
TPLP 21 (2): 145–195, 2021. c© The Author(s), 2020. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion, and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/S1471068420000095 First published online 9 June 2020

145

Omission-Based Abstraction for Answer Set
Programs∗

ZEYNEP G. SARIBATUR and THOMAS EITER
Institute of Logic and Computation, TU Wien, Vienna, Austria
(e-mails: zeynep@kr.tuwien.ac.at, eiter@kr.tuwien.ac.at)

submitted 27 December 2018; revised 30 April 2020; accepted 11 May 2020

Abstract

Abstraction is a well-known approach to simplify a complex problem by over-approximating it
with a deliberate loss of information. It was not considered so far in Answer Set Programming
(ASP), a convenient tool for problem solving. We introduce a method to automatically abstract
ASP programs that preserves their structure by reducing the vocabulary while ensuring an over-
approximation (i.e., each original answer set maps to some abstract answer set). This allows
for generating partial answer set candidates that can help with approximation of reasoning.
Computing the abstract answer sets is intuitively easier due to a smaller search space, at the
cost of encountering spurious answer sets. Faithful (non-spurious) abstractions may be used to
represent projected answer sets and to guide solvers in answer set construction. For dealing
with spurious answer sets, we employ an ASP debugging approach to help with abstraction
refinement, which determines atoms as badly omitted and adds them back in the abstraction.
As a show case, we apply abstraction to explain unsatisfiability of ASP programs in terms of
blocker sets, which are the sets of atoms such that abstraction to them preserves unsatisfiability.
Their usefulness is demonstrated by experimental results.

KEYWORDS: knowledge representation and nonmonotonic reasoning, answer set programming,
abstraction, inconsistency explanation

1 Introduction

Abstraction is an approach that is widely used in Computer Science and AI in order

to simplify problems (cf. Clarke et al . 1994; Kouvaros and Lomuscio 2015; Banihashemi

et al . 2017; Giunchiglia and Walsh 1992; Geißer et al . 2016). When computing solu-

tions for difficult problems, abstraction allows to omit details and reduce the scenarios

to ones that are easier to deal with and to understand. Such an approximation results in

∗ This article is a revised and extended version of the paper presented at the 16th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR 2018), October 30–November
2, 2018, Tempe, Arizona, USA. This work has been supported by the Austrian Science Fund (FWF)
project W1255-N23. The authors thank the reviewers for their constructive comments to improve this
paper, and the authors are in particular grateful for the suggested correction of an error in the original
proof of Theorem 14. The authors acknowledge TU Wien University Library for financial support
through its Open Access Funding Programme.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068420000095
https://orcid.org/0000-0001-8690-5043
https://orcid.org/0000-0001-6003-6345
mailto:zeynep@kr.tuwien.ac.at
mailto:eiter@kr.tuwien.ac.at
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068420000095&domain=pdf
https://doi.org/10.1017/S1471068420000095

146 Z. G. Saribatur and T. Eiter

achieving a smaller or simpler state space, at the price of introducing spurious solutions.

The well-known counterexample guided abstraction and refinement (CEGAR) approach

(Clarke et al . 2003) is based on starting with an initial abstraction on a given program

and checking the desired property over the abstract program. Upon encountering spu-

rious solutions, the abstraction is refined by removing the spurious transitions observed

through the solution so that the spurious solution is eliminated from the abstraction.

This iteration continues until a concrete solution is found.

Surprisingly, abstraction has not been considered much in the context of non-monotonic

knowledge representation and reasoning, and specifically not in Answer Set Programming

(ASP) (Brewka et al . 2011). Simplification methods such as equivalence-based rewriting

(Gebser et al . 2008; Pearce 2004), partial evaluation (Brass and Dix 1997; Janhunen

et al . 2006), or forgetting (see Leite (2017) for a recent survey) have been extensively

studied. However, these methods strive for preserving the semantics of a program, while

abstraction may change the latter and lead to an over-approximation of the models

(answer sets) of a program, in a modified language.

In this paper, we make the first step toward employing the concept of abstraction

in ASP. We are focused on abstraction by omitting atoms from the program and con-

structing an abstract program with the smaller vocabulary, by ensuring that the original

program is over-approximated, that is, every original answer set can be mapped to some

abstract answer set. Due to the decreased size of the search space, finding an answer set

in the abstract program is easier, while one needs to check whether the found abstract

answer set is concrete. As spurious answer sets can be introduced, one may need to go

over all abstract answer sets until a concrete one is found. If the original program has no

answer set, all encountered abstract answer sets will be spurious. To eliminate spurious

answer sets, we use a CEGAR inspired approach, by finding a cause of the spuriousness

with ASP debugging (Brain et al . 2007) and refining the abstraction by adding back

some atoms that are deemed to be “badly-omitted.”

An interesting application area for such an omission-based abstraction in ASP is finding

an explanation for unsatisfiability of programs. Toward this problem, debugging incon-

sistent ASP programs has been investigated, for instance, in Brain et al . (2007), Gebser

et al . (2008), Oetsch et al . (2010), and Dodaro et al . (2015), based on providing the

reason for why an answer set expected by the user is missed. However, these methods do

not address the question why the program has no answer set. We approach the unsatisfi-

ability of an ASP program differently, with the aim to obtain a projection of the program

that shows the cause of the unsatisfiability, without an initial idea on expected solutions.

For example, consider the graphs shown in Figure 1. The one in Figure 1(a) is not 2-

colorable due to the subgraph induced by the nodes 1–2–3, while the one in Figure 1(b)

is not 3-colorable due to the subgraph of the nodes 1–2–3–4. From the original programs

that encode this problem, abstracting away the rules that assigns colors to the nodes

not involved in these subgraphs should still keep the unsatisfiability, thus showing the

actual reason of non-colorability of the graphs. This is related to the well-known notion

of minimal unsatisfiable subsets (unsatisfiable cores) (Liffiton and Sakallah 2008; Lynce

and Silva 2004) that has been investigated in the ASP context (Alviano and Dodaro

2016; Andres et al . 2012), but is less sensitive to the issue of foundedness as it arises

from rule dependencies (for further discussion, see Section 8).

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 147

1

2

3

45

6

7 8

9
1

2 3

4

5

6

7

8

(a) (b)

Fig. 1. Graph coloring instances. (a) A non 2-colorable graph. (b) A non 3-colorable graph.

Our contributions in this paper are briefly summarized as follows.

• We introduce a method to abstract ASP programs Π by omitting atoms in order

to obtain an over-approximation of the answer sets of Π. That is, a program Π′ is

constructed such that each answer set I of Π is abstracted to some answer set I ′

of Π′. While this abstraction is many to one, spurious answer sets of Π′ may exist

that do not correspond to any answer set of Π.

• We present a refinement method inspired by ASP debugging approaches to catch

the badly omitted atoms through the encountered spurious answer sets.

• We introduce the notion of blocker sets as sets of atoms such that abstraction to

them preserves unsatisfiability of a program. A minimal program to the minimal

cause of unsatisfiability.

• We derive complexity results for the notions, such as for checking for spurious

answer sets, for finding minimal sets of atoms to put back in the refinement to

eliminate a spurious solution and for computing a minimal blocker for a program.

In particular, we characterize the complexity of these problems in terms of suitable

complexity classes, which unsurprisingly are intractable in general.

• We report about experiments focusing on unsatisfiable programs and investigate

computing minimal blockers of programs. We compare the results of the abstraction

and refinement approach starting with an initial abstraction (bottom-up) with a

naive top-down approach that omits atoms one-by-one if their omission preserves

unsatisfiability, and observe that the bottom-up approach can obtain smaller sized

blockers.

Overall, abstraction by omission appears to be of interest for ASP, which besides

explaining unsatisfiability can be utilized, among other applications, to over-approximate

reasoning and to represent projected answer sets.

Organization. The remainder of this article is organized as follows. After recalling in the

next section some necessary concepts and fixing the notation, we introduce in Section 3

program abstraction by atom omission and consider some of its basic semantics proper-

ties. In Section 4, we study computational complexity issues for relevant reasoning tasks

around omission, while in Section 5, we turn to the question of abstraction refinement.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

148 Z. G. Saribatur and T. Eiter

As an application of abstraction, we show in Section 6 how it can be used to find reasons

for unsatisfiability of programs and present results obtained by an experimental proto-

type implementation. The subsequent Section 7 discusses some extensions and possible

optimizations, while in Section 8, we address related work. The final Section 9 gives a

short summary and concludes with an outlook on future research.

This article revises and extends the paper presented at KR 2018 in the following re-

spects. First, full proofs of the technical results are provided, and formal notions needed

in this context have been detailed. Second, further properties have been established (e.g.,

Propositions 5, 9, 16, 18, and 20, Theorems 17 and 19), and third, new experimental re-

sults are reported, which also include new benchmarks problems (Disjunctive Scheduling,

15-Puzzle, as well as Graph 3-Coloring). Fourth, the discussion and related work sections

have been significantly extended, by providing more detail and/or considering further

related notions such as relaxation- and equivalence-based rewriting and forgetting from

logic programs. In addition, more examples and explanations have been added, and the

presentation has been restructured.

2 Preliminaries

We consider logic programs Π with rules r of the form

α0 ← α1, . . . , αm,not αm+1, . . . ,not αn, 0≤m≤n, (1)

where each αi is a first-order atom1 and not is default negation; r is a constraint if

α0 is falsity (⊥, then omitted) and a fact if n=0. We also write r as α0←B(r), where

H(r) = α0 is the head of r, or asH(r)← B+(r),not B−(r), where B+(r) = {α1, . . . , αm}
is the positive body and B−(r) = {αm+1, . . . , αn} is the negative body of r, respectively;

furthermore, we let B±(r) = B+(r) ∪B−(r). We occasionally omit r from B±(r), B(r),

etc. if r is understood. To group the rules with the same head α, we use def (α,Π) =

{r ∈ Π | H(r) = α}. As a common syntactic extension, we also consider choice rules of

the form {α} ← B, which stands for the rules α← B,not α and α← B,not α, where α

is a new atom.2

Semantically, Π induces a set of answer sets (Gelfond and Lifschitz 1991), which are

Herbrand models of Π that are justified by the rules. For a ground (variable-free) program

Π, its answer sets are the Herbrand interpretations, that is, subsets I ⊆ A of the ground

atoms A of Π, such that I is a minimal model of fΠI = {r ∈ Π | I |= B(r)} (Faber

et al . 2004).3 The answer sets of a non-ground program Π are the ones of its grounding

grd(Π) =
⋃

r∈Π grd(r), where grd(r) is the set of all instantiations of r over the Herbrand

universe of Π (the set of ground terms constructible from the alphabet of Π). The set of

answer sets of a program Π is denoted as AS(Π). A program Π is unsatisfiable, if AS(Π) =

∅. Throughout this paper, unless stated otherwise, we consider ground (propositional)

programs, that is, Π = grd(Π) holds.

1 Lifting the framework to programs with strong negation is easily possible, where as usual negative
literals ¬p(�t) are viewed as atoms of a positive predicate ¬p and with an additional constraint ←
p(�t),¬p(�t).

2 Choice rules are defined equivalently in the proposed ASP-Core-2 standard (Calimeri et al . 2012), by
using disjunction as α |α← B.

3 For programs with choice rules of the form {α} ← B, an answer set I is identified with the interpre-
tation obtained from I by projecting off auxiliary atoms a.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 149

Example 1

Consider the program Π = {c← not d.; d← not c.; a← not b, c.; b← d.} that has two
answer sets, viz. I1 = {c, a} and I2 = {d, b}; indeed, ΠI1 = {c ← not d.; a ← not b, c.}
and I1 is a minimal model of ΠI1 ; similarly, ΠI2 = {d ← not c.; b ← d.} has I2 among

its minimal models.

The dependency graph of a program Π, denoted GΠ, has vertices A, (positive) edges

from any α0 =H(r) to any α1 ∈ B+(r) and (negative) edges from any α0 =H(r) to any

α2 ∈ B−(r), for all r ∈ Π. For example, in Example 1, GΠ has positive edges a → c

and b → d and negative edges c → d, d → c and a → b. A non-empty set A of atoms

describes an odd loop of Π, if for each pair p, q ∈ A there is a path τ from p to q in GΠ

with an odd number of negative edges; constraints are viewed as simple odd loops. As

well-known, Π is satisfiable, if it contains no odd loop. The program Π in Example 1, for

example, has no odd loop and thus (as already seen) has some answer set. The positive

dependency graph is the dependency graph containing only the positive edges, denoted

by G+
Π. A program Π is tight, if G+

Π is acyclic. A non-empty set A of atoms describes a

positive loop of Π, if for each pair p, q ∈ A, there is a path τ from p to q in G+
Π such that

each atom in τ is in A.

An alternative characterization of answer sets was given in Lee (2005), by using a

notion of externally supportedness as follows. A set A of atoms is externally supported

by Π w.r.t. an interpretation I, if there is a rule r ∈ grd(Π) such that (i) H(r) ∈ A, (ii)

I |= B(r), and (iii) B+(r) ∩ A = ∅. The third condition ensures that the support for

H(r) in A comes from outside of A. Then, I is an answer set of Π iff I |= Π and every

loop A of Π such that A ⊆ I is externally supported by Π w.r.t. I. This characterization

corresponds to one by Leone et al . (1997) in terms of unfounded sets where a set A of

atoms is unfounded w.r.t. an interpretation I iff A is not externally supported by Π w.r.t.

I, that is, atoms in A only have support by themselves. A literal q is unsupported by an

interpretation I, if for each r ∈ def (q,Π), I �B(r) (Van Gelder et al . 1991).

3 Abstraction by omission

Our aim is to over-approximate a given program through constructing a simpler program

by reducing the vocabulary and ensuring that the results of reasoning on the original

program are not lost, at the cost of obtaining spurious answer sets. We propose the

following definition for abstraction of answer set programs.

Definition 1

Given two programs Π and Π′ with |A|≥|A′|, where A,A′ are sets of ground atoms of Π

and Π′, respectively, Π′ is an abstraction of Π if there exists a mapping m : A → A′∪{
}
such that for any answer set I of Π, I ′ = {m(α) | α ∈ I} is an answer set of Π′.

We refer to m as an abstraction mapping. This abstraction notion gives the possibility

to do clustering over atoms of the program. One approach to do this is to omit some of the

atoms from the program, that is, cluster them into
, and consider the abstract program

which is over the remaining atoms. In this paper, we focus on such an omission-based

abstraction.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

150 Z. G. Saribatur and T. Eiter

Definition 2

Given a set A ⊆ A of atoms, an omission (abstraction) mapping is mA :A→A ∪ {
}
such that mA(α)=
 if α∈A and mA(α) = α otherwise.

An omission mapping removes the set A of atoms from the vocabulary and keeps the

rest. We refer to A as the omitted atoms.

Example 2

Consider the below programs Π1,Π2, and Π3 and let the set A of atoms to be omitted

to be {b}.

Π1 Π2 Π3

c← not d. c← not d. {a}.
d← not c. d← not c. {c} ← a.

a← not b, c. {a} ← c. d← not a.

b← d.

AS {c, a}, {d, b} {c, a}, {d}, {c} {c, a}, {d}, {a}

Observe that for I ′1 = {mA(c),mA(a)} = {c, a}, we have I ′1 ∈ AS(Π2) and I ′1 ∈ AS(Π3)

and for I ′2 = {mA(d),mA(b)} = {d}, we have I ′2 ∈ AS(Π2) and I ′2 ∈ AS(Π3). Thus,

according to Definition 1, both of the programs Π2 and Π3 are an abstraction of Π1.

Moreover, they are over-approximations, as they have answer sets {c} and {a}, respec-
tively, which cannot be mapped back to the answer sets of Π1.

Although both Π2 and Π3 are abstractions, notice that the structure of Π2 is more

similar to Π1, while Π3 has an entirely different structure of rules.

Next, we show a systematic way of building, given an ASP program and a set A of

atoms, an abstraction of Π by omitting the atoms in A that we denote by omit(Π, A).

The aim is to ensure that every original answer set of Π is mapped to some abstract

answer set of omit(Π, A), while (unavoidably) some spurious abstract answer sets may

be introduced. Thus, an over-approximation of the original program Π is achieved.

3.1 Program abstraction

The basic method is to project the rules to the non-omitted atoms and introduce choice

when an atom is omitted from a rule body, in order to make sure that the behavior of

the original rule is preserved.

We build from Π an abstract program omit(Π, A) according to the abstraction mA.
For every rule, r : α←B(r) in Π,

omit(r, A) =

⎧⎪⎨
⎪⎩

r if A ∩B± = ∅ ∧ α /∈ A, (a)

{α} ← B+(r) \A,not (B−(r) \A) if A ∩B± �= ∅ ∧ α /∈ A ∪ {⊥}, (b)

 otherwise. (c)

In (o1), we keep the rule as it is, if it does not contain any omitted atom. Item (o2) is

for the case when the rule is not a constraint and the rule head is not in A. Then, the

body of the rule is projected onto the remaining atoms, and a choice is introduced to

the head. Note that we treat default negated atoms, B−(r), similarly, that is, if some

α∈B−(r) ∩ A, then we omit not α from B(r). As for the remaining cases (either the

rule head is in A or the rule is a constraint containing some atom from A), the rule is

omitted by item (o3). We use
 as a symbol for picking no rule.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 151

We sometimes denote omit(Π, A) as Π̂A, where A = A \A, to emphasize that it is an

abstract program constructed with the remaining atoms A. For an interpretation I and

a set S of atoms, I|A and S|A denote the projection to the atoms in A. For a rule r, we

use mA(B(r)) as a shorthand for B(omit(r,A)) to emphasize that the mapping mA is

applied to each atom in the body. Also, the notation B(r) \A is used as a shorthand for

B+(r) \A,not (B−(r) \A).

Example 3

Consider a program Π and its abstraction Π̂A for A = {b, d}, according to the above

steps.

Π Π̂A

c← not d. {c}.
d← not c.

a← not b, c. {a} ← c.

b← d.

AS {c, a}, {d, b} {}, {c}, {c, a}

For I ′1 = {mA(c),mA(a)} = {c, a}, we have I ′1 ∈ AS(Π̂A) and for I ′2 = {mA(d),mA(b)} =
{} we have I ′2 ∈ AS(Π̂A). Thus, every answer set of Π can be mapped to some answer

set of Π̂A, when the omitted atoms are projected away, that is, AS(Π)|A = {{c, a}, {}} ⊆
{{c, a}, {}, {c}} = AS(Π̂A).

Notice that in Π̂A, constraints are omitted if the body contains an omitted atom (item

(o3)). If instead the constraint gets shrunk by just omitting the atom from the body,

then for some interpretation Î, the body may be satisfied, causing Î /∈AS(Π̂A), while

this was not the case in Π for any I ∈AS(Π) with I|A = Î. Thus, I cannot be mapped to

an abstract answer set of Π̂A, that is, Π̂A is not an over-approximation of Π. The next

example illustrates this.

Example 4 (Example 3 continued)

Consider an additional rule {⊥ ← c, b.} in Π, which does not change its answer sets. If

however in the abstraction Π̂A this constraint only gets shrunk to {⊥ ← c.}, by omitting

b from its body, we get AS(Π̂A) = {∅}. This causes Π̂A to have no abstract answer

set to which the original answer set {c, a} can be mapped to. Omitting the constraint

from Π̂A as described above avoids such cases of losing the original answer sets in the

abstraction.

Abstracting choice rules. We focused above on rules of the form α ← B only. However,

the same principle is applicable to choice rules r : {α} ← B(r). When building omit(r,A),

item (o1) keeps the rule as it is, item (o2) removes the omitted atom from B(r) and keeps

the choice in the head, and item (o3) omits the rule. This would be syntactically different

from considering the expanded version (1) α← B(r),not α. (2) α← B(r),not α. where

α is an auxiliary atom. If α is omitted, the rule (2) turns into a guessing rule, but it is

irrelevant as α occurs nowhere else. If α is not omitted but some atom in B, both rules

are turned into guessing rules and the same answer set combinations are achieved as with

keeping r as a choice rule in item (o2). However, the number of auxiliary atoms would

increase, in contrast to treating choice rules r genuinely.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

152 Z. G. Saribatur and T. Eiter

3.2 Over-approximation

The following result shows that omit(Π, A) can be seen as an over-approximation of Π.

Theorem 1

For every answer set I ∈ AS(Π) and atoms A ⊆ A, it holds that I|A ∈ AS(omit(Π, A)).

Proof

Toward a contradiction, assume I is an answer set of Π, but I|A is not an answer set of

omit(Π, A). This can occur because either (i) I|A is not a model of Π′ = omit(Π, A)I|A

or (ii) I|A is not a minimal model of Π′.

(i) If I|A is not a model of Π′, then there exists some rule r ∈ Π′ such that I|A |= B(r)

and I|A �H(r). By the construction of omit(Π, A), r is not obtained by case (o2),

that is, by modifying some original rule to get rid of A, because then r would be an

instantiation of a choice rule with head H(r) = {α}, and thus instantiated to a rule

satisfied by I|A. Consequently, r is a rule from case (o1), and thus r ∈ Π. We note

that I|A and I coincide on all atoms that occur in r. Thus, I|A |= B(r) implies that

I |= B(r), and as I |= r, it follows I |= H(r), which then means I|A |= H(r); this is

a contradiction.

(ii) Suppose I ′ ⊂ I|A is a model of Π′. We claim that then J = I ′ ∪ (I ∩ A) ⊂ I is a

model of ΠI , which would contradict that I ∈ AS(Π). Assume that J �|= ΠI . Then,

J does not satisfy some rule r : α ← B(r) in ΠI , that is, J |= B(r) but J �α, that

is, α /∈ J . The rule r can either be (a) a rule which is not changed for Π′, (b) a rule

that was changed to {α} ← B̂ in Π′, or (c) a rule that was omitted, that is, α ∈ A.

In each case (a)–(c), we arrive at a contradiction:

(a) Since r ∈ ΠI and r involves no atom in A, we have r ∈ Π′. As I|A |= r and J |A
coincides with I ′|A, we have that J |A |= r, and thus J |= r; this contradicts J �α.

(b) By definition of J , we have α ∈ I|A \ I ′. Since J |= B(r), it follows that J |A |= B̂

and since I ′ = J |A that I ′ |= B̂. As I ′ is a model of Π′, we have that I ′ satisfies

the choice atom {α} in the head of the rewritten rule, that is, either (1) α ∈ I ′

or (2) α /∈ I ′; but (1) contradicts α ∈ I|A \ I ′, while (2) means that I ′ is not a

smaller model of Π′ than I|A, as then α ∈ I ′ \ I|A would hold, which is again a

contradiction.

(c) As r is in ΠI , we have I |= B(r) and since I is an answer set of Π, that

I |= α. As α /∈ J , by construction of J, it follows that α /∈ I, which contradicts

I |= α.

By introducing choice rules for any rule that contains an omitted atom, all possible cases

that would be achieved by having the omitted atom in the rule are covered. Thus, the

abstract answer sets cover the original answer sets. On the other hand, not every abstract

answer set may cover some original answer set, which motivates the following notion.

Definition 3

Given a program Π and a set A of atoms, an answer set Î of omit(Π, A) is concrete, if

Î ∈ AS(Π)|A holds, and spurious otherwise.

In other words, a spurious abstract answer set Î cannot be completed to any original

answer set, that is, no extension I = Î ∪X of Î to all atoms (whereX ⊆A) is an answer set

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 153

of Π. This can be alternatively defined in the following way. We introduce the following

set of constraints for A and Î:

QA
Î
= {⊥←not α |α∈ Î} ∪ {⊥←α | α∈A \ Î}. (2)

Informally, QA
Î
is a query for an answer set that concides on the non-omitted atoms with

Î. The following is then easy to see.

Proposition 2

For any program Π and set A of atoms, an abstract answer set Î ∈ AS(omit(Π, A)) is

spurious iff Π ∪QA
Î
is unsatisfiable.

Example 5 (Example 3 continued)

The program Π̂A constructed for A = {a, c} has the answer sets

AS(Π̂A)={{}, {c}, {c, a}}. The abstract answer sets Î1 = {} and Î2 = {c, a} are

concrete since they can be extended to the answers sets I1 = {d, b} and I2 = {c, a} of

Π, as I1|A = Î1 and I2|A = Î2, respectively. On the other hand, the abstract answer

set Î = {c} is spurious: the program Π ∪ QA
Î
, where QA

Î
= {⊥ ← not c.; ⊥ ← a.} is

unsatisfiable, since the constraints in QA
Î

require that c is true and a is false, which

in turn affects that b and d must be false in Π as well; this however violates rule

a← not b, c. in Π.

3.2.1 Refining abstractions

Upon encountering a spurious answer set, one can either continue checking other abstract

answer sets until a concrete one is found or refine the abstraction in order to reach an

abstract program with less spurious answer sets. Formally, refinements are defined as

follows.

Definition 4

Given a omission mapping mA = A → A ∪ {
}, a mapping mA′ = A → A ∪ {
} is a

refinement of mA if A′ ⊆ A.

Intuitively, a refinement is made by adding some of the omitted atoms back.

Example 6 (Example 3 continued)

A mapping that omits the set A′ = {b} is a refinement of the mapping that omits

A = {b, d}, as d is added back. This affects that in the abstraction program, the choice

rule {c}. is turned back to c ← not d. and the rule d ← not c. is undeleted, that is,

omit(Π, A′) = {c ← not d.; d ← not c.; {a} ← c}, which has the abstract answer sets

Ĵ1 = {d}, Ĵ2 = {c, a} and Ĵ3 = {c}. Note that while Ĵ1 and Ĵ2 are concrete, Ĵ3 is spurious;

intuitively, adding d back does not eliminate the spurious answer set {c} of omit(Π, A).

The previous example motivates us to introduce a notion for a set of omitted atoms

that needs to be added back in order to get rid of a spurious answer set.

Definition 5

Let Î ∈ AS(omit(Π, A)) be any spurious abstract answer set of a program Π for omitted

atoms A. A put-back set for Î is any set PB ⊆ A of atoms such that no abstract answer

set Ĵ of omit(Π, A′) where A′ = A \ PB exists with Ĵ |A = Î.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

154 Z. G. Saribatur and T. Eiter

That is, re-introducing the put-back atoms in the abstraction, the spurious answer set

Î is eliminated in the modified abstract program. Notice that multiple put-back sets (even

incomparable ones) are possible, and the existence of some put-back set is guaranteed,

as putting all atoms back, that is, setting PB = A, eliminates the spurious answer set.

Example 7 (Example 3 continued)

The discussion in Example 6 shows that {d} is not a put-back set, for the spurious

answer set Î = {c} ∈ Π̂A, and neither {b} is a put-back set: the abstract program for

A′ = A \ {b} = {d} is omit(Π, A′) = {{c}.; a ← not b, c.; {b}.}, which has {b, c} =

{b, c}|A = Î among its abstract answer sets. Thus, Î has only the trivial put-back set

{b, d}.

In practice, small put-back sets are intuitively preferable to large ones as they keep

higher abstraction; we shall consider such preference in Section 4.

3.3 Properties of omission abstraction

We now consider some basic but useful semantic properties of our formulation of program

abstraction. Notably, it amounts to the original program in the extreme case and reflects

the inconsistency of it in properties of spurious answer sets.

Proposition 3

For any program Π,

(i) omit(Π, ∅) = Π and omit(Π,A∪{⊥}) = ∅.4
(ii) AS(Π) = ∅ iff I = {} is spurious w.r.t. A = A.
(iii) AS(omit(Π, A)) = ∅ implies AS(Π) = ∅.
(iv) AS(Π) = ∅ iff some A ⊆ A has only spurious answer sets iff every omit(Π, A),

A ⊆ A, has only spurious answer sets.

Proof

(i) Omitting the set ∅ from Π causes no change in the rules, while omitting the set

A∪{⊥} causes all the rules to be omitted.

(ii) Since Î = {} and A = A, we have QA
Î

= {}. Thus, by Proposition 2, I = {} is

spurious w.r.t. A = A iff AS(Π ∪QA
Î
) = ∅ iff AS(Π) = ∅.

(iii) Corollary of Theorem 1.

(iv) If AS(Π) = ∅, then no Î ∈ AS(omit(Π, A)) for any A ⊆ A can be extended to an

answer set of Π; thus, all abstract answer sets of omit(Π, A) are spurious. This in

turn trivially implies that omit(Π, A) has for some A ⊆ A only spurious answer sets.

Finally, assume the latter holds but AS(Π) �= ∅; then Π has some answer set I, and

by Theorem 1, I|A ∈ AS(omit(Π, A)), which would contradict that omit(Π, A) has

only spurious answer sets.

The abstract program is built by a syntactic transformation, given the set A of atoms

to be omitted. It turns out that we can omit the atoms sequentially, and the order does

not matter.

4 ⊥ is added to the set of omitted atoms in order to ensure that constraints of form ⊥← are omitted
as well.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 155

Lemma 4

For any program Π and atoms a1, a2 ∈ A, omit(omit(Π, {a1}), {a2}) = omit(omit(Π,

{a2}), {a1}).

Proof

The rules of Π that do not contain a1 or a2 remain unchanged, and the rules that contain

one of a1 or a2 will be updated at the respective abstraction steps. The rules that contain

both a1 and a2 are treated as follows:

• Consider a rule a1 ← B with a2 ∈ B± (wlog). Omitting first a2 from the rule causes to

have {a1} ← B \ {a2}, and omitting then a1 results in omission of the rule. Omitting

first a1 from the rule causes the omission of the rule at the first abstraction step.

• Consider a rule α ← B, with a1, a2 ∈ B± and α �= a1, a2. Omitting first a2 from

the rule causes to have {a} ← B \ {a2}, and omitting then a1 causes to have {a} ←
B \ {a1, a2}. The same rule is obtained when omitting first a1 and then a2.

An easy induction argument shows then the property mentioned above.

Proposition 5

For any program Π and set A = {a1, . . . , an} of atoms,

omit(Π, A) = omit(omit(· · · (omit(Π, {aπ(1)}), · · · {aπ(n−1)}), {aπ(n)}),

where π is any permutation of {1, . . . , n}.

Thus, the abstraction can be done one atom at a time.

Omitting atoms in a program means projecting them away from the answer sets. Thus,

for a mapping mA, the concrete answer sets in omit(Π, A) always have corresponding

answer sets in the programs computed for refinements of mA.

Proposition 6

Suppose Î is a concrete answer set of omit(Π, A) for a program Π and a set A of atoms.

Then, for every A′ ⊆ A, some answer set Î ′ ∈ AS(omit(Π, A′)) exists such that Î ′|A = Î.

Proof

By Definition 3, Î ∈ AS(Π)|A, that is there exists some I ∈ AS(Π) s.t. I|A = Î. By

Theorem 1, for every B ⊆ A, I|B ∈ AS(omit(Π, B)) holds, and in particular for B ⊆ A;

we thus obtain (I|B)|A = I|A = Î.

The next property is convexity of spurious answer sets.

Proposition 7

Suppose Î ∈ AS(omit(Π, A)) is spurious and that omit(Π, A′), where A′⊆A, has some

answer set Î ′ such that Î ′|A = Î. Then, for every A′′ such that A′ ⊆ A′′ ⊆ A, it holds

that Î ′|A′′ ∈ AS(omit(Π, A′′)) and Î ′|A′′ is spurious.

Proof

We first note that Î ′ is spurious as well: if not, some I ∈ AS(Π) exists such that

I|A′ = Î ′; but then I|A = (I|A′)|A = Î ′|A = Î, which contradicts that Î is spurious.

Applying Theorem 1 to omit(Π, A′) and A′′, we obtain that Î ′|A′′ is an answer set of

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

156 Z. G. Saribatur and T. Eiter

omit(omit(Π, A′), A′′), which by Proposition 5 coincides with omit(Π, A′′). Moreover,

Î ′|A′′ is spurious, since otherwise Î would not be spurious either, which would be a

contradiction.

The next proposition intuitively shows that once a spurious answer set is eliminated

by adding back some of the omitted atoms, no extension of this answer set will show up

when further omitted atoms are added back.

Proposition 8

Suppose that Î ∈ AS(omit(Π, A)) is a spurious answer set and PB ⊆ A is a put-back

set for Î. Then, for every A′ ⊆ A \ PB and answer set Î ′ ∈ AS(omit(Π, A \ (PB ∪A′)),

it holds that Î ′|A �= Î.

Proof

Toward a contradiction, assume that for some A′ ⊆ A \ PB and answer set Î ′ ∈
AS(omit(Π, A \ (PB ∪ A′)), it holds that Î ′|A = Î. By Proposition 7, we obtain that Î ′

is spurious and moreover that Î ′|
A\PB

∈ AS(omit(Π, A \ PB) is spurious. However, as

(Î ′|
A\PB

)|A = Î ′|A = Î, this contradicts that PB is a put-back set for Î.

3.4 Faithful abstractions

Ideally, abstraction simplifies a program but does not change its semantics. Our next

notion serves to describe such abstractions.

Definition 6

An abstraction omit(Π, A) is faithful if it has no spurious answer sets.

Faithful abstractions are a syntactic representation of projected answer sets, that is,

AS(omit(Π, A)) = AS(Π)|A. They fully preserve the information contained in the answer

sets and allow for reasoning (both brave and cautious) that is sound and complete over

the projected answer sets.

Example 8 (Example 3 continued)

Consider omitting the set A = {a, c} from Π. The resulting Π̂A is faithful, since its answer

sets {{}, {b, d}} are the ones obtained from projecting {a, c} away from AS(Π).

Π Π̂A

c← not d.

d← not c. {d}.
a← not b, c.

b← d. b← d.

AS {c, a}, {d, b} {}, {d, b}
However, while an abstraction may be faithful, by adding back omitted atoms the

faithfulness might get lost. In particular, if the program Π is satisfiable, then A = A
is a faithful abstraction; by adding back atoms, spurious answer sets might arise. This

motivates the following notion.

Definition 7

A faithful abstraction omit(Π, A) is refinement-safe if for all A′ ⊆ A, omit(Π, A′) has no

spurious answer sets.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 157

In a sense, a refinement-safe faithful abstraction allows us to zoom in details without

losing already established relationships between atoms, as they appear in the abstract

answer sets, and no spuriousness check is needed. In particular, this applies to programs

that are unsatisfiable. By Proposition 3-(iii), unsatisfiability of an abstraction omit(Π, A)

implies that the original program is unsatisfiable, and hence the abstraction is faithful.

Moreover, we obtain:

Proposition 9

Given Π and A, if omit(Π, A) is unsatisfiable, then it is refinement-safe faithful.

Proof

Assume that A is refined to some A′ ⊂ A, where some atoms are added back in the ab-

straction, and the constructed omit(Π, A′) is not unsatisfiable, that is, AS(omit(Π, A′)) �=
∅. By Theorem 1, it must hold that AS(omit(Π, A′))|A ⊆ AS(omit(Π, A)), which con-

tradicts to the fact that omit(Π, A) is unsatisfiable.

4 Computational complexity

In this section, we turn to the computational complexity of reasoning tasks that are

associated with program abstraction. We start with noting that constructing the abstract

program and model checking on it is tractable.

Lemma 10

Given Π and A, (i) the program omit(Π, A) is constructible in logarithmic space, and (ii)

checking whether I ∈ AS(omit(Π, A)) holds for a given I is feasible in polynomial time.

As for item (i), the abstract program omit(Π, A) is easily constructed in a linear scan

of the rules in Π; item (ii) reduces then to answer set checking of an ordinary normal logic

program, which is well-known to be feasible in polynomial time (and in fact P-complete).

However, tractability of abstract answer set checking is lost if we ask in addition for

concreteness or spuriousness.

Proposition 11

Given a program Π, a set A of atoms, and an interpretation I, deciding whether I|A,
is a concrete (resp., spurious) abstract answer set of omit(Π, A) is NP-complete (resp.,

coNP-complete).

Proof

Indeed, we can guess an interpretation J of Π such that (a) JA = IA, (b) JA ∈
AS(omit(Π, A)), and (c) J ∈ AS(Π). By Lemma 10, (b) and (c) are feasible in poly-

nomial time, and thus deciding whether IA is a concrete abstract answer set is in NP.

Similarly, IA is not a spurious abstract answer set iff for some J condition (a) holds and

either (b) fails or (c) holds; this implies coNP membership.

The NP-hardness (resp., coNP-hardness) is immediate from Proposition 3 and the

NP-completeness of deciding answer set existence.

Thus, determining whether a particular abstract answer set causes a loss of information

is intractable in general. If we do not have a candidate answer set at hand, but want to

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

158 Z. G. Saribatur and T. Eiter

know whether the abstraction causes a loss of information with respect to all answer sets

of the original program, then the complexity increases.

Theorem 12

Given a program Π and a set A of atoms, deciding whether some Î ∈ AS(omit(Π, A))

exists that is spurious is Σp
2-complete.

Proof

As for membership in Σp
2, some answer set Î ∈ omit(Π, A) that is spurious can be guessed

and checked by Proposition 11 with a coNP oracle in polynomial time. The Σp
2-hardness is

shown by a reduction from evaluating a QBF ∃X∀Y E(X,Y), where E(X,Y) =
∨k

i=1 Di

is a DNF of conjunctions Di = li1 ∧ · · · ∧ lini
over atoms X = {x1, . . . , xn} and Y =

{y1, . . . , ym} where without loss of generality in each Di some atom from Y occurs.

We construct a program Π as follows:

xi ←not xi. (3)

xi ←not xi. for all xi ∈ X (4)

yj ←not yj ,not sat. (5)

yj ←not yj ,not sat. for all yj ∈ Y (6)

sat←l∗i1 , . . . , l
∗
ini

, (7)

where X = {x1, . . . , xn} and Y = {y1, . . . , ym} are sets of fresh atoms and for each atom

a ∈ X ∪ Y , we let a∗ = a and (¬a)∗ = a. Furthermore, we set A = Y ∪ Y ∪ {sat}.
Intuitively, the answer sets Î of omit(Π, A), which consists of all rules (3) and (4),

correspond 1–1 to the truth assignments σ of X. A particular such Î = Îσ = {xi ∈ X |
σ(xi) = true} ∪{xi | xi ∈ X,σ(xi) = false} is spurious, iff it cannot be extended after

putting back all omitted atoms to an answer set J of Π. Any such J must not include

sat, as otherwise the rules (5) and (6) would not be applicable w.r.t. J , which means

that all yj and Yj would be false in J ; but then sat could not be derived from Π and J ,

as no rule (7) is applicable w.r.t. J by the assumption on the Di.

Now if Îσ is not spurious, then some answer set J of Π as described exists. As sat /∈ J ,

the rules (5) and (6) imply that exactly one of yj and yj is in J , for each yj , and thus

J induces an assignment μ to Y . As no rule (7) is applicable w.r.t. J , it follows that

E(σ(X), μ(Y)) evaluates to false, and thus ∀Y E(σ(X), Y) does not evaluate to true.

Conversely, if ∀Y E(σ(X), Y) does not evaluate to true, then some answer set J of Π

that coincides with Îσ on X ∪ X exists, and hence Îσ is not spurious. In conclusion,

it follows that omit(Π, A) has some spurious answer set iff ∃X∀Y E(X,Y) evaluates to

true.

An immediate consequence of the previous theorem is that checking whether an ab-

straction omit(Π, A) is faithful has complementary complexity.

Corollary 13

Given a program Π and a set A ⊆ A of atoms, deciding whether omit(Π, A) is faithful

is Πp
2-complete.

We next consider the computation of put-back sets, which is needed for the elimination

of spurious answer sets. To describe the complexity, we use some complexity classes

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 159

for search problems, which generalize decision problems in that for a given input, some

(possibly different or none) output values (or solutions) might be computed. Specifically,

FPNP consists of the search problems for which a solution can be computed in polynomial

time with an NP oracle, and FPNP
‖ is analogous but under the restriction that all oracle

calls have to be made at once in parallel. The class FPΣP
k [log, wit], for k ≥ 1, contains

all search problems that can be solved in polynomial time with a witness oracle for Σp
k

(Buss et al . 1993); a witness oracle for Σp
k returns in case of a yes-answer to an instance a

polynomial size witness string that can be checked with a Σp
k−1 oracle in polynomial time.

In particular, for k = 1, that is, for FPNP[log, wit], one can use a SAT oracle and the

witness is a satisfying assignment to a given SAT instance (cf. Janota and Marques-Silva

2016).

While an arbitrary put-back set PB ⊆ A can be trivially obtained (just set PB = A),

computing a minimal put-back set is more involved. Specifically, we have:

Theorem 14

Given a program Π, a set A of atoms, and a spurious answer set Î of omit(Π, A), com-

puting (i) some ⊆-minimal put-back set PB resp. (ii) some smallest size put-back set PB

for Î is in case (i) feasible in FPNP and FPNP
‖ -hard resp. is in case (ii) FPΣP

2 [log, wit]-

complete.

Note that few FPΣP
2 [log, wit]-complete problems are known. The notions of hardness

and completeness are here with respect to a natural polynomial-time reduction between

two problems P1 and P2: there are polynomial-time functions f1 and f2 such that (i) for

every instance x1 of P1, x2 = f1(x1) is an instance of P2, such that x2 has solutions iff

x1 has, and (ii) from every solution s2 of x2, some solution s1 = f2(x1, s2) is obtainable;

note that x1 is here an input parameter to have access to the original input.

Here, we give a proof sketch for Theorem 14. The detailed proof is moved to the Online

Appendix for readability of the paper.

Proof Sketch for Theorem 14

As for (i), we can compute such a set S by an elimination procedure: starting with A′ = ∅,
we repeatedly pick some atom α ∈ A \ A′ and test (+) whether for A′′ = A′ ∪ {α}, the
program omit(Π, A \A′′) has no answer set I ′′ such that I ′′|A = I; if yes, we set A′ := A′′

and make the next pick from A′. Upon termination, S = A′ is a minimal put-back set.

The test (+) can be done with an NP oracle. The hardness for FPNP
‖ is shown by a

reduction from computing, given programs P1, . . . , Pn, the answers q1, . . . , qn to whether

Pi has some answer set.

The membership in case (ii) can be established by a binary search over put-back sets

of bounded size using a Σp
2 witness oracle. The FPΣP

2 [log, wit] hardness is shown by

a reduction from the following problem: given a QBF Φ = ∃X∀Y E(X,Y), compute a

smallest size assignment σ to X such that ∀Y E(σ(X), Y) evaluates to true, knowing that

some σ exists, where the size of σ is the number of atoms set to true. The core idea is

similar to the one in the proof of Theorem 12, but the construction is much more involved

and needs significant modifications and extensions.

We remark that the problem is solvable in polynomial time, if the smallest put-back

set PB has a size bounded by a constant k. Indeed, in this case, we can explore all PB

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

160 Z. G. Saribatur and T. Eiter

of that size and find some answer set Î ′ of omit(Π, A \PB) that coincide with I on A in

polynomial time.

We finally consider the problem of computing some refinement-safe abstraction that

does not remove a given set A0 of atoms.

Theorem 15

Given a set A0 ⊆ A, computing (i) some ⊆-maximal set A ⊆ A \ A0 resp. (ii) some

A ⊆ A \ A0 of largest size such that omit(Π, A) is a refinement-safe faithful abstraction

is in case (i) in FPNP and FPNP
‖ -hard and in case (ii) FPΣP

2 [log, wit]-complete, with

FPΣP
2 [log, wit]-hardness even if A0 = ∅.

Proof

(i) One sets A := ∅ and S := A \A0 initially and then picks an atom α from S and sets

S := S \ {α}. One tests whether (*) omitting A′ ∪ {α}, for every subset A′ ⊆ A, is a

faithful abstraction; if so, then one sets A :=A∪{α}. Then, a next atom α is picked from

S etc. When this process terminates, we have a largest set A such that omitting A from

Π is a faithful abstraction. Indeed, by construction, the final set A fulfills that for each

A′ ⊆ A, omit(Π, A′) is faithful, and thus A is refinement-safe; furthermore A is maximal:

if a larger set A′ ⊃ A would exist, then at the point when α ∈ A′ \ A was considered in

constructing A, the test (*) would not have failed and α ∈ A would hold.

Notably, (*) can be tested with an NP oracle: the conditions fails iff for some A′, the

program omit(Π, A′ ∪ {α}) has a spurious answer set Î. In principle, the spurious check

for Î is difficult (a coNP-complete problem, by our results), but we can take advantage

of knowing that omit(Π, A′) is faithful: so we only need to check whether an extension

of Î is an answer set of omit(Π, A′), and not of Π itself; that is, we only need to check

Î /∈ AS(omit(Π, A′)) and Î ∪ {α} /∈ AS(omit(Π, A′)).

The FPNP
‖ -hardness is shown with a variant of the reduction provided in the FPNP

‖ -

hardness proof of item (i) of Theorem 14. Similar as there, we construct a program Π′
i

for Πi, 1 ≤ i ≤ n, that comprises the first four rules of the program Π′
i there, that is,

Π′
i = {ai ← not bi., bi ← not ai., ⊥ ← not bi.}∪{H(r)← B(r), ai. | r ∈ Πi}. Notice that

Π′
i has the single answer set {bi}. If we omit bi, that is, for A0 = Ai \ {bi} where Ai =

Xi ∪ {ai, bi}, we have that omit(Π′
i, {bi}) = { {ai}. } ∪ {H(r) ← B(r), ai. | r ∈ Πi} has

the answer sets ∅ and S ∪{ai}, for each answer set S of Πi. Consequently, omit(Π′
i, {bi})

is faithful iff Πi has no answer set, and the (unique) maximal Ai ⊆ Ai \ A0 such that

omit(Π′
i, Ai) is a refinement-safe abstraction of Π′

i is (a) Ai = Ai \ A0 = {bi} if Πi is

unsatisfiable and (b) Ai = ∅ otherwise. Furthermore, since each omit(Π′
i, {bi}) admits

answer sets, every maximal A ⊆ {b1, . . . , bn} such that omit(Π′, A) is a refinement-safe

abstraction of Π′ =
⋃

i Π
′
i consists for each Π′

i of a maximal Ai ⊆ Ai \ A0. Thus, A is

unique and bi ∈ A iff Πi is unsatisfiable. This establishes FP
NP
‖ -hardness.

(ii) The proof of FPΣP
2 [log, wit]-completeness is similar as above for Theorem 14. First,

we note that to decide whether some refinement-safe faithful A ⊆ A \A0 of size |A| ≥ k

exists is in Σp
2: a non-deterministic variant of the algorithm for item (i), that picks α

always non-deterministically and finally checks that |A| ≥ k holds establishes this. We

then can run a binary search, using a Σp
2 witness oracle, to find a refinement-safe faithful

abstraction A of largest size. This shows FPΣP
2 [log, wit]-membership.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 161

As for the FPΣP
2 [log, wit]-hardness part, in the proof of FPΣP

2 [log, wit]-hardness for

Theorem 14-(ii) each put-back set PB for the spurious answer set Î = ∅ for A = A
satisfies AS(omit(Π, A\PB)) = ∅, and is thus by Proposition 9 refinement-safe faithful.

As the smallest size PB sets correspond to the maximum size A′ = A \ PB sets, the

FPΣP
2 [log, wit]-hardness follows, even for A0 = ∅.

Thus, computing some subset-maximal set of atoms whose omission does not create

spurious answer sets is significantly easier (under widely adopted complexity hypotheses)

than computing a set of largest size with this property (i.e., retain only as few atoms as

necessary) in the worst case. It also means that for largest size sets, a polynomial time

algorithm with access to an NP oracle is unlikely to exist, and multiple calls to a solver

for ∃∀-QBFs are needed, but a sublinear (logarithmic) number of calls is sufficient if

the QBF-calls return witness assignments (which often applies in practice). In contrast,

whether some subset-maximal set can always be computed with a logarithmic (or more

liberal, sublinear), number of NP oracle calls (with or without witness output) remains

to be seen.

We remark that without refinement safety, the problem of part (i) of Theorem 15 is

likely to be more complex: deciding whether an abstraction is faithful is Πp
2-complete by

Corollary 13, and this question is trivially reducible to computing some ⊆-maximal set

A ⊆ A\A0 such that omit(Π, A) is a faithful abstraction (as A = A\A0 iff omit(Π,A\A0)

is a faithful abstraction).

5 Refinement using debugging

Over-approximation of a program unavoidably introduces spurious answer sets, which

makes it necessary to have an abstraction refinement method. We show how to employ

an ASP debugging approach in order to debug the inconsistency of the original program

Π caused by checking a spurious answer set Î, referred to as inconsistency of Π w.r.t. Î.

We use a meta-level debugging language (Brain et al . 2007), which is based on a tagging

technique that allows one to control the building of answer sets and to manipulate the

evaluation of the program. This is a useful technique for our need to shift the focus

from “debugging the original program” to “debugging the inconsistency caused by the

spurious answer set.” We alter the meta-program, in a way that hints for refining the

abstraction can be obtained. Through debugging, some of the atoms are determined as

badly omitted, and by adding them back in the refinement, the spurious answer set can

be eliminated.

5.1 Debugging meta-program

The meta-program constructed by spock (Brain et al . 2007) introduces tags to control

the building of answer sets. Given a program Π over A and a set N of names for all

rules in Π, it creates an enriched alphabet A+ obtained from A by adding atoms such as

ap(nr), bl(nr), ok(nr), ko(nr) where nr ∈ N for each r ∈ Π. The atoms ap(nr) and bl(nr)

express whether a rule r is applicable or blocked, respectively, while ok(nr), ko(nr) are

used for manipulating the application of r. We omit the atoms ok(nr), as they are not

needed. The (altered) meta-program that is created is as follows.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

162 Z. G. Saribatur and T. Eiter

Definition 8

Given Π, the program Tmeta[Π] consists of the following rules for r ∈ Π, α1 ∈ B+(r), α2 ∈
B−(r):

H(r)← ap(nr),not ko(nr).

ap(nr)← B(r).

bl(nr)← not α1.

bl(nr)← not not α2.

Here, the last rules use double (nested) negation not α2 (Lifschitz et al . 1999), which in

the reduct w.r.t. an interpretation I is replaced by
 if I |= α2, and by ⊥ otherwise. The

role of ko(r) is to avoid the application of the rule H(r)← ap(r),not ko(r) if necessary.

We use it for the rules that are changed due to some omitted atom in the body.

The following properties follow from Brain et al . (2007).

Proposition 16 (Brain et al . 2007)

For a program Π over A, and an answer set X of Tmeta[Π], the following holds for any

r ∈ Π and a ∈ A:

1. ap(nr) ∈ X iff r ∈ ΠX iff bl(nr) /∈ X;

2. if a ∈ X, then ap(nr) ∈ X for some r ∈ def (a,Π);

3. if a /∈ X, then bl(nr) ∈ X for all r ∈ def (a,Π).

The relation between the auxiliary atoms and the original atoms are described below.

Theorem 17 (Brain et al . 2007)

For a program Π over A, the answer sets AS (Π) and AS (Tmeta[Π]) satisfy the following

conditions:

1. If X ∈ AS (Π), then X ∪ {ap(nr) | r ∈ ΠX} ∪ {bl(nr) | r ∈ Π \ΠX} ∈ AS (Tmeta[Π]).

2. If Y ∈ AS (Tmeta[Π]), then Y ∩ A ∈ AS (Π).

Abnormality atoms are introduced to indicate the cause of inconsistency: abp(r) signals

that rule r is falsified under some interpretation, abc(α) points out that α is true but has

no support, and abl(α) indicates that α may be involved in a faulty loop (unfounded or

odd).

Definition 9

Given a program Π over A, and a set A ⊆ A of atoms, the following additional meta-

programs are constructed:

1. TP [Π]: for all r ∈ Π with B±(r) ∩A �= ∅, H(r) /∈ A:

If H(r) �= ⊥:
ko(nr).

{H(r)} ← ap(nr).

abp(nr)← ap(nr),not H(r).

If H(r) = ⊥:
ko(nr).

abp(nr)← ap(nr).

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 163

2. TC [Π,A]: for all α∈A\A with the defining rules def (α,Π)={r1, . . . ,rk}:

{α} ← bl(nr1), . . . , bl(nrk).

abc(α)← α, bl(nr1), . . . , bl(nrk).

3. TA[A]: for all α ∈ A:

{abl(α)} ← not abc(α).

α← abl(α).

The difference from the abnormality atoms in Brain et al . (2007) is that the auxiliary

atoms abp(nr) are only created for the rules which will be changed in the abstraction

(but not omitted, except for constraints which get omitted instead of getting changed

to choice rules) due to A, denoted by Πc
A = {r | r ∈ Π, B±(r) ∩ A �= ∅, H(r) /∈ A},

and the auxiliary atoms abc(a) are created only for the non-omitted atoms. This helps

the search of a concrete interpretation for the partial/abstract interpretation by avoiding

“bad” (i.e., non-supported) guesses of the omitted atoms. Notice that for the rules ri with

H(ri) = α and empty body, we also put bl(nri) so that abc(α) does not get determined,

since one can always guess over α in Π.

Having abl(α) indicates that α is determined through a loop, but it does not necessarily

show that the loop is unfounded (as described through loop formulas in Brain et al . 2007).

By checking whether α only gets support by itself, the unfoundedness can be caught. In

some cases, α could be involved in an odd loop that was disregarded in the abstraction

due to omission, which requires an additional check.

The basic properties of the abnormality atoms follow from Brain et al . (2007).

Proposition 18 (Brain et al . 2007)

Consider a program Π over A, a set A ⊆ A of atoms, and an answer set X of Tmeta[Π]∪
TP [Π] ∪ TC [Π,A] ∪ TA[A].
For each rule r ∈ Πc

A:

1. abp(nr) ∈ X iff ap(nr) ∈ X, bl(nr) /∈ X, and H(r) /∈ X;

2. abp(nr) /∈ X if abc(H(r)) ∈ X or abl(H(r)) ∈ X.

Moreover, for every a ∈ A \A, it holds that:

1. abc(a) ∈ X and abl(a) /∈ X iff a ∈ X and (X ∩ A)� (
∨

r∈def (a,Π) B(r));

2. abc(a) /∈ X if a ∈ X and (X ∩ A) |= (
∨

r∈def (a,Π) B(r));

3. abc(a) /∈ X and abl(a) /∈ X if a /∈ X;

4. abc(a) /∈ X if abl(a) ∈ X.

The next result shows that the answer sets of the translated program that are free

from abnormality atoms correspond to the answer sets of the correctness checking of

an abstract answer set Î over Π using the query QA
Î
. We denote by ABA(Π) the set of

abnormality atoms according to the omitted atoms A, that is, ABA(Π) = {abp(nr) | r ∈
Π, B±(r) ∩A �= ∅, H(r) /∈ A} ∪ {abc(α) | α ∈ A \A} ∪ {abl(α) | α ∈ A}.

Theorem 19

For a program Π over A, a set A ⊆ A of atoms and answer set Î of omit(Π, A), the

following holds.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

164 Z. G. Saribatur and T. Eiter

1. If X is an answer set of Π ∪QA
Î
, then

X ∪ {ko(nr) | r ∈ Πc
A} ∪ {ap(nr) | r ∈ ΠX} ∪ {bl(nr) | r ∈ Π \ΠX}

is an answer set of Tmeta[Π] ∪ TP [Π] ∪ TC [Π,A] ∪ TA[A] ∪QA
Î
.

2. If Y is an answer set of Tmeta[Π] ∪ TP [Π] ∪ TC [Π,A] ∪ TA[A] ∪ QA
Î

such that (Y ∩
ABA(Π)) = ∅, then (Y ∩ A) is an answer set of Π ∪QA

Î
.

The proof is moved to the Online Appendix for clarity of the presentation.

5.2 Determining bad-omission atoms

Whether or not Π is consistent, our focus is on debugging the cause of inconsistency

introduced through checking for a spurious answer set Î, that is, evaluating the program

Π∪QA
Î
from Proposition 2 in Section 3.2. We reason about the inconsistency by inspecting

the reason for having Î ∈ AS(omit(Π, A)) due to some modified rules.

Definition 10

Let r : α← B be a rule in Π such that B±∩A �= ∅ and α /∈ A. The abstract rule r̂ : {α} ←
mA(B) in omit(Π, A) introduces w.r.t. an abstract interpretation Î ∈ AS(omit(Π, A))

(a) a spurious choice, if Î |= mA(B) and Î |= α, that is, Î �|= α, but some model I of

Π \ {r} exists s.t. I|A = Î and I |= B.

(b) a spurious support, if Î |= mA(B) and Î |= α, but some model I of Π exists s.t.

I|A = Î and for all r′ ∈ def (α,Π), I �B(r′).

Any occurrence of the above cases shows that Î is spurious. In case (i), due to Î �|= α,

the rule r is not satisfied by I while I is a model of the remaining rules. In case (ii), an

I that matches Î |= α does not give a supporting rule for α.

Definition 11

Let r : α ← B be a rule in Π such that B± ∩ A �= ∅. The abstract rule r̂ = omit(r,A)

introduces a spurious loop-behavior w.r.t. Î, if some model I of Π exists s.t. I|A = Î and

I |= r, but α is involved in a loop that is unfounded or is odd, due to some α′ ∈ A∩B±.

The need for reasoning about the two possible faulty loop behaviors is shown by the

following examples.

Example 9

Consider the programs Π1,Π2, and their abstractions Π̂1 = Π̂
1{a}, Π̂2 = Π̂

2{a,b}.

Π1 Π̂1 Π2 Π̂2

r1 : a← b. r1 : a← b.

r2 : b← not c, a. {b} ← not c. r2 : b← not a, c.

r3 : c. c.

The program Π1 has the single answer set ∅, and omitting a creates a spurious answer

set {b} disregarding that b in unfounded. The program Π2 is unsatisfiable due to the odd

loop of a and b. When both atoms are omitted, this loop is disregarded, which causes a

spurious answer set {c}.

Bad omission of atoms are then defined as follows.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 165

Definition 12 (Bad omission atoms)

An atom α ∈ A is a bad omission w.r.t. a spurious answer set Î of omit(Π, A), if some

rule r∈Π with α∈B±(r) exists s.t. r̂ = mA(r) introduces either (i) a spurious choice,

or (ii) a spurious support or (iii) a spurious loop-behavior w.r.t. Î.

Intuitively, for case (i) of Definition 10, as α was decided due to choice in H(r̂), we infer

that the omitted atom which caused r to become a choice rule is a bad omission. Also for

case (ii), as α is decided with Î |= B(r̂), we infer that the omitted atom that caused B(r)

to be modified is a bad omission. As for case (iii), it shows that the modification made

on r (either omission or change to choice rule) ignores an unfoundedness or an odd loop.

Case (i) also catches issues that arise due to omitting a constraint in the abstraction.

We now describe how we determine when an omitted atom is a bad omission.

Definition 13 (Bad omission determining program)

The bad omission determining program Tbadomit is constructed using the abnormality

atoms obtained from TP [Π], TC [Π,A] and TA[A] as follows:

1. A bad omission is inferred if the original rule is not satisfied, but applicable (and

satisfied) in the abstract program:

badomit(X, type1)← abp(R), absAp(R),modified(R), omittedAtomFrom(X,R).

2. A bad omission is inferred if the original rule is blocked and the head is unsupported,

while it is applicable (and satisfied) in the abstract program:

badomit(X, type2)← head(R,H), abc(H), absAp(R), changed(R),

omittedAtomFrom(X,R).

3. A bad omission is inferred in case there is unfoundedness or an involvement of an odd

loop, via an omitted atom:

faulty(X)← abl(X), inOddLoop(X,X1), omittedAtom(X1).

faulty(X)← abl(X), inPosLoop(X,X1), omittedAtom(X1).

badomit(X1, type3)← faulty(X), head(R,X),modified(R), absAp(R),

omittedAtomFrom(X1, R),

where absAp(r) is an auxiliary atom to keep track of which original rule becomes appli-

cable with the remaining non-omitted atoms for the abstract interpretation, changed(r)

shows that r is changed to a choice rule in the abstraction, modified(r) shows that r is

either changed or omitted in the abstraction, and omittedAtomFrom(x, r) is an auxiliary

atom that states which atoms are omitted from a rule.

For defining type3 , we check for loops using the encoding in Syrjänen (2006) and

determine inOddLoop and (newly defined) inPosLoop atoms of Π (see Figure 2).

The cases for type2 and type3 introduce as bad omissions the omitted atoms of all

the rules that add to abc(H) being true, or of all rules that have X in the head for

abl(X), respectively. Modifying badomit determination to have a choice over such rules

to be refined (and their omitted atoms to be badomit) and minimizing the number of

badomit atoms reduces the number of added back atoms in a refinement step, at the cost

of increasing the search space.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

166 Z. G. Saribatur and T. Eiter

Fig. 2. Loop checking.

In order to avoid the guesses of abl for omitted atoms even if there is no faulty loop

behavior related with them (i.e., this is not the cause of inconsistency of Î), we add

the constraint ← abl(X),not someFaulty . with the auxiliary definition someFaulty ←
faulty(X).

With all this in place, the program for debugging a spurious answer set is composed

as follows.

Definition 14 (spurious answer set debugging program)

For an abstract answer set Î, we denote by T [Π, Î] the program Tmeta[Π] ∪ TP [Π] ∪
TC [Π,A] ∪ TA[A] ∪ Tbadomit ∪QA

Î
.

Let A∗
A denote the set of all atoms occurring in T [Π, Î] including A+ and additional

atoms introduced in Tbadomit ∪QA
Î
for the set A of omitted atoms. From the answer sets

of T [Π, Î], we can see bad omissions and their types.

Example 10

For the following program, Π, Î = {b} is a spurious answer set of the abstraction for

A = {a, d}:

Π Π̂a,d

r1 : c← not d. {c}.
r2 : d← not c.

r3 : a← not d, c.

r4 : b← a. {b}.

Figure 3 shows the constructed meta-programs of Π. T [Π, Î] gives the answer set that

contains {ap(r2), bl(r1), bl(r4), bl(r3), abc(b), badomit(a, type2)}. The answer set shows
that since c /∈ Î, the rule r1 gets blocked and the rule r2 becomes applicable (which

means d is derived). However, as the rule r3 is blocked, a cannot be derived, and thus

the occurrence of b is unsupported in Π (w.r.t {b, d}), which was avoided in Π̂a,d due to

(badly) omitting a from the body of r4.

The next example shows the need for reasoning about the disregarded positive loops

and odd loops, due to omission.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 167

Fig. 3. Meta-programs Tmeta[Π] (left) and TP [Π] ∪ TC [Π,A] ∪ TA[A] (right) for Example 10.

Example 11 (Example 9 continued)

Figure 4 shows the constructed meta-programs for Π1 and Π2. Recall that

the program Π1 has an unfounded loop between a and b, and the abstrac-

tion Π̂1 = Π̂
1{a} has the spurious answer set {b}. The program T [Π1, {b}]

yields inPosLoop(b, a), ap(r1), ap(r2), abl (b), badomit(a, type3). Omitting from the

program Π2 the loop atoms a, b cause the spurious answer set {c}. Accord-

ingly, T [Π2, {c}] yields ap(r3), inOddLoop(b, a), inOddLoop(a, b), abl (b), ap(r1), bl(r2),

badomit(a, type3), badomit(b, type3), as desired.

The program T [Π, Î] always returns an answer set for Î, due to relaxing Π by tolerating

abnormalities that arise from checking the concreteness for Î.

Proposition 20

For each abstract answer set Î of omit(Π, A), the program T [Π, Î] has an answer set I

such that I ∩A = Î.

Proof

LetX be an interpretation overA∗
A withX∩A = Î. We will show that with the help of the

auxiliary rules/atoms, some interpretation X ′ which is a minimal model of T [Π, Î]X′
can

be reached starting from X. We have the cases (i) X � (T [Π, Î])X and (ii) X |= T [Π, Î]X .

(i) Let r be a ground unsatisfied rule in T [Π, Î]X . This means that X |= B(r) and

X �H(r). We show that X can be changed to some interpretation X ′ that avoids

the condition for X not satisfying r. First, observe that since X ∩ A = Î we have

X |= (QA
Î
)X .

(a) Assume r is in T ′X = (TP [Π] ∪ TC [Π,A] ∪ TA[A] ∪ Tbo)X . The rule r cannot be

an instantiation of the choice rules in TP [Π] ∪ TC [Π,A] ∪ TA[A], as it would be

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

168 Z. G. Saribatur and T. Eiter

Fig. 4. Meta-programs Tmeta[Π1] ∪ TP [Π1] ∪ TC [Π1,A] ∪ TA[A] (left) and
Tmeta[Π2] ∪ TP [Π2] ∪ TC [Π2,A] ∪ TA[A] (right) for Example 11.

instantiated for X, and hence be satisfied. Thus, r can either (a-1) have H(r) ∈
ABA(Π) and be in (TP [Π] ∪ TC [Π,A])X , (a-2) have H(r) = ko(nr′) for some

r′ ∈ Π and be in TP [Π]X , (a-3) be in T X
bo , or (a-4) be of form α ← abl(α)

for some α ∈ A in TA[A]X . For cases (a-1), (a-2), and (a-3), we can construct

X ′ = X ∪ {H(r)} so that X ′ |= H(r) and the reduct T ′X′
will not have further

rules.

As for case (a-4), if α ∈ A, this means α is determined to be false by Î, so we

construct X ′ = (X \ {abl(α)}) ∪ {abl(α)′} so that r does not occur in T ′X′
. If

α /∈ A, then we construct X ′ = X ∪ {α}.
(b) Assume r is in Tmeta[Π]X .

(b-1) If the rule is of form H(r′) ← ap(nr′),not ko(nr′), where B±(r′) ∩ A �= ∅
and H(r′) � A for some r′ ∈ Π, this means ko(nr′) /∈ X. However, rules

for r′ are added in TP [Π] which uses the rule ko(nr′) to deactivate the

meta-rule in Tmeta[Π], which is then also unsatisfied in the reduct TP [Π]X .

So, we construct X ′ = X ∪ {ko(nr′)}. Thus, the rule r does not appear in

Tmeta[Π]X
′
.

(b-2) Let the rule be of form H(r′) ← ap(nr′),not ko(nr′), for some r′ ∈ Π

different from the one in (b-1). We have ap(nr′) ∈ X. Assume X |= B(r′).

If H(r′) = ⊥, then we must have B±(r′)∩A �= ∅ which is handled in (b-1),

since otherwise r′ would occur in omit(Π, A) and contradict that Î is an

answer set. The case H(r′) �= ⊥ cannot occur, since that would mean r′

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 169

occurs in omit(Π, A) and by assumption X should satisfy r′. If X �B(r′),

we construct X ′ = X \ ap(nr′).

(b-3) If r is of form ap(n′
r) ← B(r′) for some r′ ∈ Π, then we construct X ′ =

X ∪ {ap(n′
r)}. If r is of the remaining forms with bl(n′

r), we construct

X ′ = X ∪ {bl(n′
r)}

(ii) If X is a minimal model, then X is an answer set of T [Π, Î], which achieves the result.

We assume this is not the case and that there exists Y ⊂ X such that Y |= T [Π, Î]X .

So, we have Y ∩ A = Î. Thus, there exists α ∈ X \ Y such that α ∈ A∗
A \ A.

Assume α ∈ A. Then ap(nr) /∈ Y should hold for all r ∈ def (α,Π) (to satisfy

the corresponding meta-rules in Tmeta[Π]X). Also TA[A]Y does not contain the rule

α ← abl(α) (since otherwise it would not be satisfied). So, we have abl(α) /∈ Y , but

then we get abl(α)
′ ∈ Y \X which is a contradiction.

If the case α ∈ A∗
A \ A occurs, then we pick Y as the interpretation. If α ∈

ABA(Π)∪HBTbo
, then the reduct T [Π, Î]Y will not have further rules. If α ∈ A+\A,

then we apply the above reasoning for Y . When we recursively continue with this

reasoning, eventually, this case will not be applicable, and thus we can construct a

minimal model. �

The following result shows that T [Π, Î] flags in its answer sets always bad omission of

atoms, which can be utilized for refinement.

Proposition 21

If the abstract answer set Î of omit(Π, A) is spurious, then for every answer set S ∈
AS(T [Π, Î]), badomit(α, i) ∈ S for some α ∈ A and i∈{type1 , type2 , type3}.

Proof

Note that by Proposition 2, we know that the program Π ∪ QA
Î

is unsatisfiable. Thus,

S∩A is not an answer set of Π∪QA
Î
. By Theorem 19, we know that having S∩ABA(Π) = ∅

contradicts with the spuriousness of Î. Thus, we have S ∩ABA(Π) �= ∅.

(a) If abp(nr) ∈ S for some rule r ∈ Π, then either the rule abp(nr)← ap(nr),not H(r)

is in (T [Π, Î])S , that is, ap(nr) ∈ S and H(r) /∈ S, or the rule abp(nr)← ap(nr) is in

(T [Π, Î])S , that is, ap(nr) ∈ S. This unsatisfied rule is then a reason for S ∩ A not

being an answer set of Π∪QA
Î
. Since B±(r)∩A �= ∅, we have S |= B(r) \A, that is,

the auxiliary atom absAp(nr) is true. Then by definition, badomit(α, type1) ∈ S for

α ∈ B±(r) ∩A.

(b) If abc(α) ∈ S for some atom α ∈ A, then the rule abc(α)←α, bl(nr1), . . . , bl(nrk), for

def (α,Π) = {r1, . . . , rk}, is in (T [Π, Î])S , that is, α ∈ S and bl(nr1), . . . , bl(nrk) ∈ S.

This unsupported atom α is then a reason for S ∩ A not being an answer set of

Π ∪ QA
Î
. We know that α is also in Î, due to S |= (QA

Î
)S . This means that the

abstraction r̂i of some rule ri is in omit(Π, A)Î , that is, the auxiliary atom absAp(nri)

is true, while bl(nri) ∈ S. Thus B±(r) ∩ A �= ∅ must hold. Then by definition,

badomit(α′, type2) ∈ S for α′ ∈ B±(r) ∩A.

(c) If abl(α) ∈ S for some atom α ∈ A, then α ∈ S and abc(α) /∈ S. Assume that S ∩ A
is not an answer set of Π ∪QA

Î
due to an odd or unfounded loop L containing α.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

170 Z. G. Saribatur and T. Eiter

We distinguish the cases for α. Let α ∈ A. As abc(α) /∈ S, for some rule ri in

def (α,Π), we have bl(nri) /∈ S, that is, ap(nri) ∈ S and thus S |= B(ri). We know

that α is also in Î, and since Î is an answer set of omit(Π, A), we conclude that there

exists some α′ ∈ B±(r) ∩ A such that α′ ∈ L. This way, for the abstract rule r̂i we

have Î |= B(r̂i), that is, the auxiliary atom absAp(nri) is true. By definition, we get

badomit(α′, type3) ∈ S.

Now, let α ∈ A. Then, each rule ri in def (α,Π) with B±(nri) ∩ L �= ∅ is omitted.

Say α′ ∈ B±(nri)∩L. If α′ ∈ A, by the above reasoning, we get badomit(α′′, type3) ∈
S for some α′′ ∈ B±(r′) ∩ A, for r′ ∈ def (α′,Π). If α′ ∈ A, we recursively do the

same reasoning. Since L is a loop, eventually we reach a rule rim with α ∈ B±(rim).

Without loss of generality, H(rim) is unfoundedly true due to S |= B(r̂im); as α is

omitted from rim , we thus get badomit(α, type3) ∈ S. If there is no such loop L with

α ∈ L, then case (a) or (b) applies for S ∩ A not being an answer set of Π ∪QA
Î
.

The badly omitted atoms Ao ⊆ A w.r.t. a spurious Î ∈ AS(omit(Π, A)) are added

back to refine mA. If Î still occurs in the refined program omit(Π, A \Ao), that is, some

Î ′∈AS(omit(Π, A \ Ao)) with Î ′|A=Î exists, then T [Π, Î ′] finds another possible bad

omission. In the worst case, all omitted atoms A are put back to eliminate Î.

Let A0 = A and Ai+1 = Ai \ BAi, where BAi are the badly omitted atoms for

omit(Π, Ai) w.r.t. an abstract answer set Îi of omit(Π, Ai).

Corollary 22

For a spurious answer set Î, after at most k = |A| steps, omit(Π, Ak) will have no answer

set that matches Î.

Adding back a badly omitted atom may cause a previously omitted rule to appear as

a changed rule in the refined program. Due to this choice rule, the spurious answer set

might not get eliminated. To give a (better) upper bound for the number of required

iterations in order to eliminate a spurious answer set, a trace of the dependencies among

the omitted rules is needed.

The rule dependency graph of Π, denoted Grule
Π = (V,E), shows the positive/negative

dependencies similarly as in GΠ, but at a rule-level, where the vertices V are rules

r ∈ Π and an edge from r to r′ exists in E if H(r′) ∈ B±(r) holds, which is negative if

H(r′) ∈ B−(r) and positive otherwise. For a set A of atoms, nA denotes the maximum

length of a (non-cyclic) path in Grule
Π from some rule r with B±(r) ∩ A �= ∅ backwards

through rules r′ with H(r′) ∈ A. The number nA shows the maximum level of direct or

indirect dependency between omitted atoms and their respective rules.

Proposition 23

Given a program Π, a set A of atoms, and a spurious Î ∈ AS(omit(Π, A)), omit(Π, Ai)

will have no abstract answer set matching Î after at most i = nA iterations.

Proof

Let r0 be a rule with α ∈ B±(r0) ∩ A that is changed to a choice rule due to mA. Let

r0, r1, . . . , rnA
be a dependency path in Grule

Π where H(ri) ∩A �= ∅ and B±(ri) ∩A �= ∅,
0≤ i<nA. Let Î∈AS(omit(Π, A)), assume r0 has spurious behavior w.r.t. Î, and w.l.o.g.

assume Î |= B(ri) \A for all i≤nA.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 171

Due to inconsistency via r0, badomit(α) ∈ AS(T [Π, Î]). For A′=A \ {α}, mA′(r0) is

unchanged, while mA′(r1) becomes a choice rule (with nA−1 dependencies left). Thus,

some I ′ ∈ AS(omit(Π, A′)) with I ′|A = Î can still exist. Since r1 introduces spuriousness

w.r.t. I ′, there is badomit(α′) ∈ AS(T [Π, I ′]) for α′ ∈ B±(r1) ∩A′.

By iterating this process nA times, all omitted rules on which r0 depends are traced

and eventually no abstract answer set matching Î occurs.

We remark that in case more than one dependency path r0, . . . , rnA
with several rules

causing inconsistencies exists, the returned set of badomits from T [Π, Î] allows one to

refine the rules in parallel.

Recall that Proposition 8 ensures that adding back further omitted atoms will not

reintroduce a spurious answer set. Further heuristics on the determination of bad omission

atoms can be applied in order to ensure that a spurious answer set is eliminated in one

step. This will be further elaborated in a discussion in Section 7.3.1

6 Application: catching unsatisfiability reasons of programs

In this section, we consider as an application case the use of abstraction in finding a

cause of unsatisfiability for an ASP program. To this end, we first introduce the notion

of blocker sets for understanding which of the atoms are causing the unsatisfiability.

After describing the implementation, we report about our experiments where the aim

was to observe the use of abstraction and refinement for achieving an over-approximation

of a program that is still unsatisfiable and to compute the ⊆-minimal blockers of the

programs, which projects away the part that is unnecessary for the unsatisfiability.

6.1 Blocker sets of unsatisfiable programs

If a program Π has no answer sets, we can obtain by omitting sufficiently many atoms

from it an abstract program that has some abstract answer set. By Proposition 3-(iv), any

such answer set will be spurious. On the other hand, as long as the abstracted program

has no answer sets, by Proposition 3-(iii) also the original program Π has no answer

set. This motivates us to use omission abstraction in order to catch a “real” cause of

inconsistency in a program. To this end, we introduce the following notion.

Definition 15

A set C ⊆ A of atoms is an (answer set) blocker set of Π if AS(omit(Π,A \ C)) = ∅.

In other words, when we keep the set C of atoms and omit the rest from Π to obtain

the abstract program Π′, then the latter is still unsatisfiable. This means that the atoms

in C are blocking5 the occurrence of answer sets: no answer set is possible as long as

all these atoms are present in the program, regardless of how the omitted atoms will be

evaluated in building an answer set.

5 Note that this concept of blocking is different from the notion of “blocked clauses” used in SAT. There,
the removal of a blocked clause preserves (un)satisfiability, and this simplification does not necessarily
reduce the vocabulary. In our case, the blocker set is the non-omitted set of atoms that remain in the
program and preserve unsatisfiability.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

172 Z. G. Saribatur and T. Eiter

Example 12 (Example 3 continued)

Modify Π by changing the last rule to b← not b., in order to have a program Π′ which

is unsatisfiable. Omitting the set A = {d} from Π′ creates the abstract program Π̂′
{d}

which is still unsatisfiable. Thus, the set C = A \ A = {a, b, c} is a blocker set of Π′.

This is similar for omitting the set A = {a, c}, which then causes to have C = {d, b} as
a blocker set of Π′.

Π′ Π̂′
{d} Π̂′

{a,c}
c← not d. {c}.
d← not c. {d}
a← not b, c. a← not b, c.

b← not b. b← not b. b← not b.

unsatisfiable unsatisfiable unsatisfiable

Notice that C = A, that is, no atom is omitted, is trivially a blocker set if Π is

unsatisfiable, while C = ∅, that is, all atoms are omitted, is never a blocker set since

AS(omit(Π,A)) = {∅}.
We can view a blocker set as an explanation of unsatisfiability; by applying Occam’s

razor, simpler explanations are preferred, which in pure logical terms motivates the fol-

lowing notion.

Definition 16

A blocker set C ⊆ A is ⊂-minimal if for all C ′ ⊂ C, AS(omit(Π,A \ C ′)) �= ∅.

By Proposition 9, in order to test whether a blocker set C is minimal, we only need

to check whether for no C ′ = C \ {c}, for c ∈ C, the abstraction omit(Π,A \ C ′) has

an answer set. That is, for a minimal blocker set C, we have that A \ C is a maximal

unsatisfiable abstraction, that is, a maximal set of atoms that can be omitted while

keeping the unsatisfiability of Π.

Example 13 (Example 12 continued)

The program Π′ has the single minimal blocker set C = {b}. Indeed, the rule b ← not b

does not admit an answer set. Thus, every blocker set must contain b, and C is the

smallest such set.

We remark that the atoms occurring in the blocker sets are intuitively the ones re-

sponsible for the unsatisfiability of the program. In order to observe the reason of un-

satisfiability, one has to look at the remaining abstract program. For this, we consider

the notion of blocker rule set associated with a blocker set C, which are the rules that

remain in omit(Π,A\C). For example, the programs Π′, Π̂′
{d} and Π̂′

{a,c} in Example 12

contain the blocker rule sets associated with {a, b, c, d}, {a, b, c}, and {b, d}, respectively.
Here, the abstract programs contain choice rules due to the omission in the body, and the

unsatisfiability of the programs shows that the evaluation of the respective rule does not

make a difference for unsatisfiability. In other words, whether these rules are projected

to the original rules by removing the choice, for example, {c}. in Π̂′
{d} gets changed to c.,

or whether they are converted into constraints, for example, ← not c, the program will

still be unsatisfiable.

Example 12 illustrated a simple reason for unsatisfiability. However, the introduced no-

tion is also able to capture more complex reasons of unsatisfiability that involve multiple

rules related with each other, which is illustrated in the next example.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 173

Fig. 5. Program for 2-colorability (adapted from the coloring encoding in the ASP
Competition 2013) 6.

Fig. 6. Blocker rule set for 2-colorability of Figure 1(a).

Example 14 (Graph coloring)

Consider coloring the graph shown in Figure 1(a) with two colors green and red. Due

to the clique formed by the nodes 1, 2, 3, it is not 2-colorable. A respective encoding is

shown in Figure 5, which for the given graph reduces by grounding and elimination of

facts to the following rules, where n∈{1, . . . , 9}, and c, c1, c2∈{red, green}:

{chosenColor(n, c)}.
colored(n)← chosenColor(n, c).

← not colored(n).

← chosenColor(n, c1), chosenColor(n, c2), c1 �=c2.

← chosenColor(n1, c), chosenColor(n2, c). nodes n1, n2 are adjacent.

Omitting a node n in the graph means to omit all ground atoms related to n; omitting all

nodes except 1, 2, 3 gives us a blocker set with the corresponding blocker rule set shown

in Figure 6. This abstract program is unsatisfiable and omitting further atoms in the

abstraction yields spurious satisfiability. The set of atoms that remain in the program

is actually the minimal blocker set for this program. We can also observe the property

of unsatisfiable programs being refinement-safe faithful (Proposition 9), as refining the

shown abstraction by adding back atoms relevant with the other nodes will still yield

unsatisfiable programs.

6 This natural encoding was changed to a different, more technical one in later editions of the ASP
Competition (Gebser et al . 2015; 2017).

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

174 Z. G. Saribatur and T. Eiter

Algorithm 1: Abs&Ref.

Input: Π, Ainit

Output: Π′ = omit(Π, A′), A′

1 A′ = Ainit;

2 Π′ = constructAbsProg(Π, A′);

3 while AS(Π′) �= ∅ do
4 Get I ∈ AS(Π′);

5 Πdebug = constructDebugProg(Π, A′, I);

6 S = getASWithMinBadOmit(Πdebug);

7 if S|badomit = ∅ then /* I concrete */

8 return Π′, A′

9 else /* refine the abstraction */

10 A′ = A′ \ S|badomit ;

11 Π′ = constructAbsProg(Π, A′);

12 /* reached an unsatisfiable Π′ */

13 return Π′, A′

For the introduced notions of blocker sets, the below result follows from Theorem 15.

Corollary 24

Computing (i) some ⊆-minimal respectively (ii) some smallest size blocker C ⊆ A for

a given program Π is (i) in FPNP and FPNP
‖ -hard respectively (ii) FPΣP

2 [log, wit]-

complete.

The membership follows for the case that Π has no answer sets, and the hardness by

the reduction in the proof of Theorem 15.

6.2 Implementation

The experiments have been conducted with a tool7 that we have implemented according

to the described method. It uses Python, Clingo (Gebser et al . 2011), and the meta-

program output of the Spock debugger (Brain et al . 2007).

The procedure for the abstraction and refinement method is shown in Algorithm 1.

Given a program Π and a set Ainit of atoms to be omitted, first the abstract program

Π′ = omit(Π, Ainit) is constructed (line 2). If the abstract program is unsatisfiable, the

program and the set of omitted atoms are returned (line 13). Otherwise, an answer set

I ∈ AS(omit(Π, Ainit)) is computed. In the implementation, the first answer set is picked.

In order to check whether I is concrete, the meta-program Πdebug = T [Π, Î] as described
in Section 5 is constructed (line 5). Then, a search over the answer sets of T [Π, Î] for
a minimum number of badomit atoms is carried out (line 6). If an answer set with no

badomit atoms exists, then this shows that I is concrete, and the abstract program and

the set of omitted atoms are returned (line 8). Otherwise, the set of omitted atoms is

refined by removing the atoms that are determined as badly omitted, and a new abstract

program is constructed with the refined abstraction A′. This loop continues until either

7 www.kr.tuwien.ac.at/research/systems/abstraction.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

www.kr.tuwien.ac.at/research/systems/abstraction
https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 175

Fig. 7. System structure of the implementation.

Algorithm 2: ComputeMinBlocker.

Input: Π, A, A s.t. AS(Π, A)= ∅
Output: a ⊆-minimal blocker set Cmin⊆A\A

1 forall α ∈ A \A do

2 Π′ = constructAbsProg(Π, {α});
3 if AS(Π′) = ∅ then
4 A = A ∪ {α};
5 Π = Π′;

6 return Cmin = A \A

the abstract program Π′ constructed at line 11 is unsatisfiable or its first answer set is

concrete.

Figure 7 shows the implemented system according to Algorithm 1 with the respective

components. The arcs model both control and data flow within the tool. The workflow of

the tool is as follows. First, the input program Π and the set A of atoms to be omitted are

read. Then, the control component calls the abstraction creator component which uses

Π and A to create the abstract program Π̂A 1 . The controller then calls the ASP Solver

to get an answer set of Π̂A 2 . If the solver finds no answer set, the controller outputs

the abstract program and the set of omitted atoms. Otherwise, it calls the refinement

component with the abstract answer set Î to check spuriousness and to decide whether

or not to refine the abstraction 3 . The refinement component calls the checker creator

4 to create T [Π, Î], which uses Spock 5 , and then calls the ASP solver to check whether

Î is concrete 6 . If not, that is, when Î is spurious, it refines the abstraction by updating

A (to A′) 7 . Otherwise, the controller returns the outputs.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

176 Z. G. Saribatur and T. Eiter

The computation of a ⊆-minimal blocker set of an unsatisfiable program, given an

initial set of omission atoms A, is shown in Algorithm 2; it derives from computing some

⊆-minimal put-back set (Theorem 14), by taking into account that minimal blocker

sets amount to minimal put-back set for unsatisfiability. The procedure checks whether

omitting an atom α ∈ A\A from Π preserves unsatisfiability. If yes, the atom is added to

A and the search continues from the newly constructed abstract program omit(Π, {α}).
Once all the atoms are examined, the atoms that are not omitted constitute/form a

⊆-minimal blocker set, provided that AS(Π, A) is unsatisfiable.

6.3 Experiments

In our experiments, we wanted to observe the use of abstraction in catching the part

of the program which causes unsatisfiability. We aimed at studying how the abstraction

and refinement method behaves in different benchmarks in terms of the computed final

abstractions and the needed refinement steps, when starting with an initial omission of a

random set of atoms. For the refinement step, we expected the search for the answer set

with minimum number of badomit atoms to be difficult and thus wanted to investigate

whether different minimizations over the badomit atom number make a difference in the

reached final abstractions.

Additionally, we were interested in computing the ⊆-minimal blocker sets of the pro-

grams and observing the difference in size of the ⊆-minimal blocker sets depending on

the problems. For finding ⊆-minimal blocker sets, we additionally compared a top-down

method to a bottom-up method, to see their effects on the quality of the resulting ⊆-
minimal blocker sets. The top-down method proceeds by calling the function ComputeM-

inBlocker with the original program Π, A and A = {}, so that the search for a ⊆-minimal

blocker set starts from the top. The bottom-up method initially chooses a certain per-

centage of the atoms to omit, Ainit, and calls the function Abs&Ref with Π and Ainit to

refine the abstraction and find an unsatisfiable abstract program, omit(Π, Afinal). Then,

a search for ⊆-minimal blocker sets is done, with the remaining atoms, by calling the

function ComputeMinBlocker with omit(Π, Afinal), A and Afinal. We wanted to observe

whether there are cases where the bottom-up method helps in reaching better quality

⊆-minimal blocker sets that have smaller size than those obtained with the top-down

method.

6.3.1 Benchmarks

We considered five benchmark problems with a focus on the unsatisfiable instances.

Two of the problems are based on graphs, two are scheduling and planning problems,

respectively, and the fifth one is a subset selection problem.

Graph coloring (GC). We obtained the generator for the graph coloring problem8 that

was submitted to the ASP Competition 2013 (Alviano et al . 2013), and we generated

35 graph instances with node size varying from 20 to 50 with edge probability 0.2–0.6,

which are not 2 or 3-colorable. The respective colorability tests are added as superscripts

to GC, that is, GC2, GC3.

8 www.mat.unical.it/aspcomp2013/GraphColouring.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

www.mat.unical.it/aspcomp2013/GraphColouring
https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 177

Abstract argumentation (AA). Abstract argumentation frameworks are based on

graphs to represent and reason about arguments. The abstract argumentation research

community has a broad collection of benchmarks with different types of graph classes,

which are also being used in competitions (Gaggl et al . 2016). We obtained the Watts-

Strogatz (WS) instances (Watts and Strogatz 1998) that were generated by Cerutti et al .

(2016) and are unsatisfiable for existence of so-called stable extensions.9 We focused on

the unsatisfiable (in total 45) instances with 100 arguments (i.e., nodes) where each ar-

gument is connected (i.e., has an edge) to its n ∈ {6, 12, 18} nearest neighbors and it is

connected to the remaining arguments with a probability β ∈ {0.10, 0.30, 0.50, 0.70, 0.90}.
Disjunctive scheduling (DS). As a non-graph problem, we considered the task schedul-

ing problem from the ASP Competition 201110 and generated 40 unsatisfiable instances

with t ∈ {10, 20} tasks within s ∈ {20, 30} time steps, where d ∈ {10, 20} tasks are

randomly chosen to not to have overlapping schedules.

Strategic companies (SC). We considered the strategic companies problem with the

encoding and simple instances provided in Eiter et al . (1998). In order to achieve unsat-

isfiability, we added a constraint to the encoding that forbids having all of the compa-

nies that produce one particular product to be strategic. SC is a canonic example of a

disjunctive program that has presumably higher computational cost than normal logic

programs, and no polynomial time encoding into program such program is feasible. We

have thus split rules with disjunctive heads, for example, a∨ b ← c, into choice rules

{a} ← c; {b} ← c at the cost of introducing spurious guesses and answer sets. The result-

ing split program can be seen as an over-approximation of the original program and thus

causes for unsatisfiability of the split program as approximate causes for unsatisfiability

of the original program.

15-puzzle (PZ). Inspired from the Unsolvability International Planning Competition,11

we obtained the ASP encoding for the Sliding Tiles problem from the ASP Competition

2009,12 which is named as 15-puzzle. We altered the encoding in order to avoid having

cardinality constraints in the rules and to make it possible to also solve non-square

instances. We used the 20 unsolvable instances from the planning competition, which

consist of 10 instances of 3× 3 and 10 instances of 4× 3 tiles.

The collection of all encodings and benchmark instances can be found at http://www.

kr.tuwien.ac.at/research/systems/abstraction/.

6.3.2 Results

The tests were run on an Intel Core i5-3450 CPU @ 3.10GHz machine using Clingo

5.3, under a 600 s time and 7 GB memory limit. The initial omission, Ainit, is done by

choosing randomly 50%, 75%, or 100% of the nodes in the graph problems GC, AA, of

the tasks in DS, of the companies in SC, and of the tiles in PZ, as well as by omitting

all the atoms related with the chosen objects. We show the overall average of 10 runs for

each instance in Figure 8.

9 www.dbai.tuwien.ac.at/research/project/argumentation/systempage/Data/stable.dl.
10 www.mat.unical.it/aspcomp2011.
11 https://unsolve-ipc.eng.unimelb.edu.au/.
12 https://dtai.cs.kuleuven.be/events/ASP-competition.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

http://www.kr.tuwien.ac.at/research/systems/abstraction/
http://www.kr.tuwien.ac.at/research/systems/abstraction/
www.dbai.tuwien.ac.at/research/project/argumentation/systempage/Data/stable.dl
www.mat.unical.it/aspcomp2011
https://unsolve-ipc.eng.unimelb.edu.au/
https://dtai.cs.kuleuven.be/events/ASP-competition
https://doi.org/10.1017/S1471068420000095

178 Z. G. Saribatur and T. Eiter

Fig. 8. Experimental results for the base case (i.e., with upper limit on badomit # per step).

The three entries in a cell, for example, 0.49/0.74/1.00 in cell (GC2, |Ainit |
|A|), are for

50%/75%/100% initial omission.

The first three rows under each category show the bottom-up approach for 50%, 75%,

and 100% initial omission, respectively. The columns |Ainit |/|A| and |Afinal |/|A| show
the ratio of the initial omission set Ainit and the final omission set Afinal that achieves

unsatisfiability after refining Ainit (with the number of refinement steps and time shown

in the respective columns). The second part of the columns is on the computation of a

⊆-minimal blocker set Cmin. For the bottom-up approach, the search starts from Afinal

while for the top-down approach, it starts from A. In each refinement step, the number

of determined badomit atoms are minimized to be at most |A|/2; Figure 9 shows results

for different upper limits and its full minimization.

Figure 8 shows that, as expected, there is a minimal part of the program which con-

tains the reason for unsatisfiability of the program by projecting away the atoms that

are not needed (sometimes more than 90% of all atoms). Observe that when 100% of

the objects in the problems are omitted, refining the abstraction until an unsatisfiable

abstract program takes the most time. This shows that a naive way of starting with an

initial abstraction by omitting every relevant detail is not efficient in reaching an unsatis-

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 179

Fig. 9. Experimental results with different upper limits on badomit #. The three entries in a

cell, for example, 0.21/0.24/0.23 in cell (AA,
|Afinal |
|A|) of badomit # ≤ |A|/5, are for

50%/75%/100% initial omission.

fiable abstract program. We can observe that for the bottom-up approach, starting with

larger sets Afinal of omitted atoms usually results in spending less time to compute a

⊆-minimal blocker set. This is because of fewer atoms to check during the computation.

For example, for GC3 starting with 40% of |Afinal |/|A| computes a ⊆-minimal blocker

set faster than the other two cases. Additionally, with a bottom-up method, it is possible

to reach a ⊆-minimal blocker set which is smaller in size than the ones obtained with

the top-down method.

The graph coloring benchmarks (GC2,3) show that more atoms are kept in the ab-

straction to catch the non-3-colorability than the non-2-colorability, which matches our

intuition. For example, in GC2 omitting 50% of the nodes (49% of the atoms in Ainit)

already reaches an unsatisfiable program, since no atoms were added back in Afinal.

However, for GC3, an average of only 9% of the omitted atoms was added back until

unsatisfiability is caught.

For the GC2,3, SC, and PZ benchmarks, we can observe that omitting 50% of the

objects ends up easily in reaching some unsatisfiable abstract program, with refinements

of the abstractions being relatively small. For example, for GC2, the size of Afinal is the

same as for Ainit, and for PZ, an average of only 4% of the atoms is added back in Afinal.

However, this behavior is not observed when initially omitting 75% of the objects.

We can also observe that some problems (AA and PZ) have larger ⊆-minimal blocker

sets than others. This shows that these problems have a more complex structure than

others, in the sense that more atoms are syntactically related with each other through

the rules and have to be considered for obtaining the unsatisfiability.

Badomit minimization. In a refinement step, minimizing the number of badomit atoms

gives the smallest set of atoms to put back. However, the minimization makes the search

more difficult, hence may hit a time-out; for example, no optimal solution for 45 nodes in

GC was found in 10 min. Figure 9 shows the results of giving different upper bounds on

the number of badomit atoms and also applying the full minimization in the refinement

for the AA instances. The numbers in the parentheses show the number of instances that

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

180 Z. G. Saribatur and T. Eiter

(a) (b)

Fig. 10. Unsolvable sliding tiles problem instance. (a) Concrete problem. (b) Abstract problem.

reached a time-out. As more minimization is imposed, we can observe an increase in the

size of the final omissions Afinal and also a decrease in the size of the ⊆-minimal blocker

set. For example, for 75% initial omission, we can see that the size of the computed final

omission increases from 0.20 (Figure 8) to 0.24, 0.29 and finally to 0.30. Also, the size

of the ⊆-minimal blocker set decreases from 0.37 (Figure 8) to 0.36, 0.35 and finally to

0.34. As expected, adding the smallest set of badomit atoms back makes it possible to

reach a larger omission Afinal that keeps unsatisfiability (e.g., min badomit# third row

(100% Ainit): Afinal is 44% instead of 0.01% as in Figure 8). On the other hand, such

minimization over the number of badomit atoms causes to have more refinement steps

(Ref #) to reach some unsatisfiable abstract program, which also adds to the overall

time.

The ⊆-minimal blocker search algorithm relies on the order of the picked atoms. We

considered the heuristics of ordering the atoms according to the number of rules in which

each atom shows up in the body, and starting the minimality search by omitting the

least occurring atoms. However, this did not provide better results than just picking an

atom arbitrarily.

Sliding tiles (15-puzzle). Studying the resulting abstract programs with⊆-minimal block-

ers showed that finding out whether the problem instance is unsolvable within the given

time frame does not require to consider every detail of the problem. Omitting the details

about some of the tiles still reaches a program which is unsolvable and shows the rea-

son for unsolvability through the remaining tiles. Figure 10 shows an instance from the

benchmark, which is unsolvable in 10 steps. Applying omission abstraction achieves an

abstract program that only contains atoms relevant with the tiles 0, 3, 4, 5 and is still un-

satisfiable; this matches the intuition behind the notion of pattern databases introduced

in Culberson and Schaeffer (1998).

Summary. The results show that the notion of abstraction is useful in computing the part

of the problem which causes unsatisfiability, as all of the benchmarks contain a blocker

set that is smaller than the original vocabulary. We observed that different program

structures cause the ⊆-minimal blocker sets to be different in size with respect to the

respective original vocabulary size. Computation of these ⊆-minimal blocker sets can

sometimes result in smaller sizes with the bottom-up approach. However, starting with

an 100% initial omission to use the bottom-up approach appears to be unreasonable due

to the time difference compared to the top-down approach, even though sometimes it

computes ⊆-minimal blocker atoms sets of smaller size. The abstraction and refinement

approach can also be useful if there is a desire to find some (non-minimal) blocker, as

most of the time, starting with an initial omission of 50% or 75% results in computing

some unsatisfiable abstraction in few refinement steps.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 181

We recall that our focus in this initial work is on the usefulness of the abstraction

approach on ASP, and not on the scalability. However, we believe that further imple-

mentation improvements and optimization techniques should also make it possible to

argue about efficiency.

7 Discussion

In this section, we first discuss possible extensions of the approach to more expressive

programs, in particular to non-ground programs and to disjunctive logic programs, and

we then address further aspects that may influence the solving behavior.

7.1 Non-ground case

In case of omitting atoms from non-ground programs, a simple extension of the method

described above is to remove all non-ground atoms from the program that involve a

predicate p that should be omitted. This, however, may require to introduce domain

variables in order to avoid the derivation of spurious atoms. Specifically, if in a rule

r : α ← B(r), a non-ground atom p(V1, . . . , Vn) that is omitted from the body shares

some arguments, Vi, with the head α, then α is conditioned for Vi with a domain atom

dom(Vi) in the constructed rule so that all values of Vi are considered.

Example 15

Consider the following program Π with domain predicate int for an integer domain

{1, . . . , 5}:

a(X1, X2)← c(X1), b(X2). (8)

d(X1, X2)← a(X1, X2), X1≤X2. (9)

In omitting c(X), while rule (9) remains the same, rule (8) changes to

{a(X1, X2) : int(X1)} ← b(X2).

From Π and the facts c(1), b(2), we get the answer set {c(1), b(2), a(1, 2), d(1, 2)}, and with

c(2), b(2), we get {c(2), b(2), a(2, 2), d(2, 2)}. After omitting c(X), the abstract program

with fact b(2) has 32 answer sets. Among them are {b(2), a(1, 2), d(1, 2)} and {b(2),
a(2, 2), d(2, 2)}, which cover the original answer sets, that is, each original answer set can

be mapped to some abstract one.

For a more fine-grained omission, let the set A consist of the atoms α = p(c1, . . . , ck)

and let Ap ⊆ A denote the set of ground atoms with predicate p that we want to omit.

Consider a k-ary predicate θp such that for any c1, . . . , ck, we have θp(c1, . . . , ck) = true iff

p(c1, . . . , ck) ∈ Ap; for a (possibly non-ground) atom α = p(t1, . . . , tk), we write θ(α) for

θp(t1, . . . , tk). We can then build from a non-ground program Π an abstract non-ground

program omit(Π, A) according to the abstraction mA, by mapping every rule r : α←B

in Π to a set omit(r,A) of rules such that

omit(r,A) includes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r if Apred(β) = ∅ for all β ∈ {α} ∪B±,

α←B,not θ(β) if Apred(β) �= ∅ ∧ β ∈ {α} ∪B±,

{α} ← B \ {β}, θ(β) if β ∈ B± ∧ α �= ⊥ ∧ θ(β) is satisfiable,

 otherwise,

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

182 Z. G. Saribatur and T. Eiter

and no other rules. The steps above assume that in a rule, a most one predicate to

omit occurs in a single atom β. However, the steps can be readily lifted to consider

omitting a set {β1, . . . , βn} of atoms with multiple predicates from the rules. For this,

α←B,not θ(β) will be converted into α←B,not θ(β1), . . . ,not θ(βn) and {α} ← B \
{β}, θ(β) gets converted into a set of rules {α} ← B \ {β1, . . . , βn}, θ(β1); . . . ; {α} ←
B \ {β1, . . . , βn}, θ(βn).

Example 16 (Example 15 continued)

Say we want to omit c(X) for X<3, that is, A = {c(1), c(2)} = Ac. We have θ(c(1)) =

θ(c(2)) = true and θ(c(X)) = false, forX ∈ {3, . . . , 5}. The abstract non-ground program

omit(Π, A) is

a(X1, X2)← c(X1), b(X2),not θ(c(X1)).

{a(X1, X2)} ← b(X2), θ(c(X1)).

d(X1, X2)← a(X1, X2), X1≤X2.

The abstract answer sets with facts b(2), θ(c(1)), θ(c(2)) are {{b(2)}, {b(2), a(2, 2),
d(2, 2)}, {b(2), a(1, 2), d(1, 2)}, and {b(2), a(1, 2), a(2, 2), d(1, 2), d(2, 2)}}. The program

omit(Π, A) is over-approximating Π while not introducing that many abstract answer

sets as in the coarser abstraction in Example 15.

For determining bad omissions in non-ground programs, if lifting the current debugging

rules is not scalable, other meta-programming ideas (Gebser et al . 2008; Oetsch et al .

2010) can be used. The issue that arises with the non-ground case is having lots of guesses

to catch the inconsistency. Determining a reasonable set of bad omission atoms requires

optimizations which makes solving the debugging problem more difficult.

7.2 Disjunctive programs

For disjunctive programs, splitting the disjunctive rules yields an over-approximation.

Proposition 25

For a program Π′ constructed from a given Π by splitting rules of form α01 ∨ · · · ∨α0k ←
B(r) into {α01} ← B(r); . . . ; {α0k} ← B(r), we have AS(Π) ⊆ AS(Π′).

The current abstraction method can then be applied over Π′. However, it is possi-

ble that for an unsatisfiable Π, the constructed Π′ becomes satisfiable; the reason for

unsatisfiability of Π can then not be grasped.
The approach from above can be extended to disjunctive programs Π by injecting

auxiliary atoms to disjunctive heads in order to cover the case where the body does not
fire in the original program. To obtain with a given set A of atoms an abstract disjunctive
program omit(Π, A), we define abstraction of disjunctive rules r : α1 ∨ · · · ∨ αn←B in
Π, where n ≥ 2 and all αi �= ⊥ are pairwise distinct, as follows:

omit(r, A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r if A ∩B± = ∅ ∧ A ∩ {α1, . . . , αn} = ∅,
α1 ∨ · · · ∨ αk ∨ x← mA(B) if A ∩ {α1, . . . , αn} = {αk+1, . . . , αn} ∧ k ≥ 1,

α1 ∨ · · · ∨ αn ∨ x← mA(B) if A ∩B± �= ∅ ∧ A ∩ {α1, . . . , αn} = ∅,

 otherwise,

where x is a fresh auxiliary atom. Further development of the approach for disjunctive

programs in a syntax preserving manner remains as future work.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 183

7.3 Further solution aspects

The abstraction approach that we presented is focused on the syntactic level of programs,

and it aims to preserve the structure of the given program. Thus, depending on the

particular encoding that is used to solve a particular problem, the abstraction process

may provide results that, from the semantic view of the problem, can be of quite different

quality.

For illustration, consider a variant of the graph coloring encoding with a rule

colorUsed(Y) ← colored(X,Y),node(X), color(Y) which records that a certain color

is used in the coloring solution, and where colorUsed(Y) is then used in other rules for

further reasoning. Omitting nodes of the graph means omitting the ground atoms that

involve them; this will cause to have a choice rule {colorUsed(Y)} for each color Y in

the constructed abstract program. However, these guesses could immediately cause the

occurrence of spurious answer sets due to the random guesses of colorUsed . Thus, one

may need to add back many of the atoms in order to get rid of the spurious guesses.

Other aspects that apparently will have an influence on the quality of abstraction

results is the way in which refinements are made and the choice of the initial abstraction.

We considered possible strategies for this in order to help with the search, and we tested

their effects in some of the benchmarks. The first strategy, described in Section 7.3.1,

is on refining the reasoning step for determining bad omissions, while the the second,

described in Section 7.3.2, is on making a more intuitive decision than a random choice

for the initial set of omitted atoms.

7.3.1 Bad omission determination

It may happen that in a refinement step, no put-back set is found that eliminates the spu-

rious answer set. Therefore, we consider further reasoning for bad omission determination

to see whether it can be useful in order to mitigate this behavior.

Example 17

Consider the following program Π, with the single answer set I = {c, d, a, b}, and its

abstraction Π̂a,d, with AS(Π̂a,d) = {{c}, {c, b}}

Π Π̂{a,d} Π̂{a}
r1 : b← d. {b}. b← d.

r2 : d← c, a. {d} ← c.

r3 : a← c.

r4 : c. c. c.

The abstract answer set Î = {c} is spurious, as a corresponding answer set of Π must

contain a by r3, d by r2 and b by r1, which is impossible since b is false in Î. Adding

to Π the query Q
{a,d}
Î

= {⊥ ← not c.;⊥ ← b.} does not satisfy rule r1, which results in

determining d as badomit since r1 should not remain as a choice rule. However, adding

it back does not eliminate the answer set Î, since then r2 becomes a choice rule in Π̂{a}
causing again the occurrence of Î.

An additional reasoning over the omitted rules in determining bad omissions as below

helps in deciding {a, d} as badly omitted in one refinement step, and adding them back

gets rid of the spurious answer set {c}.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

184 Z. G. Saribatur and T. Eiter

Fig. 11. Heuristic over badomit detection. The three entries in a cell, for example,

0.41/0.51/0.63 in cell (DS,
|Afinal |
|A|), are for 50%/75%/100% initial omission.

Reasoning over omitted rules. We considered an additional badomit type to help with

catching the cases when putting back one omitted atom does not eliminate the spurious

answer set.

• If a rule was omitted due to a badly omitted atom, it has an omitted atom in

the body, and the abstract rule was applicable, then an additional bad omission is

inferred.

badomit(A2, type4)←omitted(R), head(R,A1), absAp(R),

badomit(A1), omittedAtomFrom(A2, R).

The idea is as follows: if some atom a, which was decided to be badly omitted, occurs in

the head of a rule r, then once a is put back, r will also be put back. However, if B(r)

has some other omitted atom, then r will be put back as a choice rule. If this rule was

also applicable in the abstract program for the given interpretation I, then once it has

been put back as a choice rule, it will still be applicable for some I ′ = I ∪ {a} or I ′′ = I.

Thus, the choice over H(r) may again have the same spurious answer set determined.

Experiments. Figure 11 shows the conducted experiments with the additional bad omis-

sion detection. Observe that compared with the results in Figure 8, for the DS bench-

marks, the number of refinement steps and the time spent decreased since more omitted

atoms were decided to be badly omitted in one step. Also, we can see that the final

set Afinal of omitted atoms remains larger with the heuristics. On the other hand, this

heuristic does not have a positive effect on the quality of the obtained minimal block-

ers. However, the results for the AA benchmarks are different. Although a larger final

set of omitted atoms Afinal is computed for Ainit with 100% (15% instead of 0.01%

in Figure 8), the overall time spent and the refinement steps for obtaining some Afinal

increased. On the other hand, smaller minimal blockers were computed.

The results show that the considered strategy does not obtain the expected results on

every program, as the structure of the programs matters.

7.3.2 Initial omission set selection

A possible strategy for setting up the initial omission set is to look at the occurrences

of atoms in rule bodies and to select atoms that occur least often, as intuitively, atoms

that occur less in the rules should be less relevant with the unsatisfiability.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 185

Fig. 12. Heuristic over Ainit. The two entries in a cell, for example, 0.48/0.67 in cell (GC3,
|Afinal |
|A|), are for 50%/75% initial omission.

Fig. 13. Heuristic over Ainit with full minimization on badomit#. The two entries in a cell, for

example, 0.28/0.35 in cell (AA,
|Afinal |
|A|), are for 50%/75% initial omission.

Experiments. In Figure 12, we see the results of choosing as initial omission 50% and 75%

of the objects in increasing order by number of their occurrences. In the benchmarks GC3,

when omitting 75% of the least occurring nodes, two of the instances hit time-out during

the Clingo call when searching for an optimal number of badomit atoms, and one instance

hits time-out when computing some Afinal, again spending most of the time in Clingo

calls. The time increase for finding some optimized number of badomit atoms is due to

many possible badomit atoms among the omitted atoms in the particular instances.

An interesting observation is that omitting 75% of the least occurring nodes results

in larger Afinal sets: while random omission removes on average 31% of the atoms (Fig-

ure 8), with the strategy added it increases to 67%. This result matches the intuition

behind the strategy: the nodes that are not involved in the reasoning should not really be

the cause of non-colorability. We also observe a positive effect on the quality of the com-

puted ⊆-minimal blocker sets, which are smaller in size, only 15% of the atoms for 50%

and 75% initial omission, while before they were 16% and 17% (Figure 8), respectively.

For the AA benchmarks, compared to Figure 8, the strategy made it possible to obtain

larger Afinal sets. However, overall it does not show a considerable effect on the number of

refinement steps or on the quality of the computed ⊆-minimal blocker sets as in GC3. We

additionally performed experiments with full minimization of badomit# in the refinement

step (Figure 13). Compared to the results in Figure 9, we can observe that larger Afinal

sets were obtained, and there were no time-outs when determining the badomit atoms in

the refinement steps. The search for optimizing the number of badomit atoms is easier

due to doing the search among the omitted atoms that have the least dependency.

For the DS benchmarks, although the strategy reduced the average refinement steps

and time, it had a negative effect on the quality of the ⊆-minimal blocker sets as they

are much larger (13% and 14% for initial omission of 50% and 75% of tasks, instead of

10% and 9% as in Figure 8, respectively).

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

186 Z. G. Saribatur and T. Eiter

8 Related work

Although abstraction is a well-known approach to reduce problem complexity in com-

puter science and artificial intelligence, it has not been considered so far in ASP. In the

context of logic programming, abstraction has been studied many years back in Cousot

and Cousot (1992). However, the focus was on the use of abstract interpretations and

termination analysis of programs, and moreover, stable semantics was not addressed. In

planning, abstraction has been used for different purposes; two main applications are

plan refinement (Sacerdoti 1974; Knoblock 1994), which is concerned with using abstract

plans computed in an abstract space to find a concrete plan, while abstraction-based

heuristics (Edelkamp 2001; Helmert et al . 2014) deal with using the costs of abstract so-

lutions as a heuristic to guide the search for a plan. Pattern databases (Edelkamp 2001)

are a notion of abstraction which aims at projecting the state space to a set of variables,

called a “pattern.” In contrast, merge and shrink abstraction (Helmert et al . 2014) starts

with a suite of single projections and then computes a final abstraction by merging them

and shrinking. In the sequel, we address related issues in the realm of ASP.

8.1 Relaxation- and equivalence-based rewriting

Over-approximation has been considered in ASP through relaxation methods (Lin and

Zhao 2004; Giunchiglia et al . 2004). These methods translate a ground program into its

completion (Clark 1978) and search for an answer set over the relaxed model. Omission

abstraction is able to achieve an over-approximation by also reducing the vocabulary

which makes it possible to focus on a certain set of atoms when computing an abstract

answer set. However, finding the reason for spuriousness of an abstract answer set is

trickier than finding the reason for a model of the completion not being an answer set

of the original program, since the abstract answer set contains fewer atoms and a search

over the original program has to be done to detect the reason why a matching answer

set cannot be found.

Under answer set semantics, a program Π1 is equivalent to a program Π2, if AS (Π1) =

AS (Π2). Strong equivalence (Lifschitz et al . 2001) is a much stricter condition over the

two programs that accounts for non-monotonicity: Π1 and Π2 are strongly equivalent if,

for any set R of rules, the programs Π1 ∪R and Π2 ∪R are equivalent. This is the notion

that makes it possible to simplify a part of a logic program without looking at the rest

of it: if a subprogram Q of Π is strongly equivalent to a simpler program Q′, the Q is

replaced by Q′. The works (Osorio et al . 2002; Turner 2003; Eiter et al . 2004; Pearce

2004) show ways of transforming programs by ensuring that the property holds. A more

liberal notion is uniform equivalence (Maher 1986; Sagiv 1987) where R is restricted to

a set of facts. Then, a subprogram Q in Π can be replaced by a uniformly equivalent

program Q′ and the main structure will not be affected (Eiter and Fink 2003).

In terms of abstraction, there is the abstraction mapping that needs to be taken into

account, since the constructed program may contain a modified language and the map-

ping makes it possible to relate it back to the original language. Thus, in order to define

equivalence between the original program Π and its abstraction Π̂m according to a map-

ping m, we need to compare m(AS (Π)) with AS (Π̂m). The equivalence of Π and Π̂m

then becomes similar to the notion of faithfulness. However, as we have shown, even if

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 187

the abstract program Π̂m is faithful, refining m may lead to an abstract program that

contains spurious answer sets. Thus, simply lifting the current notions of equivalence to

abstraction may not achieve useful results.

Refinement-safe faithfulness however is a property that would allow one to make use

of Π̂m instead of Π, since it preserves the answer sets. This property can immediately be

achieved when a constructed abstract program is unsatisfiable (which then shows that

original program was unsatisfiable). However, for original programs that are consistent,

reaching an abstraction that is refinement-safe faithful is not easy; adding an atom back

may immediately cause to reach a guessing that introduces spurious solutions.

The unfolding method for disjunctive programs (Janhunen et al . 2006) is similar in

spirit to our approach of introducing choice to the head for uncertainties. For a given dis-

junctive program P , they create a generating program that preserves completeness. Using

this program, they generate model candidates M (but they may also get “extra” candi-

date models, which do not match the stable models of P). Then, they test for stability

of the candidates, by building a normal program Test(P,M) that has no stable models

if and only if M is a stable model of the original disjunctive program P . Thus, stability

testing is reduced to testing the non-existence of stable models for Test(P,M). However,

this approach does not consider omission of atoms from the disjunctive rules when cre-

ating the new program; they further extend the vocabulary with auxiliary atoms. They

build the model candidate gradually by starting from an empty partial interpretation

and extending it step by step. For this, they use the observation that if for the extension

M of the partial interpretation that assigns false to the undefined atoms, Test(P,M)

has a stable model, then P has no stable model M ′ ⊃ M . Compared to the notions

that we introduced for omission-based abstraction, this technique would give a more re-

stricted notion of spuriousness of an abstract answer set, since the omitted atoms would

be assigned to false.

8.2 ASP debugging

Investigating inconsistent ASP programs has been addressed in several works on debug-

ging (Brain et al . 2007; Oetsch et al . 2010; Dodaro et al . 2015; Gebser et al . 2008), where

the basic assumption is that one has an inconsistent program and an interpretation as

expected answer set. In our case, we do not have a candidate solution but are interested in

finding the minimal projection of the program that is inconsistent. Through abstraction

and refinement, we are obtaining candidate abstract answer sets to check in the original

program. Importantly, the aim is not to debug the program itself, but to debug (and

refine) the abstraction that has been constructed.

Different from other works, Dodaro et al . (2015) computed the unsatisfiable cores (i.e.,

the set of atoms that, if true, causes inconsistency) for a set of assumption atoms and

finds a diagnosis with it. The user interacts with the debugger by answering queries on an

expected answer set, to narrow down the diagnosed set. In our work, such an interaction

is not required and the set of blocker atoms that was found points to an abstract program

(a projection of the original program) which shows all the rules (or projection of the rules)

that are related with the inconsistency.

The work by Syrjänen (2006) is based on identifying the conflict sets that contain mu-

tually incompatible constraints. However, for large programs, the smallest input program

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

188 Z. G. Saribatur and T. Eiter

where the error happens must be found manually. Another related work is Pontelli et al .

(2009), which gives justifications for the truth values of atoms with respect to an answer

set by graph-based explanations that encode the reasons for these values. Notably, jus-

tifications can be computed offline or online when computing an answer set, where they

may be utilized for program debugging purposes. The authors demonstrated how their

approach can be used to guide the search for consistency restoring in CR-Prolog (Balduc-

cini and Gelfond 2003), by identifying restoral rules that are needed to resolve conflicts

between literals detected from their justifications. However, the latter hinge on (possibly

partial) interpretations, and thus do not provide a strong explanation of inconsistency

as blockers, which are independent of particular interpretations.

8.3 Unsatisfiable cores in ASP

A well-known notion for unsatisfiability is minimal unsatisfiable subsets (MUS), also

known as unsatisfiable cores (Liffiton and Sakallah 2008; Lynce and Silva 2004). It is

based on computing, given a set of constraints respectively formulas, a minimal subset

of the constraints that explains why the overall set is unsatisfiable. Unsatisfiable cores

are helpful in speeding up automated reasoning, but have beyond many applications and

a key role, for example, in model-based diagnosis (Reiter 1987) and in consistent query

answering (Arenas et al . 1999).

In ASP, unsatisfiable cores have been used in the context of computing optimal an-

swer sets (Alviano and Dodaro 2016; Andres et al . 2012), where for a given (satisfiable)

program, weak constraints are turned into hard constraints; an unsatisfiable core of the

modified program that consists of rewritten constraints allows one to derive an underes-

timate for the cost of an optimal answer set, since at least one of the constraints in the

core cannot be satisfied. However, if the original program is unsatisfiable, such cores are

pointless. In the recent work (Alviano et al . 2018), unsatisfiable core computation has

been used for implementing cautious reasoning. The idea is that modern ASP solvers al-

low one to search, given a set of assumption literals, for an answer set. In case of failure, a

subset of these literals is returned that is sufficient to cause the failure, which constitutes

an unsatisfiable core. Cautious consequence of an atom amounts then to showing that

the negated atom is an unsatisfiable core.

Intuitively, unsatisfiable cores are similar in nature to spurious abstract answer sets,

since the latter likewise do not permit to complete a partial answer set to the whole

alphabet. More formally, their relationship is as follows.

Technically, in our terms an unsatisfiable (u-) core for a program Π is an assignment

I over a subset C ⊆ A of the atoms such that Π has no answer set J that is compatible

with I, that is, such that J |C = I holds; moreover, I is minimal, if no sub-assignment

I ′, that is, restriction of I to some subset C ′ ⊂ C of the atoms) is a u-core (cf. Alviano

et al . 2018). We then have the following property.

Proposition 26

Suppose that Î ∈ AS(omit(Π, A)) for a program Π and a set A of atoms. If Î is spurious,

then Î is a u-core of Π (w.r.t. A \ A). Furthermore, if A is maximal, that is, no A′ ⊃ A

exists such that omit(Π, A′) has some (spurious) answer set Î ′ such that Î|A′ = Î ′, then

Î is a minimal core.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 189

Proof

The abstract answer set Î describes an assignment over A\A, and as Î is spurious, there is

no answer set J of Π such that J |A\A = Î; hence Î is a u-core. Now toward a contradiction

assume that A is maximal but Î is not a minimal u-core. The latter means that some

sub-assignment Î ′ of Î, that is, restriction Î ′ = Î|A′ of Î to A \ A′ for some A′ ⊃ A, is

a u-core for Π. By over-approximation of abstraction (Theorem 1) and the possibility

of iterative construction (Proposition 5), we conclude that Î ′ ∈ AS (omit(Π, A′)) must

hold. Since Î ′ is a u-core, it follows that Î ′ is spurious. By this, we reach a contradiction

to the assumption that A is maximal.

That is, spurious answer sets are u-cores; however, the converse fails in that cores C are

not necessarily spurious answer sets of the corresponding omission A = A\A(C), where

A(C) are the atoms that occur in C. For example, for the program with the single rule

r : a← b,not a.

the set C = {b} is a core, while C is not an answer set of omit({r}, {a}) = ∅. Intuitively,
the reason is that C lacks foundedness for the abstraction, as it assigns b true while there

is no way to derive b from the rules of the program, and thus b must be false in every

answer set. As C is a minimal u-core, the example shows that also minimal u-cores may

not be spurious answer sets.

Thus, spurious answer sets are a more fine-grained notion of relative inconsistency

than (minimal) u-cores, which accounts for a notion of weak satisfiability in terms of

the abstracted program. In case of an unsatisfiable program Π, each blocker set C for Π

naturally gives rise to u-cores in terms of arbitrary assignments I to the atoms in A\C;

in this sense, blocker sets are conceptually a stronger notion of inconsistency explanation

than u-cores, in which minimal blocker sets and minimal u-cores remain unrelated in

general.

8.4 Forgetting

Forgetting is an important operation in knowledge representation and reasoning, which

has been studied for many formalisms and is a helpful tool for a range of applications

(cf. Delgrande 2017; Eiter and Kern-Isberner 2018). The aim of forgetting is to reduce

the signature of a knowledge base, by removing symbols from the formulas in it (while

possibly adding new formulas) such that the information in the knowledge base, given

by its semantics that may be defined in terms of models or a consequence relation, is

invariant with respect to the remaining symbols; that is, the models resp. consequences

for them should not change after forgetting.

Due to non-monotonicity and minimality of models, forgetting in ASP turned out to be

a non-rivial issue. It has been extensively studied in the form of introducing specific oper-

ators that follow different principles and obey different properties; we refer to Gonçalves

et al . (2017) and Leite (2017) for a survey and discussion. The main aim of forgetting in

ASP as such is to remove/hide atoms from a given program, while preserving its seman-

tics for the remaining atoms. As atoms in answer sets must be derivable, this requires to

maintain dependency links between atoms. For example, forgetting the atom b from the

program Π = {a ← b.; b ← c.} is expected to result in a program Π′ in which the link

between a and c is preserved; this intuitively requires to have the rule a← c in Π′. The

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

190 Z. G. Saribatur and T. Eiter

various properties that have been introduced as postulates or desired properties for an

ASP forgetting operator mainly serve to ensure this outcome; forgetting in ASP is thus

subject to more restricted conditions than abstraction.

Atom omission as we consider it is different from forgetting in ASP as it aims at a

deliberate over-approximation of the original program that may not be faithful; further-

more, our omission does not resort to language extensions such as nested logic programs

that might be necessary in order to exclude non-faithful abstraction; notably, in the

ASP literature, under-approximation of the answer sets was advocated if no language

extensions should be made (Eiter and Wang 2008).

Only more recently over-approximation has been considered as a possible property

of forgetting in ASP in Delgrande and Wang (2015), which was later named Weakened

Consequence (WC) in Gonçalves et al . (2016):

(WC): Let Π be a disjunctive logic program, let A be a set of atoms, and let X be an

answer set for Π. Then X \A is an answer set for forget(Π, A).

That is, AS(Π)|A ⊆ AS(forget(Π, A)) should hold. This property amounts to the notion

of over-approximation that we achieve in Theorem 1. However, according to Gonçalves

et al . (2016), this property is in terms of proper forgetting only meaningful if it is com-

bined with further axioms. Our results may thus serve as a base for obtaining such com-

binations; in turn, imposing further properties may allow us to prune spurious answer

sets from the abstraction.

9 Conclusion

Abstraction is a well-known approach to reduce problem complexity by stepping to sim-

pler, less detailed models or descriptions. In this article, we have considered this hitherto

in ASP-neglected approach, and we have presented a novel method for abstracting ASP

programs by omitting atoms from the rules of the programs. The resulting abstract pro-

gram can be efficiently constructed, has rules similar to the original program, and is a

semantic over-approximation of the latter, that is, each original answer set is covered by

some abstract answer set. We have investigated semantic and computational properties

of the abstraction method, and we have presented a refinement method for eliminating

spurious answer sets by adding badly omitted atoms back. The latter are determined

using an approach inspired from previous work on debugging ASP programs.

An abstraction and refinement approach, like the one that we presented, may be used

for different purposes. We have demonstrated as a show case giving explanations of the

unsatisfiability of ASP programs, which can be achieved in terms of particular sets of

omitted atoms, called blockers, for which no truth assignment will lead to an answer set.

Thanks to the structure-preserving nature of the abstraction method, this allows one to

narrow down the focus of attention to the rules associated with the blockers. Experimental

results collected with a prototype implementations have shown that, in this way, strong

explanations for the cause of inconsistency can be found. They would not have been

easily visible if we had applied a pure semantic approach in which connections between

atoms might get lost by abstractions. We have briefly discussed how the approach may

be extended to the non-ground case and to disjunctive programs, and we have addressed

some further aspects that can help with the search.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 191

Outlook and future work. There are several avenues of research in order to advance and

complement this initial work on abstraction in ASP. Regarding over-approximation, the

current abstraction method can be made more sophisticated in order to avoid introducing

too many spurious answer sets. This, however, will require to conduct a more extensive

program analysis, as well as to have non-modular program abstraction procedures which

do not operate on a rule by rule basis; to what extent the program structure can be

obtained, and understanding the trade-off between program similarity and answer set

similarity are interesting research questions.

Faithful abstractions achieve a projection of the original answer sets, which we con-

jecture to be faster to compute in the abstract program. However, reaching a faithful

abstraction is not easy, and furthermore, checking the correctness of a computed ab-

stract answer set is costly, as one needs to complete the partial (abstract) answer set

in the original program. Further investigations are required in this direction to make it

possible to start with a “good” initial abstraction and to efficiently reach a (faithful)

abstraction with a concrete solution. This would then make it possible to use abstraction

for certain reasoning tasks on ASP programs such as brave or cautious reasoning or to

compute a concrete answer set for programs with grounding or search issues.

Another direction is building a highly efficient implementation. The current experi-

mental prototype has been built on top of legacy code and tools such as Spock (Brain

et al . 2007) from previous works; there is a lot of room for significant performance im-

provement. However, even for the current, non-optimized implementation, it is already

possible to see benefits in terms of qualitative improvements of the results. An optimized

implementation may lead to view abstraction under a performance aspect, which then

becomes part of a general ASP solving toolbox.

Yet another direction is to broaden the classes of programs to which abstraction can

be fruitfully applied. We have briefly discussed non-ground and disjunctive programs, for

which abstraction needs to be worked out, but also other language extensions such as

aggregates, nested implication, or program modules (which are naturally close relatives to

abstraction) are interesting topics. In particular, for non-ground programs other, natural

forms of abstraction are feasible; for example, to abstract over individuals of the domain

of discourse or predicate abstraction. The companion work (Saribatur et al . 2019) studies

the former issue.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/

10.1017/S1471068420000095

References

Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., Ianni, G., Kren-

nwallner, T., Kronegger, M., Oetsch, J., Pfandler, A., Pührer, J., Redl, C., Ricca,
F., Schneider, P., Schwengerer, M., Spendier, L. K., Wallner, J. P. and Xiao, G. 2013. The
fourth answer set programming competition: Preliminary report. In Proceedings of the 12th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR).
Springer, 42–53.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095
https://doi.org/10.1017/S1471068420000095
https://doi.org/10.1017/S1471068420000095

192 Z. G. Saribatur and T. Eiter

Alviano, M. and Dodaro, C. 2016. Anytime answer set optimization via unsatisfiable core
shrinking. Theory and Practice of Logic Programming 16, 5–6, 533–551.

Alviano, M., Dodaro, C., Järvisalo, M., Maratea, M. and Previti, A. 2018. Cautious
reasoning in ASP via minimal models and unsatisfiable cores. Theory and Practice of Logic
Programming 18, 3–4, 319–336.

Andres, B., Kaufmann, B., Matheis, O. and Schaub, T. 2012. Unsatisfiability-based opti-
mization in clasp. In Technical Communications of the 28th International Conference on Logic
Programming, ICLP, vol. 17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 211–221.

Arenas, M., Bertossi, L. E. and Chomicki, J. 1999. Consistent query answers in inconsis-
tent databases. In Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 68–79.

Balduccini, M. and Gelfond, M. 2003. Logic programs with consistency-restoring rules.
In Proceedings of the International Symposium on Logical Formalization of Commonsense
Reasoning, AAAI 2003 Spring Symposium Series, J. McCarthy and M.-A. Williams, Eds.
AAAI Press, 9–18.

Banihashemi, B., De Giacomo, G. and Lespérance, Y. 2017. Abstraction in situation cal-
culus action theories. In Proceedings of the 31st AAAI Conference on Artificial Intelligence
(AAAI), 1048–1055.

Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H. and Woltran, S. 2007.
Debugging ASP programs by means of ASP. In Proceedings of the 9th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR). Springer, 31–43.

Brass, S. and Dix, J. 1997. Characterizations of the disjunctive stable semantics by partial
evaluation. The Journal of Logic Programming 32, 3, 207–228.

Brewka, G., Eiter, T. and Truszczyski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Buss, S., Kraj̀ıček, J. and Takeuti, G. 1993. On provably total functions in bounded arith-
metic theories. In Arithmetic, Proof Theory and Computational Complexity, P. Clote and
J. Kraj̀ıček, Eds. Oxford University Press, 116–161.

Calimeri, F., Faber, W.,Gebser, M., Ianni, G.,Kaminski, R.,Krennwallner, T., Leone,
N., Maratea, M., Ricca, F. and Schaub, T. 2020. ASP-core-2 input language format.
Theory and Practice of Logic Programming 20, 2, 294–309.

Cerutti, F., Giacomin, M. and Vallati, M. 2016. Generating structured argumentation
frameworks: AFBenchGen2. In Proceedings of the 6th International Conference on Compu-
tational Models of Argument (COMMA 2016), P. Baroni, T. F. Gordon, T. Scheffler and
M. Stede, Eds. Frontiers in Artificial Intelligence and Applications, vol. 287. IOS Press,
467–468.

Clark, K. L. 1978. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker,
Eds. Springer, 293–322.

Clarke, E., Grumberg, O., Jha, S., Lu, Y. and Veith, H. 2003. Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the ACM 50, 5, 752–794.

Clarke, E. M., Grumberg, O. and Long, D. E. 1994. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems (TOPLAS) 16, 5, 1512–1542.

Cousot, P. and Cousot, R. 1992. Abstract interpretation and application to logic programs.
The Journal of Logic Programming 13, 2, 103–179.

Culberson, J. C. and Schaeffer, J. 1998. Pattern databases. Computational Intelli-
gence 14, 3, 318–334.

Delgrande, J. P. 2017. A knowledge level account of forgetting. Journal of Artificial Intelli-
gence Research 60, 1165–1213.

Delgrande, J. P. and Wang, K. 2015. A syntax-independent approach to forgetting in dis-
junctive logic programs. In Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI), 1482–1488.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 193

Dodaro, C., Gasteiger, P., Musitsch, B., Ricca, F. and Shchekotykhin, K. 2015.
Interactive debugging of non-ground ASP programs. In Proceedings of the 13th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). Springer,
279–293.

Edelkamp, S. 2001. Planning with pattern databases. In Proceedings of the 6th European Con-
ference on Planning (ECP), 13–24.

Eiter, T. and Fink, M. 2003. Uniform equivalence of logic programs under the stable model
semantics. In International Conference on Logic Programming. Springer, 224–238.

Eiter, T., Fink, M., Tompits, H. and Woltran, S. 2004. Simplifying logic programs under
uniform and strong equivalence. In Proceedings of the 7th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2004), V. Lifschitz and I. Niemelä, Eds.
Springer, 87–99.

Eiter, T. and Kern-Isberner, G. 2018. A brief survey on forgetting from a knowledge rep-
resentation and reasoning perspective. KI – Künstliche Intelligenz 33, 1, 9–33.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G. and Scarcello, F. 1998. The KR system
dlv: Progress report, comparisons and benchmarks. In Proceedings of the 6th International
Conference on Principles of Knowledge Representation and Reasoning (KR 1998), 406–417.

Eiter, T. and Wang, K. 2008. Semantic forgetting in answer set programming. Artificial
Intelligence 172, 14, 1644–1672.

Faber, W., Leone, N. and Pfeifer, G. 2004. Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In Proceedings of the 9th European Conference on Logics
in Artificial Intelligence (JELIA). Lecture Notes in Computer Science, vol. 3229. Springer,
200–212.

Gaggl, S. A., Linsbichler, T., Maratea, M. and Woltran, S. 2016. Introducing the second
international competition on computational models of argumentation. In Proceedings of the
International Workshop on Systems and Algorithms for Formal Argumentation (SAFA), 4–9.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Thiele, S.

2008. Engineering an incremental ASP solver. In Proceedings of the 24th International Con-
ference on Logic Programming (ICLP), 190–205.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T. and Schneider,

M. 2011. Potassco: The Potsdam answer set solving collection. AI Communications 24, 2,
107–124.

Gebser, M., Maratea, M. and Ricca, F. 2015. The design of the sixth answer set program-
ming competition. In International Conference on Logic Programming and Nonmonotonic
Reasoning. Springer, 531–544.

Gebser, M., Maratea, M. and Ricca, F. 2017. The design of the seventh answer set program-
ming competition. In International Conference on Logic Programming and Nonmonotonic
Reasoning. Springer, 3–9.

Gebser, M., Pührer, J., Schaub, T. and Tompits, H. 2008. A meta-programming technique
for debugging answer-set programs. In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI), vol. 8, 448–453.

Geißer, F., Keller, T. and Mattmüller, R. 2016. Abstractions for planning with state-
dependent action costs. In Proceedings of the 26th International Conference on Automated
Planning and Scheduling (ICAPS). 140–148.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3, 365–385.

Giunchiglia, E., Lierler, Y. and Maratea, M. 2004. SAT-based answer set programming.
In Proceedings of the 19th National Conference on Artificial Intelligence (AAAI), 61–66.

Giunchiglia, F. and Walsh, T. 1992. A theory of abstraction. Artificial Intelligence 57, 2–3,
323–389.

Gonçalves, R., Knorr, M. and Leite, J. 2016. The ultimate guide to forgetting in answer set

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

194 Z. G. Saribatur and T. Eiter

programming. In Proceedings of the 15th International Conference on Principles of Knowledge
Representation and Reasoning (KR). AAAI Press, 135–144.

Gonçalves, R., Knorr, M., Leite, J. and Woltran, S. 2017. When you must forget: Beyond
strong persistence when forgetting in answer set programming. Theory and Practice of Logic
Programming 17, 5–6, 837–854.

Helmert, M.,Haslum, P.,Hoffmann, J. and Nissim, R. 2014. Merge-and-shrink abstraction:
A method for generating lower bounds in factored state spaces. Journal of the ACM 61,
3, 16.

Janhunen, T., Niemelä, I., Seipel, D., Simons, P. and You, J.-H. 2006. Unfolding partiality
and disjunctions in stable model semantics. ACM Transactions on Computational Logic 7, 1,
1–37.

Janota, M. and Marques-Silva, J. 2016. On the query complexity of selecting minimal sets
for monotone predicates. Artificial Intelligence 233, 73–83.

Knoblock, C. A. 1994. Automatically generating abstractions for planning. Artificial Intelli-
gence 68, 2, 243–302.

Kouvaros, P. and Lomuscio, A. 2015. A counter abstraction technique for the verification of
robot swarms. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI).

Lee, J. 2005. A model-theoretic counterpart of loop formulas. In Proceedings of the 19th Inter-
national Joint conference on Artificial intelligence (IJCAI), vol. 5, 503–508.

Leite, J. 2017. A bird’s-eye view of forgetting in answer-set programming. In Proceedings of
the 14th International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR), M. Balduccini and T. Janhunen, Eds. Lecture Notes in Computer Science, vol. 10377.
Springer, 10–22.

Leone, N., Rullo, P. and Scarcello, F. 1997. Disjunctive stable models: Unfounded sets,
fixpoint semantics, and computation. Information and Computation 135, 2, 69–112.

Liffiton, M. H. and Sakallah, K. A. 2008. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning 40, 1, 1–33.

Lifschitz, V., Pearce, D. and Valverde, A. 2001. Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 4 (October), 526–541.

Lifschitz, V., Tang, L. R. and Turner, H. 1999. Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence 25, 3–4, 369–389.

Lin, F. and Zhao, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157, 1–2, 115–137.

Lynce, I. and Silva, J. P. M. 2004. On computing minimum unsatisfiable cores. In Proceedings
of the 7th International Conference on Theory and Applications of Satisfiability Testing (SAT),
305–310.

Maher, M. J. 1986. Equivalences of logic programs. In Third International Conference on Logic
Programming, E. Shapiro, Ed. Springer, Berlin, Heidelberg, 410–424.

Oetsch, J., Pührer, J. and Tompits, H. 2010. Catching the ouroboros: On debugging non-
ground answer-set programs. Theory and Practice of Logic Programming 10, 4–6, 513–529.

Osorio, M., Navarro, J. A. and Arrazola, J. 2002. Equivalence in answer set programming.
In Logic Based Program Synthesis and Transformation, A. Pettorossi, Ed. Springer, Berlin,
Heidelberg, 57–75.

Pearce, D. 2004. Simplifying logic programs under answer set semantics. In Logic Programming,
B. Demoen and V. Lifschitz, Eds. Springer, 210–224.

Pontelli, E., Son, T. C. and Elkhatib, O. 2009. Justifications for logic programs under
answer set semantics. Theory and Practice of Logic Programming 9, 1, 1–56.

Reiter, R. 1987. A theory of diagnosis from first principles. Artificial Intelligence 32, 1, 57–95.

Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction spaces. Artificial Intelligence 5, 2,
115–135.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

Omission-based abstraction for ASP 195

Sagiv, Y. 1987. Optimizing datalog programs. In Proceedings of the 6th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS). ACM, New York,
NY, USA, 349–362.

Saribatur, Z. G., Schüller, P. and Eiter, T. 2019. Abstraction for non-ground answer set
programs. In Proceedings of the 16th European Conference on Logics in Artificial Intelligence
(JELIA). Lecture Notes in Computer Science. Springer, 576–592.

Syrjänen, T. 2006. Debugging inconsistent answer set programs. In Proceedings of the 11th
International Workshop on Non-Monotonic Reasoning (NMR), vol. 6, 77–83.

Turner, H. 2003. Strong equivalence made easy: nested expressions and weight constraints.
Theory and Practice of Logic Programming 3, 4–5, 609–622.

Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general
logic programs. Journal of the ACM 38, 3, 619–649.

Watts, D. J. and Strogatz, S. H. 1998. Collective dynamics of “small-world” networks.
Nature 393, 440–442.

https://doi.org/10.1017/S1471068420000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000095

	Introduction
	Preliminaries
	Abstraction by omission
	Program abstraction
	Over-approximation
	Properties of omission abstraction
	Faithful abstractions

	Computational complexity
	Refinement using debugging
	Debugging meta-program
	Determining bad-omission atoms

	Application: catching unsatisfiability reasons of programs
	Blocker sets of unsatisfiable programs
	Implementation
	Experiments

	Discussion
	Non-ground case
	Disjunctive programs
	Further solution aspects

	Related work
	Relaxation- and equivalence-based rewriting
	ASP debugging
	Unsatisfiable cores in ASP
	Forgetting

	Conclusion
	References

