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ON THE ZEROS OF SOME GENUS POLYNOMIALS

SAUL STAHL

ABSTRACT.  In the genus polynomial of the graph G, the coefficient of xX is the
number of distinct embeddings of the graph G on the oriented surface of genusk. Itis
shown that for several infinite families of graphsall the zeros of the genus polynomial
are real and negative. This implies that their coefficients, which constitute the genus
distribution of the graph, are log concave and therefore also unimodal. The geometric
distribution of the zeros of some of these polynomials is also investigated and some
new genus polynomials are presented.

0. Preliminaries. Thisarticleisconcerned with embeddingsof finite graphson ori-
ented surfaces. Asis usual in this context, graphswill be allowed to have multiple edges
and loops. Two embeddings are considered to be the equivalent if the counterclockwise
cyclic orientations the ambient surfacesinduce on the edges emanating from each vertex
are identical. It is well known that every embedding is equivalent to one in which all
the regions (connected components of the complement of the graph in the surface) are
homeomorphic to the open 2-cell. Consequently it will henceforth be assumed that every
embedding is such a 2-cell embedding.

The set of edges emanating from a vertex of degree d can be cyclically oriented in
(d — 1)! ways. Hence, if the degree sequence of agraphisd, do,...,d, thenit has

T1(d — 1!
i=1

distinct embeddings. The genus of an embedding is the genus of the ambient surface.
Our interest lies in the number Y (k) of embeddings of a given graph G on an oriented
surface of a given genus k. The first theorem of this type is the interpolation theorem
of [7] which states that if m < n are integers such that Yg(m) and Yg(n) are positive,
then so isYg(K) positive for each integer k, m < k < n. Some experimental results were
presented in [1] and the authors of [11] called for a systematic approach to the subject.
They also suggested the possible utility of agenus polynomial of the form

8

0l G(k)xk-
0

A variety of results regarding these numbers were obtained in [8, 9, 16, 17, 19, 20, 21].
In this paper we focus on the genus polynomial and demonstrate that for several infinite
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families of graphsall the zeros of these polynomialsare real and negative, thusimplying
that their coefficients, the numbers of interest to us, are in fact unimodal. We also deter-
mine the geometric distribution of the zeros of some of these polynomials and formulate
some questions and conjectures.

Our results are obtained in the context of permutation-partition pairs which constitute
acombinatorial generalization of graphs and graph embeddings. These werefirst devel-
oped in[18] to facilitate the study of the minimum genus of the amalgamation of graphs,
but have also proved very useful in this enumerative context. A more geometric, though
still equivalent, object was developed in [2, 3] for the same purpose. The original theory
of permutation-partition pairs was focused on the number of regions of the embedding,
and the results could then be tranglated to their genera, whenever necessary. Here, how-
ever, it is more convenient to work directly with the genus and consequently some of
the machinery of permutation-partition pairs has to be retooled. The following table of
contents will give the reader some feeling for the structure of the paper.

1. Genus Polynomials
2. The Genus Version of the Walkup Reduction
3. Polynomialsall of Whose Zeros are Real
4. Vertex-forest Multijoins
5. H-Linear Families of Graphs
6. Conclusion
Thereader isreferred to [10] for an explanation of all the terms that are not defined here.

1. Genus Polynomials. With every graph G it is possible to associate a pair
(Ps,Mg), consisting of a permutation P and a (set theoretic) partition Mg in the fol-
lowing manner. First convert each edge of G into a pair of oppositely directed arcs and
let Dg denotethe set of all these arcs. The permutation P mapseach arc into its opposite
and is therefore necessarily an involution (without fixed points). For each vertex v of G,
let Dy denote the set of arcs of Dg that emanate from v. Then Mg = {Dy | v € V(G)}
(see Figure 1). A permutation-partition pair (P, ) consists of an arbitrary permutation
P and an arbitrary partition 1, both defined over some common underlying set S. The
elements of the underlying set are the bits of the pair. For every such pair (P, M), let S(M)
denote the set of all the permutations Q of the underlying set S such that each cyclein
the disjoint cycle decomposition of Q is a cyclic permutation of a member of 1. Each
permutation Q € (M) is called arotation system of (P, M) and the corresponding pair
(P, Q) iscalled an embedding of (P, IM). In the graphical case, where (P, M) = (Pg, MNg)
for some graph G, this terminology is consistent with that of topological graph theory.
Namely, if the graph G is embedded on the oriented closed surface Z, then the clockwise
senseof Z inducesacyclic permutation Q, of D, at each vertex v of G, and the product of
these Q,’'sis clearly an element Q of YM¢). Figure 1 illustrates this with two examples.

If (P,Q) is an embedding of the permutation-partition pair (P, M), then each cycle
in the digjoint cycle decomposition of the composition PQ (read from left to right) is
called aregion of this embedding. It iswell known [6, 22, 23] that this terminology too
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A plane embedding of agraph G
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Pe = (12)(34)(56)(78)(9a)(bc)(de)
PcQ = (136)(2984bda)(57€ec)

A toroidal embedding of agraph G

FIGURE 1

Q = (1923b5)(467)(8ea)(cd)

is consistent with that of the embeddings of graphs, as is indicated by the examples of
Figure 2. Aslong aswe restrict ourselvesto 2-cell embeddings of graphs, thereis aone-
to-one correspondence between the topological embeddings of the graph G on closed
oriented surfaceson the one hand, and the combinatorial embeddingsof (Pg, M) defined
here. This correspondenceis such that the boundaries of the topological regions of the
embeddingsof G are described by the disjoint cycle decomposition of the corresponding
products PQ.

If o is an arbitrary permutation of the set S then ||o|| denotes the number of cycles
in the digioint cycle decomposition of ¢. The number of components of the permutation-
partition pair (P, M), denoted by c(P, INM) is the number of orbits that the group generated
by P and any rotation system Q € N determined in the underlying set S.

The genus of the embedding (P, Q) of the permutation-partition pair (P, 1) is

@ 1(P.Q) = o(P, M) — S(IP| + Q] + PO — )

where n is the cardinality of the underlying set S. For example, in the embeddings of
Figure 1, this formulayields

1 1
1—5(7+4+5—14):0and1—§(7+4+3_14):1_

Itisknown[6, 22, 23] that the combinatorial genusof (2) isalwaysanonnegativeinteger
which, for graph embeddings, agrees with the topological genus.
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Pe = (14)(25)(36)

AT /6 ng= {{(1, 2,3},{4,5, 6}}
(14)(25)(36)
5—-6
4—6

(413)(25) (14)(523)

(4132) (4123)

‘ 4— 4 ‘ 4— 4
(132) (123)

FIGURE 2

For any permutation-partition pair (P,) and for any nonnegative integer k, let
Ye,my(K) denote the number of embeddings of (P, IT) that have genus k. The genus poly-
nomial of the pair (P, M) is defined as

GPem(x) = kZ Yepmy (KIXE.
—0

Theinvestigation of the genuspolynomials of graphswasfirst proposedin [11], and some
fairly explicit descriptions have been obtained for several infinite families of graphs[8,
9, 16, 17, 19, 20, 21]. Some more will be described below.

It is our purpose here to investigate the zeros of the genus polynomials of several of
these families of graphs as well as those of some new families.

2. Thegenusversion of the Walkup reduction. The Walkup reduction is a pro-
cess that expresses the genera of the embeddings of a pair (P, M) in terms of those of
smaller pairs. It therefore makes possible inductive proofs and recurrence formulas for
the genus polynomials. Since this process reduces graphical pairs to nongraphical pairs,
these formulas are much harder, if not impossible, to derive when attention is restricted
to embeddings of graphs only.
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Let (P, M) be a permutation-partition pair with an underlying set S. If a,b € S then
we say that a = b (mod M) whenever a and b are distinct elements that belong to the
samemember of M. A constraint on the pair (P, M) isan ordered pair, denoted by a — b,
such that there exists a rotation system Q € (1) such that aQ = b. In other words,
either a = b (mod[) or else, if a = b, then {b} & M. Given such a constraint a — b,
the set of rotation systems Q € M) such that Q mapsato bisdenoted by §(1;a — b).
More compactly,

SM;a—b)={Qe M) |aQ=b}.

If bis any element of the underlying set S then P/b denotes the permutation of S —
{b} obtained by deleting b from the disjoint cycle decomposition of P. Thus, if P =
(123)(4)(56), then P/1 = (2 3)(4)(5 6), and P/4 = (12 3)(5 6). Similarly, M /b
denotesthe partition of S— {b} induced by I1. For any constraint a — b, where a # b,
we denoteby (P, M) /a— b the permutation-partition pair (P, 1), defined over S— {b},

where
[P(babP)/b if a, b, bP areal distinct
I5_{P(bbP)/b=P/b ifbP=a+#£b
| P/b ifbP=b+#a
| P/b ifa=band {b} €.
N=n/b

For example, if
(P.M) = ((1234)(5)(67),{1,2,4|3,5,6| 7}),
then
(P,M)/4—2= ((1 4H((3)(5)(67),{1,4| 3,5,6| 7}),
(P,M)/4—1=((23)4(5)67).{2,4|3,5,6| 7}),
(P,M)/3—6=((34127)(5),{1,2,4|3,5|7}),
(P,M)/7—7=((1234)(5)(6).{1,2,4|3,5,6}).
The reader is referred to [19] for several other examples. If {b} € I then P= P/b.
On the other hand, when a = b (mod M) are distinct, the derivation of P from P can
be described as follows. If aand b are in the samecycleo = (ad---ebf..-g) of P,
then P is obtained from P by splitting o at a and b into two cycles, and suppressing b, so
astoobtain(ad---€e)(f---g), al the other cycles of P being passed on intact to P. On
the other hand, if a and b belong to distinct cycles(ad---e€)and (b f--- g) of P, thenP
is obtained from P by coalescing these two cycles into one, and suppressing b so as to

obtain (ad---ef---qg), al the other cycles of P being passed on intact to P.
Thefollowing easy observationsare proven in detail asLemmas 1.1 and 1.3 of [19].

LEMMA 2.1. Let (P, M) be a permutation-partition pair with a = b (mod 1), and let
(Pa, M) = (P,M)/a— b. Thenthe function

f:SMN;a— b) — M,)
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defined by
f(Q =[@b/b% Qa

is a bijection such that

IPaQal| otherwise.

IPQIl =

It is easy to seethat if aand b are distinct and a = b (mod ), then
©) c(P,M)+1>c[(P,M)/a— b] >c(P,M).

Moreover, if aand b belong to distinct cycles of P then c[(P, M) /a— b] = c(P, ). The
conversedoes not hold, asisillustrated by P = (12), M = {12}, a= 1, b= 2, where
c[(P,M)/a— b] = 1=c(P,N).

LEMMA 2.2. Let (P,MM) be a permutation-partition pair such that {b} € MM, and let
(Po, Myp) = (P, M) /b — b. Then the function
f: M) — M)
defined by
f(Q=Q/bEQ
is a bijection such that

[|PoQbl| ifb#bP

IPQI= { iPyull +1 ifb=bP.

The content of the next two corollariesisbased on adevicethat the author first encoun-
tered in [27], but which had probably been used by many other investigators previously.
We shall refer to these two corollaries as the Walkup reduction in the sequel.

COROLLARY 2.3. If (P,IM) isapermutation-partition pair, b € Sand {b} & N, then,
if (Pa,Ma) = (P,M)/a— b, wehave

CPem® = > xCICPp n,(x

a=b (modI)
where .
c(ab)= {1 ifcl(PaMa)] = c(P,M)and [P = ||Paf —1
0 otherwise.

PrROOF. It sufficesto show that for each such a and for each positive integer k,

Yem®= > V(Pa,na)(k —e(a, b))
b (mod )

a=b (m
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This, in turn, is tantamount to showing that for each such a,

(4) V(P, Q) = V(Pa, Qa) +£(a, b).

However,

(P, Q) —1(Pa, Qa) = (P, M)~ (e, M) — SL(IP] — [IPall + (I 1 Qal)
+ (”PQ” - |PaQa||) - (n - {n - 1})]

Since {b} ¢ N, it follows that ||Q|| = ||Qa|. If @ = bP, then c(P,M) = c(Pa, MNa),
IIP|| = ||Pal|, and, by Lemma 2.1, ||PQ|| = ||PaQal| + 1. Thus, in this case,

V(P,Q) —(Pa, Qa) = 0= £(a, b).

Suppose next that a ## bP but a and b still belong to the same cycle of P. Then, ||P|| =
||Pa|| — Land [|PQ]| = ||PaQal|. Hence,

V(P, Q) —(Pa, Qa) = ¢(P, M) — c(Pa, Ma) +1 = £(a, b).

Finally, if a # bP and a and b belong to different cyclesof P, then c(P, M) = ¢(Pa, M),
[IP|l = [[Pal| + 1, and ||PQ|| = [|PaQal|. Hence,

’\/(P, Q) - /Y(Pa, Qa) =0= 6(av b)
Thus, (4) hasbeen verified in all cases. .

COROLLARY 2.4. Let (P, M) be a permutation-partition pair and suppose {b} € .
If (P, Mp) = (P, I'I)/b—> b, then

GPem(®) = GPe, n,)(X).

PrROOF. It sufficesto show that for each positive integer k
YemK) = Y@e,ny) (K.
This, in turn, is tantamount to proving that
®) Y(P, Q) = V(Pb, Qv)-

However, if b = bP, then, because {b} € N we have

Y(P, Q) — ¥(Po, Qo) = (P, M) — c(Py, Mp) — %[(IIPII — [IPol}) + (1QII — [ Qwll)
+(IPQI — [IPoQel]) — (n— {n—1})]
—1- %(1+1+1— 1) = 0.
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On the other hand, if b # bP, then

A(P,Q) ~ 1Py, Q) = o, ) — Py, M) — 31(1P] — [IPu]) + (12l — ]
+(IPQI — IPsQul) — (0 {n— 1}
=0— %(0+1+0— 1) = 0.

Thus, (5) holdsin all cases. ]
The conclusionsof Corollaries 2.3 and 2.4 are the genus version of the Walkup reduc-
tion of [19]. Thus, we can associate with each pair (P, M) a (genus) reduction diagram
GTp,ny which differs from the (region) reduction diagram of [19] only in that the edge
labels§ = dapp and § = Sppp are replaced with e = £(a,b) and e = 0 respectively. As
was the case with the original reduction diagrams of [19], labels of the form ¢ = 0 will
be suppressed. Figure 2 contains the genus version of the reduction diagram of Figure 3
of [19]. For the sake of completeness, we also include an explicit definition of GTp ).

FIGURE 3. A vertex-forest multijoin of type (22, 3) and strength 7.

The complete (genus) reduction diagram GTpp) of the pair (P,M) is a ranked
weighted directed graph whose vertices are permutation-partition pairs, whose edges pic-
ture the above reduction process, and which is constructed asfollows. Let by, by, ..., by
be any linear ordering of the set S that underlies the pair (P,M) and let GTLQ)H_) =
{(P,M)}. Assuming that the vertex set GT ), (0 < i < n) hasbeendefined, let (P, M) be
any vertex in this set GT(S?H)_' If {bi+1} isasingleton member of M, then (P, M) hasonly
onedescendent, namely (P, 1) /bi+1 — bi+1. The edgefrom (P, I'_I) to (P, I'_I)/bi+1 — biss
isassignedtheweight ¢ = 0. Onthe other hand, if {bi.1 } isnot asingleton member of I,
then each of the pairs (P, M)/a— by (@ = bi+1) isadescendent of (P, ). Each branch
from (|5, M) to any of its d@cendents(ﬁ, MM)/a — bisq is assigned the weight £(a, bi+1).
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The vertex set GT 0*D consists of the set of all the descendents of all the vertices in

(P,r)
GT 8- Itis clear that each pair of vertices (P,M) and (P, M) in GT S, have n=n
and also have the same underlying set S = {bj.1, bisz, ..., bn}. The set GT S o | consists
of only thetrivial pair (¢, ¢). The next lemmafollows |mmed|ately from Corollaries 2.3

and 2.4.

LEMMA 2.5. The embeddingsof the pair (P, M) are in a one-to-one correspondence
with the directed paths of GT(p ) that start from (P, M) and end at (¢, ¢). This corre-
spondence is such that the genus of each embedding is given by the sum of the weights
along its corresponding path. ]

3. Polynomials all of whose zerosarereal. Polynomials all of whose zeros are
real, have arisen in a variety of contexts, and there is a fair amount of interest in and
an extensive literature on this subject [4, 13, 24, 25, 26]. The geometric distribution of
the zeros of families of such polynomials has also been investigated [4]. Our interest in
this type of polynomial was originally due to its implication about unimoddity [Theo-
rem 3.1]. It seemslikely, however, that information about the zeros of the genus polyno-
mial will eventually lead to information about the genusdistribution. Lemmas3.2and 3.3
below contain minor variations of somewell known [25, 26] techniquesfor proving that
all the zeros of a given polynomial are real.

A sequence ay, ay, ..., an Of real numbers is said to be the unimodal if there is an
integer k, 0 < k < n, such that

<y < <41 = an.
A sequenceay, ay, - . -, &, iIssaid to belog concaveif
a_ g <a i=12...,n—1
The following proposition is well known and easily demonstrated.

ProPOSITION 3.1. Every log concave sequence of positive real numbers is also
unimodal. -

There are several techniques for proving that a given sequenceis log concave, and
one of them is the following. The reader is referred to [5, (p. 270), 24] for a proof.

ProPOSITION 3.2.  (Newton) If all the zeros of the polynomial
aox" +ax"t+ - +an X+ an

arereal, then the sequenceay, ay, . . ., a, islog concave. n

A commonly used technique for proving that al the zeros of a certain polynomial
arereal cals for locating another polynomia whose zeros must interlace with those of
the given polynomial. Moreover, we are concerned here with genus polynomials whose
coefficients, being cardinalities of certain sets, are necessarily positive. Hence their real

https://doi.org/10.4153/CJM-1997-029-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-029-5

626 SAUL STAHL

zeros are necessarily negative. Accordingly, we make the following definitions. Suppose
the zeros of the polynomials P(x) and Q(x) are simple and can be listed as xq, X, ..., Xn
andysy, Yz, ..., Yn respectively, where

Xn <Yn < X1 <Y1 <o <X <y <O.

We say that the zeros of P(x) and Q(x) interlace and write P(x) < Q(X). If, on the other
hand, the zeros of the polynomials P(x) and Q(x) are simple and can be listed as x;,
X2, .-+, Xn—1 @nd yy, Yo, ..., Y, respectively, where

yn<xnfl<yn71<"'<X1<Y1<0.

then we write P(X) < Q(X) and again say that the zeros of these polynomials interlace.
Weshall usethe notation P(x) <, < Q(X) to denotethefact the zeros of these polynomials
interlace in one of these two senses. While this employment of the inequality symbol is
useful, the reader should be warned that thisrelation of interlacing is not transitive.
Thefollowing two lemmas providethe basisfor several inductive proofsin the sequel.
Asthey contain little that is not already known [4, 25, 26], their proofs are omitted.

LEMMA 3.3.  Let P(X) and Q(x) betwo polynomialsand let a, b ¢, d be positivereals.
If P(X) < Q(X), then

(1) P() < aP(x) +bQ(X) < Q(x)

(2)) Q(X) < cxP(x) +dQ(x)

(3) Q) < aQ(x) — bP(x) if aQ(0) — bP(0) is positive.

(4.) aP(x) +bQ(x) < cxP(x) + dQ(X). n
LEMMA 3.4. Let P(x) and Q(x) betwo polynomialsand let a, b ¢, d be positivereals.
If P(x) < Q(X), then

(1) P() <aP(x) +bhQ(X) < Q(x)

(2) Q(X) < axP(x) +bQ(X)

(3) QXX < aQ(x) — bP(x) if aQ(0) — bP(0) is positive.

(4.) aP(x) + bQ(X) < cxP(x) + dQ(X). ]

4. Vertex-forest multijoins.  Let By denote the bouquet on g circles, that is, By is
the graph consisting of asingle vertex and ¢ loops. Based on some permutation counting
results of [12, 14] it was proved in [9] that for g > 2,

@+ 1)e,(k) = 429 — 1)(29 — 3)(@ — D)*(q — 2)7e, ,(k— 1)

(©) +4029— 1)(— 1), (K.

It follows that for g > 2,
_ _ —12(q —
G PBq (X) — 4(2q 1) (2q 3)(q 1) (q 2) XG PBq72 (X)

(7) o art
+ 420-H@-1 qi)g_q 1)GPBq,1(X).

Since GPg, (X) = 1 and GPg,(x) = 4 + 2x, we have here a complete description of the
genus polynomial of the bouquet. We note that GPg,(x) = 40 + 80x and GPg,(x) =
336(2 + 10x + 3x?).
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ProposiTION 4.1.  The zeros of the genus polynomial of the bouquet B4 on g circles
arereal, negative, and satisfy the following relations:

8 GPg,(X) < GPs,,,(x) ifgisodd
® GPg,(X) < GPg,.,(x) ifqiseven.

PROOF. We proceed by induction on g. The casesq = 1, 2, 3 cal for the inspection
of the polynomialslisted aboveand are easily verified. Assumethat the proposition holds
for all positive integers q < k. It follows from formula (7) that there exist real numbers
¢ and d such that

9) GPg,.,(¥) = cxGPsg,_, (x) + dGPg, ()
If kis odd, then, by the induction hypothesis
GPg,, (9 < GPg,(x)
and an application of Lemma 3.3 (2.) to (9) aboveyields
GPg,.,(¥) = cxGPg,_,(x) + dGPg, (x) > GPg, (X).
Similarly, if kis even, then, by the induction hypothesis
GPg,_,(¥) < GPg, (%)
and an application of Lemma 3.4 (2.) to (9) aboveyields
GPg,.,(¥) = cxGPg,_,(x) + dGPg, (x) > GPg, (X).

|
Thefollowing corollary wasfirst proved in [9]. Hereit is an immediate consegquence
of the above Proposition and Newton's Theorem 3.2.

COROLLARY 4.2. Thegenusdistribution of the bouguet on ncirclesislog concave. m

These observations can be used to garner information about other infinite families of
graphsaswell. A vertex-forest multijoin isagraph G with avertex u suchthat V(G)—{u}
induces a subforest of G. If Ty, Ty, ..., T; are the components of this induced subforest,
and if the central vertex u of Gisjoined to T; by A; edges, then we may assumethat the
labeling is such that

2< A< << Asand0 < gy SAgp <o < <L

We refer to the stuple (A1, A2,...,)s) asthetypeof Gandton = Ay + Ao + -+ + Ag
as its strength. The region distribution of such a graph G was derived in the proof of
Theorem 3.2 of [21] and can be restated in terms of the genus as follows. Let G be a
vertex-forest multijoin of type (A1, Az, ..., As) and strength n. Let (P, 1) be any permu-
tation partition pair wherein P consists of s cyclesof lengths A1, Az, ..., As respectively,
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and N has only one member, namely M = {{1,2,...,n}}. Then thereis an integer ag
such that

(10 GPs(¥) = acGPpm)(x).

The value of ag is easily deduced from the observation that the total number of em-
beddings of any permutation-partition pair (P, M), is T, (pi — 1)!, where py, pa, - . ., P
are the respective cardinalities of the constituent members of 1. All the permutation-
partition pairsin this section will be such that N containsonly one set, and it is clear that
in this special case GPp () depends only on the cycle structure of P. Hence, for the
remainder of this section, all mention of ' will be suppressed and P will be encoded in
terms of the number of cyclesof eachlength that it possesses, in the usual manner. Thus,
we shall write

GP @ () for GP (1 3 4)-@n-1 20,4 {1.2....201 (X)
and
GP225(%) for GP 1 23 45 6 7).4{1.23456.71) X)-

If each edge of the bouquet By is subdivided once, we obtain a vertex-forest multijoint
of type (29) and strength 2q. It therefore follows that for somerea b,n=1,2,3,...,

bnG P(zn) (X) = G PBn (X)

The Walkup reduction can now be used to abtain the genus polynomials corresponding
to some other permutations (and so also to some other vertex-forest multijoins). Suppose
P=(12)(34)---(2n—12n). Then the branch of the reduction diagram corresponding
to the constraint (2n — 1) — 2n yields the descendent

P;=(12)(34)---(2n—32n—2)(2n — 1) of type (1,2"})

with e(2n—1, n) = 0. Onthe other hand, each of thebranchesa — 2n,a=1,2,...,2n—
2 yieldsadescendent of type (22, 3) with £(a, 2n) = 0. It follows from two applications
of Corollary 2.3 that

Gp(zr\) (X) = GP(l'Zn—l) (X) + 2(n - 1)G P(zn—zyg)(x)
= 2(n - 1)GP(2n71) (X) + 2(n - 1)GP(2n72’3) (X)
Thus,

GP(2n 2 3) (X) ( )
(11)
= WGPBn(X) GPBn ().
ProPOSITION4.3.  All thezerosof the genuspolynomi al of any vertex-forest multijoin
G of type (2", 3) are real and negative. Moreover

Gp(zn) (X) GP(Zn—l)(X)

GPBH+2(X) < GP(_;(X)
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PROOF. In order to apply Lemmas 3.3 (3.) and 3.4 (3.), it will be necessary to know
that the constant term of GPg(x) is not zero, i.e., that G has a plane embedding. This,
however, is clear from the fact that G is planar since it is the one point amalgamation of
n+ 1 planar graphs. By Proposition 4.1,

GPBn+1(X) <1 S GPBn+2(X)
and so, it follows from (11) above and Lemmas 3.3 (3.), 3.4 (3.) that for somereal ¢, d,,
GPg(x) = cnGPsg, () — diGPsg,,(x) > GPg,,(x). =

COROLLARY 4.4. The genus distribution of every vertex-forest multijoin of type
2", 3) islog concave. "
g

If the graph G has a bridge e, then it is known [11] that the genus polynomial of G
is the product of the genus polynomials of the two components of G — e. The genus
polynomial is also known for several infinite families of graphs that fall into the two
categories discussed in this section and the next. Loosely speaking, one may speak of the
graphs of this section as short while characterizing those of the next aslong. The author
believes that these two categories are significant in that they represent the two opposite
endsof aspectrum of types. Possibly the growth of the average genus (logarithmic versus
linear in the number of edges) can be used to formalize this spectrum, but as yet not
enough information is available. In view of this it would be useful to find other aspects
of the genusthat differentiate betweenfamiliesin thetwo categories. It isfor this purpose
that the following proposition is presented.

PROPOSITION 4.5. There exists a constant k such that the genus polynomial a of
vertex-forest multijoins of type (2") or (2", 3) hasa zero of magnitude lessthan k/n?, for
n=123,....

ProoF. It follows from Propositions 4.1 and 4.3 that it suffices to prove the propo-
sition for graphs of type (2") where n is even. Assume therefore, that n is indeed even.
By definition, the constant term of GPg_(X) isvg,(0) which is not zero because By, has
some obvious plane embeddings. Easy induction arguments based on (6, 7) allow usto
conclude that GPg, (x) has degreen/2 and that

V8,0 _ 2"
V8,(n/2) nt’
Hence, if rq, ro, ..., Mnj2 ae the zeros of GPg_(x), which are already known to be real,
then
n/2 on
HGERE
i=1 n!
and the required upper bound follows from Stirling’s formula. ]
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For example, the zeros of GPg,,(x), rounded off to 4 decimal places, are

{—7.3700, —. 7080, —. 2122, —. 0904, —. 0459,
—. 0259, —. 0156, —. 0097, —. 0062, —. 0039}

Thedipole DP, isthe graph that consistsof n multiedgesjoining two distinct vertices.
Thegenuspolynomial of the dipolewasderived, in equivalent form, in[17]. Specifically,
let s(n, k) be the (absolute value of) the Stirling number of the first kind, i.e., let

s(nk)=sin—1L,k—1)+(n—sin—1,k) nk=123,...
s(n,0) = 5(0,k) = 0, except 5(0,0) = 1.

Then, if
[n/2]-1
SOnX) = > s(n,n—2k— 1)x*
k=0
we have
(n—1)?
(12) GPDP’1 (X) = ZW SOn+1(X).

Since the dipole DP, is a vertex-forest multijoin of type (n), it follows from (10) that if
G is any vertex-forest multijoin of type (n), then its genus polynomial is also given by
(12). Sincethe forest portion of any vertex-forest multijoin is arbitrary, type (n) coversa
large set of homeomorphically distinct graphs. Vertex-forest multijoins of type (n) will
be referred to as vertex-tree multijoins.

ProPOSITION4.6.  All the zerosof the genus polynomial of each vertex-treemultijoin
arereal and negative.

ProOF. Define
(/2
SEn(X) = > s(n,n— 2K)xX.
k=0
It isthen easily verified from the recursive definition of s(n, k) that

(13) SOn(x) = Son,]_(X) + (n - 1) SEnfl(X) n=234...

SEn(X) = (n - 1)X Sonfl(x) + SEnfl(x)-
It now follows from Lemmas 3.3 (4.) and 3.4 (4.) and a straightforward induction that
(14) SOn(X) <, < SEa(X).

In particular, al the zeros of SO,(X) arereal, and so, in view of the comments preceding
the theorem, we are done. ]
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by bl
51 ag
FIGURE4
COROLLARY 4.7. The genusdistribution of the dipoleislog concave. ]

COROLLARY 4.8. All the zeros of the genus polynomial of a vertex-forest multijoin
of type (2, n) arereal and negative.

PROCF. Let G be a vertex-forest multijoin of type (2, n). Then, by (10) there exist
real numbers a, such that upon applying the Walkup reduction of Corollary 2.3 we get

GPs(x) = aGP2n)(X) = anGP1.n(X) + anGP i) (%)
= a,nNGP () + annGP (1) (%).

Since GP ) (X) = b SOn+1(X), it follows from (13, 14), and Lemmas 3.3 (1.) and 3.4 (1.)
that

(16) GPn (%) <, < GPreny(X)
and so, when Lemmas 3.3 (1.) and 3.4 (1.) are applied to (16) we conclude that
17 GPn(¥) <, < GPg(x)

and so all the zeros of GP¢(x) are real and negative. "

(15)

ProPOSITION 4.9. There exists a constant k’ such that the genus polynomial of a
vertex-forest multijoin of type (n) or (2, n) hasa zero of magnitude lessthan k' /n?.

ProOOF. In view of (17) it suffices to prove this proposition for type (n) only. The
constant term of the polynomial SO, (x) and its leading coefficient are, respectively,
s(n,n— 1) = (3) and either s(n, 1) or s(n, 2). Since

s(n,2) > s(n,1) > (n— 1)},
the desired result now follows by an argument similar to that of Proposition 4.5 above. m

5. H-Linear families of graphs. If H isany graph, then the family of graphs ob-
tained by consistently amalgamating additional copiesof H is called an H-linear family
of graphs. A more formal definition appearsin [19]. The examples that appear in Fig-
ures 4, 7,8, 9 should give the reader a sufficient grasp of the concept.

Let G = {Gn}2, be an H-linear family of graphs. The argument of [19] that was
used to obtain expressions for the region distribution of G, can be easily modified to
yield asimilar expression for the genus polynomial of Gy,
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ExAMPLE 5.1. The graph G, of Figure 4, the cobblestone path of [8], is obtained
by successively amalgamating n copies of H. Let G|, denote the permutation-partition
pair obtained from (Pg,,Mg,) by replacing the two transpositions (a,an)(bnbn) with
(ananbnbr). Apply the genusversion of the Walkup reduction to (Pg,, MNg,) soasto elim-
inate all the bits in the last (n-th) copy of H. Figure 5, 6 illustrate this process. Since
theinitial portion of the genusreduction diagram GTg, displayed in Figure 5 contains 4
paths of weight 0 from node Pg, to node Pg,_, and 2 paths of weight O to node P/ o it
follows that "

GPGn (X) = 4G PGn,l(X) + ZGPG/n,l(X)'

Pe, ; (anan)(bngn)

Pg, 4 (8anbn)

8 — @n

Pe, 1 (@) Pg, ,(bn 1Pn 1)@ 181 130) PG, (@180 1)(bn-1by_13n)

81— an bh_1— an 81— an

P&,y PG, ,(an—18n_1bn_1bn_1)
FIGURE 5

Similarly, since the initial portion of the genus reduction diagram GTG/n displayed in
Figure 6 contains 6 paths of weight 1 from the nodePg, to the nodePg, _,, it follows that
GPg, (x) = 6xGPg,_,(x).

Thus, if we let vy(X) be the column vector (ggsngg), then the above discussion is
&h

tantamount to the equation

vn(x):(;( g)vn,l(x) n=234,....
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Pe, ; (ananbngn)

an — by

PG, _, (@n@n)(bn)

anh — an

PG, ,(an)(bn)

an — by an-1— 6n b1 — Bn
Pg,_,(@n)
an—1 — 5n b1 — an
PGn—l
FIGURE 6

Since (Pg,,Mg,) = ((3151)(b151),{al,b1 | 51,61}) and G = ((alalblgl)y{alabl |
ay, by }), it follows that

GPg,
Vil = (GPZ&) = (1)

o)
Hence,
4+ 2x
va(X) = ( 6X )
16 + 20x
va(x) = ( 24x + 12x2 ) ’
() = 64 + 128x + 24x? etc
Val) = ( 96 + 1202 ) :

This procedure generalizes to the following analog of Theorem 2.6 of [19]. The set
of polynomialsin x with integer coefficientsis denoted here by Z[X].

PROPOSITION 5.2. Let G = {Gp}2, be an H-linear family of graphs. Then there
exist a positive integer d, a d x d matrix M and a column d-vector v(x), with entriesin
Z[x], such that the first entry of M"v is GPg, (X). .
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ExAMPLE 5.3. Theladder L,, of Figure 7. Here,

-8, 8w (2

*——o

Ln
FIGURE 7

ExAMPLE 5.4. Thedoubleladder LL, of Figure 8. Here,

X 3
M :6(2)( 1+3x) andv:2(1+x).
H
LLn

FIGURE8

ExaMpPLE 5.5. The diamond band D, of Figure 9. Here,

2+3x 1

M:4( ax 2

) andv:2<1+x).

2X

It is convenient to denote the set of zeros of the polynomial P(x) by Z (P(x)) .

PP

FIGURE 9
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PROPOSITION 5.6. Let C = {Cp}72; denote the family of cobblestone paths. Then
U2, Z(GPc, (%)) is a dense subset of (—oo, —3).

PROOF. LetM = ( 4 2) be the generating matrix of the cobblestone paths C =

6x O
{Cn}2,, andlet
MP — (A@x) Bngx)) ,

We first describe the zeros of Bn(x) and only then go on to those of Ay(x) and GPc, (x).
Theeigenvaluesof M arethedistinct functions A1 2 = 2(14++/1+ 3x). SinceM issimilar
to the diagonal matrix with the same eigenvalues, it followsthat forn =1, 2, 3,...

N =23 _ M=

Bn(X) =M =
() = Mo =3 =23 =,
and
AL ot AD— D
= — + M
(18) Al = —Mho == M T

= 6xBn-1(X) + 2Bn(X)

Hence, the zeros of By(X) are those zeros of \J(x) — AJ(X) which are not zeros of A1(X) —
A2(X). These are the solutions of

1+ I+3x\0
s =*

with the exception of the value — % Consequently the zeros of B,(X) can belisted as

R (e ST ST e

Thevaluesk = 0, n/2 were excluded because xno = —% and X, /2 = oo, which are not
zeros of B,(x). Thevaluesk = {n/2},...,n— 1 areredundant since Xnn—x = Xnk. Since
the Mobius transformation
T(Z) — 1;2
1+z

maps the upper half of the unit circle onto the negative y-axis it follows that

1
Z(GPs,(9) C (00—
Moreover, since T(2) is a homeomorphism of the Riemann sphere onto itself, and since
the roots of unity are densein the unit circle, it follows that U2, Z (GPg, (¥)) isinfact a
dense subset of (—oo, —%). It also follows from the interlacing of the (n — 1)-st and n-th
imaginary roots of unity on the unit circle, and from the bicontinuity of T(2), that

) n=12....

Bn-1(X) <, < Bn(X).
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We conclude from (18) and Lemmas 3.3 (2.) and 3.4 (2.) that
Bn(¥) <, < An(X)
Finally, it follows from Example 5.1 and Proposition 5.2 that
GPc, (%) = An(X) + XBq(X).
Consequently, by Lemmas 3.3 (2.) and 3.4 (2.) we have
An(x) <, < GPc, (¥

Thus, Z(GPc,(x)) is a subset of (—oo, —3) for eachn = 1, 2, 3,.... Moreover, since
the transformation T is ahomeomorphism, it follows from the fact that LU . Z (Bn(x)) is
a dense subset of (—oo, —1) that so are first U2, Z (Aq(X)) and next U2, Z (GPc, (x))
dense subsets of (—oo, —3). .

FIGURE 10

The procedure used in the above proposition can also be used to show that the zeros
in the genus polynomials of the ladders of Example 5.3 are real, negative, and dense
intheinterval (—oo, —%) . Thefollowing proposition illustrates a different techniquefor
proving that the genuspolynomialsof an H-linear family of graphshavereal and negative
zeros.

PROPOSITION 5.7.  Let G = {Dn}32, denote the family of diamond bands. Then all
the zeros of GPp, (x) arereal and negative for eachn=1,2, 3,....

Proor. LetM = 4 2% 1
4x 2X

D = {Dn}2, (Example5.5), and let
M — (An_(x> Bn_(x)) |

) be the generating matrix of the diamond bands
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We will show that the polynomials A,(X) and By (X) interlace. To do this we show that if
P(x), Q(x), P'(x), Q'(x) are polynomials such that
(P(),QX)M = (P'(x), Q'(x))
then
(19) Q(X) < P(x) implies Q'(x) < P'(X).
However, by Lemma3.3 (2.) and 3.4 (2.) we have
P(x) < 2xQ(x) + P(x) < 3xP(x) + 2[2xQ(X) + P(X)]
= (2 + 3X)P(X) + 4xQ(X)

Since Q'(xX) = P(x) +2xQ(x) and P’(x) = (2+ 3X)P(x) + 4xQ(X), we have a proof of (19).
In as much as (An(X) Ba())M = (An1(X) Bra(¥)) it now follows by a straightforward
induction argument that

Bn(X) <A(X) n=1,23,....
It follows from Proposition 5.2 and Example 5.5 that
GPp, (¥) = 2(1 + X)An(X) + 4xBn(X).
However, by Lemma 3.4 (1.)
An(X) + 2Bn(X) < An(X)
and so by Proposition 5.2, Example 5.5, and Lemma 3.4 (4.)
GPb,(3) = 2(1 +X)An(X) + 4xBn(X) = 2An(X) + 2X[An(X) + 2Bn(X)]
> 2An(X) + 2[An(X) + 2Bn(X)] = 4[An(X) + Bn(X)].

Thus, the zeros of GPp, (x) are real and negative for each positive integer n. ]

6. Conclusion. It was conjectured in [9] that the genus distribution (i.e., the se-
guence of the coefficients of the genus polynomial) of every graph islog concave. The
evidencein favor of this conjecture is not overwhelming. Nothing is known above and
beyond the facts proved or reproved in this paper and the theorem of [11] which states
that the genus polynomial of a graph G with a bridge e is the product of the genus poly-
nomials of the two connected componentsof G— e. The main theorem of [15] guarantees

that in that case G inherits the log concavity of the componentsof G — e. We offer here
some related questions and conjectures.

QUESTION 6.1 IsU2,Z(GPg, (X)) adense subset of (—oo, 0)?

It is of course already known that the union in question is a subset of (—oo, 0) and
that 0 is one of its limit points. The gist of this question therefore is whether this union
is unbounded and/or dense. Since the genus polynomials of B, as well as those of all

https://doi.org/10.4153/CJM-1997-029-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-029-5

638 SAUL STAHL

vertex-forest multijoins, are known to converge in some sense to the generating polyno-
mial of the Stirling numbers[21], this question might lend itself to resolution.

QUESTION 6.2.  1sU32,Z(GPpp, (x)) adense subset of (—oo0, 0)?

As was noted in the proof of Proposition 4.7, the zeros of genus polynomials of the
dipolesinterlace with two polynomial swhose coefficients are alternate Stirling numbers.
This should give us even more of agrip onthem.

Theresults of Section 5 suggest that unlike the zeros of vertex-forest multijoins, those
of H-linear families of graphs are bounded away from zero. Since O is a zero of the
genus polynomial of every nonplanar graph, some care must be exercised in phrasing
the appropriate conjecture.

CONJECTURE 6.3. For every H-linear family G = {G,}2, of graphs,
ux,Z (G Pg, (x)) is digoint from some punctured neighborhood of zero.
The log concavity conjecture has the following version in this context.

CONJECTURE 6.4.  For every graph G, Z (GPg(x)) isasubset of (—oo,0].

This might be the place to mention four more H-linear families of graphs for which
the genus generating matrices are known, but the zeros of whose genuspolynomialshave
still not been proven to be real.

ExAMPLE 6.5. Thetriple ladders of Figure 11 have genus generating matrix M and
initial vector vq

v [ 192x 96+ 288 ([ 18+18x
~ | 72x+192¢ 24+288x)’ 'T | 6+30x )

FIGURE 11

SRS

FIGURE 12

ExAMPLE 6.6. The K4-linear graphs of Figure 12 has genus generating matrix M
and initial vector v,

v [ 8+68x  4+16x [ 2+14x
T\ 32x+482  16x )’ T\ 8x+8x )

EXAMPLE 6.7. The W;-linear graphs of Figure 13 have genus generating matrix M
and initial vector vq

V[ 8+260x+ 216x2 4+ 88x [ 2+58x+36x2
| e4x+416x2  3x+64x2 ) L 16 + 80x
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SR

FIGURE 13

ExAMPLE 6.8. Thetriangular prisms of Figure 14 have genus generating matrix M
and initial vector v,

/ 0 162x 54 { 8
M = | 24x? 72x 12+108x), vy = 4+4x>.

11x2  15x+ 117x¢ 1+ 72X 1+7x

FIGURE 14

The following special case of Conjecture 6.4 is probably not hard.

CONJECTURE 6.9. The zeros of the genus polynomials of the graphslisted in Exam-
ples 6.5-6.8 arereal and negative.
The techniques used in Section 5 suggest the following general question.

QUESTION 6.10. Let M be amatrix with entriesin R(x). Under what conditions can
it be guaranteed that if (P(x) Q(x)) isapair of polynomials whose zeros interlace, then
so do the zeros of the two components of the vector (P(x) Q(x)) M interlace?

Most of the proofs of Section 5 were facilitated by matrices that possessthis property.
On the other hand, the matrix

Mo — 3X 3
©= {2x 1000+ 3x

fails to have this property, as is easily verified by taking P(x) = (x + 2)(x + 4) and
Q(X) = (x+1)(x+3)(x+5). Matrices that do possessthis property seemto have arelated
property that is mentioned in the next question.

QUESTION 6.11. Let M be amatrix with entriesin R[x]. Under what conditions can
it be guaranteed that the zeros of each of the entriesof M"n= 1, 2, 3,... are adl real?

The aforementioned matrix My failsto havethis property too, asis seen by examining
its third power.
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