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Abstract
We prove that the period mapping is dominant for elliptic surfaces over an elliptic curve with 12 nodal fibers, and
that its degree is larger than 1. This settles the final case of infinitesimal Torelli for a generic elliptic surface.
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1. Introduction

In order to distinguish smooth projective varieties varying in a family with continuous parameters, it
is often useful to integrate the holomorphic forms over topological cycles. This idea was used to great
effect classically to distinguish smooth curves of a given genus 𝑔 > 0. A modern reformulation of this
problem in higher dimension asks whether the period mapping from a moduli space of varieties to an
associated space of periods is injective, either locally or globally on the source. We will show that while
the local injectivity statement is true generically, the global statement fails for an important class of
elliptic surfaces.

An elliptic surface is a smooth, projective surface S equipped with a relatively minimal, genus
one fibration 𝜋 : 𝑆 → 𝐶 to a smooth curve and a distinguished section s. Moduli spaces 𝐹𝑔,𝑑 of
elliptic surfaces are indexed by two nonnegative integers, 𝑔 = 𝑔(𝐶) and 𝑑 = 1

12 𝜒top(𝑆). Counted with
multiplicity, there are 12𝑑 singular fibers. The canonical bundle of S is pulled back from a line bundle
𝐿 ⊗ 𝜔𝐶 of degree 𝑑 + 2𝑔 − 2 on C. We henceforth assume 𝑑 > 0 (that is, S has at least one singular
fiber) so that 𝑝𝑔 (𝑆) := ℎ0 (𝐾𝑆) = 𝑔 + 𝑑 − 1.

In this paper, we focus on the moduli space 𝐹 := 𝐹1,1. Since 𝑔(𝐶) = 1, 𝐾𝑆 = 𝜋∗𝐿 for a degree 1
line bundle 𝐿 = O𝐶 (𝑝), and generically the fibration 𝜋 has 12 singular fibers. There is a morphism
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𝑆 → 𝑆 contracting ADE configurations in fibers not intersecting the section s. This contraction has a
Weierstrass form [Kas77]

𝑆 = {𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏} ⊂ P𝐶 (𝐿2 ⊕ 𝐿3 ⊕ O),

where 𝑎 ∈ 𝐻0(𝐶, 𝐿4) and 𝑏 ∈ 𝐻0(𝐶, 𝐿6). A quick parameter count reveals that dim 𝐹 = 1+4+6−1 = 10
where the parameters are, respectively, the j-invariant of (𝐶, 𝑝), the section a, the section b and the
quotient by the action of 𝜆 ∈ C∗ via (𝑎, 𝑏) ↦→ (𝜆4𝑎, 𝜆6𝑏).

Noether’s formula implies that the Hodge numbers of S are ℎ2,0 (𝑆) = ℎ1,0 (𝑆) = 1 and ℎ1,1 (𝑆) = 12.
The Neron-Severi group NS(𝑆) = 𝐻1,1 (𝑆,C) ∩ 𝐻2 (𝑆,Z) always contains the classes of the fiber f and
section s which have intersection numbers 𝑠2 = −1, 𝑠 · 𝑓 = 1, 𝑓 2 = 0. Hence, there is a copy of the odd
unimodular lattice

𝐼1,1 
 Z𝑠 ⊕ Z(𝑠 + 𝑓 ) ⊂ NS(𝑆).

Its orthogonal complement {𝑠, 𝑓 }⊥ ⊂ 𝐻2 (𝑆,Z) is an even (since [𝐾𝑆] = 𝑓 ), unimodular lattice of
signature (2, 10), so it is isometric to 𝐼𝐼2,10 = 𝐻 ⊕ 𝐻 ⊕ 𝐸8.

Let Γ := 𝑂 (𝐼𝐼2,10) and define the period domain to be

D := P{𝑥 ∈ 𝐼𝐼2,10 ⊗ C
�� 𝑥 · 𝑥 = 0, 𝑥 · 𝑥 > 0}.

It is a ten-dimensional Type IV Hermitian symmetric domain. By general results of Griffiths [Gri68],
there is a holomorphic period map 𝑃 : 𝐹 → D/Γ sending [𝑆] ∈ 𝐹 to the line 𝐻2,0 (𝑆) ⊂ {𝑠, 𝑓 }⊥ ⊗ C.
This map is only well-defined mod Γ since the isometry {𝑠, 𝑓 }⊥ → 𝐼𝐼2,10 is ambiguous up to post-
composition by an element of Γ. We may now state the first theorem of the paper:

Theorem 1.1. P is dominant.

Remark 1.2. For surfaces S with ℎ2,0 (𝑆) ≥ 2, the associated period map cannot be dominant due to
Griffiths transversality. The general member 𝑆 ∈ 𝐹𝑔,𝑑 satisfies ℎ2,0 (𝑆) = 1 only when (𝑔, 𝑑) = (1, 1)
or (𝑔, 𝑑) = (0, 2). In the latter case, the surfaces under consideration are elliptic K3 surfaces. By the
Torelli theorem for K3 surfaces [PSS71, LP81], the period mapping gives an isomorphism onto the
corresponding period space.

A local, respectively infinitesimal, Torelli theorem verifies the local injectivity of P, respectively
injectivity of 𝑑𝑃, at some point. Such a result implies that P is generically finite onto its image. A
generic Torelli theorem further proves that P is generically one-to-one onto its image. Finally, a global
Torelli theorem implies that P is an embedding, or an isomorphism if the dimensions are appropriate.
We prove that, unlike for K3 surfaces,

Theorem 1.3. deg 𝑃 > 1. Thus, generic Torelli is false for 𝑃 : 𝐹 → D/Γ.

Remark 1.4. By a result of Lönne [Lö2], the monodromy representation for the universal family over
F is the subgroup of 𝑂 (𝐼𝐼2,10) preserving the connected component of D, so P does not factor through
D/Γ′ for any subgroup Γ′ ⊂ Γ.

To prove Theorem 1.1, we employ a degeneration argument, similar to Friedman’s proof [Fri84]
of the Torelli theorem for K3 surfaces. First degenerate the base curve C to a nodal curve 𝐶0 formed
from gluing two points on P1. An elliptic fibration 𝑆 → 𝐶 may be degenerated to an elliptic fibration
𝑆0 → 𝐶0, and the simplest case is when the fiber over the node of 𝐶0 is smooth. Normalizing,

𝑆𝜈
0 = 𝑋 → P1 = 𝐶𝜈

0

is an elliptic fibration with (𝑔, 𝑑) = (0, 1) – that is, a rational elliptic surface. To reconstruct 𝑆0 from X,
we glue two smooth fibers 𝑋𝑝 and 𝑋𝑞 for 𝑝, 𝑞 ∈ P1 in such a way that a section of 𝑋 → P1 is glued to
form a section of 𝑆0 → 𝐶0.
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The period map for such singular surfaces 𝑆0 does not land in D/Γ, but maps into the boundary
divisor Δ of a toroidal extension D/Γ ↩→ (D/Γ)II. It suffices to prove that the boundary period map
𝑃II : {moduli of 𝑆0} → Δ is dominant. We find an explicit surface 𝑆0 for which any deformation of
its period deforms its moduli. Thus, 𝑃II has at least one fiber containing a 0-dimensional component,
implying dominance of 𝑃II, and in turn, P.

To prove Theorem 1.3, we describe a second type of degeneration of 𝑆 → 𝐶, to a fibration 𝑆0 → 𝐶
(here the base stays constant) whose generic fiber is a nodal curve. We analyze the limiting period
mapping for these surfaces and prove that they too map dominantly into the boundary divisor Δ . Since
two different degenerations dominate the same divisor Δ , we obtain that deg 𝑃 > 1.

Our method of proof suggests an interesting conjecture. Each surface 𝑆 ∈ 𝐹 contains two natural
elliptic curves meeting at a point: the unique representative of the canonical class 𝐾𝑆 and the marked
section curve s. The degenerations we employ in the proof leave one of these curves fixed and degenerate
the other to a nodal curve. Conjecture 4.5 describes a birational involution of F, which commutes with
the period mapping, and swaps the roles of the two natural elliptic curves.

History of the result

In 1983, M.-H. Saito [Sai83] claimed to prove the following infinitesimal Torelli theorem for elliptic
surfaces: the differential 𝑑𝑃 is injective if the j-invariant map 𝑗 : 𝐶 → P1

𝑗 is non-constant, and ℎ2,0 (𝑆) =
𝑔 + 𝑑 − 1 > 0. However, in 2019, Ikeda [Ike19] found a four-dimensional family B ⊂ 𝐹1,1 for which
𝑃
��
B has three-dimensional image, despite the general member of B having non-constant j-map. Thus,

[Sai83] has a gap, but the proof still works when 𝜔𝑆 is basepoint free. Observe that 𝜔𝑆 
 𝜋∗(𝐿 ⊗𝜔𝐶 ) is
basepoint free for all 𝑆 ∈ 𝐹𝑔,𝑑 when 𝑔 > 0 and 𝑑 > 1, and 𝜔𝑆 is basepoint free for generic 𝑆 ∈ 𝐹𝑔,𝑑 when
𝑔 > 1 and 𝑑 = 1. The only cases where 𝜔𝑆 fails to be basepoint free for generic S are (𝑔, 𝑑) = (1, 1)
and (𝑔, 𝑑) = (0, 1). The latter is the case of rational elliptic surfaces, where the period map is trivial.

In 2020, R. Kloosterman [Klo22] independently proved that the infinitesimal Torelli theorem holds
for elliptic surfaces with non-constant j-map when 𝑑 ≠ 1, or when 𝑑 = 1 and ℎ0 (𝐶, 𝐿) = 0. The
techniques generalized those of Kiı̆ [Kiı̆78] and Lieberman-Wilsker-Peters [LWP77] from the 𝑔 = 0 case.
Conversely, Kloosterman conjectured [Klo22, Conj. 6.1] that when 𝑑 = ℎ0 (𝐶, 𝐿) = 1, the infinitesimal
Torelli theorem is false. But this condition holds at every point of 𝐹1,1, so our Theorem 1.1 proves that
Kloosterman’s conjecture is, in fact, false.

Regarding a generic Torelli theorem, Chakiris [Cha82] proved that generic Torelli holds in the 𝑔 = 0,
𝑑 ≥ 2 case. Recently, Shepherd-Barron [SB20] has generalized these results to a higher genus base:
elliptic surfaces 𝑆 → 𝐶 with 𝑞 = ℎ1,0 (𝑆) and 𝑝𝑔 = ℎ2,0 (𝑆) satisfying the bounds 4𝑝𝑔 > 5(𝑞 − 1),
𝑝𝑔 ≥ 𝑞 + 3 also obey a generic Torelli theorem. By our Theorem 1.3, generic Torelli is false when
𝑝𝑔 = 𝑞 = 1. Hence, the second linear inequality 𝑝𝑔 ≥ 𝑞 + 3 appears to be necessary for Shepherd-
Barron’s results to hold.

2. Type II𝑏 degenerations

Let 𝜋0 : 𝑆0 → 𝐶0 be an elliptic fibration over an irreducible, nodal, arithmetic genus one curve 𝐶0
with smooth fiber over the node, and 𝜒top(𝑆0) = 12. Such a fibration has a Weierstrass form {𝑦2 =
4𝑥3 − 𝑎0𝑥 − 𝑏0} with 𝑎0 ∈ 𝐻0 (𝐶0,O𝐶0 (4𝑃0)) and 𝑏0 ∈ 𝐻0 (𝐶0,O𝐶0 (6𝑃0)) for some point 𝑃0 ∈ (𝐶0)sm.
See Figure 1.

Let 𝐶0 ↩→ C be a smoothing over (𝐵, 0) to a genus 1 curve, with smooth total space, and let P be
an extension of 𝑃0 to a section of 𝜌 : C → (𝐵, 0). Then, for any 𝑘 > 0, Cohomology and Base Change
[Har77, III.12.11] implies that 𝜌∗OC (𝑘P) is a rank k vector bundle over B. In particular, 𝑎0, 𝑏0 extend
locally to sections a, b of 𝜌∗OC (4P), 𝜌∗OC (6P), and so we can smooth the elliptic fibration 𝑆0 ↩→ S
over (𝐵, 0). The resulting total space S is smooth with 𝑆0 reduced normal crossings. The double locus
D is the smooth elliptic curve fibering over the node of 𝐶0.
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Figure 1. A Type II𝑏 surface 𝑆0 with double locus D and section s.

Definition 2.1. We call such a degeneration S → C → (𝐵, 0) a Type II𝑏 degeneration, and we call the
central fiber 𝑆0 a Type II𝑏 elliptic surface.

The subscript b indicates that the base degenerates. The terminology is motivated by a similar
terminology in the classification of one-parameter degenerations of K3 surfaces due to Kulikov and
Persson-Pinkham [Kul77, PP81]. They classify their 𝐾S -trivial, reduced normal crossing degenerations
into Types I, II, III depending on the depth of the singularity stratification of 𝑆0. Here, we instead have
𝐾S = OS (F) for a relative fiber F → (𝐵, 0).

As a reduced normal crossing degeneration, the Picard-Lefschetz transformation 𝑇 : 𝐻2(𝑆𝑡 ,Z) →

𝐻2 (𝑆𝑡 ,Z) is unipotent and has a logarithm 𝑁 := log𝑇 . Furthermore, there is a formula for N which
can be deduced from the Picard-Lefschetz transformation for a nodal degeneration of curves, or from
[Cle69, Thm. 5.6].

Let 𝛾𝑡 ⊂ 𝐶𝑡 denote the vanishing 1-cycle of the node of 𝐶0. Since the fiber over the node of 𝐶0 is
smooth, the restriction of the elliptic fibration 𝜋𝑡 : 𝑆𝑡 → 𝐶𝑡 to the curve 𝛾𝑡 is a topologically trivial
2-torus bundle. Trivialize it, and let 𝛼, 𝛽 be oriented generators of the homology of some fiber. Define
𝑢 := [𝛾𝑡 × 𝛼] ∈ 𝐻2 (𝑆𝑡 ,Z), 𝑣 := [𝛾𝑡 × 𝛽] ∈ 𝐻2 (𝑆𝑡 ,Z). Then,

Proposition 2.2. 𝑁 (𝑥) = (𝑥 · 𝑢)𝑣 − (𝑥 · 𝑣)𝑢.

Here 𝑢, 𝑣 ∈ {𝑠, 𝑓 }⊥ because 𝑠, 𝑓 are classes of line bundles on the total space S , and hence
monodromy-invariant. So the classes 𝑢, 𝑣 determine a rank 2 isotropic lattice 𝐼 := (Z𝑢 ⊕ Z𝑣)sat ⊂ 𝐼𝐼2,10.

Let 𝑈𝐼 be the unipotent subgroup of StabΓ (𝐼) acting trivially on I and 𝐼⊥/𝐼. From the theory of
toroidal compactifications [AMRT75] (see also [Loo03, Sec. 1A], [AE23, Prop. 4.16] for the case of
Type IV domains), the unipotent quotient

D/𝑈𝐼 ↩→ 𝐴𝐼

embeds as a punctured disk bundle inside a C∗-bundle 𝐴𝐼 → 𝐼⊥/𝐼 ⊗ E . Here E is the universal elliptic
curve over C \ R whose fiber over 𝜏 ∈ C \ R is the elliptic curve C/Z ⊕ Z𝜏. Since 𝑇 ∈ 𝑈𝐼 the period
map P induces a holomorphic period map 𝐵∗ → D/𝑈𝐼 .

We enlarge 𝐴𝐼 ↩→ 𝐴𝐼 to a line bundle and define (D/𝑈𝐼 )
II as the closure ofD/𝑈𝐼 in 𝐴𝐼 . This closure

is a holomorphic disk bundle over 𝐼⊥/𝐼 ⊗ E . The nilpotent orbit theorem [Sch73, Thm. 4.9] (the case
at hand follows as in [Fri84, Thm. 4.2]) implies that the period map from 𝐵∗ extends to a holomorphic
map 𝑃 : (𝐵, 0) → (D/𝑈𝐼 )

II sending 0 into the boundary divisor Δ := 𝐴𝐼 \ 𝐴𝐼 . As the zero-section of
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the line bundle, the boundary divisor is naturally isomorphic to

Δ 
 𝐼⊥/𝐼 ⊗ E .

Note that 𝐼⊥/𝐼 is an even, negative-definite, unimodular lattice of rank 8, which uniquely determines it
to be 𝐼⊥/𝐼 = 𝐸8.

There is also a direct construction of the period point 𝑃(0) ∈ 𝐸8 ⊗ E from the singular surface 𝑆0
described as follows. Let 𝑋 → P1 be the rational elliptic surface normalizing 𝑆0 → 𝐶0 and denote the
section and fiber classes again by s and f. Then {𝑠, 𝑓 }⊥ ⊂ 𝐻2(𝑋,Z) is isomorphic to 𝐸8. Let 𝑋𝑝 and
𝑋𝑞 be the two elliptic fibers glued to form the double locus D of 𝑆0. A class 𝛾 ∈ {𝑠, 𝑓 }⊥ defines a line
bundle L𝛾 ∈ Pic(𝑋), and we declare

𝜓𝑆0 (𝛾) := L𝛾

��
𝑋𝑝

⊗ L𝛾

��−1
𝑋𝑞

∈ 𝐸 := Pic0(𝑋𝑝), (2.1)

where we have used the gluing isomorphism 𝑋𝑝 → 𝑋𝑞 to form the tensor product of these two
restrictions.

Then 𝜓𝑆0 defines a homomorphism 𝜓𝑆0 ∈ Hom(𝐸8, 𝐸) 
 𝐸8 ⊗ 𝐸 . Fixing an identification of {𝑠, 𝑓 }⊥
with a fixed copy of the 𝐸8 lattice, then deforming 𝑆0 in moduli of Type II𝑏 surfaces, we get a local
holomorphic period map

𝑃II : Def𝑆0 → Hom(𝐸8, E),

which is identical to the extension of P coming from the nilpotent orbit theorem. The equivalence
of these two definitions of the period map follows from Carlson’s description [Car85] of the mixed
Hodge structure on 𝑆0; see Section 6 and Proposition 6.6. From this description of the boundary period
mapping, we see the following:

1. To prove that P is dominant, it suffices to show that 𝑃II is dominant from the moduli of Type II𝑏
elliptic surfaces to Hom(𝐸8, E).

2. On Type II𝑏 surfaces, the period map 𝑃II is constructed by comparing the restriction of a line bundle
in {𝑠, 𝑓 }⊥ ⊂ Pic(𝑋) to the two glued fibers.

Observe that (1) follows from the observation at the beginning of this section that every Type II𝑏
elliptic surface is smoothable to the interior of F, so the Zariski closure of im(𝑃) ⊂ (D/Γ)II must
contain im(𝑃II).

3. Dominance of the period map

Fix a smooth cubic 𝐷 ⊂ P2 and let 𝛾 ∈ 𝑃𝐺𝐿3 (C) be generic. Then D and 𝛾(𝐷) generate a pencil of
cubics with 9 distinct base points. Blowing up at the nine base points 𝐷 ∩ 𝛾(𝐷) = {𝑝1, . . . , 𝑝9} of this
pencil, we get a rational elliptic surface 𝑋 → P1, together with an isomorphism 𝛾 : 𝐷 → 𝛾(𝐷) between
two of its fibers. The nine blow-ups give rise to nine exceptional sections 𝐹1, . . . , 𝐹9 of the resulting
elliptic fibration. Let 𝑡 : 𝐷 → 𝐷 be an arbitrary translation and consider the surface 𝑆0 which results
from gluing our two fibers of 𝑋 → P1 by the isomorphism

𝛾 ◦ 𝑡 : 𝐷 → 𝛾(𝐷).

This construction defines a family of singular surfaces S → 𝑈 over a Zariski open subset 𝑈 ⊂

𝑃𝐺𝐿3 (C) × 𝐸 where 𝐸 := Pic0 (𝐷).
A very general surface over (𝛾, 𝑡) does not have a section, as there are only countably many sections

of 𝑋 → P1; for a sufficiently general translation t, none of these will glue to a section of the singular
surface. Still, for all such surfaces, there is a period homomorphism 𝜓𝑆0 : 𝐻2(𝑋,Z) → 𝐸 defined by
(2.1). It descends to the rank 9 quotient 𝐿 := 𝐻2(𝑋,Z)/Z 𝑓 because 𝑓 |𝐷 = O𝐷 and 𝑓 |𝛾 (𝐷) = O𝛾 (𝐷) .
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There is a translation action of 𝑡 ∈ 𝐸 on U given by (𝛾0, 𝑡0) ↦→ (𝛾0, 𝑡0 ◦ 𝑡) =: (𝛾′
0, 𝑡

′
0). It acts on the

period homomorphism as follows:

𝜓𝑆′
0
(𝑣) = 𝜓𝑆0 (𝑣) + (𝑣 · 𝑓 )𝑡. (3.1)

From this formula, we deduce that the dominance of the period map for Type II𝑏 elliptic surfaces is
equivalent to dominance of the more general period map

𝑃𝐺𝐿3 (C) × 𝐸 � Hom(𝐿, 𝐸). (3.2)

Consider the codimension one subtorus of Hom(𝐿, 𝐸) for which 𝜓𝑆0 (ℎ) = 0 ∈ 𝐸 , where h is the
pullback of the hyperplane class on P2. The inverse image of this subtorus contains, as a component, the
locus of (𝛾, 𝑡) for which 𝑡 = 0, because under a projective linear identification 𝛾, we have 𝛾∗O𝛾 (𝐷) (1) =
O𝐷 (1). Thus, the dominance of (3.2) is implied by the dominance of

𝑃𝐺𝐿3 (C) � Hom(𝐻2 (𝑋,Z)/Z 𝑓 + Zℎ, 𝐸). (3.3)

This follows because the action of 𝑡 ∈ 𝐸 on Hom(𝐿, 𝐸) described by (3.1) is translation by an elliptic
subcurve transverse to the codimension 1 subtorus of Hom(𝐿, 𝐸) appearing on the right-hand side
of (3.3).

Finally, Z9 
 span{𝐹𝑖

�� 𝑖 = 1, . . . , 9} = ℎ⊥ surjects onto 𝐻2 (𝑋,Z)/Z 𝑓 + Zℎ. Pulling back the period
map to this lattice, we get a map

𝑃𝐺𝐿3 (C) � Hom(Z9, 𝐸)/𝔖9

𝛾 ↦→ {𝜓𝑆0 (𝐹1), . . . , 𝜓𝑆0 (𝐹9)}.
(3.4)

Here, the base points 𝐷 ∩ 𝛾(𝐷), and hence the exceptional curves 𝐹𝑖 , are not canonically ordered; they
are permuted by the monodromy of the universal family. This is why we must quotient the target by the
symmetric group 𝔖9. Since

∑9
𝑖=1 [𝐹𝑖] = 3ℎ − 𝑓 in 𝐻2 (𝑋,Z), the image of the period map (3.4) lands in

{(𝑒1, . . . , 𝑒9) ∈ 𝐸9 �� 𝑒1 + · · · + 𝑒9 = 0}/𝔖9 = 𝐴8 ⊗ 𝐸/𝑊 (𝐴8) 
 P
8.

The last isomorphism follows from a well-known theorem of Looijenga [Loo76]. Applying the definition
of 𝜓𝑆0 gives a very explicit construction of (3.4):

Definition 3.1. Fix a smooth cubic 𝐷 ⊂ P2. Define 𝐸 := Pic0(𝐷) and let 𝐴 : Sym9𝐸 → 𝐸 denote the
addition map. For a generic 𝛾 ∈ 𝑃𝐺𝐿3 (C), set 𝐷 ∩ 𝛾(𝐷) = {𝑝𝑖}

9
𝑖=1 and 𝑞𝑖 := 𝛾−1 (𝑝𝑖) ∈ 𝐷. We define

Ψ : 𝑃𝐺𝐿3 (C) � 𝐴−1(0) 
 P8

𝛾 ↦→ {O𝐷 (𝑝𝑖 − 𝑞𝑖)}
9
𝑖=1.

(3.5)

Theorem 3.2. The rational map Ψ from (3.5) is dominant. Thus, the period mapping for Type II𝑏
surfaces is dominant.

Proof. Let 𝐺 ⊂ 𝑃𝐺𝐿3 (C) be the finite subgroup for which 𝑔(𝐷) = 𝐷. We claim that Ψ extends, as a
morphism, from U to 𝑃𝐺𝐿3 (C) \𝐺. This is easy: the map Ψ extends continuously because 𝐷 ∩ 𝛾(𝐷) is
still a finite set for all 𝛾 ∈ 𝑃𝐺𝐿3 (C) \𝐺. Normality of 𝑃𝐺𝐿3 (C) \𝐺 implies that a continuous extension
is algebraic.

We choose D and 𝛾 carefully so that the set 𝐷 ∩ 𝛾(𝐷) has only three elements. Concretely, consider
the extremal cubic pencil 𝑋9111 → P1

[𝜆:𝜇] in the notation of [MP86], given by the equation

𝜆(𝑥2𝑦 + 𝑦2𝑧 + 𝑧2𝑥) + 𝜇(𝑥𝑦𝑧) = 0.
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Figure 2. The pencil generated by two cubics, shown in red and black, with set-theoretic base locus
three blue points.

See Figure 2. Let 𝐷 := 𝐷 [𝜆:𝜇] be a generic fiber, and let 𝛾 = diag(1, 𝜁3, 𝜁
2
3 ) where 𝜁3 is a primitive third

root of unity. Then 𝛾(𝐷) = 𝐷 [𝜁3𝜆:𝜇] , and so D and 𝛾(𝐷) generate the pencil. The intersection multiset
𝐷 ∩ 𝛾(𝐷) is {3𝑝1, 3𝑝2, 3𝑝3} where

𝑝1 = [1 : 0 : 0], 𝑝2 = [0 : 1 : 0], 𝑝3 = [0 : 0 : 1] .

Since this 𝛾 ∈ 𝑃𝐺𝐿3 (C) fixes 𝑝1, 𝑝2, 𝑝3, the period Ψ(𝛾) = {0, . . . , 0} ∈ Sym9𝐸 vanishes. To prove
that Ψ is dominant, it suffices to show that there is no small deformation 𝛾′ ∈ 𝑃𝐺𝐿3 (C) of 𝛾 for which
Ψ(𝛾′) = {0, . . . , 0}.

Suppose, to the contrary, that there were. Since Ψ(𝛾′) = {0, . . . , 0}, every base point in 𝐷 ∩ 𝛾′(𝐷)

is fixed by 𝛾′. If |𝐷 ∩ 𝛾′(𝐷) | ≥ 4, then 𝛾′ must fix a line in P2. This is impossible for a small
deformation of 𝛾, which has isolated fixed points. Conversely, |𝐷 ∩ 𝛾′(𝐷) | ≥ 3 because each of 𝑝1,
𝑝2, 𝑝3 deforms to some fixed point of 𝛾′. Hence, 𝛾′ fixes exactly three points 𝑝′

1, 𝑝′
2, 𝑝′

3. Furthermore,
𝐷 ∩ 𝛾′(𝐷) = {3𝑝′

1, 3𝑝′
2, 3𝑝′

3} as a multiset, again because 𝛾′ is near 𝛾, and the map

𝑃𝐺𝐿3 (C) \ 𝐺 → Sym9(𝐷)

sending 𝛾′ ↦→ 𝐷 ∩ 𝛾′(𝐷) with multiplicities is continuous.
Since mult𝑝′

𝑖
(𝐷 ∩ 𝛾′(𝐷)) ≥ 2, we deduce that 𝛾′ preserves the tangent direction 𝑇𝑝′

𝑖
𝐷 and the

corresponding tangent line 𝐿 ′
𝑖 . Thus, 𝛾′ ∈ 𝑃𝐺𝐿3 (C) fixes the point 𝐿 ′

𝑖 ∩ 𝐿 ′
𝑗 ∈ P2. But, as we noted

before, 𝛾′ only fixes three points (this holds not just on D but in the ambient plane P2). Using that 𝛾′ is
a small deformation of 𝛾, we deduce that

𝐿 ′
1 ∩ 𝐿 ′

2 = 𝑝′
2, 𝐿

′
2 ∩ 𝐿 ′

3 = 𝑝′
3, 𝐿

′
3 ∩ 𝐿 ′

1 = 𝑝′
1.

Write 𝑝′
𝑖 = 𝑝𝑖 + 𝑡𝑖 for a translation 𝑡𝑖 . By the addition law on a cubic, we have

2𝑝′
1 = −𝑝′

2, 2𝑝′
2 = −𝑝′

3, 2𝑝′
3 = −𝑝′

1

from which we can conclude that 𝑡1 = (−2)3𝑡1 i.e. 𝑡1 is 9-torsion. But since 𝑡𝑖 are small, we conclude
that 𝑡1 = 𝑡2 = 𝑡3 = 0 and so 𝑝′

𝑖 = 𝑝𝑖 .
Thus, 𝛾′ fixes (𝑝1, 𝑝2, 𝑝3), implying that 𝛾′ ∈ (C∗)2 ⊂ 𝑃𝐺𝐿3 (C) lies in the maximal torus associated

to the coordinates [𝑥 : 𝑦 : 𝑧]. Furthermore, 𝛾′ preserves the base locus scheme 𝐷 ∩ 𝛾′(𝐷), as this is
the unique subscheme of D which has length 3 at each of 𝑝1, 𝑝2, 𝑝3. So 𝛾′ induces an automorphism
of the pencil generated by D and 𝛾′(𝐷). Since the automorphism group of a rational elliptic surface is
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discrete, and 𝛾′ is a small deformation of 𝛾, the automorphism 𝛾′ must have order 3. But no nontrivial
small deformation of 𝛾 = diag(1, 𝜁3, 𝜁

2
3 ) within the torus (C∗)2 has order 3. This is a contradiction. �

Remark 3.3. Our original proof of Theorem 3.2 checked by computer that 𝑑Ψ was nondegenerate for
an explicitly chosen D and 𝛾.

Proof of Theorem 1.1. By the discussion at the end of Section 2, P is dominant if 𝑃II is. The latter
follows from Theorem 3.2. �

4. Type II 𝑓 degenerations

We consider in this section degenerations of 𝑆 → 𝐶 that keep the base C constant. These are never of
Type II𝑏 because in all such degenerations, 𝑗 (𝐶) → ∞.

Take a one-parameter deformation of 𝑎, 𝑏 ∈ 𝐻0 (𝐶,O𝐶 (4𝑝)), 𝐻0(𝐶,O𝐶 (6𝑝)) over (𝐵, 0) until the
discriminant 4𝑎3

0 + 27𝑏2
0 = 0 ∈ 𝐻0(𝐶,O𝐶 (12𝑝)) vanishes identically. For instance, we can take the

fiber over 0 ∈ 𝐵 to be

𝑦2 = 𝑥3 − 3𝑟2𝑥 + 2𝑟3

with 𝑟 ∈ 𝐻0(𝐶,O𝐶 (2𝑝)). The degeneration

S → 𝐶 × 𝐵 → (𝐵, 0)

of elliptic surfaces has a central fiber 𝑆0 → 𝐶 whose generic fiber is irreducible nodal, with two
cuspidal fibers over the zeroes of r. In particular, the normalization 𝑆

𝜈

0 := 𝑋 → 𝐶 is the smooth P1-
bundle 𝑋 = P𝐶 (O ⊕ 𝐿), and 𝑆0 is reconstructed from gluing a bisection D of 𝑋 → 𝐶, branched over the
two zeroes of r. This bisection D is glued along the involution switching the two sheets of 𝜈 : 𝐷 → 𝐶.

For future reference, note that NS(𝑋) 
 𝐻2(𝑋,Z) is spanned by the P1-fiber class f and the class of
the section 𝑠∞ = P𝐶 (O ⊕ 0), with intersection form

𝑓 · 𝑓 = 0, 𝑠∞ · 𝑓 = 1, 𝑠∞ · 𝑠∞ = −1,

and 𝐾𝑋 = − 𝑓 − 2𝑠∞. The other natural section 𝑠0 = P𝐶 (0 ⊕ 𝐿) has class 𝑓 + 𝑠∞.
The bisection 𝐷 ⊂ 𝑋 has genus 2, being a double cover of C branched over two points. Thus, its

cohomology class is [𝐷] = 2 𝑓 + 2𝑠∞ = −𝐾𝑋 + 𝑓 = 2𝑠0. Note that [𝐷]2 = 4 and [𝐷] · 𝐾𝑋 = −2. The
section s that is present on the smooth surfaces in the family S limits to 𝑠∞, which is the unique section
of X disjoint from D.

Proposition 4.1. Generically, two singular fibers limit to each cuspidal fiber of 𝑆0. The limits of the
remaining eight singular fibers lie over a degree 8 divisor in C. The only restriction on this divisor is
that it is linearly equivalent to 8𝑝.

Proof. Consider a deformation of the Weierstrass equation

𝑦2 = 𝑥3 − (3𝑟2 + 𝜖𝑔4)𝑥 + (2𝑟3 + 𝜖𝑔4𝑟 + 𝜖2𝑔6),

where 𝑔𝑑 ∈ 𝐻0 (𝐶,O𝐶 (𝑑𝑝)) has degree d. The discriminant Δ = 4𝑎3 + 27𝑏2 is

Δ = 9𝑟2 (12𝑟𝑔6 − 𝑔2
4)𝜖

2 +O(𝜖3).

Thus, the Zariski closure of the discriminant divisor is

lim
𝜖→0

div(Δ) = 2 · div(𝑟) + div(12𝑟𝑔6 − 𝑔2
4).
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Figure 3. A Type II 𝑓 surface 𝑆0 = 𝑋 ∪𝐷 𝑉 with the genus 2 double locus D shown in red, the section s
in green, limits of 8 nodal fibers in blue, and limits of pairs of nodal fibers dashed.

For fixed r, the sections 𝑟𝑔6 form a linear subspace P5 ⊂ P7 = P𝐻0 (𝐶,O(8𝑝)) of codimension 2. The
sections 𝑔2

4 ∈ P𝐻0 (𝐶,O(8𝑝)) are the image of the degree 2 Veronese embedding, followed by a linear
projection

𝑣2 : P3 ↩→ P9 = PSym2𝐻0(𝐶,O(4𝑝)) � P7.

The inverse image of {div(𝑟𝑔6)} = P5 ⊂ P7 is a copy of P7 ⊂ P9 under the linear projection. Thus,
the vanishing loci of linear combinations are represented geometrically as the join of the projective
subvarieties 𝑣2 (P

3), P7 ⊂ P9. This join is all of P9. Thus, we can realize any divisor in |8𝑝 | as
lim𝜖→0 div(Δ) − 2 · div(𝑟). �

For general 𝑔4 and 𝑔6, the punctured family over 𝐵 \ 0 has smooth total space. The threefold S is a
double cover branched over the vanishing locus of the cubic 𝑥3 − (3𝑟2 + 𝜖𝑔4)𝑥 + (2𝑟3 + 𝜖𝑔4𝑟 + 𝜖2𝑔6), so
it can only be singular where two of the roots of the cubic coincide. This shows that the singular locus
Ssing ⊂ 𝑉 (𝑦, 𝑥 − 𝑟, 𝜖) is contained in the singularities of the fibers of 𝑆0 → 𝐶.

Since 𝜖2 | | Δ , the local equation of the double cover is generically 𝑦2 = 𝑢2 + 𝜖2 along the nodes
of 𝑆0 → 𝐶. So the nodes form a family of 𝐴1-singularities in S . At the nodes on the fibers lying over
div(12𝑟𝑔6 −𝑔2

4), the local equation is rather 𝑦2 = 𝑢2 + 𝑣𝜖2. Thus, to find a semistable model S → (𝐵, 0),
we simply blow up the double locus of 𝑆0 in the total space S .

The resulting central fiber is 𝑆0 = 𝑋 ∪𝐷𝑉 for a ruled surface𝑉 → 𝐶, which contains D as a bisection
and has 8 reducible fibers over the points in div(12𝑟𝑔6 − 𝑔2

4); see Figure 3. Thus, 𝑉 ∼ 𝐵𝑙𝑝1 ,..., 𝑝8 𝑋 is
deformation-equivalent to the blow-up of X at 8 points on D, with the double locus on V identified with D
via the strict transform. It is only deformation-equivalent because 𝑉 → 𝐶 could be the projectivization
of a non-split extension of L by O. Regardless, we can identify

𝐻2(𝑉,Z) = 𝐻2 (𝑋,Z) ⊕8
𝑖=1 Z𝐸𝑖

and [𝐷] = 2𝑠0 − [𝐸1] − · · · − [𝐸8] = −𝐾𝑉 + 𝑓 .

Definition 4.2. We call the degeneration S → 𝐶 × 𝐵 → (𝐵, 0) a Type II 𝑓 degeneration, and we call
the central fiber 𝑆0 a Type II 𝑓 elliptic surface.

From Section 6 and Proposition 6.6, the mixed Hodge structure of a Type II 𝑓 surface has a period
map to 𝐸8 ⊗ E which can be described as follows. Consider the sublattice {𝐾𝑉 , 𝑓 }⊥ ⊂ 𝐻2 (𝑉,Z). This
is isometric to the root lattice

𝐷8 = {(𝑎1, . . . , 𝑎8) ∈ Z
8 �� 𝑎1 + · · · + 𝑎8 ∈ 2Z}
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via the map (𝑎1, . . . , 𝑎8) ↦→
∑8

𝑖=1 𝑎𝑖 [𝐸𝑖] −
(

1
2
∑8

𝑖=1 𝑎𝑖

)
𝑓 . When this isometry is understood, we will

refer to {𝐾𝑉 , 𝑓 }⊥ simply as 𝐷8.
Let 𝐸 := Pic0(𝐷)/Pic0(𝐶) be the Prym variety of the double cover 𝜈 : 𝐷 → 𝐶. We define a period

homomorphism

𝜓𝑆0 : 𝐷8 → 𝐸

𝛾 ↦→ L𝛾

��
𝐷

mod Pic0 (𝐶)
(4.1)

by lifting an element 𝛾 ∈ 𝐷8 to an element L𝛾 ∈ Pic(𝑉). These lifts form a Pic0(𝐶)-torsor, and thus,
the image of L𝛾

��
𝐷
∈ Pic0(𝐷) under the map to E is well-defined.

Remark 4.3. The period point 𝜓𝑆0 ∈ Hom(𝐷8, 𝐸) determines, up to a finite isogeny, the period point
in 𝐸8 ⊗ 𝐸 . The extensions of an element of Hom(𝐷8, 𝐸) to an element of Hom(𝐸8, 𝐸) are a torsor over
Hom(𝐸8/𝐷8, 𝐸) = 𝐸 [2].

Proof of Theorem 1.3. To show deg 𝑃 > 1, it suffices to prove that the moduli of Type II 𝑓 surfaces
(appearing as limits of elliptic surfaces in F) also dominate the boundary divisor Δ . This follows from
Theorem 4.4 below. �

Theorem 4.4. The period mapping for Type II 𝑓 surfaces is dominant.

Proof. The period point 𝜓𝑆0 and limit mixed Hodge structure of S are encoded, up to a finite map, in
the data (𝜈 : 𝐷 → 𝐶, {𝑟𝑖}

8
𝑖=1) consisting of

1. a degree 2 map 𝜈 : 𝐷 → 𝐶 from a genus 2 to a genus 1 curve, and
2. a multiset of 8 points {𝑟1, . . . , 𝑟8} ⊂ 𝐶.

Let 𝜄 : 𝐷 → 𝐷 be the involution switching the sheets of 𝜈 and let {𝑝𝑖 , 𝑞𝑖} = 𝜈−1(𝑟𝑖). ThenO𝐷 (𝑝𝑖−𝑞𝑖) ∈

Pic0 (𝐷) gives, upon quotienting by Pic0 (𝐶), the period

𝜓𝑆0 (𝐹𝑖 − 𝐹 ′
𝑖 ) = [O𝐷 (𝑝𝑖 − 𝑞𝑖)] ∈ 𝐸,

where 𝐹𝑖 +𝐹 ′
𝑖 is a reducible fiber of the ruling 𝑉 → 𝐶. Ranging over the eight reducible fibers, the tuple

(O𝐷 (𝑝𝑖 − 𝑞𝑖) mod Pic0 (𝐶))8
𝑖=1 ∈ 𝐸8

encodes 𝜓𝑆0 up to torsion because
⊕8

𝑖=1 Z(𝐹𝑖 − 𝐹 ′
𝑖 ) ⊂ 𝐷8 has finite index.

Let {𝑟9, 𝑟10} ∈ 𝐶 be the branch points of 𝜈. Then 𝜈 is determined by the monodromy representation
𝜌 : 𝜋1 (𝐶 \ {𝑟9, 𝑟10}, ∗) → Z2. Let Prym2C be the moduli space of Prym data (𝐶, {𝑟9, 𝑟10}, 𝜌) over the
universal genus 1 curve C → M1. It is a Deligne-Mumford stack of dimension 2, one dimension for
𝑗 (𝐶) and another for the element 𝑟9 − 𝑟10 ∈ Pic0 (𝐶), well-defined up to sign. The data of 𝜌 is finite.

A point 𝑟𝑖 ∈ 𝐶 determines 𝑝𝑖 up to switching 𝑝𝑖 ↔ 𝑞𝑖 which acts by negation on the image of
O𝐷 (𝑝𝑖 − 𝑞𝑖) in E. Thus, we globally get a well-defined map

Ψ : Sym8C ×M1 Prym2C → Z8 ⊗ E/𝔖±
8

(𝐶, {𝑟1, . . . , 𝑟8}, {𝑟9, 𝑟10}, 𝜌) ↦→ {O𝐷 (𝑝𝑖 − 𝑞𝑖) mod Pic0 (𝐶)}8
𝑖=1,

(4.2)

where E is the universal elliptic curve. Since the image of each O𝐷 (𝑝𝑖 − 𝑞𝑖) in E is only well-defined
up to sign, and the reducible fibers of 𝑉 → 𝐶 are unordered, we must quotient the target by the signed
permutation group 𝔖±

8 .
Observe that Sym8C ×M1 Prym2C is ten-dimensional. There is a single condition ensuring that a

point in the domain of Ψ arises from a degeneration of surfaces in F: If 𝐿 → 𝐶 is the Hodge bundle, then
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𝑟9 + 𝑟10 ∈ |2𝐿 | and so by Proposition 4.1, {𝑟1, . . . , 𝑟8}, {𝑟9, 𝑟10} can arise so long as 𝑟1 + · · · + 𝑟8 ∈ |8𝐿 |
(i.e., the relation

𝑟1 + · · · + 𝑟8 − 4(𝑟9 + 𝑟10) = 0 ∈ Pic0 (𝐶) (4.3)

is satisfied). So the Type II 𝑓 limits of degenerations from F are described by

𝑍 = {elements of Sym8C ×M1 Prym2C
�� 𝑟1 + · · · + 𝑟8 − 4(𝑟9 + 𝑟10) = 0}.

Our goal is to prove the dominance of the map Ψ
��
𝑍

: 𝑍 → Z8 ⊗ E/𝔖±
8 .

Fix an elliptic curve fiber E of E , consider the point {0, . . . , 0} ∈ Sym8𝐸 , and let ker𝐸 (Ψ) :=
Ψ−1({0, . . . , 0}). It suffices to prove that 𝑍∩ker𝐸 (Ψ) contains, as a component, some zero-dimensional
scheme. Let 𝐿𝐸 ⊂ Prym2C be the sublocus of Prym data whose Prym variety is E. It is a curve
inside the surface Prym2C. Then, ker𝐸 (Ψ) contains, as a component, an unramified double cover
𝑀𝐸 → 𝐿𝐸 on which 𝑟 = 𝑟1 = · · · = 𝑟8 and 𝑟 ∈ {𝑟9, 𝑟10} because the morphism 𝐷 → 𝐸 sending
𝑝 ↦→ O𝐷 (𝑝 − 𝜄(𝑝)) mod Pic0 (𝐶) is surjective.

The defining equation (4.3) of Z restricts to 𝑀𝐸 to give the equation

4(𝑟9 − 𝑟10) = 0 ∈ Pic0(𝐶)

(i.e., 𝑟9 − 𝑟10 ∈ Pic0(𝐶) [4]). The locus in 𝐿𝐸 on which 𝑟9 − 𝑟10 is 4-torsion is finite and nonempty. So
the theorem follows. �

The proofs of Theorems 3.2 and 4.4 suggest a rather wild conjecture:

Conjecture 4.5. 𝐹1,1 admits a period-preserving birational involution 𝑆 ↔ 𝑆′ for which 𝑗 (𝐶) = 𝑗 (𝐹 ′)

and 𝑗 (𝐹) = 𝑗 (𝐶 ′). Here, 𝐶,𝐶 ′ are the bases and 𝐹, 𝐹 ′, are the canonical fibers. Furthermore, S and
𝑆′ are moduli spaces of stable vector bundles on each other of rank 2, determinant O(𝑠), and 𝑐2 = pt.
A Fourier-Mukai transform induces an isomorphism of their integral Hodge structures.

The existence of such a birational involution would give a geometric explanation for why degener-
ations of Type II𝑏 and II 𝑓 can have the same periods, even though 𝑗 (𝐶) → ∞ in the former, while
𝑗 (𝐹) → ∞ in the latter.

5. A family losing dimension

Let 𝐹cusp ↩→ 𝐹 be the closure of the sublocus of elliptic fibrations 𝑆 → 𝐶 which have six cuspidal
(Kodaira type II) fibers. These fibrations are isotrivial and have a Weierstrass form 𝑦2 = 𝑥3 + 𝑏 for some
𝑏 ∈ 𝐻0(𝐶,O𝐶 (6𝑝)). There is a fiber preserving automorphism 𝜎 : 𝑆 → 𝑆, given by

𝜎 : (𝑥, 𝑦) ↦→ (𝜁3𝑥,−𝑦),

and 𝜎∗Ω𝑆 = 𝜁6Ω𝑆 acts nontrivially on the holomorphic 2-form by a primitive sixth root of unity.
Furthermore, since 𝜎 preserves s and f, it defines an element 𝜎∗ ∈ Γ = 𝑂 (𝐼𝐼2,10) which is easily
checked to fix only the origin of 𝐼𝐼2,10. So 𝜎∗ endows 𝐼𝐼2,10 with the structure of a Hermitian lattice of
hyperbolic signature (1, 5) over the Eisenstein integers Z[𝜁6], and

B := P{𝑥 ∈ 𝐼𝐼2,10 ⊗ C
�� 𝑥 · 𝑥 > 0, 𝜎∗𝑥 = 𝜁6𝑥} ⊂ D

is a Type I Hermitian symmetric subdomain (a complex ball), of dimension 5. Letting Γ0 := {𝛾 ∈

Γ
�� 𝛾 ◦ 𝜎∗ = 𝜎∗ ◦ 𝛾} be the group of Hermitian isometries, we get a period map to a 5-dimensional ball

quotient

𝐹cusp → B/Γ0.
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But dim 𝐹cusp = 1 + 5 = 6 with parameters corresponding to 𝑗 (𝐶) and the relative locations of the six
cuspidal fibers. Thus, 𝑃

��
𝐹 cusp has positive fiber dimension.

It seems likely that 𝑃
��
𝐹 cusp is surjective, with generic fiber dimension 1. Regardless, this gives a

second example, after Ikeda’s [Ike19], proving that P is not a finite map, even though it is generically
finite by Theorem 1.1:

Corollary 5.1. P is not finite.

6. Mixed Hodge Structures

MHS of a normal crossings surface

Let 𝑆0 be a reduced normal crossings surface with smooth double locus and no triple points. Our goal
in this section is to explicitly describe the mixed Hodge structure on 𝐻2(𝑆0). Let 𝑆0 =

⋃𝑚
𝑖=1 𝑆𝑖 with

the double curve 𝐷𝑖 𝑗 = 𝑆𝑖 ∩ 𝑆 𝑗 a smooth, possibly disconnected or empty curve for all 𝑖 < 𝑗 . Let
𝐷 :=

⋃
𝑖< 𝑗 𝐷𝑖 𝑗 . The Mayer-Vietoris sequence associated to a covering of 𝑆0 by neighborhoods of the

irreducible components 𝑆𝑖 reads

𝑚⊕
𝑖=1

𝐻1(𝑆𝑖)
𝜄∗

→
⊕
𝑖< 𝑗

𝐻1 (𝐷𝑖 𝑗 ) → 𝐻2 (𝑆0) →

𝑚⊕
𝑖=1

𝐻2 (𝑆𝑖)
res
−→

⊕
𝑖< 𝑗

𝐻2 (𝐷𝑖 𝑗 ). (6.1)

Here, 𝜄∗ and res are signed restriction maps. Let 𝐾 ⊂
⊕

𝐻2 (𝑆𝑖) be the kernel of the morphism res –
that is, 𝐾 = {(𝛼𝑖 ∈ 𝐻2(𝑆𝑖))

��𝛼𝑖 · 𝐷𝑖 𝑗 = 𝛼 𝑗 · 𝐷𝑖 𝑗 }. Define

𝐽 := coker(𝜄∗).

By exactness of the sequence (6.1), we obtain a short exact sequence

0 → 𝐽 → 𝐻2 (𝑆0) → 𝐾 → 0.

In fact, it is a short exact sequence of mixed Hodge structures with left-hand term J pure of weight 1,
and the right-hand term K pure of weight 2.

Proposition 6.1. If 𝑝𝑔 (𝑆𝑖) = 0 for all components 𝑆𝑖 ⊂ 𝑆0 (equivalently, K is Hodge-Tate of weight 2),
then the Carlson classifying map [Car85]

𝜙 : 𝐾 → Jac(𝐽)

of the extension coincides with the Abel-Jacobi map. More precisely, an element of K is a tuple (𝛼𝑖 ∈

𝐻2 (𝑆𝑖 ,Z)) represented by line bundles L𝑖 such that for each 𝑖 < 𝑗 , we have 𝑐1 (L𝑖 |𝐷𝑖 𝑗 ) − 𝑐1 (L 𝑗 |𝐷𝑖 𝑗 ) =
0 ∈ 𝐻2 (𝐷𝑖 𝑗 ). Then 𝜙 = 𝜋 ◦ AJ ◦ 𝜓, where

(𝛼𝑖 ∈ 𝐻2 (𝑆𝑖 ,Z))
𝜓
↦→

⊕
𝑖< 𝑗 L𝑖 |𝐷𝑖 𝑗 ⊗ L 𝑗 |

−1
𝐷𝑖 𝑗

∈ Pic0 (𝐷),

AJ: Pic0(𝐷) → Jac(𝐷) = Jac(𝐻1(𝐷)) is the classical Abel-Jacobi isomorphism, and 𝜋 : Jac(𝐷) →

Jac(𝐽) is the projection map.

Proof. Following Carlson’s construction, the classifying map 𝜙 for a weight separated extension of
mixed Hodge structures is given by the composition of two splittings. First, choose a left-splitting
𝑎 : 𝐻2(𝑆0) → 𝐽 over Z. Next, choose a right-splitting 𝑏 : 𝐾 → 𝐹1𝐻2(𝑆0)C over C, which respects
the Hodge filtration. The composition 𝑎C ◦ 𝑏 : 𝐾 → 𝐽C gives the classifying map after passing to the
Jacobian quotient:

𝜙 : 𝐾 → 𝐽C/(𝐽Z + 𝐹1𝐽C).
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Figure 4. Heuristic diagram of irreducible components 𝑆𝑖 in black, double curves 𝐷𝑖 𝑗 in red, 1-cycles
𝛾𝑖 𝑗 ⊂ 𝐷𝑖 𝑗 in green, and 2-cycles Γ𝑖 ⊂ 𝑆𝑖 capping the 1-cycles in blue.

For a, it suffices to produce a morphism on homology ker(𝜄∗) → 𝐻2 (𝑆0), and then use the universal
coefficient theorem to give a map in the opposite direction:

𝐻2(𝑆0) → 𝐻2 (𝑆0)
∗ → ker(𝑖∗)∗ 
 coker(𝜄∗) = 𝐽.

To define the morphism ker(𝜄∗) → 𝐻2 (𝑆0), choose a basis for ker(𝜄∗) at the singular chain level:
tuples of 1-cycles 𝑡𝑘 = (𝛾𝑘

𝑖 𝑗 ∈ Z1 (𝐷𝑖 𝑗 )) such that for each i,∑
𝑗

𝜄∗(𝛾
𝑘
𝑖 𝑗 ) = 𝜕 (Γ𝑘

𝑖 ) for some Γ𝑘
𝑖 ∈ C2 (𝑆𝑖).

We use the convention that 𝛾𝑖 𝑗 = −𝛾 𝑗𝑖 . Choosing such Γ𝑘
𝑖 for each 𝑡𝑘 in the basis of ker(𝑖∗), we construct

a 2-cycle (see Figure 4),

𝑇𝑘 =
⋃
𝑖

Γ𝑘
𝑖 ∈ Z2 (𝑆0).

We take the 1-cycles 𝛾𝑘
𝑖 𝑗 to be Z-linear combinations of some fixed 2𝑔(𝐷𝑖 𝑗 ) loops on each 𝐷𝑖 𝑗 , whose

union we call 𝛾, chosen so that their complement in 𝐷𝑖 𝑗 is a contractible 4𝑔-gon. The assignment
𝑡𝑘 ↦→ [𝑇𝑘 ] ∈ 𝐻2 (𝑆0) then induces a splitting

𝑎 : 𝐻2 (𝑆0) → 𝐽.

To construct a splitting b, we use the Čech-de Rham model of 𝐻2(𝑆0,C), and its Hodge filtration 𝐹1.
An element of 𝐻2(𝑆0,C) is represented by two tuples of differential forms:

(𝜔𝑖 ∈ Z2 (𝑆𝑖))𝑖 and (𝜃𝑖 𝑗 ∈ A1(𝐷𝑖 𝑗 ))𝑖< 𝑗

such that for all 𝑖 < 𝑗 , we have 𝜔𝑖 |𝐷𝑖 𝑗 − 𝜔 𝑗 |𝐷𝑖 𝑗 = 𝑑𝜃𝑖 𝑗 . If furthermore, 𝜃𝑖 𝑗 ∈ A1,0(𝐷𝑖 𝑗 ) for all 𝑖 < 𝑗 ,
then the element lies in 𝐹1𝐻2 (𝑆0,C).
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Given (𝛼𝑖) ∈ 𝐾 = ker(res), we know that 𝛼𝑖 |𝐷𝑖 𝑗 − 𝛼 𝑗 |𝐷𝑖 𝑗 = 0 ∈ 𝐻2(𝐷𝑖 𝑗 ). To define 𝑏 : 𝐾 →

𝐹1𝐻2 (𝑆0,C), select a basis for K; for each basis element (𝛼𝑖) ∈ 𝐾 , there exists line bundles L𝑖 such
that 𝑐1 (L𝑖) = 𝛼𝑖 . Since each 𝑆𝑖 is projective, we may assume that the L𝑖 
 O𝑆𝑖 (𝐶𝑖 −𝐶 ′

𝑖 ), where 𝐶𝑖 and
𝐶 ′

𝑖 are ample effective curves on 𝑆𝑖 meeting each 𝐷𝑖 𝑗 transversely away from 𝛾. We take 𝜔𝑖 ∈ Z2(𝑆𝑖)

representing 𝑐1 (L𝑖) and supported on a small neighborhood of𝐶𝑖∪𝐶 ′
𝑖 . Since 𝜔𝑖 |𝐷𝑖 𝑗 −𝜔 𝑗 |𝐷𝑖 𝑗 ∈ Z2 (𝐷𝑖 𝑗 )

integrates to 0, it has a 𝜕-primitive 𝜃𝑖 𝑗 ∈ A1,0(𝐷𝑖 𝑗 ), unique up to the addition of a holomorphic one-
form.

To interpret the composition 𝜙 = 𝑎C ◦ 𝑏 : 𝐾 → 𝐽C, we will regard 𝐽C as Hom(ker(𝜄∗),C). Then
(𝑎C ◦ 𝑏) (𝛼𝑖) is the unique homomorphism ker(𝜄∗) → C which sends 𝑡𝑘 to

𝑚∑
𝑖=1

∫
Γ𝑘
𝑖

𝜔𝑖 +
∑
𝑖< 𝑗

∫
𝛾𝑘
𝑖 𝑗

𝜃𝑖 𝑗 . (6.2)

We henceforth drop the index k as we will consider a single basis vector 𝑡 = 𝑡𝑘 .
We will make two simplifications in order to compare 𝜙 with the Abel-Jacobi map. First, the chains Γ𝑖

can be replaced with Γ𝑖 + 𝑥𝑖 for any 𝑥𝑖 ∈ Z2(𝑆𝑖) such that the tuple of homology classes (𝑥𝑖) is Poincaré
dual to an element of K. By Lefschetz duality, there is a perfect pairing associated to the 4-manifold
with boundary

𝐼 : 𝐻2 (𝑆𝑖 − 𝑁𝜖 (𝛾)) × 𝐻2(𝑆𝑖 − 𝑁𝜖 (𝛾), 𝜕) → Z,

and we have
∫
Γ𝑖

𝜔𝑖 = 𝐼 (𝐶𝑖 − 𝐶 ′
𝑖 , Γ𝑖) ∈ Z. Since (𝛼𝑖) is primitive in K, one can find 𝑥 ∈ 𝐾 such that

𝐼 (𝐶𝑖 − 𝐶 ′
𝑖 , 𝑥) = −𝐼 (𝐶𝑖 − 𝐶 ′

𝑖 , Γ𝑖).

So replacing Γ𝑖 with Γ𝑖 + 𝑥𝑖 , we may assume that the first sum in (6.2) vanishes.
Second, the primitives 𝜃𝑖 𝑗 are not closed, so the second integral does not make sense on the homology

classes [𝛾𝑘
𝑖 𝑗 ]. To remedy this, we construct smooth 1-forms 𝜆𝑖 𝑗 ∈ Z1(𝐷𝑖 𝑗 ) supported away from 𝛾 such

that 𝑑 (𝜃𝑖 𝑗 +𝜆𝑖 𝑗 ) = 0. Let ℓ𝑖 𝑗 be a smooth 1-chain on 𝐷𝑖 𝑗 \𝛾 with boundary the signed intersection points:

𝜕ℓ𝑖 𝑗 = (𝐶𝑖 − 𝐶 ′
𝑖 ) ∩ 𝐷𝑖 𝑗 − (𝐶 𝑗 − 𝐶 ′

𝑗 ) ∩ 𝐷𝑖 𝑗 .

By Lemma 6.2 below, we may produce a form 𝜆𝑖 𝑗 supported in a neighborhood of ℓ𝑖 𝑗 . This allows us to
write the Carlson map for our extension as

𝜙((𝛼𝑖)) =

[
𝑡 ↦→

∑
𝑖< 𝑗

∫
𝜆𝑖 𝑗

(𝜃𝑖 𝑗 + 𝜆𝑖 𝑗 )

]
∈ 𝐽C/(𝐽Z + 𝐹1𝐽C).

But for any 𝜏 ∈ Ω1(𝐷𝑖 𝑗 ), since 𝜃𝑖 𝑗 ∈ A1,0(𝐷𝑖 𝑗 ) we have, again by Lemma 6.2,∫
𝐷𝑖 𝑗

(𝜃𝑖 𝑗 + 𝜆𝑖 𝑗 ) ∧ 𝜏 =
∫
𝐷𝑖 𝑗

𝜆𝑖 𝑗 ∧ 𝜏 =
∫
ℓ𝑖 𝑗

𝜏.

Observe that the classical Abel-Jacobi map AJ: Pic0 (𝐷) → Jac(𝐷) indeed sends [𝜕ℓ𝑖 𝑗 ] ↦→
∫
ℓ𝑖 𝑗

. The
proposition follows. �

Now, we produce the one-form 𝜆𝑖 𝑗 with the desired properties.

Lemma 6.2. Let C be a Riemann surface and let L = O𝐶 (𝑞 − 𝑝). There is a hermitian metric h on L,
a (1, 0)-form 𝜃 ∈ A1,0 (𝐶), and a smooth 1-form 𝜆 supported in a neighborhood of a path ℓ from p to q
for which
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1. 𝜕𝜃 = 𝑖
2𝜋 𝜕𝜕 log(ℎ),

2. 𝑑𝜆 = −𝜕𝜃, and
3.

∫
𝜆 ∧ 𝜏 =

∫
ℓ
𝜏 for any holomorphic one-form 𝜏.

Proof. Let z be a chart to C from a neighborhood of ℓ. There exists a function 𝑓 : 𝐶 \ {𝑝, 𝑞} → C∗ of
the following form:

𝑓 =

⎧⎪⎪⎨⎪⎪⎩
𝑧−𝑞
𝑧−𝑝 if 𝑧 ∈ 𝑁𝜖 /2 (ℓ)

smooth interpolation if 𝑧 ∈ 𝑁𝜖 /2 (ℓ)
𝑐 ∩ 𝑁𝜖 (ℓ)

1 if 𝑧 ∉ 𝑁𝜖 (ℓ).

Such a smooth interpolation exists because 𝑧−𝑞
𝑧−𝑝 has winding number zero along the boundary of

𝑁𝜖 /2(ℓ). Let 𝑠 ∈ Mero(𝐶,L) be a meromorphic section with a zero at q and a pole at p. Then, there is
a hermitian metric h on L for which ℎ(𝑠, 𝑠) = | 𝑓 |2. The associated curvature form is 𝑖

2𝜋 𝜕𝜕 log | 𝑓 |2, and
since 𝑐1 (L) = 0, we can find a (1, 0)-form 𝜃 satisfying (1). Furthermore, 𝜆 = − 𝑖

2𝜋 (𝜕 log( 𝑓 ) − 𝜕 log( 𝑓 ))
is a (0, 1)-form, supported in 𝐴 := 𝑁𝜖 /2(ℓ)

𝑐 ∩ 𝑁𝜖 (ℓ) and satisfying (2).
It remains to check (3). We may write 𝜏 = 𝑑𝑔 for some holomorphic function 𝑔 : 𝑁𝜖 (ℓ) → C.

Applying Stokes’s formula and the residue formula, we have∫
𝐶
𝜆 ∧ 𝜏 = − 𝑖

2𝜋

∫
𝐴
𝜕 log( 𝑓 ) ∧ 𝑑𝑔 = 𝑖

2𝜋

∫
𝐴
𝑑 (𝑖𝑔 · 𝑑 log( 𝑓 )) = 𝑖

2𝜋

∫
𝜕𝐴

𝑖𝑔 · 𝑑 log( 𝑓 )

= − 𝑖
2𝜋

∫
𝜕𝑁𝜖 /2 (ℓ)

𝑔 · 𝑑 log( 𝑧−𝑞
𝑧−𝑝 ) = − 𝑖

2𝜋 (2𝜋𝑖) (𝑔(𝑞) − 𝑔(𝑝)) =
∫
ℓ
𝜏.

�

More generally, the lemma holds for any degree zero line bundle O𝐶 (
∑
(𝑞𝑖 − 𝑝𝑖)), for a union of

paths connecting each pair of points 𝑝𝑖 to 𝑞𝑖 by taking the product of the hermitian metrics, and sum of
the corresponding 𝜃’s and 𝜆’s.

Remark 6.3. To apply Lemma 6.2 to the proof of Proposition 6.1, our forms 𝜔𝑖 must be such that
𝜔𝑖 |𝐷𝑖 𝑗 − 𝜔 𝑗 |𝐷𝑖 𝑗 is the two-form 𝑖

2𝜋 𝜕𝜕 log(ℎ) supported in a neighborhood of ℓ𝑖 𝑗 . This is achieved by
choosing 𝜔𝑖 = 𝑖

2𝜋 𝜕𝜕 log(ℎ𝑖) for hermitian metrics on ℎ𝑖 on L𝑖 (and similarly for j) so that ℎ = ℎ𝑖/ℎ 𝑗

is the desired hermitian metric on L𝑖 |𝐷𝑖 𝑗 ⊗ L 𝑗 |
−1
𝐷𝑖 𝑗

. Note though that we must allow the two-form 𝜔𝑖 to
be supported in a tubular neighborhood of 𝐶𝑖 ∪ 𝐶 ′

𝑖 ∪ ℓ𝑖 𝑗 rather than just 𝐶𝑖 ∪ 𝐶 ′
𝑖 . Since ℓ𝑖 𝑗 is disjoint

from 𝛾, the argument of Lemma 6.1 is unaffected.

Clemens-Schmid sequence

Let S → (𝐵, 0) be a degeneration of projective surfaces with smooth total space and reduced normal
crossings central fiber 𝑆0 =

⋃𝑚
𝑖=1 𝑆𝑖 with smooth double locus. Assume, furthermore, that 𝑝𝑔 (𝑆𝑖) = 0

for all i.
The monodromy is unipotent by Clemens [Cle69]. So let N be the nilpotent logarithm of the

monodromy operator on 𝐻∗(𝑆𝑡 ). We have the Clemens-Schmid sequence [Mor84] relating the integral
cohomology of 𝑆0 and 𝑆𝑡 :

0 → 𝐻0 (𝑆𝑡 )
𝑁
−→ 𝐻0(𝑆𝑡 ) → 𝐻4(𝑆0) → 𝐻2(𝑆0) → 𝐻2(𝑆𝑡 )

𝑁
−→ 𝐻2(𝑆𝑡 ). (6.3)

Since the monodromy operator acts trivially on 𝐻0 (𝑆𝑡 ), the first nilpotent operator in (6.3) is identically
0. Using these two observations, the Clemens-Schmid sequence can be shortened to

0 → 𝐻0 (𝑆𝑡 ) → 𝐻4 (𝑆0) 
 Z
𝑚 → 𝐻2(𝑆0) → 𝐻2(𝑆𝑡 )

𝑁
−→ 𝐻2(𝑆𝑡 ). (6.4)
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The limit mixed Hodge structure 𝐻2(𝑆𝑡 ) has a monodromy-weight filtration defined in terms of N:
{0} = 𝑊0 ⊂ 𝑊1 ⊂ 𝑊2 ⊂ 𝑊3 = 𝐻2 (𝑆𝑡 ).

𝑊1𝐻
2(𝑆𝑡 ) = im(𝑁);

𝑊2𝐻
2(𝑆𝑡 ) = ker(𝑁);

𝑊3𝐻
2(𝑆𝑡 ) = 𝐻2 (𝑆𝑡 ).

We call ker(𝑁) the 1-truncated mixed Hodge structure. To describe the 1-truncation explicitly, we
combine (6.4) and (6.1) above at their common term 𝐻2(𝑆0), with Mayer-Vietoris written horizontally
and Clemens-Schmid written vertically.

im𝐻4(𝑆0) span{𝜉𝑘 }

0 𝐽 𝐻2(𝑆0) 𝐾 0

0 𝐽 ker(𝑁) Λ 0.

Here, 𝜉𝑘 :=
∑

𝑗 [𝐷 𝑗𝑘 ] − [𝐷𝑘 𝑗 ], where [𝐷 𝑗𝑘 ] ∈ 𝐻2(𝑆 𝑗 ) and [𝐷𝑘 𝑗 ] ∈ 𝐻2(𝑆𝑘 ) are the fundamental
classes of the double loci, and Λ is the cokernel of 𝐽 → ker(𝑁). We have that 𝜉𝑘 = 𝑐1 (OS (𝑆𝑘 ) |𝑆0). By
Proposition 6.1, we have 𝜉𝑘 ∈ ker(𝜙 : 𝐾 → Jac(𝐽)) because the line bundles OS (𝑆𝑘 )

��
𝑆𝑖


 OS (𝑆𝑘 )
��
𝑆 𝑗

agree on the double locus. Hence, the Carlson extension homomorphism 𝜙 descends to a homomorphism

𝜓𝑆0 : Λ → Jac(𝐽)

encoding the 1-truncated mixed Hodge structure.

Application

In this section, we apply the general results above to the mixed Hodge structures associated to the
degenerations of Type II𝑏 and II 𝑓 , and relate their associated periods to the boundary of the toroidal
extension (D/Γ)II.

It is convenient to make an order 2 base change and resolution to the Type II𝑏 degenerations. The
effect is to normalize the first component and insert a second component isomorphic to P1 × 𝐸 where E
is the fiber over the node of 𝐶0. This second component is glued to the rational elliptic surface 𝑋 → P1

along the two fibers 𝑋𝑝 , 𝑋𝑞 .
After the base change and resolution, we have that in both II𝑏 and II 𝑓 degenerations, the central fiber

𝑆0 has two irreducible components and reduced normal crossings: 𝑆0 = 𝑆1 ∪𝐷 𝑆2. The double locus D
is a disjoint union of two copies of the same elliptic curve E in Type II𝑏 and a connected, smooth genus
2 curve in Type II 𝑓 . Let 𝐷1 ⊂ 𝑆1 and 𝐷2 ⊂ 𝑆2 denote the double locus restricted to each component.

In both cases, the divisor D admits a natural involution 𝜄, and the image of the first map 𝜄∗ in (6.1) is
the (+1)-eigenspace of this involution on 𝐻1(𝐷). The image of the restriction map res in (6.1) is a rank
1 subgroup of 𝐻2 (𝐷) 
 𝐻0(𝐷), so the Mayer-Vietoris sequence takes the form

0 → 𝐻1(𝐷)− → 𝐻2(𝑆0) → 𝐻2(𝑆1) ⊕ 𝐻2(𝑆2)
res
−→ Z→ 0. (6.5)

Case IIb. The component 𝑆1 is a rational elliptic surface X, with 𝐷1 = 𝑋𝑝 ∪ 𝑋𝑞 a pair of isomorphic
elliptic curve fibers. The component 𝑆2 is simply P1 × 𝐸 with 𝐷2 = {0,∞} × 𝐸 . The involution on D
swaps the two isomorphic components. Note that since [𝑋𝑝] = [𝑋𝑞] ∈ 𝐻2(𝑆1), and similarly for 𝑆2,
the two restriction maps 𝐻2(𝑆𝑖) → 𝐻2(𝐷) 
 𝐻2 (𝐸)⊕2 have the same image – namely, the diagonal.
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Case IIf . The component 𝑆1 is an elliptic ruled surface 𝑋 
 P𝐶 (O ⊕ 𝐿), with 𝐷1 a genus 2 bisection
of class 2𝑠0 = 2(𝑠∞ + 𝑓 ). The component 𝑆2 is the blow-up of (a deformation of) 𝑆1 at 8 points along
𝐷1 with 𝐷2 the proper transform of 𝐷1 in the blow-up. The class of 𝐷2 is 2𝑠0 −

∑
𝑒𝑖 . The involution

on D is induced by the double cover map 𝜈 : 𝐷 → 𝐶 which comes from the ruling of X. Since D is
irreducible, 𝐻2(𝐷) 
 Z.

In both cases, the Jacobian Jac(𝐻1 (𝐷)−) = 𝐸 is an elliptic curve. In Type II𝑏 , it is Jac(𝐸), where E is
either of the double curves, while in Type II 𝑓 , it is the Prym variety of the double cover map 𝜈 : 𝐷 → 𝐶.
Thus, the mixed Hodge structure on 𝐻2 (𝑆0) is encoded by a Carlson extension map 𝜙 ∈ Hom(𝐾, 𝐸).
By the previous subsection, this extension homomorphism descends to 𝜓𝑆0 ∈ Hom(Λ, 𝐸), where

Λ = 𝐾/span{𝜉1, 𝜉2} = ker(𝐻2(𝑆1) ⊕ 𝐻2(𝑆2)
res
−→ Z)/Z(𝐷1,−𝐷2).

There is a symmetric bilinear form on 𝐻2 (𝑆0). Let

𝑝 : 𝐻2(𝑆0) → 𝐻2(𝑆1) ⊕ 𝐻2(𝑆2)
PD
−−→ 𝐻2 (𝑆1) ⊕ 𝐻2(𝑆2) → 𝐻2(𝑆0)

be restriction, followed by the Poincaré duality, followed by inclusion. Then define 𝛼 · 𝛽 := 〈𝛼, 𝑝(𝛽)〉
on 𝐻2 (𝑆0). The map 𝐻2(𝑆0) → 𝐻2(𝑆𝑡 ) respects the bilinear forms on the source, and target and the
bilinear form descends to 𝐾 = ker(res).

By Poincaré duality and the Hodge index theorem, 𝐻2(𝑆1) ⊕ 𝐻2 (𝑆2) is a unimodular lattice of
signature (2, 10), and it is odd since at least one summand contains (−1)-curves. Since 𝐷2

1 + 𝐷2
2 = 0,

the lattice vector (𝐷1,−𝐷2) is isotropic, and its orthogonal complement is precisely ker(res). Hence,
the lattice Λ is unimodular of signature (1, 9).

Our degenerating families are polarized by Z𝑠 ⊕ Z(𝑠 + 𝑓 ) ⊂ 𝐻2(𝑆𝑡 ). The monodromy operator fixes
these curve classes, and hence, we have a copy of 𝐼1,1 ⊂ ker(𝑁). So s, f extend over the singular fiber
by (6.3). They can be represented in K as follows: (𝑠, 𝑠), ( 𝑓 , 0) for Type II𝑏 and (𝑠∞, 0), ( 𝑓 , 𝑓 ) for
Type II 𝑓 , respectively. In both cases, they span a sublattice of Λ isometric to 𝐼1,1 whose orthogonal
complement we call Λ0 ⊂ Λ. We also have Λ0 
 Λ/𝐼1,1 canonically.

Proposition 6.4. The lattice Λ0 is isometric to 𝐸8 in both cases.

Proof. Note thatΛ0 is unimodular of signature (0, 8), so it suffices to check that it is even. The orthogonal
complement of {𝑠, 𝑓 } in ker(𝑁) is even because 𝑓 = 𝐾𝑆𝑡 and 𝑥 · 𝑥 ≡ 𝑥 · 𝐾𝑆𝑡 mod 2 for any 𝑥 ∈ 𝐻2 (𝑆𝑡 ).
Hence, its image Λ0 is even because ker(𝑁) → Λ preserves the intersection form. �

Remark 6.5. The lattice Λ0 can be described more directly using one irreducible component (only
up to finite index in the Type II 𝑓 case). For Type II𝑏 , the sublattice {𝑠, 𝑓 }⊥ ⊂ 𝐻2 (𝑆1) lies in K and
is even, unimodular of signature (0, 8). So it maps isometrically to Λ0 
 𝐸8. For II 𝑓 , the sublattice
{𝐷2, 𝑓 }

⊥ ⊂ 𝐻2(𝑆2) lies in K and so maps isometrically to an index two sublattice 𝐷8 ⊂ Λ0 
 𝐸8.

We summarize the results of this section in the following proposition:

Proposition 6.6. Let S → (𝐵, 0) be a degeneration of Type II𝑏 or Type II 𝑓 . Let 𝐾 = ker(𝐻2 (𝑆1) ⊕
𝐻2 (𝑆2) → 𝐻2 (𝐷)) be the kernel of signed restriction, and let Λ := 𝐾/Z(𝐷1,−𝐷2) and Λ0 = {𝑠, 𝑓 }⊥ ⊂

Λ. Let E be Pic0 of either double curve in Type II𝑏 and the Prym variety Pic0(𝐷)/Pic0(𝐶) in Type II 𝑓 .
The Carlson extension class 𝜙 ∈ Hom(𝐾, 𝐸) describing the mixed Hodge structure on 𝑆0 descends

to Hom(Λ, 𝐸), and so determines the 1-truncated limit mixed Hodge structure of the degeneration. This
homomorphism further descends to a period point 𝜓𝑆0 ∈ Hom(Λ0, 𝐸) where Λ0 
 𝐸8. Explicitly.

(IIb) The period point 𝜓𝑆0 given by the map sending L ∈ {𝑠, 𝑓 }⊥ ⊂ Pic(𝑆1) to L
��
𝑋𝑝

⊗ L
��−1
𝑋𝑞

∈ 𝐸 .
(IIf ) The period point 𝜓𝑆0 is determined up to 2-torsion by the map sending 𝑐1 (L) ∈ {𝐷, 𝑓 }⊥ ⊂ 𝐻2 (𝑆2)

to L
��
𝐷
∈ Pic0(𝐷)/Pic0(𝐶) = 𝐸 .
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A. Appendix: Compact moduli

KSBA theory [KSB88, Ale96, Kol23] gives a general method for constructing compact moduli spaces
of pairs (𝑋, 𝐵), consisting of a projective variety X and a Q-Weil divisor B, which form a so-called
stable slc pair:

1. the pair (𝑋, 𝐵) has semi-log canonical singularities,
2. 𝐾𝑋 + 𝐵 is Q-Cartier and ample.

In the case at hand, the pair (𝑆, 𝜖 𝑠) satisfies these conditions, where 𝑆 → 𝑆 is the contraction to the
Weierstrass form. The paper [AB21] of Ascher and Bejleri with an appendix by Inchiostro studies the
corresponding compactification by stable slc pairs 𝐹 ↩→ 𝐹

𝑊
. Every degeneration with generic fiber in

F has a unique limit in 𝐹
𝑊 called the stable model.

No information is lost when considering Type II𝑏 degenerations because the stable model 𝑆0 uniquely
determines 𝑆0: It is the resolution of ADE configurations in fibers. However, for Type II 𝑓 degenerations,
most period information is lost: the stable model 𝑆0 is the gluing of P𝐶 (O ⊕ 𝐿) along the bisection D.
Thus, the locus in 𝐹

𝑊 corresponding to Type II 𝑓 degenerations has dimension 2, remembering only
the genus 2 double cover 𝜈 : 𝐷 → 𝐶.

To record more period information, we can instead choose a different divisor on the general surface
𝑆 ∈ 𝐹. Let 𝑅 := 𝑠 +

∑12
𝑖=1 𝑓𝑖 , where 𝑓𝑖 are the singular fibers of 𝑆 → 𝐶, counted with multiplicity.

Because (𝑆, 𝜖𝑅) is a stable slc pair, we may again compactify the moduli space of such pairs using
KSBA theory: 𝐹 ↩→ 𝐹

𝑅, where 𝐹
𝑅 is the closure of the pairs {(𝑆, 𝜖𝑅)

�� 𝑆 ∈ 𝐹} in moduli of all stable
slc pairs. Up to a finite map, 𝐹𝑅 remembers the period information of a Type II 𝑓 degeneration (and this
is still so for Type II𝑏 surfaces).

Thus, it is possible that the normalization of 𝐹
𝑅 actually dominates a toroidal compactification of

D/Γ. An analogous result for elliptic K3 surfaces (𝑔, 𝑑) = (0, 2) holds by [ABE22]. We leave this as a
conjecture:

Conjecture A.1. There is a morphism (𝐹
𝑅
)𝜈 → D/Γ

𝔉
to some toroidal compactification, for an

appropriately chosen fan 𝔉.
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