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1. Introduction. Examining certain problems in physics
M. Hosszu [1] obtained the functional equation

(1) fxty)? = [1(x) +1(9)]°

where x, y, f are real.

In another paper M. Hosszu [2] proved that the equation (1)
is equivalent to the functional equation of Cauchy; i.e., to the
equation

(2) f(xty) = £(x) + £(y)
under the assumption that x is real and f is real and continuous.

H. Swiatak [3] examined a generalization of the equation (1)
in the class of continuous functions.

A similar alternative functional equation is considered in
a paper of J. Aczél, K. Fladt and M. Hosszu [4].

At the end of his paper M. Hosszu puts the question: what
is the general real solution of the equation (1) ? E. Vincze was
the first to give an answer to this question in his papers [5], [6],
[7]. He proved that the functional equation

n n
(3) f(x+y)" = [f(x) +£(y)]
is equivalent to the functional equation of Cauchy, where x,y

are in an additive Abelian semi-group, f is an arbitrary complex-
valued function and n is a natural number.
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In the paper [8] we also answered the problem of M. Hosszu
independently of E. Vincze. The purpose of the present paper is
to generalize the original problem to normed spaces. As our
paper [8] was published in Hungarian we do not suppose here that
our results, published there, are known.

2. Let Q be an arbitrary additively written semi- group,
let H be a Hilbert space, and let £ be a mapping of Q into
H; this will be denoted by f: Q—H .

THEOREM 1. The functional equation
(4) Gt | =[£G + £y
is equivalent to the equation of Cauchy
(5) f(xty) = £(x) +1(y)
if f:Q-H.

Proof. Evidently it is sufficient to prove that every solu-
tion of the equation (4) satisfies the equation (5). In what follows,
we shall suppose that f: Q—H ,and f satisfies the equation (4).

We are going to show that

(6) £(2x) = 21£(x) .

The assertion is evident if f(x) = 0 (where 0 is the zero element
of the Hilbert space).

From the equation (4) we obtain only
(7) £ =2[t6al -
Further, it is true that
®) [t = [[£#2x) + i) [ < [f@=x) | + [ = 3/t -

[[£(4x)| can be obtained in two ways:

9) @)l = 1) + £6x) | < [ ]| + [£G6=) [ < 4[l£G) ]|
(10) lt(4x) || = [£(2x) + £(2x) || = 4] £(x)]| -
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From the equations (9) and (10) we get
(11) [£x) +£3x) | = 4[]
hence
l£G3=) || =3 [tGall,
that is, in the equation (8)
[£2x) +£(x) ] = =) ] + [£=)] -
As the Hilbert space has the property that the equality in

the triangle inequality exists if and only if one summand is a
non-negative scalar multiple of the other,

£(2x) = y(x) f(x) (v(x) >0).
From the equation (7) and f(x) # 0 we get vy(x) =2 .

We compute [[f(2x+y)| in two ways:

(12) [tx+y) || = |2£(x) + £(y)]| = [|£(x) + £(x) + £(y) ||
and
(13) [tx+y) | = ||f(x) + f(x+y) || ,

from which we get
(14) [£(x) + £(xty) || = [[£(x) +£(x) + £(y) ] -

Taking the second power of equation (14) and considering that £
satisfies the equation (4) we have

(15) Re[f(x), f(x+y)] = Re[f(x), f(x) +£(y)]

(where Re[, ] denotes the real part of the inner product), that

is

(16) Re[f(x), f(x+y)- (f(x) +£(y))]=0.

If we interchange the variables x and y in the equation (16) we
get

(17) Re[f(y), f(x+y) - (£(x) +£(y))]=0 .
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From the equations (16) and (17) we find that
(18) Re[f(x) +f(y), f(x) + {(y) - f(x+y)] = 0.
Let us write f(x+y) in the form

f(x+y) = £(x) + £(y) + f(x+y) - (£(x) +£(y)) .

Taking to the second power the norm of both sides, and using
the equation (18), we obtain

lGety) |2 = (1560 + 590 |2 + [ £Gety) - £ - £ |2

that is

2
[£(xty) - £(x) - £(5)[|” = 0,
from which our assertion follows immediately.

CONSEQUENCE 1. If H is the field of the real numbers,
then Theorem 1 gives an answer to the original question of
M. Hosszu.

CONSEQUENCE 2. If H is the field of complex numbers,
then Theorem 1 includes the result of E. Vincze mentioned in the
introduction, as a special case, and, what is more, we did not
use that the semi-group is commutative.

3. In what follows we treat the problem of how far the
conditions of Theorem 1 can be weakened. We shall show that
in general the Hilbert space can not be replaced by an arbitrary
normed linear space.

In the following we suppose that H is a non-strictly
normed space (dim H > 2), thatis, there exist a # 0 and
b#0 (a, beH) such that
(19) la+bll = [lafl + o],

but a # \b for any positive X\ . (Itis easy to verify that in this
case a and b are linearly independent.)

LEMMA 1. If there exist a, beH which satisfy the
equation (19), then for arbitrary non-negative \ and

(20) [xa +ub] =x[lall +ulbll.
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Proof. We can suppose that \ < u ; thatis, on the one
hand

(21) [xa + bl <xflall +ulbll,
and the other

xa + bl

luta+b) - (w-nal > [ullatp] - (-0 laf |
(22)

]

Mall +weliell -
Our assertion follows from the equations (21) and (22).
Now we shall prove the following theorem:

THEOREM 2. Let Q be an arbitrary semi-group. If
the equation of Cauchy has a non-constant solution g in theclass
of real-valued functions, where g is defined on Q, then for
this Q and for arbitrary non-strictly normed space H (dim Hx2)
there exists f:Q--H which satisfies the equation (4), but does
not satisfy the equation of Cauchy.

Proof. Let a and b be chosen according to Lemma 1.
We can suppose that ”a” = ”b” =1.

Define f by means of g as follows:

_ fglx)a . if | g(x)]
10 = { & g00a + () - sign glo | i lg(x)|

VA

If neither the coefficient of a nor that of b are zero,
then according to the definition of f(x), for every x it is true
that the coefficients are of same signs. By the Lemma 1 we get

=) ]| = [g(=x)] -

This relation is valid also in the case when lg(x)l <1,s0

£(x+y) || = |elx+y)] = |e(x) + gly)].

Compute the f(x) + f(y) :

£(x) +£(y) = (g(x) + gly))a ,if [gx)] <1 and [gly)] <1,
f(x) + £(y) = (g(x) + sign g(y))a + (g(y) - sign g(y))b ,
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if Jg(x)] <1 and |g(y)| >1;
and symmetrically for Ig(x)l >1, |gly)] <1,

f(x) +£(y) = (sign g(x) +sign g(y))a + (g(x) - sign g(x) +g(y) - sign g(y))b ,
if [g(x)|>1 and [g(y)] > 1.

For f(x) + f(y) it is also valid that the coefficients are of the same
sign if neither the coefficient of a nor that of b are zero. By
means of Lemma 1 we find that

l£) +10] = [ex) +en)] = [y,
that is, f satisfies the equation (4).

It will be proved that f does not satisfy the equation of
Cauchy. In fact, there exist such x and y that |[g(x)| > 1,
|g(y)| > 1 and |g(x+y)| > 1 . Then the coefficients of a in
f(x+y) and in {(x) + f(y) are different, from which our assertion
follows, as a and b are linearly independent.

We shall show that there exists a function defined on the
additive semi-group of positive numbers which satisfies the
equation (4), but does not satisfy the equation of Cauchy, and,

what is more, our function will be also differentiable.

Let a and b be chosen according to Lemma 1. Let us
choose the functions X and p so that

(23) Mx)al +uE) || =x, if x>0,
and moreover \(x)> 0 and p(x) >0 are differentiable functions;
let X be a non-additive function. By means of such A\ and p we
can define f as follows:

f(x) = AMx)a + p(x)b, if x> 0.
f does not satisfy the equation of Cauchy, because \ is a non-

additive function and a and b are linearly independent. From
the Lemma 1 and the equation (23) we get

leGall ==

moreover
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i

[ (Mx) + A (y)Da + (u(x) + uly)b]
(M=) + a2l + (px) +pyD ] = x+y,

| £(x) +£(y) ]|

[}

that is, f satisfies the equation (4).

It is obvious that f is differentiable, and its derivative
has the form

f'(x) = \(x)a + p'(x)b .
4. Now let H be a strictly normed space, Q an arbit-
rary semi-group, f{:Q-H, and let { satisfy the equation (4).

We conjecture that f is also the solution of the equation of Cauchy.
In the following we prove a special case of this conjecture.

THEOREM 3. Let H be a strictly normed space, Q the
additive semi-group of positive numbers, f:Q--H , and let

i) = o(x) .
If there exists a measurable subset E of (0,+e«) with positive
measure and a function g defined and measurable on E , and
such that ¢(x) £ g(x) (xeE) (this condition is fulfilled for exam-
ple if ¢ is bounded from above in any open subinterval of (0, +)
or if ¢ is measurable) and if f satisfies the equation (4), then

f satisfies the equation of Cauchy.

Proof. In the proof of the Theorem 1, where we proved
the equality

f(2x) = 2 f(x),

we used only that H is a strictly normed space, and did not
suppose that it is a Hilbert space.

By means of induction it can be proved that
f(rx) = r f(x)
for every natural number r .
The function ¢ has the following properties:

a) e(x)20,
b)  elxty) < o(x) + oly) ,
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c) olrx) = r-o(x)

for every rational r . From b) and c) it follows that the function
¢ is Jensen-convex, that is, it satisfies also the inequality

Xty

o(x) +oly)
> .

2

o (

) <
From the condition of the theorem it follows that ¢ is continuous

(see [9], [10], [11]). If x is continuous, then from c¢) we find
that

o(x) = o(1)x,

el = el
As H is a strictly normed space we obtain
f(x) = f(1)x,

that is f satisfies the equation of Cauchy.
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