
by Stallings in 1966, characterising all such pairs (I',L). We also characterise the
unique factorisation pairs by a certain tree-like property of their Cayley graphs.

1. INTRODUCTION

Let T be a group and ¥ a generating set for I'. We always assume that I is symmetric
(Z-! = %) and that 1 € £. We do not assume that £ is finite. Let £* denote the set of
all words over . We write (ai,...,as) for a word, and q; ...a., for the group element
this word represents. The empty word represents 1. Let Ly denote the set of the words
(a,...,am,) € &* in which a;a;1) € ZU{1} for all i < m (together with the empty word).
Given g € T, any word in I* of minimal length representing g is in Ly. Modifying [7]
slightly, we call (T, X) a unique factorisation pair if for each g € T there is only one word
in Ly which represents g. Equivalently:

DEFINITION 1: The pair (T',X) is called a unique factorisation pair if the map
(a1,...,am) & ay ...am is a bijection Ly — T.

One goal of this paper is to describe (in Theorem 1 below), up to isomorphism, all
possible groups I' and all possible generating sets X on a given group I such that (I',T)
is a unique factorisation pair. The relevant notion of isomorphism here is the obvious
one: (I'1,X;) and ('3, L;) are isomorphic if there is a group isomorphism f : I'; — I',
such that f(X;) = Z,.

A second goal is to characterise (in Theorem 2 below) the Cayley graphs of unique
factorisation pairs in terms of a “tree-like” property they have.

We start by listing some examples of unique factorisation pairs ([',Z). We shall
check that Examples 2 and 3 are unique factorisation pairs in Lemma 2.6 below.
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EXAMPLE 1. Let G be a group. Then (G,G \ {1}) is a unique factorisation pair.

EXAMPLE 2. Let F be a free group, with free generators yx, k € K, for some set K.
Write yo = 1. Let T consist of the elements y;'y,, where k,¢ € K U {0}, k # £. Then
it is not hard to show that (F,X) is a unique factorisation pair by appealing to the fact
that (F, To) is a unique factorisation pair, where &y = {y' : k € K}.

ExXAMPLE 3. Let G be a group, and let F be as in Example 2. Let £ denote the set
of elements in the free product G * F, other than 1, of the form y;'gy,, where g € G
and k,£ € KU {0}. Then (G * F,X) is a unique factorisation pair (see Lemma 2.6).
Examples 1 and 2 are the special cases K = 0 and G = {1}, respectively, of this example.

ExXAMPLE 4. Let (I';,X;), j € J, be a family of unique factorisation pairs. Let I" denote
the free product of the I';’s, and let ¥ denote the union of the sets £;. Then (I',X) is a
unique factorisation pair. We shall write (I, Z) = *¥,¢,(T;, Z;).

THEOREM 1. Let (I',X) be any unique factorisation pair. Then (T, %) is isomor-
phic to a free product * ;e ;(T';, Z;), where each (T;,Z;) is as in Example 3.

Stallings’ paper [7] is mostly concerned with “partial groups” and their “universal
groups”. It concludes with a terse discussion of the structure of these partial groups, with
only a brief proof sketch. From this discussion, using universal groups it is not a large
step to arrive at our Theorem 1, though this is not done in [7]. We feel that the result is
of sufficient interest to warrant a clear statement and the complete proof we present in
Section 2, particularly as there has been renewed interest in these groups amongst people
studying random walks on groups; Mairesse and Mathéus [4, 5] were able to perform very
explicit calculations concerning random walks on these groups in which the transitions
are of the form g — ga (g € T',a € ). Our proof uses several of the ideas indicated by
Stallings [7], but takes a more direct combinatorial group theory approach, rather than
using the methods of partial groups and their universal groups.

It follows from Theorem 1 that if (I, L) is a unique factorisation pair and T is finite,
then T is plain, that is, a free product G, * - - * G, * F, of finitely many finite groups
Gi,...,G, and a free group F, (where r,s > 0). This much had been deduced from
Stallings’ results and written down explicitly by Haring-Smith [3], and used by him and
others subsequently (for example, [1, 2]). But Theorem 1 provides more, giving precise
information about the generating set X. In particular, for each plain group I, there are,
up to isomorphism, only finitely many generating sets ¥ for which (I', L) is a unique
factorisation pair.

ExAMPLE 5. Let r 2 1, and let F, denote the free group on r free generators. Given
any integersry > --- 2 71x 2 1such that ri+---+re=r,forj=1,...,k let I, be the
generating set on F,). described in Example 2. Form *le(F,j, )3,,.), in the notation of
Example 4. By Example 4, this gives a unique factorisation pair (F;, L). By Theorem 1,
any generating set £ on the free group F, such that (F,,L) is a unique factorisation
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pair is of this type. Since the numbers r; are the sizes of the equivalence classes [a]
(see Lemmas 2.3 and 2.6 below), distinct partitions correspond to non-isomorphic unique
factorisation pairs. So up to isomorphism, the number of distinct £’s on F; is the number
of distinct partitions of 7. The usual generating set of F, (that is, a set of free generators
and their inverses) corresponds to the partition 1+ .-+ +1 of 7.

Recall that the Cayley graph Cay(T',XZ) of a group I" with respect to the symmetric
generating set ¥, with 1 € X, is the undirected graph having vertex set V =T, and edge
set E consisting of the pairs {g, ga}, where g€ " and a € Z. If g1, g, € T, let ds(g1, 92)
denote the distance from g; to g» in Cay(I', I).

In Section 3, we shall characterise the Cayley graphs of unique factorisation pairs. As
we shall see below, if (I', ) is a unique factorisation pair, then we obtain an equivalence
relation on ¥ by writing a ~ b if and only if a='b € £ U {1}. This means that the
equivalence class [a] of a, together with 1, spans a complete subgraph of Cay(I', £). Since
left multiplication by group elements is a graph automorphism, the family
Ly C= {g([a] U{1}):g9€eT,ac€ Z}

consists of non-empty subsets C of I’ with the following properties: (i) each edge {z,y}
is contained in some C € C, and (ii) each C spans a complete subgraph.

If X = (V, E) is any connected undirected graph, and if C is a family of ndn-empty
subsets of V' with property (i), then we can form a connected graph X¢ = (V, E¢) with
vertex set VU C and edges {z,C}, where C' € C and z € C. We shall show in Theorem 2
below that if (I', £) is a unique factorisation pair then Cay(I', X)c is a tree, and-that this
property characterises unique factorisation pairs.

The Cayley graph of a unique factorisation pair (I', X) has other tree-like features. As
remarked in [4, Section 3.3], the removal of any vertex disconnects the graph, provided
that (I',X) is not as in Example 1. We shall show in Proposition 2 below that the
Cayley graph Cay(T,X) of a unique factorisation pair ([', ) is “2-bounded by a tree”.
Agostino [2] called a graph X h-bounded by a tree if it has a spanning tree T such that
the end points of an arbitrary edge of X are at distance at most h in 7. Not every pair
(T',X) whose Cayley graph is 2-bounded by a tree is a unique factorisation pair. For
example, ' = Z, T = {+1, +2}.

Since any word of minimal length representing a given group element is in Ly, the
evaluation map (ay,...,a,) — a1...ay from Ly to I is surjective for any (I',Z). It
also follows that any unique factorisation pair (I', X) has the property that each g € T is
represented by a unique word in £* of minimal length. The characterisation of the pairs
(T, ¥) with this last property remains an open problem (see [6]).

2. PROOF OF THEOREM 1

Throughout this section, let (I', Z) be a unique factorisation pair.
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LEMMA 2.1. Ifa,b,c,ab,bc € ZU{1} and b # 1, then abc € L U {1}.

PRrooF: We may assume that a,c,ab,bc # 1. If g = abc were not in T U {.1}, then
(ab, c) and (a, bc) would both be in Ly and both would represent g.

LEMMA 2.2. Let H be a group, and let fy : £U {1} = H be a map such that
fo(1) =1 and fo(ab) = fo(a)fo(b) whenever a,b € ¥ and ab € £ U {1}. Then there is a
unique group homomorphism f :I' — H which extends fj.

ProoF: If w = (a,...,am) € I*, define f*(w) = foa))... fo(am), and define
f*(9) = 1, where @ denotes the empty word. Now f*(w) depends only on the group
element w represents. For w can be reduced to a word in Ly representing the same
element by a succession of steps w' + w" in which a subword (a,b) (where a,b € X)
of w' is replaced by the word (ab) of length. 1 if ab € T or by the empty word if
ab = 1. The condition of this lemma implies that f*(w’) = f*(w"). If wy,w, € T*
both represent g € I', then the words in Ly to which they reduce must be the same, by
the unique factorisation property. So f*(w;) = f*(w,). So we may define f(g) = f*(w)
for any w € £* which represents g. It is clear that f is a group homomorphism, and is
the only one which extends fo. 1]

DEFINITION 2: Leta,be€ X. We writea ~bifa"'be LU {1}.

LEMMA 2.3. The relation ~ is an equivalence relation on L.

PROOF: Ifa~ band b~ ¢, then a~'c = (a~')(b)(b~'c) € TU{1} by Lemma 2.1. 0}

Let X denote the set of distinct equivalence classes [a]. Write [a] = [b] if [a] = [b] or
if there is a ¢ € L such that [a] = [c] and [b] = [c"!]. Note that [a] ~ [a™!].

LEMMA 2.4. The relation = is an equivalence relation on X.

PROOF: Suppose that [a] ~ [b] and [b] ~ [c], with [a] # [b] and [b] # [c]. Then there
exist u,v € I such that [a] = [u], [b] = [u™!], [b] = [v] and [¢] = [v"}]. Then u~! ~ v, so
that uv € TU {1}. If wv =1, then [c] =[a). If uv # 1, then uv ~ u and (uwv)™! ~ v~}
shows that [a] = [uv] and [¢] = [(uv)7Y). 0

LEMMA 2.5. Suppose that (T', L) is a unique factorisation pair. Let [z], i € I,
be representatives of the distinct ~ classes. Let £; = {b € T : [b] ~ [z;]}. Then each set
¥; is symmetric, and ¥ is the disjoint union of the sets L;. Let I'; denote the subgroup
of T generated by X;. Then (I';, L;) is a unique factorisation pair, and (", ) is isomorphic
to the free product *;c;(T;, T;).

PROOF: If b € I;, then [b~!] = [b] = [z;], and so b~! € L;, and Z; is symmetric. It
is clear that the sets ; are pairwise disjoint and have union X.

Let w = (a1,...,am) € Lg,. If j < m, then ajajy; # 1. If ajajy € X, then
ajajs ~ aj, so that [a;a;,) = [a;] = [z;]. Hence a;a;,, € &, contradicting w € Ly,. So
Ls, C Ly, and from this it is clear that (I';, Z;) is a unique factorisation pair.
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To see that (T, X) is isomorphic to the free product *;(T;, T;), regard £ U {1}
= {1} U |J Z; as a subset of *,¢; T; in the usual way. Let fo: ZU {1} = *;c;T; denote
the inclt;seilon map. Let us check the condition of Lemma 2.2. Suppose that a,b € £ and
that ab € YU {1}. If ab =1 and a € T;, then b = a™! € L, too, and fy(a)fo(b) = ab
= 1= fo(ab). If ab € ¥ and a € L;, then ab ~ a shows that [ab] = [a] = [z;] and ab € £;.
So (ab)~! € &;, and b~! ~ b~!a"! shows that [b~1] = [(ab)!] = [z:]. Thus b~! € Z;, and
so b € I; too. So a,b,ab € T;, and fy(a) fo(b) = ab = fo(ab). So by Lemma 2.2, there is
a unique homomorphism f : T = ¥,/ T; extending fo.

Let ¥ = UI 3;, regarded as a subset of ¥, ;. It is evident (Example 4) that
(kier [, ') is ; unique factorisation pair. Let hy : ' U {1} — I’ map each a € L;,
regarded as an element of the free product, to a, regarded as an element of I'. Clearly
ho satisfies the condition of Lemma 2.2. The unique extension h of hy to ¥;¢; Ty is the
inverse of f, because of the uniqueness in Lemma 2.2, since hgofy is the identity on X
and foohg is the identity on X'. Notice that f(X) = ¥', and so f is an isomorphism of
unique factorisation pairs. , 0

LEMMA 2.6. The pair (G*F,X) of Example 3 is a unique factorisation pair, and
for any a,b € ¥ we have [a] =~ [b]. If G = {1} and |K| = r < oo, then each [a] has
T elements.

PROOF: A proof that (G * F,L) is a unique factorisation pair can be given by
showing that G * F is a universal group of the partial group X, and appealing to |7,
Proposition 2.2]. We shall instead give a more direct proof.

Let £ = (G \ {1}) U{yi' : k € K}. By the uniqueness of normal forms in a free
product and by the evident fact that (F,{y;' : k € K}) is a unique factorisation pair, it
is clear that (G * F, ;) is a unique factorisation pair.

Let w = (@1,...,8m) € Ly represent ¢ € G * F. For each i, write a; = u; 'gv;,
where g; € G and u;,v; € {yx : kK € KU {0}} for each i. If i < m then
viu, # 1, since otherwise a;ai+1 = u]'gigi41vi41 is in TU{1}. From w, form the word @
= (u;t, 91, 91,43, 925 - - » Gmy Um), Which has letters in £oU {1}. Let wp = (zy,...,7) be
the word obtained from @ by discarding all 1’s. We claim that wy € Lg,. Notice that
if a,b € Ty and also ab € Iy, then a,b must both be in G\ {1}. So if z;z;4; € T, for
some i < £, then z; = g;, v; = 1, u;jl = 1 and ;41 = g;41 for some j < m. But this
is impossible because v,-u;:l # 1. If instead z;z;,, = 1, then the pair (z;, T;4) is either
(yx, yi' ") or (y', yx) for some k, or (g, g~*) for some g € G, and these possibilities are all
excluded because a; # 1 and aja;4; € X U {1} for each j.

Notice that the first letter z, of wp is either u; (if u; # 1), g1 (ifu; =1 and g; # 1)
orv (ifuy=1and gy =1).

Suppose that there is an element g € G*F which is represented by two distinct words,

. . - -1
w=(ay,...,6m) and w' = (ai,...,ap,) in Ly. Write a; = u]'g;v; and a = u}™ gjv] as
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above. Starting from w and w', we get words wp = (;...,7¢) and w} = (wy,...,w))
in Ly, as above. Choose such a g so that the number £+# of u;’s, gi's, et cetera, which are
not 1 is minimal. By the unique factorisation property of (G * F, £y), we have wp = wy}.
By considering the first letter z; of wq, we see that «; # 1 if and only if u} # 1, in which
case u; = u}. Cancelling u;' from both a; and a}, we find that u,g is represented by
two distinct words in Ly in which the total number of u;’s, et cetera, is smaller than
in w and w', contradicting the minimality in our choice of g. The same contradiction is
reached in the case u; =u; =1 and g;,9; #1 and inthecase u; =uj =1,9, =g =1
and v;,v] # 1. So (G * F, X) is a unique factorisation pair.

If G # {1}, fix go € G\ {1}. If @ € T has the form gy,, then [a] = [g] = [go]. If
instead a = y; 'gy, where k € K, then [go] = (1] and [a] = [y;'], so that again [a] = [go].
If G={1}but K #9, fix k, € K. If a = y, for some £ € K, then [g] = [y,]. If

= y; 'ye with k # 0, then [a] = [y;] and [y,] = [ye}, so that again [a] = [y,]. Since
v7 'yeyr, € EU {1}, a € [yx,] in the second case. Hence [yx,] has exactly r elements if
|[K| = r < oo. Similarly, each [y; '] has r elements. 0

By Lemma 2.5, to prove Theorem 1 we may suppose that [a] = [b] for all a,b € .
Fix ap € . We can choose representatives 7;' (k € K, say) of the distinct classes [a]
other than [ao] such that [ao] = [z)] for each k. We also write 2o = 1.

LEMMA 2.7. ThesetIl = {1}U{a € £:a ~ a9 and a™! ~ ap} is a subgroup
of . .

PROOF: Suppose that ¢,b € I1\ {1}. Thena ! ~ay ~band soabe T U {1}. If
ab# 1, then ab€ ¥ and ab ~ a ~ ag and (ab)™! ~ b~! ~ ay. So ab € I1.

LEMMA 2.8. Eacha € £ can be written in a unique way as a product z;'gz,,
where k,¢ € KU {0} and g € II. Moreover, [a] = [z;'] if a # ap and [a7}] = [z;] if
a ! £ ag.

ProoF: Ifa€ell, take k=€ =0and g = a. If a € X satisfies a ~ ao but a™! £ aq,
then there is an £ € K such that [a~!] = [z;']. Write g = az;'. Then a = gz, = 759z,
Also, g ~ a ~ ag and g~! ~ x4 ~ ag shows that g € II. Similarly, if a % ao and a™! ~ ay,
then writing [a] = [z}'], we have a = z;'gz, for some g € II.

Ifa € T and a,a™! # ay, then [a] = [z7'] and [a~!] = [z;'] for some k,£ € K. Then
a, Tx, T¢, zra and az;' are in T U {1} and @ # 1. Hence zxaz;' = (zxa)(a')(az;?)
€ LU {1} by Lemma 2.1. Write z4az;' = g. Then a = z;'gz,. Also, g € II. For
z;lg = az;' € T U {1} shows that g ~ 2 ~ ag, and gz, = z4a € L U {1} shows that
g~ ~ x4 ~ ag. If also a = z;,'g'ze, and ¥’ # 0, then za = g'zpy € T U {1} because
g ~ag~zpifg #1and ¢ # 0, while zpa = g'zp € ZU {1} is clear if ¢ =1 or
¢ = 0. Thus [z;!] = [a] = [z3'] and ¥’ = k. If K’ = 0, then a = g'zp ~ g’ ~ ao, contrary
to hypothesis. Similarly ¢ = ¢, and therefore ¢’ = g. The uniqueness when a ~ ap or
a~! ~ ag is shown in a similar way. 0
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PROPOSITION 1. Suppose that (I',X) is a unique factorisation pair and that
ag € X, with [a] = [ao) for alla € . Let Il and {z : k € K} be as above. Let F denote
the subgroup of ' generated by the x,’s. Then F is a free group, with free generators zy,
k € K, and the pair (I', L) is isomorphic to the pair of Example 3, where G = Il and the
yi’s there are the z;’s.

PROOF: Let F' be a free group on a set {y, : k € K} of free generators in one to
one correspondence with {zx : k € K}. Let yo = 1. Let L' denote the generating set
of Example 3, where G and F there are I and F’. Define a function fo : £ — [T+ F'
by writing each a € I in its unique form z;'gz, (k,£ € K U {0}, g € 1), and defining
fo(a) = yz 'gye, regarded as an element of the free product. We now check the condition
of Lemma 2.2. _

Suppose that a,b € T and that ab € £ U {1}. Write a = z;'gz, and b = 1} ¢'z, as
in Lemma 2.8. Assume first that £, m # 0. Then z;' ~a™! ~ b~ 7!, and so £ = m and
ab=1z;'9¢'z,. If £ # 0and m = 0, then z;* ~ a~! ~ b = ¢'z, ~ ag, which is impossible.
Similarly, if £ = 0 and m # 0, then ag ~ g~ 'zx = a~! ~ b ~ z;! is impossible. Finally,
if £ = 0 = m, then ab = z;'gg'z.. Thus in all cases, £ = m and ab = z;'gg'z,. So
fo(a)fo(b) = (y;'9ye) (¥m'9'vn) = ¥y '99'vn = fo(ab). By Lemma 2.2, fo lifts uniquely to
a group homomorphism f : I' = II « F’. Notice that f(X) = X'

Let hg : &' — I denote the map which sends each y;'gy, to z; gz, € . As before,
one checks that it satisfies the conditions of Lemma 2.2. Since (IT * F',X') is a unique
factorisation pair by Lemma 2.6, hy extends to a group homomorphism A : [I* F' — T,
Since fo and hg are mutually inverse bijections between L and X', their extensions are
mutually inverse group isomorphisms, by the uniqueness part of Lemma 2.2. 0

3. CAYLEY GRAPHS OF UNIQUE FACTORISATION PAIRS

Throughout this section, let (I',L) denote a unique factorisation pair, and let
X = Cay(T', L) be its Cayley graph.

LEMMA 3.1. Ifa€ X, thena(fa')U{1}) = [a] U {1}.

PROOF: Let b € [a™'] U {1}. We claim that ab € [a] U {1}. This is clear if b = 1
or b = a~!, so assume otherwise. Then b ~ a™! and so ab € . Also, a~'(ab) = b € £,
and so ab € [a). Hence a([a~']U{1}) C [a]U{1}. Replacing a by a™*, we get the reverse
inclusion. 0

The fact that ~ is an equivalence relation implies that each set in the family (1.1)
spans a complete subgraph of X. The vertices g, ga of any edge in X are both contained
in g([a] U {1}) € C. The next lemma shows that this is the only C € C containing them
both.

LEMMA 3.2. IfC,D€Cand|CND|>2, then C=D.
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Proor: IfgeI'\{1},a € Zand 1€ g([aJu{1}), then g~! € [a]. So by Lemma 3.1,
9(la]u{1}) = g(lg7']u {1}) = [g]u {1}. Thus the only sets in C containing 1 are the
sets [a) U {1}, a € Z. Now let C,D € C with |[C N D| > 2. Picking any g € C N D, let
C'=g'Cand D'=g¢"'D. Thenl1 € C' D' €C, andso C’ = [a|u{1} and D' = [bju{1}
for some a,b € X. Since |C'ND’| > 2, thereisac# 1in C'ND’'. Hencea ~ c ~ b, so
that [a] = [b], C' = D' and C = D. 0

Recall that a circuit in a graph is a path (zy, z;, ..., z,) whose vertices are distinct
except that z, = z¢9. We shall always assume that n > 3.

LEMMA 3.3. Let (90,91,---,9n = go) be a circuit in X. Then there isa C € C
which contains each g;. If S C I spans a complete subgraph of X, then S C C for some
CecC.

ProOF: Let 7 = (g0, 91,---,9n = o) be a shortest circuit which is not contained
in any C € C. If n = 3, then g;'91,97'92,95'9 € X, and so g;'g, and g;'g, are
~-equivalent. Hence go, 61,92 € go([95 1) U {1}). So n > 4 must hold.

If g; and g;+, are adjacent in X for some ¢ € n—2, then (go, .-, i, gi+2,- -, 9n = o)
and (s, 9i+1, gi+2, i) are circuits in X which are shorter than 7, and so must be contained
in distinct C,D € C. But ¢;,9i+2 € C N D, and so Lemma 3.2 shows that C = D, a
contradiction.

So g; and gi+2 are not adjacent in X forany i < n—2. So (g; ' gi+1)(9;319i+2) & TU{1}
for each i < n — 2. This shows that the word (g5 'g1,...,9,},9x) is in Lx, even though
it represents g;'g, = 1. This contradicts the unique factorisation property, and so any
circuit in X is contained in some C € C.

Now let S C I span a complete subgraph of X. We may assume that |S]| 2> 3.
Pick any sq¢,8, € S and C € C containing s¢,8;. If S ¢ C, pick 5, € S\C. As §
spans a complete subgraph, sy, 81, 82 are the vertices of a circuit, and so thereisa D € C
containing them all. Then sg,8; € CN D, and so D = C by Lemma 3.2. This shows that
sy € C, a contradiction. So S must be contained in C. 0

DEFINITION 3: Let X = (V, E) be any undirected connected graph and let C be a
family of non-empty sets of vertices such that (i) for each edge {z,y}, thereisa C € C
such that z,y € C, and (ii) each C € C spans a complete subgraph of X. We define a
graph X¢ by setting Vo =CUV and E¢ = {{z,C}:C€C,z € C}.

It is easy to see that X is connected (hypothesis (ii) is not needed for this).

THEOREM 2. If ([, X) is a unique factorisation pair, and if

C= {g([a]U{l}) :gEI‘,aEE}

is the family defined above, then Cay (I, X) is a tree. Conversely, ifI" is a group generated
by a finite symmetric subset £, with 1 ¢ £, and if Cay(T', £)c is a tree for some family
C, then (', %) is a unique factorisation pair.
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PROOF: Suppose there is a circuit in Cay(I', £)¢. Then there is also a circuit of the

form .
T= (go,Cl,yl, Cy....Cpygn = gO),

where n > 2 and g; € I" and C; € C for each i. The elements g,-‘lg.~+2, 0<ig<n=-2
cannot be in X. For otherwise g;, g;+1 and g;., would be pairwise adjacent, and so in C for
some C € C, by Lemma 3.3. But |Ciy; NC|,|Ciy2NC| 2 2, so that Ciyy = C = Cy42 by
Lemma 3.2. This contradicts 7 being a circuit. Thus the word (g5 91,97 '92, - . -, 95 19a)
is in Ly, is nonempty, and represents 1, contradicting the unique factorisation property.

Conversely, suppose that X = Cay(I', L) is a Cayley graph and that X¢ is a tree. Let
g €T and let (ay,az,...,an) € Ly represent g. For i = 1,...,m, the vertices a;...q;-;
and a; ...aqa; are adjacent in X and so are contained in some A; € C. Then

T = (0,0 = l,Al,al,Ag,alag, v ,Am,alag. . .a,,,)

is a path (ug,u,...,u%2m) in Xc. We claim that 7 is a geodesic. Since X¢ is a tree, it
is enough to show that uy # wux, for each k < 2m — 2. So suppose that uy = ug4y. If
k = 2i, then a;...a;-; = @, ...a;, which is impossible, as a; # 1. If k = 2i + 1, then
Aip1 = Aiy2 =C, say, and 50 a; ... 0,81 ...8i41,0; . .. i3z are all in C. Now C spans a
complete subgraph, by hypothesis, and so a,...q; and a; ... a;42 are equal or adjacent
in X. But then a;4 042 € £ U {1}, contradicting (a;,ay,...,an) € Lg.

Since X is a tree, there is only one geodesic from 1 to g. So there is only one word
in Ly representing g, and (I, L) is a unique factorisation pair. 0

We conclude this section with a result mentioned in the introduction:
ProrPosIiTION 2. If(I',X) is a unique factorisation pair, then X = Cay(T,X)
is 2-bounded by a tree.

PROOF: Let E, denote the set of all edges {a;...@m-1,a1...am} of X, where
(a1,...,8m) € Ly has length m > 1. That is, Ey consists of the edges {z,y} of X
for which dx(1,z) # ds(1,y). Now Xy = (T, Ey) is a tree. For if # = (go,..., gn = go) is

a circuit in X, we may choose the numbering so that ds(1, o) > ds(1,4i) fori =0,...,n.
But go has only one neighbour g in X, satisfying dx(1, g) < dg(1, go), namely a; .. .amn-1
if (a1, ..., am) represents go. So g; = gn-1, in contradiction to 7 being a circuit. So X,

is a spanning tree for X.

Let {z,y} bean edgein X. If dg(1,z) # ds(1,y), then {z,y} € Ey and dx,(z,y) = 1.
If dg(1,z) = dx(1,y), then z = a,...a, and y = a, ... ana for some (a;,...,an) € Ly
and a € ¥ such that a,a € Z. Sofor z =a;...an_1, (Z, 2,y) is a path in X; of length 2,
and so dx,(z,y) = 2. So X is 2-bounded by a tree. 0
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