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Abstract

We construct irreducible unitary representations of a finitely generated free group which are weakly
contained in the left regular representation and in which a given linear combination of the generators has
an eigenvalue. When the eigenvalue is specified, we conjecture that there is only one such representation.
The representation we have found is described explicitly (modulo inversion of a certain rational map on
Euclidean space) in terms of a positive definite function, and also by means of a quasi-invariant probability
measure on the combinatorial boundary of the group.

2000 Mathematics subject classification: primary 46L54, 22D25.

1. Statement of main result

Let G be the free group on n generators u\, u2,... ,un, where n > 2. For a reduced

word s in G, let \s\t for each index i (respectively y (s)) be the number of occurrences

of M, or u~l (respectively WJ'M, for k ^ j) in s. Given positive numbers cu ... ,cn

and a positive number A. satisfying 2maxcf — J^t <u < * 2 < Jli <u-> l e t (*i> • • • . *«)

be the unique vector in the positive orthant of R" satisfying

for each j . Define numbers au ... ,anby
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The function (f> defined on G by <p(s) = (— ^ xj ) y ' f l aj' is positive definite and
satisfies £ , . c,0Csu,) = X<p(s) for all 5 in G. The associated unitary representation n
is irreducible and weakly contained in the left regular representation (so <j> extends to a
pure state of the reduced group C*-algebra C*(G)). The X-eigenspace of £ \ C,-7T(M,-)

is one-dimensional.

2. Introduction

To make the discussion below flow a bit more smoothly, we will adopt the following
terminology. By a state of G, we mean a unital positive definite function on G. We
will often regard a state of G as a positive linear functional on the complex group
algebra CG, or on the universal C*-algebra C*(G), or (if appropriate) on the reduced
C-algebra C*(G), that is, the C-algebra generated by the image of G in its left
regular representation on 12(G). We call a state reduced if it is bounded with respect
to the operator norm on CG in the left regular representation (and so extends to a state
of C*r(G)). In general, we will use the term reduced to mean 'having to do with the left
regular representation', so for instance the reduced spectrum of an element in C G is its
spectrum in the left regular representation. We will call a unitary representation of G
reduced if it is weakly contained in the left regular representation, that is, if it extends
to a *-representation of C*{G). (We will avoid the locution 'reduced irreducible
representation', however.) For a complex number X and X in CG, a X-eigenstate
for X is a state <f) of G such that <p((X* -X)(X- X)) = 0. This is equivalent to
(f>(s(X — X)) = 0 for all s in G. If n is the unitary representation obtained from <t>
by the Gel'fand-Raikov construction and £0 the corresponding distinguished cyclic
vector, then clearly <p is a A.-eigenstate for X if and only if £0 is a A.-eigenvector for
n (X). Finally, we will call a state of G pure if it is not a proper convex combination of
two different states of G. This is equivalent to irreducibility of the associated unitary
representation.

Consider Y in CG \ {0}. If Y is singular in C*(G), there is at least one reduced
0-eigenstate for Y; this is because unilateral and bilateral invertibility coincide in
C*r(G). We conjectured in [P] that there are only finitely many reduced pure 0-
eigenstates for Y, and proved this when Y = ux + ••• + un - X with \X\ = y/n
(in which case there is a unique reduced 0-eigenstate for Y), and also when Y is a
polynomial in one of the generators (where the reduced pure eigenstates correspond to
distinct zeros of the polynomial on the unit circle). Kuhn and Steger [KS3], using facts
developed in [FTS], have very recently shown that a selfadjoint linear combination X
of the generators and their inverses has a unique reduced A.-eigenstate when X is plus or
minus the reduced spectral radius (= reduced norm) of X. The results in [P] and [KS3]
resemble one another in treating only extreme spectral values, but the techniques of
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proof are utterly different.
At any rate, reduced pure eigenstates for linear combinations of group elements

appear to be special enough that there is some point to seeking them out in simple
cases with a view to describing them and their associated representations in detail.
In what follows, we consider a linear combination X = c\ti\ + • • • + cnun of the
generators. The reduced spectrum of X is the closed annulus with outer radius the
euclidean length of the coefficient vector c, and inner radius either zero if no |c,|2

exceeds the sum of the other |c, |2 's, or else the square root of the largest |c,|2 minus
the sum of the other \CJ | 2 ' s . For A. in the reduced spectrum, the problem we address
is mostly that of finding a reduced A.-eigenstate for X, but at the end of Section 5 we
record another marginal uniqueness result. Namely, when |A.| = \c\ the argument in
[P] goes over essentially verbatim to show that there is only one reduced A.-eigenstate;
the case in which |A| is the inner radius of the spectral annulus (provided the latter
is positive) then follows easily. For other k in the reduced spectrum, we can only
conjecture uniqueness, but it is encouraging that the reduced A.-eigenstate we identify
turns out to be pure, and that the A-eigenspace of X in the associated representation
turns out to be one-dimensional.

In the case of equal coefficients treated in [P], considerations of symmetry and
economy give one a good idea ahead of time of what the formula for a reduced A.-
eigenstate should be. The present case is more suspenseful. We look for the desired
needle in two different haystacks — essentially, among X-eigenstates which are rarely
reduced, and among reduced states which are rarely A.-eigenstates. The states in
the first search venue are defined in terms of the functions | • |, and y>j m a t count,
respectively, the number of M,'S and M~''S in a reduced word, and the number of
u~lUj 's and U~'M,'S. (Thus yy = Yn an^i Yn = 0- Notice also that £ , . | • |, is the usual
length function on G corresponding to the given generators.) We assume henceforth
that the coefficients c, are all positive (else rotate by scalars of modulus one, and
reduce the number of generators if any of the c's vanish). Write c = (cj, c 2 , . . . , cn).
Let B = (by) be a positive nx n matrix with real entries and with 1 's on the diagonal.
Assume further (mostly for convenience) that Be • c > 0. Define the scalar A. and the
vector a = (a\, a2,... , an) by X = \/Bc • c and a = k~lBc. Define <j> on G by

(where we read 0° as 1). Thus, </>(«>) = «;,</>(«;«;) = a,a,, <f>(utujl) = ataj (i ^ j),
<f>(u~lUj) = by (i ^ j), and so on. It turns out that <f> satisfies J2t ci4>(sui) = X(j>(s)
for all s in G (easy), is positive definite on G (moderately difficult), and is pure
(strenuous), which is to say that the unitary representation of G to which 0 gives rise
is irreducible. Our proof of irreducibility relies crucially on a result of Linnell [L]
which says that the kernel of a matrix over CG, viewed as a map between direct sums
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of £2(G)'s, has integer von Neumann dimension. (Linnell's clever argument for this
involves the Fredholm module that is sometimes used in demonstrating the absence
of nontrivial idempotents in C*(G).) We need only the following special case.

THEOREM 2.1. Every nonzero element of CG has zero kernel in the left regular
representation.

The A.'s that arise in the present context are the positive numbers in the spectrum
of ]T CiUi in the universal representation. The latter is the annulus with outer radius
J^c, and inner radius max {0,2 max ct — £<:,}. More restrictively, suppose that
A. is positive and lies in the interior of the spectrum of Yic<u< m t n e left regular
representation, that is, 2maxc2 — ^ c 2 < ^2 < Yl<u- There are many eligible
matrices B such that Be • c = X2. Which one of these—and we imagine there can be
at most one—is such that <pB,c is reduced, that is, extends to a state of C*{G)1

At this point, the search moves to the second haystack, namely boundary repre-
sentations of G. To obtain one of these, take the combinatorial boundary fi of G,
consisting of all reduced one-way infinite strings in the «,-'s and their inverses, topol-
ogize it compactly with cylinder sets Q(s) (= set of strings in Q beginning with the
reduced word s), and put on £2 a Borel probability measure that is quasi-invariant
under the natural left action of G. Let P i , . . . , Pn be measurable functions such that

For each i, we get a unitary operator Ut on L2(fi, n) by setting

and hence a unitary representation n—called a boundary representation—of G on
L2(fi, n). All boundary representations of G are weakly contained in the left regular
representation [Spi], so the states obtained by composing them with vector states are
all reduced. What is needed for our purposes would seem to be readily available:
(1) a probability measure fi (which can be obtained by prescribing the function
s i-+ fi(Q(s)) from G to [0,1] subject to the obvious compatibility requirement),
with the Radon-Nikodym derivatives d\i o u~x/d^i in good shape; and (2) measurable
functions qt of modulus one such that

Ciqi

for /^-almost all co. If P, = qiJd(fi o «, l)/dn, and n is the resulting unitary
representation of G, then the unit constant function 1 is a X.-eigenvector for 52 cin ("•).
and 4> = (7r(-)1,1 > is a state of the type we are seeking.
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A diligent search, however, finds only one such choice of fi and associated <jr,'s
(which turn out to be ±1-valued). This apparatus is described in Section 4 below. We
show there that (/> = (7r()1,1) is of the form 0B^, where the entries of B are obtained
as follows. Let W+ denote the positive orthant of W, and let Dn be the set of points
(si,... , sn) in M."+ satisfying 2 max s,•,— ]T st < 1 < £ s>:. It is shown in the appendix
that the map 5 : R^ -> Dn defined by

S(xu... ,xn) = (l/t)(xl(l+y1),... ,xn(l+yn)),

where

t = 2~J*i and for each j , yj =

is bijective. Notice that (c*A2>.. . , c^/A.2) e Dn. Let

( * , , . . . , jc(,) = 5-'(cf A 2 , . . . t

The matrix B — {0(M~'M ; )} has entry

for i: ^ j . The associated a, 's are given by a, = ^Xj/(t(l + y,)). With this particular
choice of inputs, the state <pB,c becomes the one described in Section 1 above.

We thank the referee of this paper for numerous helpful suggestions, but above
all for supplying the highly efficient topological argument following Proposition 6.3
in the appendix. This permits the bijectivity of the map S described above to be
demonstrated with only a modest amount of explicit calculation.

3. Pure eigenstates

Fix positive numbers cx,... ,cn and a positive (semidefinite) nxn matrix B = (btj)
with real entries such that &,, = 1 for each i. With c = (cu •. • , cn), let X = \/Bc • c.
We assume henceforth that X > 0. Let a = A."1 Be. Define <j> : G -*• R by

where | • |, (respectively yij) counts the number of occurrences of w, or M, ' (respectively
u~lUj or M~'M,) in a reduced word in G. We will show in this section that 0 is a pure
A.-eigenstate of G for £ \ <;,«,.

The algebraic properties of (j> are easily established.
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LEMMA 3.1. (a) The function <f> satisfies:

<*>(!) = 1;
<f>(s) = <t>(s~l) for all s in G;
4>(UJS) = ai4>(s)for s in G not beginning with u~l;
4>(sUi) = at(l>(s)for s in G not ending in the inverse of a generator,
<p(suJlUi) = bij<p(s)for s not ending in Uj.

(b) The properties in part (a) characterize <f> among real functions on G.
(c) For all s in G, we have £ ( C^CSK,) = k<f>(s).

PROOF, (a) All of the ingredients of the definition are unchanged when s is replaced
by s ~'. The y 's and all of the | • |'s except for | • |, are unchanged when s not beginning
with u~l is multiplied on the left by «,. The same is true for right multiplication by
M, provided s does not end in the inverse of a generator. If i ^ j and s does not end
in uj, then right multiplication of s by «"'«, increases ytj, yjt, | • \jy and | • \t by 1,
and leaves all other y's and | • |'s unchanged. Thus the exponent of by = fy, in the
formula for (j> increases by 1, and all other exponents in the formula are unchanged.

(b) The properties in(a)implythat0(«f1) = a,, and furthermore permit calculation
of 4> on words of a given length from its values on words of smaller length.

(c) If 5 does not end in the inverse of a generator, then

E l -w—« Be •
<P(s) = —

Otherwise, s = tuj1 for some t not ending in if, and we have

= k<f>(s),

where we have used bjj = 1, Be = A.3, and^(j) = <l>(s~l) = (piUjT1) = aj<p(t). D

To begin the construction of the representation that has <p as a matrix entry, let G+

be the unital semigroup in G generated by u , , . . . , «„, and let Gf be the set of group
elements in G+ of length k. For k = 1, 2 , . . . , let Ak be the nk x nk matrix with entries
indexed by G^ x Gf whose (s, f)-entry is 4>(s~lt).

LEMMA 3.2. The matrix Ak is positive for k = 1,2,

PROOF. Notice that A\ = B. For the inductive step, regard GjJ"+1 as the disjoint
union of n copies of G£ by writing Gk+l = ux Gk U u2Gk U • • • U un Gk. We can then
write At +i in terms of Ak as an n x n matrix of nk x nk matrices. For 5, t in Gf, we
have

. , -1 -1 , \<Ks-lt) i=j;
4>(s lut

 lu:t) =
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Thus the i, j entry of Ak+l, viewed in this way, is Ak if i = j and by Xk if i ^ j , where

Xp, for a positive integer p, is the matrix of the (positive, one-dimensional) operator

on i2(G+) defined by (Xp|)(s) = (E/6Gj$('WW)0(*)- Notice thatX^ = ( | -3)5

for | in £2(G|). We may write

At+i = Ak <8> / + Xk ® (B - / ) = (At - Xt) ® / + Xk ® B.

in tensor products of G*" x G^ matrices and n x n matrices. Now for s in G+ , we
have <p(itis) = a,«/>(s), whence it follows that Xk+\ = Xk <g> Xi. This means that

Ak+l - X t + I = (Ak - Xk) <8» / + Xk (g> (fl - X,).

Once we show that B — Xi is positive, it will follow by induction that Ak — Xk, and
hence Ak, is positive for all k. For f = (£ i , . . . , £„) in £2(G*), we have

showing B - X! > 0 as promised. n

The Hilbert space / / of the representation we seek is constructed as follows.
By Lemma 3.2, there is for each positive integer k a finite dimensional complex
inner product space Ek spanned by vectors {As : s € Gf) with inner product <•, •>
satisfying (A,, As) = 4>(s~xt). (We write Eo for the one-dimensional inner product
space spanned by the unit vector A i.) Because

for all s, t in G+, we have an isometry from Ek into Ek+l for each it sending A*, for
s in Gk, to A."1 Y^,i Ci AJU(. Let Ho be the Hilbert space inductive limit of the resulting
tower Eo -*• Et -*• E2 -*•••-. Then Ho is the closed linear span of {As : s € G+},
and these vectors satisfy

A, U i =XA s and (A,, As> = <P(s~>t).

Left multiplication by each generator M, gives rise to an isometry V̂  of Ho into itself.
Let H't = H0Q VjH0. For each i, let S~ be the subset of G consisting of the reduced
words ending in M"1. The Hilbert space H is
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For each i, let £/, be the unitary operator on H that maps Ho to ViH0 by Vt, maps
<5u-i <g> H[ to /// = HQQ VJH0 by erasing the tensor, and maps Ss ® r\ to 5U.S ® rj for
all other s ending in the inverse of a generator, and for JJ in the appropriate space Hj.
Denote by n the unitary representation of G on H that takes H* to f/,. Our next goal
is to show that <f) = {n(-)Ax, Ai).

Write Pi for the orthogonal projection of Ho on ///.

LEMMA 3.3. (a) P, A, = A , - a , Au, and If* A! = Su-i ® P, A, + a, Ai.
(b) For s in Uj G+ and i ^ j , we have PiAs = As — <p(u~ls)AUl and

U*AS = Su7> ® P,,AS ;

(c) For r) € UjH0 and i ^ j , we have (1 — Pt)n = (TJ, A U | ) A U I .

PROOF, (a) Both statements follow from the observation that

(AU|I, A, - a,<AUl) = 0(M,7) - a,0(O = 0 for all t in G+.

(b) Notice that (A, - 4>(u~ls)AUi, AUil) = <t>(rlu;ls) - <f>(rl)<j>(u-ls) = 0 for
all t in G+ because there is no cancellation in M~'J.

(c) The A / s with s as in (b) span a dense subspace of UjHQ, so this follows
from (b). D

LEMMA 3.4. For each t in G, the vector n(t)A\ may be written in the form %+hAw,
where h is a real number, w € G+, and $ is either zero or a finite sum of terms Sr ® r]r,
where each r belongs to some S~ and begins with the same generator or inverse
generator as t, and r)r belongs to the corresponding H[. Furthermore, w = 1 if t
begins with the inverse of a generator.

PROOF. This is obvious if t e G+ (the case in which £ = 0). By what we
have observed just above, t = u~l makes £ = &u-i ® PjA;, h = ah and w = 1.
For s in ujG+ and i ^ j , we also have n(u~1s)Ai = 8u-> ® PtAs + <p(uJ1s)A1,
and furthermore 7t(u^lu~1s)Al = Su-iu-i ® PtA, + <p(u~ls)(Su-> <g> PkAt + akAx),
while n(uku~ls)Ai = SUtUj> ® PtAs + <p(u^ls)AUt when Jt ^ i. And so forth—the
asserted form plainly remains intact under further noncancelling left multiplication by
generators or inverse generators. D

PROPOSITION 3.5. For all t in G, we have (n(t) Ai, A,) = <j>{t).

PROOF. Write n(t)A{ = % + hAw as in Lemma 3.4. If t does not begin with u~\
then U& -L Ho and so

(n(Uit)Au A,) = h(AUiW, A,) = ha^(w) = ai(n(t)Au Ai).
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Furthermore, for j ^ i we have U*U& _L Ho and

(7i(uJlUit)Au A,} = h{AUiW, AUj) = h4>(uJ]UiW) = byhfriw) = bij{n(t)Au Ax).

If t begins with ujl, then w = 1, and for any j

{7t{u-'t)Au A,) = (7r(0A,, A.,) = h(Au Au.) = ajh = aj{n(t)Au A,).

Notice also that (7r(/)A,, A^ = (7i(t~l)Au Ai> (because h is real). It now follows
from part (b) of Lemma 3.1 that (TT(-)AI, A,) coincides with <j>. •

THEOREM 3.6. The representation n is irreducible.

PROOF. We begin by noticing that Aj is cyclic for n. Indeed, by Lemma 3.3, the
linear span of n(G) At contains 8u-> <g> P, As for each s in G+ and each /. It follows
that the closed linear span contains each summand £2(S~) <g> H{. Of course, it also
contains HQ because n(s)Ai = As for s in G+.

We will show in several steps that the commutant n (G)' of n (G) consists of scalars.
Our argument makes essential use of Theorem 2.1 above.

CLAIM 1. If T € n(G)', then 7A: is orthogonal to £2(S,~) ® P,; Aj for each i.

PROOF OF CLAIM 1. Since Ai is a A-eigenvector for ^ , C,TT(M/), SO is 7Ai. Thus

= k(TAu A,)

where we have used Lemma 3.3 and the identity J2t a>ci — ^~ This makes

^-. ® P , A , ) = 0 .

Define ^ on G by setting f (r) = (TAU 8, ® P, A,) if f € S~ for some /, and £(f) = 0
for all other t in G. Then £ \ Cjt-(ujlt) = X%(t)

(a) for f in (J. 5," because 7Ai is a X-eigenvector for J^j cin(uj)\
(b) for / = 1 by (*) above, because £(1) = 0; and
(c) for all other t in G because for such / all of the values of £ in the asserted

relationship are zero.

Because the vectors 8, <S> Pi A i that appear in the nonzero part of the definition of £ are
mutually orthogonal and norm-bounded, the function £ belongs to £2{G). The claim
now follows from Theorem 2.1.
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CLAIM 2. For T in n(G)' and s in G+, we have (TAU AUiS) = at{TAi, As) for
each /, and hence {TAX, As) = <p(s){TAu At) for all s in G+.

PROOF OF CLAIM 2. We see using Lemma 3.3 and Claim 1 applied to T* that

(TAU AUiS) = (8u-> ® P,A, + fliA,,

= &.,„;-. <S» PiA,, r A,) + a,<A,, r A,) = a,-(rAlt A,).

The second assertion follows by induction on the length of s.

CLAIM 3. FA, e Ho for r in TT(G)'.

PROOF OF CLAIM 3. It will suffice to show that

for j jt i and s in G+. We proceed more or less as in the proof of Claim 1. Fix s in
G+ and the index i. Define £ on G by setting £(f) = (TAi, 5, ® P, A,,.,) if t € S;"
for somey ^ i, and ^(0 = 0 for all other t in G. Thus £ € £2(G). As in the proof of
Claim 1, we will show that £ must vanish by showing that it satisfies

for all t in G. This identity holds if t e 5,~ or if t ends in a generator because all of
the values of £ that appear are zero. It holds if t € S~ for some j ^ i because TA\
is a A.-eigenvector for J2k ck.n(uk). The only remaining case is t = 1, for which we
must show that ]Tt?t(. ct^(«j') = 0. But

Xai(t>(s)(TAu A,) = AfFA,, AH(1) =

= c,<rA,, A,> + J2 ck(TAu Su7> (8) PtA.,, +

= c^(5)(rAl f A,) + X] bikck<t>{s)(TAu A,)

- Xai<t>(s)(TAu A,)

where we have used Claim 2, Lemma 3.3 above, and Be = ka.
It follows from Claim 2 that TAt - (TAx, At) A, is orthogonal to As for every 5

in G+, and hence 7A, = (TAU A,)A! by Claim 3, for all T in 7r(G)'. Because Ai
is cyclic for n, this proves that n is irreducible. •
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4. Boundary representations

The representations considered in this section are all weakly contained in the left
regular representation, so we must restrict attention to A.'s in the spectrum of J2 c'ui
in that representation.

PROPOSITION 4.1. Let complex coefficients cx,c2,... ,cn be given, and let X =
^2 Ciiij. The reduced spectrum ofX is

where /-2 is zero if none of the |c,|2 's exceeds the sum of the others, and is otherwise
the maximum of the |c,|2 's minus the sum of the others.

PROOF. The spectrum is connected because the reduced C*-algebra of G contains
no nontrivial idempotents [PV]. It is rotationally invariant because there is an auto-
morphism of this C*-algebra that multiplies each w, by a given scalar of modulus one.
Thus, the spectrum must be either a closed disc about 0 or a closed annulus. Let || • ||op

denote the reduced operator norm. Then for every positive integer k we have

l |X*| | 2< | |X*| | o p<(A:+l) | |X*| | 2 ,

where the lower bound is obvious and the upper bound follows from Haagerup's
inequality [H] plus the observation that Xk is a linear combination of words of length k.
Since the coefficient of a yt-fold product of generators in Xk is the corresponding
product of c's, we have

/ -, k/2
I I* II2 — | |A ||2 — I 2_^ \ci\ I

SO

This shows that the reduced spectral radius of X is the 2-norm of the coefficient
vector. It remains to show that we have correctly identified the inner radius r0,
which we do by induction on the number of nonzero coefficients. In the case of
only one nonzero coefficient, say ct, the spectrum is the circle about 0 of radius |ci|,
which plainly coincides with r0. Suppose that the proposition gives the correct inner
radius when there are m — 1 nonzero coefficients. Without loss of generality, we
may assume X = C\U{ + • • • + cm_i«m_i + um, where | c i | , . . . , |cm_i| < 1. Let
Y = (c\Ui + • • • cm_iMm_,)M^'. Notice that wiw~\ • . . , um-\u~l and u~l constitute a
set of free generators for G. There are two cases: (1) \C[\2 + • • • + |cm_i|2 > 1; and
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(2) the contrary. In case (1), the inner radius of the reduced spectrum of Y is at most 1
by our induction hypothesis (plus the assumption that the |c|'s are all at most 1) and
the outer radius is at least 1 by the spectral radius formula already established. Thus
X(= (Y + l)um) is not invertible in the left regular representation, giving r0 = 0 as
required in this case. In case (2), let

r = v / l - | c , | 2 |cm_,|2.

If |A.| < r, then the reduced spectral radius of Y — ku~l is less than 1, and hence
X — X(= (Y — ku~l + l)«m) is invertible in the left regular representation. This shows
that the reduced spectrum of X has inner radius at least r. On the other hand, X — r
is singular in the left regular representation because Y — ru~l has reduced spectral
radius precisely 1. This shows that the reduced spectrum of X has the correct inner
radius in case (2), completing the proof. •

We briefly review some essential facts about the combinatorial boundary of G. Let
V be the set [ut, wj"1, u2, u2

x,... ,un, u~1}. The combinatorial boundary £2 of G is
the set of all infinite strings co = vtv2 • • • where each v, e V and vi+i ^ wj"1 for all
i. It becomes a compact Hausdorff space when equipped with the product topology,
a basis for which consists of cylinder sets described as follows. For each positive
integer k, let pk be the map from £2 to G that reads the first k symbols. For s in G with
\s\ = k, let £2(s) = Pil([s}), that is, the set of strings in £2 beginning with s. Also let
£2(1) = £2. The £2(.s)'s are all open and closed, and form a basis for the topology of
£2. For each s in G, let G(s) be the set of reduced words in G beginning with s, with
G(l) = G. Further le tE, be the orthogonal projection of t2(G) on £2(G(s)), and letA
be the C*-algebra generated by the Es's—that is, the norm closure of their linear span.
Then A is commutative, and A modulo its intersection with the ideal K of compact
operators is easily seen to be isomorphic to C(Q). (Let 0 be a multiplicative linear
functional on A that kills A D K. Since each Es is a one-dimensional operator plus
the sum of Esv over v in V such that sv is reduced, there is a unique co in Q such that
4>(EPin(u>)) = 1 for all m. On the other hand, given co in £2, one obtains a multiplicative
linear functional on A by taking a weak* limit of the vector states {• SPtM, SPtM). In
this way, one has a continuous bijection between £2 and the maximal ideal space of
A/{A n K).) Borel measures on Q are determined by their values on cylinder sets, and
can be defined by prescribing those values subject only to an obvious compatibility
condition. In fact, given any function p. : G —• [0, 1] with /i(l) = 1 such that

veV, \sv\ = \s\ + 1}

for every s in G, there is a Borel probability measure n such that /x(£2 (s)) = jl(s) for
all s. (To see this, notice that for every k, the sum of the values of p. on the words of
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length it is 1. Let £* be yfji times the indicator function of the set of words of length
k, so f* is a unit vector in £2(G). Any weak*-limit of the corresponding vector states
on A gives the desired /z, because (Es%k, l-k} = /z(s) for k > \s\.) We will continue to
use the notation jl for the function on G corresponding to the measure /xonfi .

One type of eligible /t can be specified by choosing functions /J : V -»• [0, 1] and
a : Vx V->- [0, 1] such that

a(w,u') = l, a(v,v~l)=0 Wv e V,

and then setting /2(1) = 1, p,(v) = ^(u) for v in V, and for reduced words of length
two or greater, jx{v\v2 • • • vk) = P(vi)a(vu v2) • • • a(vk_x, vk). (In other words, the
measure /x is the probability measure on the space of sample paths in a Markov chain
with states labeled by V, transition probabilities given by a, and initial probabilities
given by p.) If all of the values of P and of a (except the a(v, v~')'s) are positive,
the measure \x is quasi-invariant under the natural left action of G on £2, and the
Radon-Nikodym derivatives of the translates of fi by the generators of G are easily
calculated. Namely we have

«»
dfi(co)

(ui)a(Ui, v) '
p2{co) = Ui

because for reduced words s of length at least 2, the ratio /A(H,
depends only on the first two symbols in 5 (in the manner indicated by the switches in
the formula).

Let positive numbers C\,c2,... ,cn be given, as well as a positive number k sat-
isfying A.2 < J l / c\ and c2 - ] T ^ ; c* < X2 for j = 1 , . . . , n. Our immediate aim
is to exhibit a Borel probability measure / x o n f i and a unitary representation of G
on L2(Q, fi) in which c{ui + c2u2 + h cnun has A as an eigenvalue. This can be
done fairly cleanly in terms of the inverse of the map 5 defined on the positive orthant
of R" by

x _

It is shown in the appendix that 5 is injective on the positive orthant. Furthermore, the
conditions we have imposed on k ensure that k~2(c\, c 2 , . . . , c2.) belongs to the range
of 5. Accordingly, we write
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As in the appendix, we write / = £,•*,• and ys = t — Xj = Yli^j x<- The measure \i
is the one constructed as in the previous paragraph for fi and a defined by

p(«, ) = -r—, a(Uj,ui )=a(Uj , Ut) = — — , i ^ j ,

and a(Uj, u~x) — 0 = a(u~l, «,). It is readily checked that a and /# satisfy all of the
sum-to-1 conditions of the previous paragraph. Radon-Nikodym derivatives under
translation by the generators are given by

xi/til+yt),

Define P : {w,, u2,... , un) x Q, -> K by

t), pi(co) = Uj, j £ i;P(u,,a>) =

so P(UJ,CO)2 = d/xiUj 1co)/dix(co). Define unitaries U\, U2,... , Un on L2(Q,n)

by (U£)(a)) = P(Ui,a))t-(uYl(o), and let n be the unitary representation of G on
this Hilbert space that sends each M, to the corresponding L/,. It follows from [Spi,
Theorem 2.7] (see also [KS1, Theorem IX]) that n is weakly contained in the left
regular representation.

PROPOSITION 4.2. Wehave^!cijr(ui)'\ = A.1, where 1 is the unit constant Junction
on Q.

PROOF. Since 7T(H,)1 = P(M, , •), this amounts to showing that

for all a). By construction, c,/X = V*;(l + y<)/t for each /. If w e
j , we have

; ') for some
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Otherwise, a> e £2 (w;) for some j , and we have

•
We now take up the project of identifying the reduced state (7r(-)1, 1). Let us

call this state 4>. To begin with, <f> can be expressed in terms of the cocycle P (with
values in the multiplicative group of nonzero reals) o n G x f i that extends the function
P defined above. Thus (n(s)£)(co) = P(s,co)%(s~lco) for 5 in G and co in Q. In
particular, (7r(s)1)(w) = P(s,co) and so 0(5) = fa P(s,co)d(i(co). The cocycle
identity satisfied by P i s P(r5, co) = P(r, co) P(s, r"1 co). Since P(1,CD) = 1,we have
in particular

P(u-\co) = ——

It also follows from the cocycle identity that for an arbitrary reduced word V\V2 • • • vk

with each u, in V we may write P(vi v2 • • • vk, co) as

P(vj, co)P(v2, v^lco)P(vi, V2lv^lco) • • • P(vk, vk\ • • • V2lV[lco).

This formula leads to the following useful observation.

LEMMA 4.3. (a) If the reduced word r begins with u~l for some i, then P(r, •) is
constant on ft(M,) U Q(u2) U • • • U U(un).
(b) On the other hand, P(r, •) is constant on £2(M~') provided r does not begin

with M"1.

PROOF, (a) Write S2(+) = fi(«i) U Q(u2) U • • • U Q(un), and r = u~lv2 • • • vk.
Observe that P(uj\ •) is constant on £2(+), in fact on fi \ £l(u~l). Whether v2 is M;

for some j ^ i or u~\ the factor P(v2, «,-(•)) m t n e formula is constant on fi(+);
notice that M,£2(+) C Q(UJ). The remaining factors in the formula for P(r, •) are
constant on fi(+) because for v in V, the function P(v, •) reads at most only the first
two symbols in its argument.

(b) Suppose r = u~lv2---vk for some j ^ i (and hence v2 56 uj). Observe
that P(u~\ •) is constant on Q.{u~x), in fact on Q \ Q(u~l). We have UjQiu'1) c
S2(M; M^1), SO P (U 2 , M; (•)) is constant on £2(M,~'), and the remaining factors are con-
stant there for the same reason as in part (a). Likewise if r = u} v2 • • • vk (and hence
v2 ^ uj1), the two initial factors P(UJ, •) and P(v2, ujl(-)) are constant on SliuJ1).
The remaining factors are constant on £l(u~') for the same reason as in part (a). •
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We can now undertake the calculation that exhibits </> as one of the states investigated
in Section 3.

PROPOSITION 4.4. For each i and each j different from i, let

XiXj

Then

where | • |; (respectively ytj) counts the number of occurrences ofut or u~l (respectively
u~lUj or u~lUj) in a reduced word in G.

PROOF. The calculation is in three parts.
1. We show first that if j ^ i, and s is a reduced word not beginning with u~x

(including the possibility that s = 1), then ^(u~luts) = bij(f>(s). We have

(ii7V) =

-f
Jn

,co)
P(uhutco)

By Lemma 4.3 (b), there is a number C such that P(s,a>) = C for all a> in Q («,"').
Taking this into account, and looking up values for P(ut, •) and P(UJ , •) in the various
cases that arise, we obtain

_ c
t{X+yi)

Using /t(M; 'K* 1 ) = /J(M, ')a(M, ', u*1), this makes

<p(U-luis)=bij I P(s,co)dix(co)+C[- -
Jn\Q(u-') \ V l+t 1+V;
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+ / ' - •<- • > Xk + xj(l+y>) *«•

- [(by ( 1 + yj ) - (t - X,:- Xj )by - by ].

P(s,co)dfi(co)

Since /x(f2(«~')) = x,/(l + t), the second term is simply the by times the integral of
P(s, •) over J2(M,"'). We are done with the first part of the proof.

2. Next we show that <p(ujS) = at4>(s) if s is a reduced word not beginning with
u~l (including the possibility 5 = 1). To begin with,

(M,5) = (^(5)1,7r(«rl)1)= f P(s,co)P(u-
Jn

= f +T I +Y[ P(s,(o)P(u-\to)dli{fo).
Ja\Q(url) j^j Jniu-'uj) j Jn(u-'u-')

Use Lemma 4.3 (b) to find C such that P(s, co) = C for co in £2(M,"'). Looking up
values for P(u~l, co) in the various cases, we obtain

V '(l + y.-) -Wo--1)

Evaluating the /i's gives

0(M,5) = a/ / P(s,
Jn\Wu~')

= at / P(s, co)dn(co) + —^-(-yi + t)
Ja\Q(u;') 1 + t

f
Jn(ur')

and we are done with the second part of the proof.

/ P(s,a>)dn(co)],
n\n(u;')
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3. Finally we show that (p(sut) = Oj<p(s) if s is either 1 or a reduced word ending
with uj for some j . Let S2(-) = n(u~l) U Q(u^1) U • • • U SI(«;'). Then

Jnt,-)
+ / P(ul,eo)P(s-l,<o)dfi(<o).

J

By Lemma 4.3 (a), we have a C such that P(s~l, w) = C in the first two integrals.
Thus

<P(sUi) = C

_
x, r ( l + r )

P(s~l,(o)dfx((o)

+ «
" +

Jn(-)

since M ( « ( « I ) U • • • U «(«„)) = E t ^(«t) = 1/d + 0-
As we observed in Lemma 3.1, parts 1, 2, and 3 above suffice to establish the

asserted formula for <j>. •

We remark that the a's and &'s above are related as in Section 3. Set bu = 1 for
each i, and let B be the n x n matrix (by). Then B is positive because </> is positive
definite and by = (p(u~lUj). Since Cj/k = V*.(l +y,)/f, the ith entry of Be/A. is

y,) ,

Xi

and Be • c = X ^ , a,c, = A. ^ ( . CJ4>(UJ) = X2 by Proposition 4.2. We thus have the
ingredients for one of the states examined in Section 3, and our <p is <t>Bj for the B we
have described.

We can now record (most of) the main result of this paper; see also Proposition 5.5
below.
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THEOREM 4.5. Given positive numbers C\, c2,... , cn and X satisfying

X2 <Y^c] and cy
2 -J^cf<X2 for j = 1,... , n,

there are unique positive numbers x\,x2,... ,xn such that

for each j . The function 0 defined on G by

where |s|( andy(s) are respectively the number of occurrences in s ofuf1 and Uj luk

for k ^ j , is a reduced pure k-eigenstate for £ . C,M,.

PROOF. See the appendix for the existence and uniqueness of the x,'s. The formula
for 0 follows from Proposition 4.4 above and the observation that the a's and b's there
satisfy by — —tajOj for i ^ j . (Notice as well that y = £ - > t Yjk-) Proposition 4.2
implies that 0 is a A-eigenstate for £( . ctUi. That 0 is pure follows from results in
Section 3 and our identification of 0 as 4>Bj above. Finally, it follows from [Spi,
Theorem 2.7] that 0 is reduced. •

5. Further observations

Somewhat surprisingly, the constant function 1 turns out not to be cyclic for the
boundary representation n described above. Let Hx be the closed linear span of
7r(G)1, so by Proposition 4.4, the restriction Jt{ of n to Hx is one of the irreducible
representations described in Section 3 above. After some preparation, we will show
that the restriction n2 of it to the orthogonal complement H2 of Hi is unitarily
equivalent to it\ 00, where a is the automorphism of G that sends each w, to ujx,
and that the latter is unitarily inequivalent to TXI. This behaviour distinguishes n\
sharply from the representations studied by Kuhn and Steger in [KS1]. It seems
likely that nx belongs to the 'odd' category in the tripartite classification of irreducible
representations proposed and conjectured to be exhaustive in [KS2], but this is a matter
that will have to be pursued elsewhere.

Write Q(±) = \J"j=l Q(ufl) as above, and consider h = -Jt Xnw ~ (l/V^)xn(-).
where the x's are indicator functions. This is a unit vector in L2(Q, fi) because the
measures of Q(+) and Q(-) are respectively 1/(1 + t) and t/(\ + t). We will see
below that H2 is the closed n(G)-invariant subspace generated by h.
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LEMMA 5.1. For v in V and for s in G not ending inv~\we have

either for all co in £2 (+) or for all co in £1 (—).

PROOF. When s = 1, this is immediate from the descriptions just before and
after Proposition 4.2 above for P(ufl, •). Suppose s begins with ufl, so there is no
canceling in s~la> for co in £2 (=f). If s doesn't end in «,-, then

for all co in £2 Of). This takes care of the case v = u~x. If 5 ends in uk for some k,
then P(iii, s~lco) = a, = 0 ( * M , ) / 0 ( S ) for all a> in £2(=F), while if s ends in u^' for
some fc different from i, we have P(ut, s~lco) = —tat = bki/ak = <j>(suj)/<j)(s) for
all co in £1 (^) , which finishes the case v = «,-. D

LEMMA 5.2. Tfte vector /i w orthogonal to ;r(G)1.

PROOF. We must show that

P(s,co)dfi(co) = t P(s,co)dtx(co)

J
for all J in G. This is immediate when s = I, since /i,(J2(u~')) = t(i(Sl(Uj)) for
each 7 . Suppose that (•) holds for some given J in G and that v in V is such that sv
is reduced. We have

P(sv,a>)dfi(o>)=(t>(sv)=

because <(>(s) is the integral of P(s, •) over J2. It follows from Lemma 5.1 and
P(sv, co) = P(s, co)P(v, s~lco) that either the fi(—) summands above are equal, or
the £2(+) summands are. Hence both are equal, and (•) for sv follows from (•) for 5
by multiplying by <j>{sv)/<f>{s). •

We will use the following lemma (which likely holds in much greater generality)
in proving the inequivalence of nx and n2.

LEMMA 5.3. Let Y be a linear combination of 1 and « i , . . . , un for which there
exists f in 12(G) such that Y *f = 8t. Then Y is invertible in the left regular
representation.
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PROOF. Write Y = do + J2i ^ M " where without loss of generality the d's are all
nonzero. Since dof(\) + '£,idif («,"') = L a t least one of / ( l ) , / (w7 ' ) t . . . ,f(u;1)
must be different from zero. Suppose that / (1) =£ 0. For each index j , let gj be
/ times the indicator function of 5;~ (the set of reduced words ending in u~x). One
checks readily that Y * gj = djf(uJl)Sv Thus, gj = djf(ujl)f, by Theorem 2.1.
Since gj(l) = O ^ / ( l ) , this makes gj = 0; that is, / vanishes on each S~. Now fix
distinct indices j and it, and let r(s) = f (suk) if s in S~ and 0 otherwise. As with
the gj's, we have Y * r = dj r(w~')<5i, so r must be a multiple of / , but r(l) = 0, so
r = 0. Continuing in this fashion, we see that/ must be supported on G+, and it then
follows by equating coefficients that / ( l ) = l/do,f(Uj) = —dj/d^, and in general
/ (uhuh •••uj = (-l)mdhdi2 • • • djd£+l. This makes

so |Ji|2 H (- \dn\
2 < \do\

2, so K is invertible by Proposition 4.1.
If/ (1) = 0, then / (ujl) ^ 0 for some; . We have

I dj + douj1 + J2 djiiiUj1 \*(Uj*f) = &i,

and (Uj * /)(1) = / («"'), so we may apply the previous case to the free generators
uj\uiUJl(i*j). •

PROPOSITION 5.4. (a) The subspace H2 is the closed linear span ofn(G)h.
(b) The representation iz-i is unitarily equivalent to 7i\ o a, where a is the automor-

phism of G sending each M, to u~[.
(c) The representations K\ and 7t2 are unitarily inequivalent.

PROOF. Consider the symmetry T : Q —• fi taking each string in £2 to the string
obtained by inverting each symbol. It is immediate that T(£l(s)) = £2(CT(S)). Since

jx(vxv2---vk)

fo r a n o n e m p t y r e d u c e d w o r d V\V2- • -vk w i t h t h e v's i n V, i t f o l l o w s t h a t

dfi(Tco) it, co eco) i t ,
>) ~ ( l / f ,dn{a>)

so /i2 = d(n o T)/d/x. The operator W on L2(fi, /i) defined by

) = h(co)f(Tco)
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is unitary and takes 1 to h. We claim that W intertwines n and n o a. For / in
L2(Q, ii), we have

while

(Wn(Ui)f)(a>) = h(co)P(uh TcS)f(uJlTa>),

(n(u;l)Wf)(co) = h(Uico)P(u-l,co)f(u7lTco).

It is readily checked that h(co)P(Ui, Tco) and /I(M,&))P(H, ', co) are the same for all a>,
namely

(One must check two subcases in each of the two cases above.) The intertwining of
each 7r(«;) with its inverse, and thus of n with n o a, now follows.

Now let K be the closed TT(G)-invariant subspace of L2(Q, fi) generated by 1 and
h. Parts (a) and (b) will both follow once we show that K = L2(Q, /x). Since 1 and
h are linearly independent linear combinations of Xn<+) a n d Xn<-)> these two indicator
functions must both belong to K. We have

1

so
once we show that the matrix

AT for each i. It will follow that each

-tax •••

—ta2 \/a2 • • • —ta2

\ — t a n —tan ••• \ / a n i

is invertible. Multiplying row i by a,(l + yt) for each i and using taf = xt/(\ + yt)
turns this into

~x2 y2

-x, \
-x2

\ ~xn ~*n " ' ' 1 + yn/

whose determinant by Lemma 6.1 in the Appendix is
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We conclude that Xn(Ui) € K for each i. Since

10, if pi(co) = u~[;

at, otherwise,

and since K is 7r(G)-invariant, we see that Xn(u~') = 1 ~ 0/Oi)7i(uJl)xa(Ui) s K.
Suppose we have shown for some k > 1 that xnw € AT for all reduced words s of
length &. For such a word 5 not beginning with u~\ we have

so xn(«ii) G ^ . Likewise, if s does not begin with «,, then

where c = 1 /a, if s begins with a generator inverse, and c = — 1 /(fa,) if s begins with
a generator. We conclude that the indicator function of every cylinder set belongs to
K, showing that K = L2(Q, fj.). This takes care of (a) and (b).

To prove (c), it will suffice to show that J^i c'u7l cannot have X as an eigenvalue
in TTI. We will think of ni as acting on the Hilbert space

n

H = Ho e 0 (eHs;) ® H;)

constructed in Section 3 with a, and by as in Proposition 4.4. Thus, Ho is the closed
linear span of 7Ti(G+)Ai, while H\ is Ho Q n\{Uj)H0, and so forth. Suppose now that
f in H satisfies £ , CiU\ (M,)*^ = A.£. We claim first that £ must be orthogonal to each
subspace 12{S~) <g> Hj. F ix ; , and ?j in //;'. Define/ in 12(G) by

[0, otherwise.

Notice that k{%, 8s®ri) = £ ; c,(£, 7T(M,)(5S ® r?)) for every 5 in G. We obtain

^ [0, otherwise.

by checking the cases s e S~~ \ {w~'J (use 7TI(M;)5, (8) r] = SUjS <g> rj), s = ujl (use
7z-i(w,)<5u-i ® ?j = x] a n d / ( l ) = 0), and 5 ^ SJ separately. This means that

L-
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The assumption is ambient that X — £ c,W; (and hence its adjoint) is not invertible
in the left regular representation, so (£, rj) = 0 by Lemma 5.3, and thus / = 0 by
Theorem 2.1 .

We have so far shown that £ e Ho, and that £ _L Hj (that is, £ e ni (UJ ) Ho) for each
y . Take i / y, for instance i = 1 and j = 2. Using part (c) of Lemma 3.3, we obtain
£ = (£, AUj)Au. = (£, AUj>AUj. This forces £ = 0, because Au, cannot be a scalar
multiple of AUj. (The scalar in question would have to have modulus 1 because these
are unit vectors, and would have to be by to make the inner product with AUj come
out right. However, \by | < 1 because btj is given by the formula in the statement of
Proposition 4.4.) Ill

A reasonable guess about the irreducible representations of G treated in Section 4
is that they are classified up to unitary equivalence by the vector c/X. We leave
this unresolved for now except to note that if one fixes c and changes X, the new
representation is inequivalent to the original one. This is an immediate consequence
of the following proposition.

PROPOSITION 5.5. The only eigenvalue of ^2CJ7TI(UJ) is X. The corresponding
eigenspace is CAi.

PROOF. We use the notation of the proof of part (c) of the previous proposition.
Suppose ^ c,-7ri(M()£ = v£ for some complex number v and some nonzero £ in H.
Fix an indexy, pick r? in Hj and consider g in i.2(G) defined by

[0, otherwise.

One checks readily that (XI,-ciMi ~ v) * 8 = cjg(uJl)$i- Since v belongs to the
reduced spectrum of £ ( ĉ w,, it follows from Lemma 5.3 that giuj1) = 0, so g
vanishes identically by Theorem 2.1. We have shown that £ must belong to Ho- By
Lemma 3.3, then, we have

v($, A,) = £<:,•{$, *,({/,.)• A,) = £ > a , < £ , A,) = A.(§, A,),
i i

and similarly for 5 in G+ and any index y

v(f, A,,,) = cjG, As)+<P(s) [J2cil>ij) (§, A,).

We can't have (£, Ai) = 0, because that would force (£, As) = 0 for all s in G+

and hence £ = 0. Hence v = X. We may assume that (£, At) = 1. The preceding
formula becomes A.(§, Au^) = c, (^, As) + 0(s)(A.a;- - c,-), whence it readily follows
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by induction on the length of s that (£, As) = <j)(s) for every 5 in G+, and thus that
f = As. •

We have so far avoided spectral values on the boundary of the reduced spectrum.
The situation there is simpler and more clear-cut than in the interior (as well as being
qualitatively different in the sense of [KS2]).

THEOREM 5.6. Let A. = ( £ ( c2) , where cu ... , cn are nonnegative and not all
zero. The function <j> defined on G by

^ , ify(s) = 0;

0, otherwise.

where we understand 0° = 1, is the unique reduced X-eigenstate for £ \ ctUi.

PROOF. If only one of the coefficients is nonzero, this is Lemma 4.4 in [P]. Assume
therefore that at least two coefficients are nonzero. The argument from [P] for the
case C] = • • • = cn works here with just a few cosmetic changes.

Let T = A"1 5Z,. c/M,-, thought of as an operator on 12{G). Because 1 belongs to the
reduced spectrum of T, there is a state / on the algebra of bounded operators on I2 (G)
such that/ ((T* — l)(T — l)) = 0. We will be done once we show that the restriction
of/ to G must coincide with <j>. Let S+ be the set of reduced words in G beginning
with some uj, and let S~ = G\ S+. Let P and Q be respectively the orthogonal
projections of 12(G) on £2(S+) and £2(S~), so Q = 1 - P. Suppose we know that
f(P) = 1. For an 5 in G with y(s) > 0 (that is, for s not in G+(G+)~l), we have
P(T*)msTmP = 0 for sufficiently large m, and hence/ (s) = / (P(T*)msTmP) = 0.
On the other hand, if s e G+(G+)~l and suj1 is reduced, then

because y(su~lUj) = 0 for i ̂  j . Likewise f (Uj s) = (Cj/X)f (s) if UjS is reduced.
It now follows easily that/ (s) = <p(s) for s in as well as outside of G+(G+)~'.

We show now that f (P) must be 1. Suppose not, that is, suppose f (Q) > 0.
Consider the state g defined on bounded operators X by g(X) = / (QX Q)/f (Q), so
g(Q) = 1. We have QTT*Q= Q, QT*Q= T* Q, and QTQ= QT. Because T is
in the left kernel of/, this makes g((T - l)(T* - 1)) = 0. The same argument as in
the previous paragraph, mirror-imaged by the automorphism a of G that sends each
M, to M"1, shows thatg = <poa. In particular, we have g(u~'uj) = k~2ctCj for i ^ j .
Consider now/ (u^lUj). We have already observed that

f((Q-QT)(Q-T*Q))=f(Q)g((T-l)(T*-l)) = O,
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so /(Pu;lUj Q) = f (Pu^uj T*Q) = f (0) = 0, and likewise f(Qu~luj P) = 0.
Since also Pu~lUj P = 0, it follows that

f (u;luj) = f (Qu;luj Q) = f (Q)g(u;iuJ) = f (Q)X-2ciCj

for i ^ j . All of these quantities are nonnegative, and at least two are positive. This,
however, contradicts f(T*T) = / ( l ) = 1, because the latter forces the sum over
unequal i and j of ctCjf (u~lUj) to vanish. •

Rotating the generators gets the uniqueness assertion above (with appropriately
modified state formula) for an arbitrary nonzero coefficient vector c and complex
A. with |A,| = \c\. As for the inner boundary of the spectral annulus, if |c ; | is the
maximum of the absolute coefficients, and if

,|2 and |A|2 = |C>|2

then £ \ Ciiij has a unique reduced A.-eigenstate because A H , ' — 5Z,#j ciM; '"i n a s a

unique reduced ^ -eigenstate.

6. Appendix. The map 5

Let W+ denote the positive orthant of R". In this section we study the map
5 : Rn

+ -> R^ defined by

S(xux2,...xn) = (1/O(*i( l +yi),x2(l + y 2 ) , . . . ,JCB(1 +>„)),

where t = ^ , J:, and for each j , yj = J^,-^ x,. We will use this notation—t for the
sum of the x 's, yt for t — x; —throughout our discussion of 5. Our goal is to show that
5 is one-to-one on R+ and that the range of 5 is the open subset Dn of R+ consisting of
the points (s\, s2, ...sn) in R^ such that £ \ st > 1, and for eachy, Sj < 1 + J^.^. st.
That 5(R^.) c Dn is elementary. If s, = JC,-(1 + y,)/r for each i, then

and for each j ,

~ SJ ) = E ^ ( 1 + t-xi) + t-xj(l+t-xJ)

= (t-Xj)(l + t) - Y^t] + t-Xj-tXj +XJ

M E*'
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The derivative of S is easily calculated. For i £ j , the (i, j) entry is given by

_ 3 *,•(! + y , ) _ x,2 - *,

' J ~ 3*; f t2 '

while the diagonal entries are given by 5,', = (y2 + yd/t2. The following lemma will
help show that det 5' is positive on W+.

LEMMA 6.1. Let M be an n x n matrix of the form

rx px

Pi r2

px

p2

\Pn Pn • •• rn;

Let qj — Tj — pj for each j . The determinant of M is J~[. qt + £ . Pj Yli^tj <7;-

PROOF. Subtract the first column of M from the other columns to obtain

detM = •qn) • qn) • qn)

H

•then put qx+ p\ for rx in the first term.

LEMMA 6.2. det(S') >0onRn
+.

PROOF. Notice that

y) + yj - (xj - X j ) = (t- Xj)2 - x j + t = t ( \ + t - 2 x j ) = t ( l + y , - X j ) .

Let Oj = I + yj — Xj . Apply the lemma above to det(f25') and then divide by t"'1 to
write

.. ,xn)

•en) + ( •en) •en)
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Write the first term as ][V (Xj 0\92- • -On) and add the j th term of this sum to the j th of
the remaining terms of P to obtain

If all of the 9 's are positive, we conclude immediately that P > 0. Otherwise, since at
most one xt can exceed the sum of the others, all but one of the 6>'s must be positive.
Assume for definiteness that 9t > 0 for i > 2. Writing )>i as JC2 + • • • + * „ , we have

Ud-
9j +yj9x = xt+yj +y\yj — xtXj, which is positive for j > 2becauseyi > xs

y; > X\. •

Recall the open set Dn defined at the beginning of this section.

LEMMA 6.3. lfo = (a{, a2,... , an) is the limit of a sequence {5(ic(m))}, where
{f(m)}m is a sequence in R"+ with no limit points in R+, then a £ Dn.

PROOF. Omit the superscript m and write

xjV+yj) ,. . ,
Sj = , s j -*• Oj ( j = 1 , . . . , n ) .

Xj + yj

After passing to a subsequence, we may assume that either ;c; ->• 0 for some j , or
Xj -> oo for some j . Suppose that Xj -*• 0 for some j . Notice that this forces
1 > 5j• > Xj eventually along the sequence. If Oj = 0, then a £ Dn, and we are done.
If Oj > 0, we may write

_ XjjSj - 1)

y

and conclude that vy -+ 0. This makes xt -+ 0 for every i, and thus yt -> 0 for
every i. Since

we must have JC,/(X, + yt) -> a, for every i. Since J -̂JCj/Oc,- + y,) = 1, it follows
that J^i fff = 1, so 5 ^ D,. The remaining possibility is that Xj -*• oo for some j .
This makes 1 < Sj < Xj eventually along the sequence, and from

l-Sj/Xj
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it follows that y; -*• cr, — 1. Since j , —• oo for i ^ j , we also have

xt = — >• a,
1 + y, - ^i

for / ^ j . But _fy = Xl,/y •*" s 0 o> — 1 = 5Zi/y a'< which rules a out of Dn. D

The referee of this paper has pointed out that the bijectivity of 5 : R+ -> Dn follows
readily, without any further explicit calculation, from the preceding two lemmas and
some elementary facts in homotopy theory. (For the latter, see [G, Part I] or [Spa,
Chapter 2].) We finish our treatment of 5 by presenting the referee's argument, which
replaces several pages of figuring in the original.

It follows immediately from Lemma 6.3 that S~l (K) is compact for every compact
subset K of Dn (in other words that S : 1+ -» Dn is a proper map), and that S(R"+)
is a closed subset of Dn. Lemma 6.2 implies that the image of 5 is open, so S must
be surjective. The referee kindly supplied the statement and proof of the following
proposition.

PROPOSITION 6.4. A surjective proper local homeomorphism between locally com-
pact Hausdorff spaces is a covering map.

PROOF. Let the map be S : X —> Y. Given y in Y, we must find an open set V
containing y such that 5" ' (V) is the disjoint union of open subsets of X each of which
is mapped homeomorphically onto V by S. The hypotheses on 5 make S~'({;y})
a compact set with no limit points, thus finite, say S-'({;y}) = [xu ... ,xk}. Let
Wu ... , Wk be disjoint open sets such that Xj e W, for each j , and the restriction
of 5 to each W, is a homeomorphism. Let Vo = f]j S(Wj), and for each j , let
Uj = 5"'(Vo) H Wj. Then the £/,'s are disjoint, each Uj contains the corresponding
xj, and 5 maps each Uj homeomorphically onto Vo.

The reason we are not finished at this point is that the Uj's may not exhaust S~' (Vo).
To make the appropriate adjustment, let VJ be an open set containing y such that V{

is a compact subset of Vo, and consider K = 5~'( Vj) \ (J- Uj, which is a compact
subset of X because 5 is proper. Then S(K) is closed, and misses y because K
misses S~l({>»}), so V = Vx \ S(K) is an open set containing y. The open sets
S~'( V) n Uj are disjoint. Each of these sets is mapped homeomorphically onto V
(because V c Vo = S(Uj) for each j), and that their union is 5"'(V) (because
S(x) € V implies x e S"'( V,) \Kc\JUj). •

In the situation of the proposition and its proof, suppose furthermore that X is path-
connected and Y is simply connected. Fix y in Y and suppose that x0, X\ 6 S~] ({y}).
There is a path p inX joining JC0 to xt. Its image S(p) is a loop at y. Because covering
maps have the homotopy lifting property, shrinking the loop S(p) to y through loops
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based at y lifts to an end-point preserving homotopy from p to a path that lies in the

finite set S~l([y]). Thus *o = xi, showing that 5 is injective.

We conclude in particular that the map 5 considered in this section maps R"+

homeomorphically onto Dn.

References

[FTS] A. Figa-Talamanca and T. Steger, 'Harmonic analysis for anisotropic random walks on homo-
geneous trees', Mem. Amer. Math. Soc. 110 (1994), 531.

[G] M. Greenberg, Lectures on algebraic topology (Benjamin, New York, 1966).
[H] U. Haagerup, 'An example of a non nuclear C* -algebra which has the metric approximation

property', Invent. Math. 50 (1979), 279-293.
[KS1] G. Kuhn and T. Steger, 'More irreducible boundary representations'. Duke Math. J. 82 (1996),

381^*36.
[KS2] , 'Monotony of certain free group representations',/ Fund. Analysis 179 (2001), 1-17.
[KS3] , 'Paschke's conjecture for endpoint anisotropic series representations of the free group',

preprint.
[L] P. A. Linnell, 'Division rings and group von Neumann algebras', Forum Math. 5 (1993), 561-576.
[P] W. L. Paschke, 'Pure eigenstates for the sum of generators of the free group'. Pacific J. Math.

197 (2001), 151-171; arXiv:math.OA/9906158.
[PV] M. Pimsner and D. Voiculescu, 'K-groups of reduced crossed products by free groups', J. Op-

erator Theory 8 (1982), 131-156.
[Spa] E. H. Spanier, Algebraic topology (McGraw-Hill, New York, 1966).
[Spi] J. Spielberg, 'Free-product groups, Cuntz-Krieger algebras, and covariant maps', Internal. J.

Math. 2 (1991), 457^*76.

Department of Mathematics

University of Kansas

405 Snow Hall

Lawrence, KS 66045-2142

USA

e-mail: paschke@math.ukans.edu

https://doi.org/10.1017/S144678870000389X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000389X

