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ON THE GOLDIE DIMENSION OF INJECTIVE MODULES*
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Let M be an essentially finitely generated injective (or, more generally, quasi-continuous) module. It is shown
that if Af satisfies a mild uniqueness condition on essential closures of certain submodules, then the existence
of an infinite independent set of submodules of M implies the existence of a larger independent set on some
quotient of M modulo a directed union of direct summands. This provides new characterisations of injective
(or quasi-continuous) modules of finite Goldie dimension. These results are then applied to the study of
indecomposable decompositions of quasi-continuous modules and nonsingular CS modules.
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1. Introduction

It is well known that a finite-dimensional module M can have quotient modules with
infinite Goldie dimension. However, if N is a directed union of direct summands of
M (we then say that N is a directly split submodule of M), then N itself is a direct
summand of M and, in particular, we have for the Goldie dimensions that
Gd(M/N) < Gd(M) (see[6]).

In this paper we analyse the significance of this condition for the finite-dimensionality
of M. This is a departure from the more standard process of looking directly at
submodules of M and, somewhat paradoxically, it requires to take into account modules
of infinite Goldie dimension. Thus we recall from [2] that Gd{M) is defined, in general, as
the supremum of all cardinals K such that M contains the direct sum of K nonzero
submodules. It is clear that our condition is not sufficient for finite-dimensionality
(consider, for example, a non-finitely generated semisimple module), so that we will also
assume that M is essentially finitely generated - that is, it contains an essential finitely
generated submodule. Of course, the latter condition is satisfied by all finite-dimensional
modules, and it will be also convenient to assume that M is injective or, at least, that it
satisfies a weaker injectivity condition such as being CS or quasi-continuous. This is not
unreasonable in view of the fact that if we start with an essentially finitely generated
module M, then its injective envelope is also essentially finitely generated and has the
same Goldie dimension as M.

Our main result shows that if M is an essentially finitely generated injective (or,
more generally, quasi-continuous) module that satisfies a mild uniqueness condition on
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essential closures of certain submodules, then the existence of an independent set of
infinite cardinality K of nonzero submodules forces the existence of a larger
independent set of nonzero submodules in some quotient M/N, where N is a directly
split submodule of M. There is, however, a technical difficulty that prevents a
straightforward translation of the result in terms of the Goldie dimension of the
involved modules, and this is the fact that Gd(M) = K does not imply that M contains
a direct sum of X nonzero submodules. When this happens, we say as in [2] that
Gd(M) is attained in M. Thus our main result can be applied to a module M such that
Gd(M) — K is infinite and attained in M and, under the aforementioned hypotheses,
gives the existence of a directly split submodule N such that Gd{M/N) > Gd(M).

We stress that the assumption that Gd(M) is attained is not a very restrictive
hypothesis. To put this in perspective, recall that an infinite cardinal K is called regular
if Kj < K for i e I with |/| < K implies 2,K, < K (where |/| denotes the cardinality if /).
An uncountable, regular, limit cardinal is said to be (weakly) inaccessible [9]. Now, the
main result of [2] is that if Gd(M) is not an inaccessible cardinal, then Gd(M) is
attained. Inaccessible cardinals are rather scarce if they exist at all: it is well known
that their existence cannot be proved in ZFC (Zermelo-Fraenkel set theory with the
Axiom of Choice), not even with the Generalised Continuum Hypothesis (GCH)
thrown in.

However, if one is not ready to take for granted the nonexistence of inaccessible
cardinals, it is necessary to bear in mind the possibility that Gd(M) is not attained. The
reason is that, as explained below, it can be deduced from a classical result of Erdos
and Tarski [5] on Boolean algebras that, for each inaccessible cardinal K, there exists a
self-injective ring R such that Gd(R) — K is not attained in R.

Even though our results are stated, more generally, for quasi-continuous or CS
modules, most of them are new even in case M is injective. Our main result is
formulated in terms of infinite cardinals, but we obtain from it useful characterisations
of finite-dimensional modules. In particular, we show that if M is either quasi-
continuous or a nonsingular CS module, then M is finite-dimensional if and only if it
is essentially finitely generated and every directly split quotient has countable Goldie
dimension. Observe that \M\ is an obvious upper bound for Gd(M). In a variety of
situations we obtain (directly split) submodules N of M such that Gd(M) < Gd(M/N).
In these cases it is clear that Gd(M) < \M\ and, in particular, that the countable
modules which satisfy the required hypotheses are finite-dimensional. This allows us to
show that every countable quasi-continuous module is a direct sum of uniform
modules, thus extending [3, Theorem 15], where the analogous result was proved for
countable continuous modules. Similarly, we prove that every countable module M
such that M is nonsingular (or, more generally, a UC-module in the sense of [13]) and
every closed submodule is essentially finitely generated, is finite-dimensional. We also
give some other applications and, in particular, we obtain a new characterisation of
right artinian rings with Morita duality in terms of the right minimal injective
cogenerator.

The proof of our main result relies on a counting argument based on "Tarski's
lemma" [15], which had been applied by Osofsky in [11] (see also [7, 8, 12]) to deduce
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the finiteness of the socle of an injective cogenerator ring. When the Goldie dimension
of M is a regular infinite cardinal we show in the last part of the paper that the
preceding results can be strengthened. In this case we prove a variant of Tarski's
lemma that allows us to relax the assumptions of our main result.

Throughout this paper all rings R will be associative and with identity, and Mod-i?
will denote the category of right R-modules. By a module we will usually mean a right
R-module. We refer to [9, 14, 16] for all undefined notions used in the text.

2. Finite-dimensional CS modules

Recall that a submodule K of an R-module M is said to be closed (in M) when K
has no proper essential extensions in M. If L c M, then a closed submodule of K of M
that contains L as an essential submodule (we then write L c e K) is called an essential
closure of L in M. The module M is called CS (or an extending module, cf. [4]), if every
closed submodule is a direct summand. M is quasi-continuous (or 7r-injective, cf. [4])
if it is CS and whenever M, and M2 are direct summands of M with M, n M2 = 0 then
Af, © M2 is also a direct summand of M.

A submodule N c M will be called a directly split submodule when N is a directed
union of direct summands of M. A set {N}\j e J) of independent submodules of M is
called a local direct summand of M (cf. [4, p. 66]) when '£jeFNj is a direct summand of
M for every finite subset F c. J. If, furthermore, \J\ < X, then we will also say that the
submodule N = ®j€jNj of M is an N<-local direct summand. Observe that a local direct
summand is, in particular, a directly split submodule.

The successor cardinal of a cardinal X will be denoted by X+. We say that the
cardinal X is attained in M when M contains a direct sum of K nonzero submodules. If
K is an infinite cardinal, we say that M is K-generated if it has a generating set X such
that \X\ < X. For later use we will also recall Tarski's lemma ([15, Theoreme 7]):

Lemma 2.1. Let K, a, ft be cardinal numbers such that H is infinite and a, /? > 1.
Suppose that a is the smallest cardinal such that X < /T. Then each set of cardinality X
can be decomposed into a class of subsets K. with \K\ = fF and such that \X\ — a for each
X € /C, and \X n Y\ < a for X,YeK.,X^Y.

We now give our main result.

Theorem 2.2. Let R be a ring and M an essentially finitely generated quasi-continuous
right R-module. Suppose that X is an infinite cardinal such that K is attained in M and
every H*-local direct summand of M has a unique (as a set) essential closure in M. Then
there exists a directly split submodule N of M such that X+ is attained in M/N.

Proof. For each submodule K of M, denote by E(K) an essential closure in M of
K, so that E(K) is a direct summand of M. Let {C,},e, be an independent set of nonzero
submodules of M such that |/| = K. Choose, for each i e /, a fixed essential closure £,
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of C, in M and, for each subset A of I, a. (not necessarily unique) essential closure
EA = E(®ieAEi) — E(®ieACi) c M. Since / is infinite, it follows from Tarski's lemma that
there exists a set K c 2' and an infinite cardinal K < K such that \K\ > K, \X\ = K for
each XeK, and \X n Y\ < K for all X, Y e K such that X # Y. Let now
Af = {A Q I\\A\ < K} and define N := ^A^/EA c Af. Because M is quasi-continuous
each (direct) sum of an independent set of direct summands of M is a local direct
summand and so, for each A e AT, EA is the unique essential closure in M of the N*-
local direct summand ®i6AEt. Thus if A e AT, A c B c /, we have that EA c £B and so
AT is a directed union of direct summands of M and hence a directly split submodule.

We claim that {(£* + N)/N}XeK is an independent set of nonzero submodules of
M/N. First we show that, for each XeK, (Ex + N)/N ^ 0. Assume on the contrary
that Ex c N for some XeK. Since M is essentially finitely generated, so is the direct
summand Ex, and hence it contains a finitely generated essential submodule Lx. Then
Lx c Ex c Â  = fLAiNEA and so there exists a finite set J c TV such that L* c I.AeJEA.
Since L x is essential in £x, [Lx n £,},eA- is an independent family of nonzero
submodules of Lx and, for each i e X we have that

0 / L* n £, c I * c E,^./^ c £^^,4

where the last inclusion is a consequence of the fact that for each A e J, the unique
essential closure EA of the sum ©1€/4£, is contained in EUAejA. On the other hand, since J
is finite and \A\ < K for each A e J, we have that | UAsJ A\ < K. Then we obtain

| UAeJ A \ < K = \X\

and so there exists j e X such that j g UAfijA. Thus we have that £, n (©U/46/^£i) = 0 and
hence £, n £u êŷ  = 0, which gives a contradiction and shows that Ex is not contained in N.

Finally, in order to show that the set {(£x + N)/N}X€lc is independent, we have to
prove that for each finite set {yj, . . . , Yr} with Yke K and Yk ^ X, k = 1, . . . , r, we have
that Ex n (£*=,£n) c N. For each k e {1 , . . . , r}, let Y* := Yk n (U*T,' Y,). Then we can write
1̂  = (Yt - Y*) U Y*. where the union is disjoint and so ©n£, = (®yt-y*£,) © (©y*£,)- Since
M is a quasi-continuous module, it is clear that EYk = £(ffin£,) = £(ffin_yi£,) © £(©yt£,)
and, because | Yk\ = | U*:,1 (Yt n 1J)| < 2*r,'| Yt n 1J| < K < K, we have that £(©>.»£,) = £y*,
the unique essential closure of ©,.*£, in M. Moreover, Yk can be written as a disjoint union
of subsets of Y,, Y2,..., Yl_,, each of which has cardinality < K and hence we see that
EYk CZJL-'E,,.. Then it follows that Er

t=1£n = E^,£(©n_Kk£,). Since U't=1 Y* =
Uj=1( Yt — Yk), where the last union is disjoint, we have by the quasi-continuity of M that
Ci=,£n = ©i=,£(©n_y*E,) = £(©uj rt£,) is an essential closure of ffil/_ n £ , and so we see

Now, it is clear that (©*£,)!")(©!/ n£,) is an essential submodule of Ex n(ZJ=1£n)
and, furthermore, (©*£,•) d (©i/ n^>) ~ ®«̂ >> w n e r e " = -^ n (uLi Yk). Therefore,
©„£, is an essential submodule of Exn(I.k=lEYt). Since \H\ = \X n (Ur

fe=1 Yk)\ <
T,'k=l\XD Yk\ < K, we see that £H is the unique essential closure of ©w£, in M and so
Ex n (ZJ=1£n) c EH. But H e Af and hence EH c N, which completes the proof. •
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Erdos and Tarski [5, Corollary 2] constructed, for any inaccessible cardinal K, a
complete boolean algebra B such that the supremum of the sizes of sets consisting of
pairwise disjoint elements of B is K but B does not contain K pairwise disjoint elements.
If B is regarded as a boolean ring, then B is self-injective [14, Corollary XII.3.5] and
Gd(B) = K is not attained in B. For this reason we include the hypothesis that Gd(M) is
attained in the next corollary, which is essentially a reformulation of Theorem 2.2 in
terms of Goldie dimension.

Corollary 2.3. Let R be a ring and M a quasi-continuous right R-module. Then M is
finite dimensional if and only if the following conditions hold:

(i) Every local direct summand of M has a unique essential closure in M.

(ii) M is essentially finitely generated.

(iii) Gd(M) is attained in M and for every directly split submodule N of M,
Gd(M/N) < Gd(M).

Proof. If M is finite dimensional, then every local direct summand is clearly a
direct summand and hence (i) holds. Furthermore, M is essentially finitely generated,
so that (ii) is satisfied. Finally, M has ACC on direct summands ([6]), so that every
directly split quotient of M is actually a direct summand and (iii) also holds.

Conversely, assume that conditions (i)-(ui) hold but M is not finite dimensional and
let Gd(M) - N > Ko. Then by Theorem 2.2 there exists a directly split submodule N c M
such that Gd(M/N) > K, which gives a contradiction and completes the proof. D

There is an important special case in which the hypothesis that each K<-local direct
summand of the quasi-continuous module M has a unique essential closure is
automatically satisfied, namely, when K = Ko. Then every K*-local direct summand of
M is a direct summand, so that we have:

Corollary 2.4. Let R be a ring and M a quasi-continuous right R-module. Then the
following assertions hold:

(i) M is finite-dimensional if and only if M is essentially finitely generated and every
directly split quotient of M has countable Goldie dimension.

(ii) M is finitely cogenerated if and only if it is essentially finitely generated and every
directly split quotient of M has countably generated essential socle.

Proof, (i) The necessity is clear. For the sufficiency, observe that if Gd(M) is
countable but M is not finite-dimensional, then Gd(M) = Ko is attained as Ko is not
inaccessible, and so the result follows from Theorem 2.2 bearing in mind the preceding
remarks.

(ii) follows from (i). •
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In relation with the preceding corollary, observe that each directly split quotient of
the Z-module Q/Z is a direct summand and hence has countable Goldie dimension
(and countably generated essential socle), so that the hypothesis that M is essentially
finitely generated cannot be removed. On the other hand, let R — n,/!c, be a
denumerable product of fields (or skew-fields) and M — RR = £(®,fc,) where
®,kt = Soc(RR). Then M is finitely generated and Gd(M) — Ko, so that the hypothesis
that every directly split quotient of M has countable Goldie dimension cannot be
removed from Corollary 2.4. Similarly, neither of conditions (ii) and (iii) can be
removed from Corollary 2.3.

The next result extends [3, Theorem 15] (see also [4, 10.12]) from continuous to
quasi-continuous modules.

Corollary 2.5. Any countable quasi-continuous module is a direct sum of uniform
modules.

Proof. By the proof of [4, Lemma 10.1], M is a direct sum of essentially finitely
generated modules, which are finite-dimensional by Corollary 2.4. Now the result
follows from the fact that a finite-dimensional CS module is a finite direct sum of
indecomposable modules, which are uniform. •

As another consequence of the preceding results, we can give a characterisation of
right artinian rings with Morita duality.

Corollary 2.6. Let R be a ring. Then the following conditions are equivalent:

(i) R is right artinian with a right Morita duality.

(ii) There exists a finitely generated injective right R-module E with essential socle,
such that each local direct summand of E has a unique injective envelope in E
and every finitely generated right R-module embeds in a direct sum of copies of
E.

(iii) There exists a finitely generated injective right R-module E such that Soc(E) is
essential and countably generated, and every finitely generated right R-module
embeds in a direct sum of copies of E.

Proof. If R is right artinian with Morita duality, it is enough to take ER equal to
the minimal injective cogenerator which, obviously, satisfies all the conditions in (ii)
and (iii). Conversely, assume that £ is a module as in (ii). Since Gd(E) is attained in E
by [2, Lemma 4], E is finitely cogenerated by Corollary 2.3 and hence so is every
finitely generated right R-module, so that R is right artinian. Moreover, it is clear that
£ is a cogenerator and so the minimal injective cogenerator of Mod-R is a direct
summand of £ and hence finitely generated. That (iii) implies (i) can be obtained in a
similar way, using Corollary 2.4. •
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The preceding corollary can be obviously modified by requiring in condition (ii) only
the weaker hypothesis that every NMocal direct summand of E has a unique injective
envelope in E, where X is an infinite cardinal such that Soc(E) is K-generated. Observe
also that it is enough to assume that E is quasi-continuous (instead of injective) and, on
the opposite extreme, it can be supposed that E is the minimal injective cogenerator.

If we do not assume that M is quasi-continuous, we can still prove a result similar
to Theorem 2.2 using a stronger uniqueness hypothesis of essential closures. We recall
from [13] that M is called a UC-module if each submodule has a unique essential
closure. On the other hand, M is said to be a CEF-module ([4]) if every closed
submodule is essentially finitely generated. If M is a UC-module, then the assignment
L >-+ £(L) is order-preserving and defines a closure operator (see [14, Chapter III, §7]
for the definition) in the lattice of submodules of M. Suppose that {Q}, is an
independent set of nonzero submodules of the UC-module M with Et — £(C,). Since
the closure operator preserves intersections, {£;}, is also an independent set and if
Yj,..., Yr are subsets of / it is not difficult to show that ©^ n £ , c e T,rk=lEYk, where
EYk = £(©yi£,). Thus we see that the UC property can replace the quasi-continuity in
the last part of the proof of Theorem 2.2 and the argument used there goes through
giving the following result:

Proposition 2.7. Suppose that M is both a UC-module and a CEF-module. If Gd(M)
is infinite and attained in M, then there exists a submodule N of M such that N is a
directed union of closed submodules of M and Gd(M/N) > Gd(M).

We remark that there exist finitely generated injective modules of denumerable
Goldie dimension (cf. [12, p. 263]) which are not UC-modules. These modules satisfy
the hypotheses of Theorem 2.2 and, in particular, we see that the uniqueness
assumption of Theorem 2.2 is substantially weaker than M being UC. However, we do
not know in general whether it is possible to remove this uniqueness hypothesis from
Theorem 2.2 and subsequent corollaries.

An important class of UC-modules is that of nonsingular modules (see, e.g. [13]).
As an immediate consequence of the preceding proposition we have:

Corollary 2.8. If M is a nonsingular CEF-module such that Gd(M) is attained in M,
then Gd(M) < |M|. In particular, if M is a countable nonsingular module, then M is
finite-dimensional if and only if it is a CEF-module.

If we assume that the module M is, furthermore, a CS module, then the CEF
condition reduces to M being essentially finitely generated and we have:

Corollary 2.9. Let M be a nonsingular CS right R-module. Then M is finite-
dimensional if and only if M is essentially finitely generated, Gd(M) is attained in M, and
Gd(M/N) < Gd(M) for every directly split submodule N of M. In particular, any
countable nonsingular CS module is a direct sum of uniform modules, and any countable
right nonsingular right CS ring has a semisimple maximal right quotient ring.
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The CS hypothesis cannot be dropped from Corollary 2.9. Let k be a countable field,
kn — k for each n e N and Q — Ylskn. Then the subring R = k • 1 + ffiNkn of Q, consisting
of the eventually constant sequences of elements of k is a countable Von Neumann
regular ring which is not finite-dimensional. In fact, the ideal L = {(xn)N e R\xn — 0 for
« even} is closed but not essentially finitely generated, so that this ring also shows that
in Corollary 2.8 the hypothesis that M is a CEF-module cannot be replaced by the
weaker assumption that M itself is essentially finitely generated.

Recall that a family of modules {M,|i e /} is locally semi-T-nilpotent if, for any
countable set of non-isomorphisms {/„ : Min ->• M1JI+] } with all in distinct in /, and for
any x e M,, there exists k (depending on x) such that fk.. ./,(x) = 0 ([10]).

Corollary 2.10. Let M be a countable module which is either quasi-continuous or
nonsingular and CS. Then M has a decomposition M = ©,M, with {M,}, locally semi-T-
nilpotent.

Proof. If M is quasi-continuous, then M has an indecomposable decomposition
M — ©,WJ, by Corollary 2.5. Then it follows from [10, Theorem 2.22] that this
decomposition complements direct summands and hence the family {M,}, is locally
semi-T-nilpotent by [10, Theorem 2.26].

If M is nonsingular and CS then M has an indecomposable decomposition M = ©,M,
by Corollary 2.9. Then {Ai,}, is, again, semi-T-nilpotent by [1, Theorem 1]. •

3. Additional results for regular cardinals

We will now show that the results obtained in the preceding section can be strengthened
in the case that Gd(M) — K with K a regular infinite cardinal. We shall need a variation
on Tarski's lemma. We assume, as usual, that the axiom of choice (AC) holds and hence
every set can be well-ordered and we can view a cardinal number as an initial ordinal (cf.
[9, Theorem 9.1.5]). Thus every infinite cardinal x is a limit ordinal and its cojinality
cf(l) is defined as the least ordinal number 0 such that x is the limit of an increasing
sequence of smaller ordinals of length 6 ([9, Definition 10.3.6]). Then cf(x) is a limit
ordinal such that cf(x) < X a n d X is regular when cf(j) = X- Since cf(cf(x)) = c/(x) for each
infinite cardinal x, cf(x) is a regular cardinal.

The following lemma can be obtained from Tarski's lemma, without using the
regularity hypothesis but assuming instead that GCH holds (given / with |/| = K
infinite, just take ft = 2 in Lemma 2.1; see also Lemma 3.3 below). For regular
cardinals (and we need regularity in order to be able to apply the argument of Theorem
2.2, cf. the proof of Theorem 3.2 below), we give a more direct proof that does not
require GCH.

Lemma 3.1. Let I be an infinite set such that |/| = R is a regular cardinal. Then there
exists a set ICC, 2' such that |/C| > K, \X\ = K for each X etC and \X n Y\ < K for
X,Y eK,X / 7.
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Proof. Write / = UAeAA as a union of pairwise disjoint subsets A such that
\A\ — X for each A e A and |.4| = X. Using Zorn's lemma we obtain that there exists a
subset K. of 2' which is maximal with respect to the following properties: (i) A Q K.,
(ii) 1*1 = K for each X e fC, and (iii) \X n Y\ < K for each X, Y e K. such that X ± Y.
It suffices to prove that \JC\ > K. Well-order / and write / = {ija. < X}, where a ranges
over all ordinals strictly smaller than X. Assume that |/C| = |/| and let f: I -*• K. be a
bijection. We claim that, for each ordinal a < N, / ( i j is not contained in Up<J/(i?).
Indeed, if /(i.) c ^ . / ( i , ) , then / ( i j =/( i . ) n (Uf<.f(i,)) - U,<(1(/(i.) n/(i,)), so that

where each |/(ia) n/(i^)| < X because / is injective. Since a < X and K is a regular
cardinal, we obtain that |/(ia)| < X, which gives a contradiction and establishes our
claim.

Consider now a subset Z of / obtained by choosing, for each a < K, an element
h e/0"J such that;; ^U#<a/(ip). It is then clear that \Z\ = K. If X € /C, then there exists
an ordinal y < X such that X =/(iy) and so we have: Zfl AT = Zn/(iy) c (yja < y},
where the last set is an initial segment of the well-ordered set / and hence \Z n X\ < N.
This also shows that Z $K. and contradicts the maximality of fC, completing the
proof. •

We will say that a module M is essentially X<-generated when M contains an
essential ^-generated submodule for some cardinal x < **•

Using the preceding lemma and mimicking the proof of Theorem 2.2 we obtain (in
the injective case; the quasi-continuous case is similar):

Theorem 3.2. Let R be a ring and E an injective module such that Gd(E) — K is
attained in E, with K a regular infinite cardinal. Suppose that E is essentially K*-
generated and that each R"-local direct summand of E has a unique (as a set) injective
envelope contained in E. Then there exists a directly split submodule N of E such that
Gd(E/N) > Gd(E).

Proof. We argue as in the proof of Theorem 2.2 with the following modifications.
Using Lemma 3.1 / can be decomposed in a set K. c 2' such that \fC\ > K, \X\ = X
for each X e K., and \X n Y\ < X for all X, Y e K. such that X # Y. We set
A/" = (i4c /||y4| < K} and define N :— l.A€MEA c E. Exactly as in the proof of Theorem
2.2 we see that N is a directly split submodule of E.

Suppose now that Ex c N for some X e K. and let Lx be an essential ^-generated
submodule of Ex. Then Lx c Ex c N = ~LA^EA and so there exists a set J c J\f such
that |J| < K and Lx c T,AeJEA. Since Lx is essential in Ex, Lx n £, ^ 0 for each i G X
and, as in the proof of Theorem 2.2 we have

eleX(Lx n £,) c Lx c T.A€JEA c EUMJA
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Since |J| < X, \A\ < K for each A e J, and K is a regular cardinal, we have by [9,
Lemma 3.2, p. 161] that | UAeJ A\ < X. Thus we obtain

I UAeJ A \ < H = \X\

and, as in Theorem 2.2 we have a contradiction that shows that Ex is not contained
in N. Therefore, (Ex + N)/N ^ 0 for each X e K.

Exactly as in Theorem 2.2 one shows that these modules are independent and this
completes the proof. •

We do not know whether Theorem 3.2 still holds without assuming Gd{E) regular.
A more general version in which the regularity hypothesis is dropped, can be obtained
if one assumes that GCH holds. If this is the case and X is an infinite cardinal, then
the smallest cardinal x s u c n that X* > X is precisely x — C/(N) (see, e.g. [9, Theorem
10.4.8, Theorem 10.4.10]). Then it follows from Tarski's lemma, with 0 = X that the
following holds:

Lemma 3.3. Assume that GCH holds and let I be an infinite set, with \I\ = X and
c/(X) = x- Then there exists a set K. c 2' such that \K\ > K, |X| = xfor eacn X e K., and
\X n Y\ < xfor X, Y e /C, X # Y.

Using Lemma 3.3 one can drop in Theorem 3.2 the hypothesis that X is regular,
replacing the hypotheses that every K<-local direct summand of E has a unique
injective envelope in E and every direct summand of E has an essential K<-generated
submodule, by the corresponding hypotheses on x = c/(K).
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