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ON THE ZEROS OF SOME GENUS POLYNOMIALS

SAUL STAHL

ABSTRACT. In the genus polynomial of the graph G, the coefficient of xk is the
number of distinct embeddings of the graph G on the oriented surface of genus k. It is
shown that for several infinite families of graphs all the zeros of the genus polynomial
are real and negative. This implies that their coefficients, which constitute the genus
distribution of the graph, are log concave and therefore also unimodal. The geometric
distribution of the zeros of some of these polynomials is also investigated and some
new genus polynomials are presented.

0. Preliminaries. This article is concerned with embeddings of finite graphs on ori-
ented surfaces. As is usual in this context, graphs will be allowed to have multiple edges
and loops. Two embeddings are considered to be the equivalent if the counterclockwise
cyclic orientations the ambient surfaces induce on the edges emanating from each vertex
are identical. It is well known that every embedding is equivalent to one in which all
the regions (connected components of the complement of the graph in the surface) are
homeomorphic to the open 2-cell. Consequently it will henceforth be assumed that every
embedding is such a 2-cell embedding.

The set of edges emanating from a vertex of degree d can be cyclically oriented in
(d � 1)! ways. Hence, if the degree sequence of a graph is d1, d2, . . . , dv, then it has

vY
i≥1

(di � 1)!

distinct embeddings. The genus of an embedding is the genus of the ambient surface.
Our interest lies in the number çG(k) of embeddings of a given graph G on an oriented
surface of a given genus k. The first theorem of this type is the interpolation theorem
of [7] which states that if m Ú n are integers such that çG(m) and çG(n) are positive,
then so is çG(k) positive for each integer k, m � k � n. Some experimental results were
presented in [1] and the authors of [11] called for a systematic approach to the subject.
They also suggested the possible utility of a genus polynomial of the form

1X
i≥0
çG(k)xk.

A variety of results regarding these numbers were obtained in [8, 9, 16, 17, 19, 20, 21].
In this paper we focus on the genus polynomial and demonstrate that for several infinite
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families of graphs all the zeros of these polynomials are real and negative, thus implying
that their coefficients, the numbers of interest to us, are in fact unimodal. We also deter-
mine the geometric distribution of the zeros of some of these polynomials and formulate
some questions and conjectures.

Our results are obtained in the context of permutation-partition pairs which constitute
a combinatorial generalization of graphs and graph embeddings. These were first devel-
oped in [18] to facilitate the study of the minimum genus of the amalgamation of graphs,
but have also proved very useful in this enumerative context. A more geometric, though
still equivalent, object was developed in [2, 3] for the same purpose. The original theory
of permutation-partition pairs was focused on the number of regions of the embedding,
and the results could then be translated to their genera, whenever necessary. Here, how-
ever, it is more convenient to work directly with the genus and consequently some of
the machinery of permutation-partition pairs has to be retooled. The following table of
contents will give the reader some feeling for the structure of the paper.

1. Genus Polynomials
2. The Genus Version of the Walkup Reduction
3. Polynomials all of Whose Zeros are Real
4. Vertex-forest Multijoins
5. H-Linear Families of Graphs
6. Conclusion

The reader is referred to [10] for an explanation of all the terms that are not defined here.

1. Genus Polynomials. With every graph G it is possible to associate a pair
(PG, ΠG), consisting of a permutation PG and a (set theoretic) partition ΠG in the fol-
lowing manner. First convert each edge of G into a pair of oppositely directed arcs and
let DG denote the set of all these arcs. The permutation PG maps each arc into its opposite
and is therefore necessarily an involution (without fixed points). For each vertex v of G,
let Dv denote the set of arcs of DG that emanate from v. Then ΠG ≥ fDv j v 2 V(G)g
(see Figure 1). A permutation-partition pair (P, Π) consists of an arbitrary permutation
P and an arbitrary partition Π, both defined over some common underlying set S. The
elements of the underlying set are the bits of the pair. For every such pair (P, Π), let S(Π)
denote the set of all the permutations Q of the underlying set S such that each cycle in
the disjoint cycle decomposition of Q is a cyclic permutation of a member of Π. Each
permutation Q 2 S(Π) is called a rotation system of (P, Π) and the corresponding pair
(P, Q) is called an embedding of (P, Π). In the graphical case, where (P, Π) ≥ (PG, ΠG)
for some graph G, this terminology is consistent with that of topological graph theory.
Namely, if the graph G is embedded on the oriented closed surface Σ, then the clockwise
sense of Σ induces a cyclic permutation Qv of Dv at each vertex v of G, and the product of
these Qv’s is clearly an element Q of S(ΠG). Figure 1 illustrates this with two examples.

If (P, Q) is an embedding of the permutation-partition pair (P, Π), then each cycle
in the disjoint cycle decomposition of the composition PQ (read from left to right) is
called a region of this embedding. It is well known [6, 22, 23] that this terminology too
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A plane embedding of a graph G

PG ≥ (12)(34)(56)(78)(9a)(bc)(de)
Q ≥ (12b953)(467)(cd)(8ae)

PGQ ≥ (1bd84)(2)(36)(57a)(9ec)
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A toroidal embedding of a graph G

PG ≥ (12)(34)(56)(78)(9a)(bc)(de)
Q ≥ (1923b5)(467)(8ea)(cd)

PGQ ≥ (136)(2984bda)(57ec)

FIGURE 1

is consistent with that of the embeddings of graphs, as is indicated by the examples of
Figure 2. As long as we restrict ourselves to 2-cell embeddings of graphs, there is a one-
to-one correspondence between the topological embeddings of the graph G on closed
oriented surfaces on the one hand, and the combinatorial embeddings of (PG, ΠG) defined
here. This correspondence is such that the boundaries of the topological regions of the
embeddings of G are described by the disjoint cycle decomposition of the corresponding
products PQ.

If õ is an arbitrary permutation of the set S, then kõk denotes the number of cycles
in the disjoint cycle decomposition of õ. The number of components of the permutation-
partition pair (P, Π), denoted by c(P, Π) is the number of orbits that the group generated
by P and any rotation system Q 2 Π determined in the underlying set S.

The genus of the embedding (P, Q) of the permutation-partition pair (P, Π) is

(2) ç(P, Q) ≥ c(P, Π)� 1
2

(kPk + kQk + kPQk � n)

where n is the cardinality of the underlying set S. For example, in the embeddings of
Figure 1, this formula yields

1� 1
2

(7 + 4 + 5� 14) ≥ 0 and 1� 1
2

(7 + 4 + 3� 14) ≥ 1.

It is known [6, 22, 23] that the combinatorial genus of (2) is always a nonnegative integer
which, for graph embeddings, agrees with the topological genus.
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1 2 3
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G ≥

PG ≥ (14)(25)(36)

ΠG ≥
²
f(1, 2, 3g, f4, 5, 6g

¦

(14)(25)(36)

5 ! 6

4 ! 6

(413)(25) (14)(523)

4 ! 5 4 ! 5

(4132) (4123)

4 ! 4 4 ! 4

(132) (123)
1 ! 3 1 ! 3

¢ ≥ 1 ¢ ≥ 1
2 ! 3

2 ! 3

(12) (1)(2)

1 ! 2
1 ! 2

(1)

1 ! 1

;

FIGURE 2

For any permutation-partition pair (P, Π) and for any nonnegative integer k, let
ç(P,Π)(k) denote the number of embeddings of (P, Π) that have genus k. The genus poly-
nomial of the pair (P, Π) is defined as

GP(P,Π)(x) ≥
1X

k≥0
ç(P,Π)(k)xk.

The investigation of the genus polynomials of graphs was first proposed in [11], and some
fairly explicit descriptions have been obtained for several infinite families of graphs [8,
9, 16, 17, 19, 20, 21]. Some more will be described below.

It is our purpose here to investigate the zeros of the genus polynomials of several of
these families of graphs as well as those of some new families.

2. The genus version of the Walkup reduction. The Walkup reduction is a pro-
cess that expresses the genera of the embeddings of a pair (P, Π) in terms of those of
smaller pairs. It therefore makes possible inductive proofs and recurrence formulas for
the genus polynomials. Since this process reduces graphical pairs to nongraphical pairs,
these formulas are much harder, if not impossible, to derive when attention is restricted
to embeddings of graphs only.
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Let (P, Π) be a permutation-partition pair with an underlying set S. If a, b 2 S, then
we say that a � b (mod Π) whenever a and b are distinct elements that belong to the
same member of Π. A constraint on the pair (P, Π) is an ordered pair, denoted by a ! b,
such that there exists a rotation system Q 2 S(Π) such that aQ ≥ b. In other words,
either a � b (mod Π) or else, if a ≥ b, then fbg 2 Π. Given such a constraint a ! b,
the set of rotation systems Q 2 S(Π) such that Q maps a to b is denoted by S(Π; a ! b).
More compactly,

S(Π; a ! b) ≥ fQ 2 S(Π) j aQ ≥ bg.

If b is any element of the underlying set S, then PÛb denotes the permutation of S �
fbg obtained by deleting b from the disjoint cycle decomposition of P. Thus, if P ≥
(1 2 3)(4)(5 6), then PÛ1 ≥ (2 3)(4)(5 6), and PÛ4 ≥ (1 2 3)(5 6). Similarly, ΠÛb
denotes the partition of S� fbg induced by Π. For any constraint a ! b, where a Â≥ b,
we denote by (P, Π)Ûa ! b the permutation-partition pair (P̄, Π̄), defined over S�fbg,
where

P̄ ≥

8>>>><
>>>>:

P(b a bP)Ûb if a, b, bP are all distinct
P(b bP)Ûb ≥ PÛb if bP ≥ a Â≥ b
PÛb if bP ≥ b Â≥ a
PÛb if a ≥ b and fbg 2 Π.

Π̄ ≥ ΠÛb

For example, if

(P, Π) ≥
�
(1 2 3 4)(5)(6 7), f1, 2, 4 j 3, 5, 6 j 7g

�
,

then
(P, Π)Û4 ! 2 ≥

�
(1 4)(3)(5)(6 7),f1, 4 j 3, 5, 6 j 7g

�
,

(P, Π)Û4 ! 1 ≥
�
(2 3)(4)(5)(6 7), f2, 4 j 3, 5, 6 j 7g

�
,

(P, Π)Û3 ! 6 ≥
�
(3 4 1 2 7)(5), f1, 2, 4 j 3, 5 j 7g

�
,

(P, Π)Û7 ! 7 ≥
�
(1 2 3 4)(5)(6), f1, 2, 4 j 3, 5, 6g

�
.

The reader is referred to [19] for several other examples. If fbg 2 Π then P̄ ≥ PÛb.
On the other hand, when a � b (mod Π) are distinct, the derivation of P̄ from P can
be described as follows. If a and b are in the same cycle õ ≥ (a d Ð Ð Ð e b f Ð Ð Ð g) of P,
then P̄ is obtained from P by splitting õ at a and b into two cycles, and suppressing b, so
as to obtain (a d Ð Ð Ð e)(f Ð Ð Ð g), all the other cycles of P being passed on intact to P̄. On
the other hand, if a and b belong to distinct cycles (a d Ð Ð Ð e) and (b f Ð Ð Ð g) of P, then P̄
is obtained from P by coalescing these two cycles into one, and suppressing b so as to
obtain (a d Ð Ð Ð e f Ð Ð Ð g), all the other cycles of P being passed on intact to P̄.

The following easy observations are proven in detail as Lemmas 1.1 and 1.3 of [19].

LEMMA 2.1. Let (P, Π) be a permutation-partition pair with a � b (mod Π), and let
(Pa, Πa) ≥ (P, Π)Ûa ! b. Then the function

f : S(Π; a ! b) ! S(Πa)
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defined by

f (Q) ≥ [(a b)Q]Ûb
def≥ Qa

is a bijection such that

kPQk ≥
( kPaQak + 1 if a ≥ b P Â≥ b
kPaQak otherwise.

It is easy to see that if a and b are distinct and a � b (mod Π), then

(3) c(P, Π) + 1 ½ c[(P, Π)Ûa ! b] ½ c(P, Π).

Moreover, if a and b belong to distinct cycles of P then c[(P, Π)Ûa ! b] ≥ c(P, Π). The
converse does not hold, as is illustrated by P ≥ (1 2), Π ≥ f1 2g, a ≥ 1, b ≥ 2, where
c[(P, Π)Ûa ! b] ≥ 1 ≥ c(P, Π).

LEMMA 2.2. Let (P, Π) be a permutation-partition pair such that fbg 2 Π, and let
(Pb, Πb) ≥ (P, Π)Ûb ! b. Then the function

f : S(Π) ! S(Πb)

defined by

f (Q) ≥ QÛb
def≥ Qb

is a bijection such that

kPQk ≥
( kPbQbk if b Â≥ b P
kPbQbk + 1 if b ≥ b P.

The content of the next two corollaries is based on a device that the author first encoun-
tered in [27], but which had probably been used by many other investigators previously.
We shall refer to these two corollaries as the Walkup reduction in the sequel.

COROLLARY 2.3. If (P, Π) is a permutation-partition pair, b 2 S and fbg Â2 Π, then,
if (Pa, Πa) ≥ (P, Π)Ûa ! b, we have

GP(P,Π)(x) ≥ X
a�b (mod Π)

x¢(a,b)GP(Pa ,Πa)(x)

where

¢(a, b) ≥
(

1 if c[(Pa, Πa)] ≥ c(P, Π) and kPk ≥ kPak � 1
0 otherwise.

PROOF. It suffices to show that for each such a and for each positive integer k,

ç(P,Π)(k) ≥ X
a�b (mod Π)

ç(Pa,Πa)

�
k � ¢(a, b)

�
.
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This, in turn, is tantamount to showing that for each such a,

(4) ç(P, Q) ≥ ç(Pa, Qa) + ¢(a, b).

However,

ç(P, Q)� ç(Pa, Qa) ≥ c(P, Π)� c(Pa, Πa)� 1
2

[(kPk � kPak) + (kQk � kQak)

+ (kPQk � jPaQak)� (n� fn� 1g)].

Since fbg Â2 Π, it follows that kQk ≥ kQak. If a ≥ bP, then c(P, Π) ≥ c(Pa, Πa),
kPk ≥ kPak, and, by Lemma 2.1, kPQk ≥ kPaQak + 1. Thus, in this case,

ç(P, Q)� ç(Pa, Qa) ≥ 0 ≥ ¢(a, b).

Suppose next that a Â≥ bP but a and b still belong to the same cycle of P. Then, kPk ≥
kPak � 1 and kPQk ≥ kPaQak. Hence,

ç(P, Q)� ç(Pa, Qa) ≥ c(P, Π)� c(Pa, Πa) + 1 ≥ ¢(a, b).

Finally, if a Â≥ bP and a and b belong to different cycles of P, then c(P, Π) ≥ c(Pa, Πa),
kPk ≥ kPak + 1, and kPQk ≥ kPaQak. Hence,

ç(P, Q)� ç(Pa, Qa) ≥ 0 ≥ ¢(a, b).

Thus, (4) has been verified in all cases.

COROLLARY 2.4. Let (P, Π) be a permutation-partition pair and suppose fbg 2 Π.
If (Pb, Πb) ≥ (P, Π)Ûb ! b, then

GP(P,Π)(x) ≥ GP(Pb,Πb)(x).

PROOF. It suffices to show that for each positive integer k

ç(P,Π)(k) ≥ ç(Pb,Πb)(k).

This, in turn, is tantamount to proving that

(5) ç(P, Q) ≥ ç(Pb, Qb).

However, if b ≥ bP, then, because fbg 2 Π we have

ç(P, Q)� ç(Pb, Qb) ≥ c(P, Π)� c(Pb, Πb)� 1
2

[(kPk � kPbk) + (kQk � kQbk)

+ (kPQk � kPbQBk)� (n � fn� 1g)]

≥ 1� 1
2

(1 + 1 + 1� 1) ≥ 0.
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On the other hand, if b Â≥ bP, then

ç(P, Q)� ç(Pb, Qb) ≥ c(P, Π)� c(Pb, Πb)� 1
2

[(kPk � kPbk) + (kQk � kQbk)

+ (kPQk � kPbQbk)� (n� fn� 1g)]

≥ 0� 1
2

(0 + 1 + 0� 1) ≥ 0.

Thus, (5) holds in all cases.
The conclusions of Corollaries 2.3 and 2.4 are the genus version of the Walkup reduc-

tion of [19]. Thus, we can associate with each pair (P, Π) a (genus) reduction diagram
GT(P,Π) which differs from the (region) reduction diagram of [19] only in that the edge
labels é ≥ éa,bP and é ≥ éb,bP are replaced with ¢ ≥ ¢(a, b) and ¢ ≥ 0 respectively. As
was the case with the original reduction diagrams of [19], labels of the form ¢ ≥ 0 will
be suppressed. Figure 2 contains the genus version of the reduction diagram of Figure 3
of [19]. For the sake of completeness, we also include an explicit definition of GT(P,Π).

12

3

4

5 6 7

FIGURE 3. A vertex-forest multijoin of type (22, 3) and strength 7.

The complete (genus) reduction diagram GT(P,Π) of the pair (P, Π) is a ranked
weighted directed graph whose vertices are permutation-partition pairs, whose edges pic-
ture the above reduction process, and which is constructed as follows. Let b1, b2, . . . , bn

be any linear ordering of the set S that underlies the pair (P, Π) and let GT (0)
(P,Π) ≥

f(P, Π)g. Assuming that the vertex set GT (i)
(P,Π) (0 � i Ú n) has been defined, let (P̄, Π̄) be

any vertex in this set GT (i)
(P,Π). If fbi+1g is a singleton member of Π̄, then (P̄, Π̄) has only

one descendent, namely (P̄, Π̄)Ûbi+1 ! bi+1. The edge from (P̄, Π̄) to (P̄, Π̄)Ûbi+1 ! bi+1

is assigned the weight ¢ ≥ 0. On the other hand, if fbi+1g is not a singleton member of Π̄,
then each of the pairs (P̄, Π̄)Ûa ! bi+1 (a � bi+1) is a descendent of (P̄, Π̄). Each branch
from (P̄, Π̄) to any of its descendents (P̄, Π̄)Ûa ! bi+1 is assigned the weight ¢(a, bi+1).
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The vertex set GT (i+1)
(P,Π) consists of the set of all the descendents of all the vertices in

GT (i)
(P,Π). It is clear that each pair of vertices (P̄, Π̄) and ( ¯̄P, ¯̄Π) in GT (i)

(P,Π) have Π̄ ≥ ¯̄Π
and also have the same underlying set S̄ ≥ fbi+1, bi+2, . . . , bng. The set GT (n)

(P,Π) consists
of only the trivial pair (û,û). The next lemma follows immediately from Corollaries 2.3
and 2.4.

LEMMA 2.5. The embeddings of the pair (P, Π) are in a one-to-one correspondence
with the directed paths of GT(P,Π) that start from (P, Π) and end at (û,û). This corre-
spondence is such that the genus of each embedding is given by the sum of the weights
along its corresponding path.

3. Polynomials all of whose zeros are real. Polynomials all of whose zeros are
real, have arisen in a variety of contexts, and there is a fair amount of interest in and
an extensive literature on this subject [4, 13, 24, 25, 26]. The geometric distribution of
the zeros of families of such polynomials has also been investigated [4]. Our interest in
this type of polynomial was originally due to its implication about unimodality [Theo-
rem 3.1]. It seems likely, however, that information about the zeros of the genus polyno-
mial will eventually lead to information about the genus distribution. Lemmas 3.2 and 3.3
below contain minor variations of some well known [25, 26] techniques for proving that
all the zeros of a given polynomial are real.

A sequence a0, a1, . . . , an of real numbers is said to be the unimodal if there is an
integer k, 0 � k � n, such that

a0 � a1 � Ð Ð Ð � ak ½ ak+1 ½ Ð Ð Ð ½ an.

A sequence a0, a1, . . . , an is said to be log concave if

ai�1ai+1 � a2
i i ≥ 1, 2, . . . , n� 1.

The following proposition is well known and easily demonstrated.

PROPOSITION 3.1. Every log concave sequence of positive real numbers is also
unimodal.

There are several techniques for proving that a given sequence is log concave, and
one of them is the following. The reader is referred to [5, (p. 270), 24] for a proof.

PROPOSITION 3.2. (Newton) If all the zeros of the polynomial

a0xn + a1xn�1 + Ð Ð Ð + an�1x + an

are real, then the sequence a0, a1, . . . , an is log concave.

A commonly used technique for proving that all the zeros of a certain polynomial
are real calls for locating another polynomial whose zeros must interlace with those of
the given polynomial. Moreover, we are concerned here with genus polynomials whose
coefficients, being cardinalities of certain sets, are necessarily positive. Hence their real
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zeros are necessarily negative. Accordingly, we make the following definitions. Suppose
the zeros of the polynomials P(x) and Q(x) are simple and can be listed as x1, x2, . . . , xn

and y1, y2, . . . , yn respectively, where

xn Ú yn Ú xn�1 Ú yn�1 Ú Ð Ð Ð Ú x1 Ú y1 Ú 0.

We say that the zeros of P(x) and Q(x) interlace and write P(x) � Q(x). If, on the other
hand, the zeros of the polynomials P(x) and Q(x) are simple and can be listed as x1,
x2, . . . , xn�1 and y1, y2, . . . , yn respectively, where

yn Ú xn�1 Ú yn�1 Ú Ð Ð Ð Ú x1 Ú y1 Ú 0,

then we write P(x) Ú Q(x) and again say that the zeros of these polynomials interlace.
We shall use the notation P(x) Ú,� Q(x) to denote the fact the zeros of these polynomials
interlace in one of these two senses. While this employment of the inequality symbol is
useful, the reader should be warned that this relation of interlacing is not transitive.

The following two lemmas provide the basis for several inductive proofs in the sequel.
As they contain little that is not already known [4, 25, 26], their proofs are omitted.

LEMMA 3.3. Let P(x) and Q(x) be two polynomials and let a, b c, d be positive reals.
If P(x) � Q(x), then
(1.) P(x) � aP(x) + bQ(x) � Q(x)
(2.) Q(x) Ú cxP(x) + dQ(x)
(3.) Q(x) � aQ(x)� bP(x) if aQ(0)� bP(0) is positive.
(4.) aP(x) + bQ(x) Ú cxP(x) + dQ(x).

LEMMA 3.4. Let P(x) and Q(x) be two polynomials and let a, b c, d be positive reals.
If P(x) Ú Q(x), then
(1.) P(x) Ú aP(x) + bQ(x) � Q(x)
(2.) Q(x) � axP(x) + bQ(x)
(3.) Q(x) � aQ(x)� bP(x) if aQ(0)� bP(0) is positive.
(4.) aP(x) + bQ(x) � cxP(x) + dQ(x).

4. Vertex-forest multijoins. Let Bq denote the bouquet on q circles, that is, Bq is
the graph consisting of a single vertex and q loops. Based on some permutation counting
results of [12, 14] it was proved in [9] that for q Ù 2,

(6)
(q + 1)çBq(k) ≥ 4(2q� 1)(2q� 3)(q � 1)2(q� 2)çBq�2 (k � 1)

+ 4(2q� 1)(q� 1)çBq�1(k).

It follows that for q Ù 2,

(7)
GPBq(x) ≥ 4(2q� 1)(2q� 3)(q� 1)2(q� 2)

q + 1
xGPBq�2 (x)

+
4(2q� 1)(q� 1)

q + 1
GPBq�1 (x).

Since GPB1 (x) ≥ 1 and GPB2 (x) ≥ 4 + 2x, we have here a complete description of the
genus polynomial of the bouquet. We note that GPB3 (x) ≥ 40 + 80x and GPB4 (x) ≥
336(2 + 10x + 3x2).
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PROPOSITION 4.1. The zeros of the genus polynomial of the bouquet Bq on q circles
are real, negative, and satisfy the following relations:

(8)
GPBq(x) Ú GPBq+1 (x) if q is odd
GPBq(x) � GPBq+1 (x) if q is even.

PROOF. We proceed by induction on q. The cases q ≥ 1, 2, 3 call for the inspection
of the polynomials listed above and are easily verified. Assume that the proposition holds
for all positive integers q Ú k. It follows from formula (7) that there exist real numbers
c and d such that

(9) GPBk+1 (x) ≥ cxGPBk�1 (x) + dGPBk(x)

If k is odd, then, by the induction hypothesis

GPBk�1 (x) � GPBk (x)

and an application of Lemma 3.3 (2.) to (9) above yields

GPBk+1 (x) ≥ cxGPBk�1 (x) + dGPBk (x) Ù GPBk (x).

Similarly, if k is even, then, by the induction hypothesis

GPBk�1 (x) Ú GPBk (x)

and an application of Lemma 3.4 (2.) to (9) above yields

GPBk+1 (x) ≥ cxGPBk�1 (x) + dGPBk (x) ½ GPBk (x).

The following corollary was first proved in [9]. Here it is an immediate consequence
of the above Proposition and Newton’s Theorem 3.2.

COROLLARY 4.2. The genus distribution of the bouquet on n circles is log concave.

These observations can be used to garner information about other infinite families of
graphs as well. A vertex-forest multijoin is a graph G with a vertex u such that V(G)�fug
induces a subforest of G. If T1, T2, . . . , Tt are the components of this induced subforest,
and if the central vertex u of G is joined to Ti by ïi edges, then we may assume that the
labeling is such that

2 � ï1 � ï2 � Ð Ð Ð � ïs and 0 � ïs+1 � ïs+2 � Ð Ð Ð � ït � 1.

We refer to the s-tuple (ï1,ï2, . . . ,ïs) as the type of G and to n ≥ ï1 + ï2 + Ð Ð Ð + ïs

as its strength. The region distribution of such a graph G was derived in the proof of
Theorem 3.2 of [21] and can be restated in terms of the genus as follows. Let G be a
vertex-forest multijoin of type (ï1,ï2, . . . ,ïs) and strength n. Let (P, Π) be any permu-
tation partition pair wherein P consists of s cycles of lengths ï1, ï2, . . . ,ïs respectively,
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and Π has only one member, namely Π ≥ ff1, 2, . . . , ngg. Then there is an integer aG

such that

(10) GPG(x) ≥ aGGP(P,Π)(x).

The value of aG is easily deduced from the observation that the total number of em-
beddings of any permutation-partition pair (P, Π), is

Qk
i≥1(pi � 1)!, where p1, p2, . . . , pk

are the respective cardinalities of the constituent members of Π. All the permutation-
partition pairs in this section will be such that Π contains only one set, and it is clear that
in this special case GP(P,Π)(x) depends only on the cycle structure of P. Hence, for the
remainder of this section, all mention of Π will be suppressed and P will be encoded in
terms of the number of cycles of each length that it possesses, in the usual manner. Thus,
we shall write

GP(2n)(x) for GP((1 2)(3 4)ÐÐÐ(2n�1 2n),ff1,2,...,2ngg)(x)

and
GP(22,3)(x) for GP((1 2)(3 4)(5 6 7),ff1,2,3,4,5,6,7gg)(x).

If each edge of the bouquet Bq is subdivided once, we obtain a vertex-forest multijoint
of type (2q) and strength 2q. It therefore follows that for some real bn n ≥ 1, 2, 3, . . . ,

bnGP(2n)(x) ≥ GPBn(x).

The Walkup reduction can now be used to obtain the genus polynomials corresponding
to some other permutations (and so also to some other vertex-forest multijoins). Suppose
P ≥ (1 2)(3 4) Ð Ð Ð (2n� 1 2n). Then the branch of the reduction diagram corresponding
to the constraint (2n � 1) ! 2n yields the descendent

P1 ≥ (1 2)(3 4) Ð Ð Ð (2n� 3 2n� 2)(2n� 1) of type (1, 2n�1)

with ¢(2n�1, n) ≥ 0. On the other hand, each of the branches a ! 2n, a ≥ 1, 2, . . . , 2n�
2 yields a descendent of type (2n�2, 3) with ¢(a, 2n) ≥ 0. It follows from two applications
of Corollary 2.3 that

GP(2n)(x) ≥ GP(1,2n�1)(x) + 2(n� 1)GP(2n�2,3)(x)

≥ 2(n� 1)GP(2n�1)(x) + 2(n� 1)GP(2n�2,3)(x).

Thus,

(11)
GP(2n�2,3)(x) ≥ 1

2(n� 1)
GP(2n)(x)�GP(2n�1)(x)

≥ 1
2(n� 1)bn

GPBn(x)� 1
bn�1

GPBn�1 (x).

PROPOSITION 4.3. All the zeros of the genus polynomial of any vertex-forestmultijoin
G of type (2n, 3) are real and negative. Moreover

GPBn+2 (x) � GPG(x).
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PROOF. In order to apply Lemmas 3.3 (3.) and 3.4 (3.), it will be necessary to know
that the constant term of GPG(x) is not zero, i.e., that G has a plane embedding. This,
however, is clear from the fact that G is planar since it is the one point amalgamation of
n + 1 planar graphs. By Proposition 4.1,

GPBn+1 (x) Ú,� GPBn+2(x)

and so, it follows from (11) above and Lemmas 3.3 (3.), 3.4 (3.) that for some real cn, dn,

GPG(x) ≥ cnGPBn+2 (x)� dnGPBn+1(x) ½ GPBn+2 (x).

COROLLARY 4.4. The genus distribution of every vertex-forest multijoin of type
(2n, 3) is log concave.

If the graph G has a bridge e, then it is known [11] that the genus polynomial of G
is the product of the genus polynomials of the two components of G � e. The genus
polynomial is also known for several infinite families of graphs that fall into the two
categories discussed in this section and the next. Loosely speaking, one may speak of the
graphs of this section as short while characterizing those of the next as long. The author
believes that these two categories are significant in that they represent the two opposite
ends of a spectrum of types. Possibly the growth of the average genus (logarithmic versus
linear in the number of edges) can be used to formalize this spectrum, but as yet not
enough information is available. In view of this it would be useful to find other aspects
of the genus that differentiate between families in the two categories. It is for this purpose
that the following proposition is presented.

PROPOSITION 4.5. There exists a constant k such that the genus polynomial a of
vertex-forest multijoins of type (2n) or (2n, 3) has a zero of magnitude less than kÛn2, for
n ≥ 1, 2, 3, . . . .

PROOF. It follows from Propositions 4.1 and 4.3 that it suffices to prove the propo-
sition for graphs of type (2n) where n is even. Assume therefore, that n is indeed even.
By definition, the constant term of GPBn(x) is çBn(0) which is not zero because Bn has
some obvious plane embeddings. Easy induction arguments based on (6, 7) allow us to
conclude that GPBn(x) has degree nÛ2 and that

çBn(0)
çBn(nÛ2)

≥ 2n

n!
.

Hence, if r1, r2, . . . , rnÛ2 are the zeros of GPBn(x), which are already known to be real,
then

nÛ2

vuuutnÛ2Y
i≥1
jrij ≥ nÛ2

vut2n

n!

and the required upper bound follows from Stirling’s formula.
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For example, the zeros of GPB20 (x), rounded off to 4 decimal places, are

f�7. 3700,�. 7080,�. 2122,�. 0904,�. 0459,

�. 0259,�. 0156,�. 0097,�. 0062,�. 0039g.

The dipole DPn is the graph that consists of n multiedges joining two distinct vertices.
The genus polynomial of the dipole was derived, in equivalent form, in [17]. Specifically,
let s(n, k) be the (absolute value of) the Stirling number of the first kind, i.e., let

s(n, k) ≥ s(n� 1, k � 1) + (n� 1)s(n� 1, k) n, k ≥ 1, 2, 3, . . .

s(n, 0) ≥ s(0, k) ≥ 0, except s(0, 0) ≥ 1.

Then, if

SOn(x) ≥
[nÛ2]�1X

k≥0
s(n, n� 2k� 1)xk

we have

(12) GPDPn (x) ≥ 2
(n� 1)!2

(n + 1)!
SOn+1(x).

Since the dipole DPn is a vertex-forest multijoin of type (n), it follows from (10) that if
G is any vertex-forest multijoin of type (n), then its genus polynomial is also given by
(12). Since the forest portion of any vertex-forest multijoin is arbitrary, type (n) covers a
large set of homeomorphically distinct graphs. Vertex-forest multijoins of type (n) will
be referred to as vertex-tree multijoins.

PROPOSITION 4.6. All the zeros of the genus polynomial of each vertex-tree multijoin
are real and negative.

PROOF. Define

SEn(x) ≥
[nÛ2]X
k≥0

s(n, n� 2k)xk.

It is then easily verified from the recursive definition of s(n, k) that

(13)
SOn(x) ≥ SOn�1(x) + (n � 1) SEn�1(x) n ≥ 2, 3, 4, . . .

SEn(x) ≥ (n � 1)x SOn�1(x) + SEn�1(x).

It now follows from Lemmas 3.3 (4.) and 3.4 (4.) and a straightforward induction that

(14) SOn(x) Ú,� SEn(x).

In particular, all the zeros of SOn(x) are real, and so, in view of the comments preceding
the theorem, we are done.
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b̄ b
u1 u2

ā a

H

b̄1 b1
b̄n�1 bn�1 bn

b̄n

ān
ā1 a1 ān�1 an�1

an

Cn

Ð Ð Ð

FIGURE 4

COROLLARY 4.7. The genus distribution of the dipole is log concave.

COROLLARY 4.8. All the zeros of the genus polynomial of a vertex-forest multijoin
of type (2, n) are real and negative.

PROOF. Let G be a vertex-forest multijoin of type (2, n). Then, by (10) there exist
real numbers an such that upon applying the Walkup reduction of Corollary 2.3 we get

(15)
GPG(x) ≥ anGP(2,n)(x) ≥ anGP(1,n)(x) + annGP(n+1)(x)

≥ annGP(n)(x) + annGP(n+1)(x).

Since GP(n)(x) ≥ b SOn+1(x), it follows from (13, 14), and Lemmas 3.3 (1.) and 3.4 (1.)
that

(16) GP(n)(x) Ú,� GP(n+1)(x)

and so, when Lemmas 3.3 (1.) and 3.4 (1.) are applied to (16) we conclude that

(17) GPn(x) Ú,� GPG(x)

and so all the zeros of GPG(x) are real and negative.

PROPOSITION 4.9. There exists a constant k0 such that the genus polynomial of a
vertex-forest multijoin of type (n) or (2, n) has a zero of magnitude less than k0Ûn2.

PROOF. In view of (17) it suffices to prove this proposition for type (n) only. The
constant term of the polynomial SOn(x) and its leading coefficient are, respectively,
s(n, n� 1) ≥ ( n

2 ) and either s(n, 1) or s(n, 2). Since

s(n, 2) ½ s(n, 1) ½ (n � 1)!,

the desired result now follows by an argument similar to that of Proposition 4.5 above.

5. H-Linear families of graphs. If H is any graph, then the family of graphs ob-
tained by consistently amalgamating additional copies of H is called an H-linear family
of graphs. A more formal definition appears in [19]. The examples that appear in Fig-
ures 4, 7,8, 9 should give the reader a sufficient grasp of the concept.

Let G ≥ fGng1n≥1 be an H-linear family of graphs. The argument of [19] that was
used to obtain expressions for the region distribution of Gn can be easily modified to
yield a similar expression for the genus polynomial of Gn.
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EXAMPLE 5.1. The graph Gn of Figure 4, the cobblestone path of [8], is obtained
by successively amalgamating n copies of H. Let G0

n denote the permutation-partition
pair obtained from (PGn , ΠGn) by replacing the two transpositions (anān)(bnb̄n) with
(anānbnb̄n). Apply the genus version of the Walkup reduction to (PGn , ΠGn) so as to elim-
inate all the bits in the last (n-th) copy of H. Figure 5, 6 illustrate this process. Since
the initial portion of the genus reduction diagram GTGn displayed in Figure 5 contains 4
paths of weight 0 from node PGn to node PGn�1 and 2 paths of weight 0 to node PG0

n�1
, it

follows that
GPGn(x) ≥ 4GPGn�1(x) + 2GPG0

n�1
(x).

PGn�1
(anān)(bnb̄n)

an ! bn

PGn�1
(anānbn)

an ! an

PGn�1
(anān)

bn�1 ! b̄n

ān ! b̄n an�1 ! b̄n

PGn�1
(an) PGn�2

(bn�1b̄n�1)(an�1ān�1ān) PGn�2
(an�1ān�1)(bn�1b̄n�1ān)

bn�1 ! ān
bn�1 ! ān

an�1 ! an

an�1 ! ān bn�1 ! ān
an�1 ! ān

PGn�1 PGn�2
(an�1ān�1bn�1b̄n�1)

FIGURE 5

Similarly, since the initial portion of the genus reduction diagram GTG0
n

displayed in
Figure 6 contains 6 paths of weight 1 from the node PG0

n
to the node PGn�1 , it follows that

GPG0
n
(x) ≥ 6xGPGn�1(x).

Thus, if we let vn(x) be the column vector
�

GPGn (x)
GPG0n

(x)

�
, then the above discussion is

tantamount to the equation

vn(x) ≥
 

4 2
6x 0

!
vn�1(x) n ≥ 2, 3, 4, . . . .
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PGn�1
(anānbnb̄n)

an ! bn

¢ ≥ 1

PGn�1
(anān)(b̄n)

an ! an

PGn�1
(ān)(b̄n)

bn�1 ! b̄nān ! b̄n an�1 ! b̄n

PGn�1
(ān)

an�1 ! ān bn�1 ! ān

PGn�1

FIGURE 6

Since (PG1 , ΠG1) ≥
�
(a1ā1)(b1b̄1), fa1, b1 j ā1, b̄1g

�
and G0

1 ≥
�
(a1ā1b1b̄1), fa1, b1 j

ā1, b̄1g
�
, it follows that

v1(x) ≥
�GPG1 (x)

GPG0
1
(x)

�
≥
�1

x

�
.

Hence,

v2(x) ≥
�4 + 2x

6x

�
,

v3(x) ≥
� 16 + 20x

24x + 12x2

�
,

v4(x) ≥
�64 + 128x + 24x2

96x + 120x2

�
, etc.

This procedure generalizes to the following analog of Theorem 2.6 of [19]. The set
of polynomials in x with integer coefficients is denoted here by Z[x].

PROPOSITION 5.2. Let G ≥ fGng1n≥1 be an H-linear family of graphs. Then there
exist a positive integer d, a d ð d matrix M and a column d-vector v(x), with entries in
Z[x], such that the first entry of Mnv is GPGn(x).
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EXAMPLE 5.3. The ladder Ln of Figure 7. Here,

M ≥
 

0 4
2x 2

!
and v ≥

�1
1

�
.

H

Ð Ð Ð

Ln

FIGURE 7

EXAMPLE 5.4. The double ladder LLn of Figure 8. Here,

M ≥ 6
 

3x 3
2x 1 + 3x

!
and v ≥ 2

� 2
1 + x

�
.

H

Ð Ð Ð

LLn

FIGURE 8

EXAMPLE 5.5. The diamond band Dn of Figure 9. Here,

M ≥ 4
 

2 + 3x 1
4x 2x

!
and v ≥ 2

�1 + x
2x

�
.

It is convenient to denote the set of zeros of the polynomial P(x) by Z
�
P(x)

�
.

H

Ð Ð Ð

Dn

FIGURE 9
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PROPOSITION 5.6. Let C ≥ fCng1n≥1 denote the family of cobblestone paths. Then
[1n≥1Z

�
GPCn(x)

�
is a dense subset of (�1,� 1

3 ).

PROOF. Let M ≥
 

4 2
6x 0

!
be the generating matrix of the cobblestone paths C ≥

fCng1n≥1, and let

Mn ≥
 

An(x) Bn(x)
Ð Ð

!
.

We first describe the zeros of Bn(x) and only then go on to those of An(x) and GPCn (x).
The eigenvalues of M are the distinct functions ï1,2 ≥ 2(1šp1 + 3x). Since M is similar
to the diagonal matrix with the same eigenvalues, it follows that for n ≥ 1, 2, 3, . . .

Bn(x) ≥ M1,2
ïn

1 � ïn
2

ï1 � ï2
≥ 2

ïn
1 � ïn

2

ï1 � ï2

and

(18)
An(x) ≥ �ï1ï2

ïn�1
1 � ïn�1

2

ï1 � ï2
+ M1,1

ïn
1 � ïn

2

ï1 � ï2

≥ 6xBn�1(x) + 2Bn(x)

Hence, the zeros of Bn(x) are those zeros of ïn
1(x)�ïn

2(x) which are not zeros of ï1(x)�
ï2(x). These are the solutions of

� 1 +
p

1 + 3x

1�p
1 + 3x

�n
≥ 1,

with the exception of the value � 1
3 . Consequently the zeros of Bn(x) can be listed as

xn,k ≥ 1
3

��1� e2ôikÛn

1 + e2ôikÛn

�2 � 1
½

k ≥ 1, 2, . . . ,
²n

2

¦
� 1.

The values k ≥ 0, nÛ2 were excluded because xn,0 ≥ � 1
3 and xn,nÛ2 ≥ 1, which are not

zeros of Bn(x). The values k ≥ fnÛ2g, . . . , n� 1 are redundant since xn,n�k ≥ xn,k. Since
the Möbius transformation

T(z) ≥ 1� z
1 + z

maps the upper half of the unit circle onto the negative y-axis it follows that

Z
�
GPBn(x)

�
²
�
�1,�1

3

�
n ≥ 1, 2, . . . .

Moreover, since T(z) is a homeomorphism of the Riemann sphere onto itself, and since
the roots of unity are dense in the unit circle, it follows that [1n≥1Z

�
GPBn(x)

�
is in fact a

dense subset of (�1,� 1
3 ). It also follows from the interlacing of the (n� 1)-st and n-th

imaginary roots of unity on the unit circle, and from the bicontinuity of T(z), that

Bn�1(x) Ú,� Bn(x).
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We conclude from (18) and Lemmas 3.3 (2.) and 3.4 (2.) that

Bn(x) Ú,� An(x)

Finally, it follows from Example 5.1 and Proposition 5.2 that

GPCn(x) ≥ An(x) + xBn(x).

Consequently, by Lemmas 3.3 (2.) and 3.4 (2.) we have

An(x) Ú,� GPCn (x)

Thus, Z
�
GPCn(x)

�
is a subset of (�1,� 1

3 ) for each n ≥ 1, 2, 3, . . . . Moreover, since

the transformation T is a homeomorphism, it follows from the fact that [1n≥1Z
�
Bn(x)

�
is

a dense subset of (�1,� 1
3

�
that so are first [1n≥1Z

�
An(x)

�
and next [1n≥1Z

�
GPCn (x)

�
dense subsets of (�1,� 1

3

�
.

b ā

b̄ a
x̄

u1 u2

B̄ x
A

B Ā

H:

b1 ā1

b̄1

x1
a1

B̄1 x̄1

A1

B1
Ā1

Ð Ð Ð

bn�1 ān�1

b̄n�1 an�1

xn�1

B̄n�1

Bn�1

x̄n�1
An�1

Ān�1

bn ān
xn

b̄n
an

An
B̄n

x̄n
ĀnBn

Gn

FIGURE 10

The procedure used in the above proposition can also be used to show that the zeros
in the genus polynomials of the ladders of Example 5.3 are real, negative, and dense
in the interval (�1,� 1

8

�
. The following proposition illustrates a different technique for

proving that the genus polynomials of an H-linear family of graphs have real and negative
zeros.

PROPOSITION 5.7. Let G ≥ fDng1n≥1 denote the family of diamond bands. Then all
the zeros of GPDn(x) are real and negative for each n ≥ 1, 2, 3, . . . .

PROOF. Let M ≥ 4
 

2 + 3x 1
4x 2x

!
be the generating matrix of the diamond bands

D ≥ fDng1n≥1 (Example 5.5), and let

Mn ≥
 

An(x) Bn(x)
Ð Ð

!
.
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We will show that the polynomials An(x) and Bn(x) interlace. To do this we show that if
P(x), Q(x), P0(x), Q0(x) are polynomials such that

�
P(x), Q(x)

�
M ≥

�
P0(x), Q0(x)

�
then

(19) Q(x) Ú P(x) implies Q0(x) Ú P0(x).

However, by Lemma 3.3 (2.) and 3.4 (2.) we have

P(x) � 2xQ(x) + P(x) Ú 3xP(x) + 2[2xQ(x) + P(x)]

≥ (2 + 3x)P(x) + 4xQ(x)

Since Q0(x) ≥ P(x) + 2xQ(x) and P0(x) ≥ (2 + 3x)P(x) + 4xQ(x), we have a proof of (19).
In as much as

�
An(x) Bn(x)

�
M ≥

�
An+1(x) Bn+1(x)

�
it now follows by a straightforward

induction argument that

Bn(x) Ú An(x) n ≥ 1, 2, 3, . . . .

It follows from Proposition 5.2 and Example 5.5 that

GPDn (x) ≥ 2(1 + x)An(x) + 4xBn(x).

However, by Lemma 3.4 (1.)

An(x) + 2Bn(x) � An(x)

and so by Proposition 5.2, Example 5.5, and Lemma 3.4 (4.)

GPDn(x) ≥ 2(1 + x)An(x) + 4xBn(x) ≥ 2An(x) + 2x[An(x) + 2Bn(x)]

½ 2An(x) + 2[An(x) + 2Bn(x)] ≥ 4[An(x) + Bn(x)].

Thus, the zeros of GPDn (x) are real and negative for each positive integer n.

6. Conclusion. It was conjectured in [9] that the genus distribution (i.e., the se-
quence of the coefficients of the genus polynomial) of every graph is log concave. The
evidence in favor of this conjecture is not overwhelming. Nothing is known above and
beyond the facts proved or reproved in this paper and the theorem of [11] which states
that the genus polynomial of a graph G with a bridge e is the product of the genus poly-
nomials of the two connected components of G�e. The main theorem of [15] guarantees
that in that case G inherits the log concavity of the components of G � e. We offer here
some related questions and conjectures.

QUESTION 6.1. Is [1n≥1Z
�
GPBn(x)

�
a dense subset of (�1, 0)?

It is of course already known that the union in question is a subset of (�1, 0) and
that 0 is one of its limit points. The gist of this question therefore is whether this union
is unbounded and/or dense. Since the genus polynomials of Bn, as well as those of all
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vertex-forest multijoins, are known to converge in some sense to the generating polyno-
mial of the Stirling numbers [21], this question might lend itself to resolution.

QUESTION 6.2. Is [1n≥1Z
�
GPDPn (x)

�
a dense subset of (�1, 0)?

As was noted in the proof of Proposition 4.7, the zeros of genus polynomials of the
dipoles interlace with two polynomials whose coefficients are alternate Stirling numbers.
This should give us even more of a grip on them.

The results of Section 5 suggest that unlike the zeros of vertex-forest multijoins, those
of H-linear families of graphs are bounded away from zero. Since 0 is a zero of the
genus polynomial of every nonplanar graph, some care must be exercised in phrasing
the appropriate conjecture.

CONJECTURE 6.3. For every H-linear family G ≥ fGng1n≥1 of graphs,
[1n≥1Z

�
GPGn (x)

�
is disjoint from some punctured neighborhood of zero.

The log concavity conjecture has the following version in this context.

CONJECTURE 6.4. For every graph G, Z
�
GPG(x)

�
is a subset of (�1, 0].

This might be the place to mention four more H-linear families of graphs for which
the genus generating matrices are known, but the zeros of whose genus polynomials have
still not been proven to be real.

EXAMPLE 6.5. The triple ladders of Figure 11 have genus generating matrix M and
initial vector v1

M ≥
 

192x 96 + 288x
72x + 192x2 24 + 288x

!
, v1 ≥

 
18 + 18x
6 + 30x

!
.

Ð Ð Ð

FIGURE 11

Ð Ð Ð

FIGURE 12

EXAMPLE 6.6. The K4-linear graphs of Figure 12 has genus generating matrix M
and initial vector v1

M ≥
 

8 + 68x 4 + 16x
32x + 48x2 16x

!
, v1 ≥

 
2 + 14x
8x + 8x2

!
.

EXAMPLE 6.7. The W4-linear graphs of Figure 13 have genus generating matrix M
and initial vector v1

M ≥
 

8 + 260x + 216x2 4 + 88x
64x + 416x2 32x + 64x2

!
, v1 ≥

 
2 + 58x + 36x2

16 + 80x

!
.
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Ð Ð Ð

FIGURE 13

EXAMPLE 6.8. The triangular prisms of Figure 14 have genus generating matrix M
and initial vector v1

M ≥
0
B@ 0 162x 54

24x2 72x 12 + 108x
11x2 15x + 117x2 1 + 72x

1
CA , v1 ≥

0
B@ 8

4 + 4x
1 + 7x

1
CA .

Ð Ð Ð

FIGURE 14

The following special case of Conjecture 6.4 is probably not hard.

CONJECTURE 6.9. The zeros of the genus polynomials of the graphs listed in Exam-
ples 6.5–6.8 are real and negative.

The techniques used in Section 5 suggest the following general question.

QUESTION 6.10. Let M be a matrix with entries in R(x). Under what conditions can
it be guaranteed that if

�
P(x) Q(x)

�
is a pair of polynomials whose zeros interlace, then

so do the zeros of the two components of the vector
�
P(x) Q(x)

�
M interlace?

Most of the proofs of Section 5 were facilitated by matrices that possess this property.
On the other hand, the matrix

M0 ≥
 

3x 3
2x 1000 + 3x

!

fails to have this property, as is easily verified by taking P(x) ≥ (x + 2)(x + 4) and
Q(x) ≥ (x + 1)(x + 3)(x + 5). Matrices that do possess this property seem to have a related
property that is mentioned in the next question.

QUESTION 6.11. Let M be a matrix with entries in R[x]. Under what conditions can
it be guaranteed that the zeros of each of the entries of Mnn ≥ 1, 2, 3, . . . are all real?

The aforementioned matrix M0 fails to have this property too, as is seen by examining
its third power.
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