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Abstract

A common generalization of the author's embedding theorem concerning the £-unitary regular semi-
groups with regular band of idempotents, and Billhardt's and Ismaeel's embedding theorem on the inverse
semigroups, the closure of whose set of idempotents is a Clifford semigroup, is presented. We prove that
each orthodox semigroup with a regular band of idempotents, which is an extension of an orthogroup K
by a group, can be embedded into a semidirect product of an orthogroup K' by a group, where K' belongs
to the variety of orthogroups generated by K. The proof is based on a criterion of embeddability into a
semidirect product of an orthodox semigroup by a group and uses bilocality of orthogroup bivarieties.

1991 Mathematics subject classification (Amer. Math. Soc): 20M10, 20M19.

Introduction

McAlister's P-theorem [5] describes the structure of £-unitary inverse semigroups.
O'Carroll [6] noticed that the £-unitary inverse semigroups are just the inverse semi-
groups embeddable into a semidirect product of a semilattice by a group. This gave the
author the idea to raise the question in [7] whether each £-unitary regular semigroup is
embeddable into a semidirect product of a band by a group. This question is still open.
A partial answer was given in [7] by proving that each £-unitary regular semigroup 5
with regular band of idempotents is embeddable into a semidirect product of a band
B by a group where B can be chosen from the band variety generated by the band of
idempotents in 5.

Recently, another embedding theorem was obtained independently by Billhardt [1]
and Ismaeel [3]. They proved that if Ea>, the closure of the set of idempotents in an
inverse semigroup S, is a Clifford semigroup, then S is embeddable into a semidirect
product of a Clifford semigroup by a group.
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The aim of the present paper is to generalize these embedding theorems in Section 2
as follows. If S is an orthodox semigroup with a regular band of idempotents and 6 is
a group congruence on S whose kernel kerfl is an orthogroup, then 5 is embeddable
into a semidirect product of an orthogroup K by S/0, where K belongs to the variety
of orthogroups generated by ker 0. Because of the latter condition, our result, in fact,
strengthens the embedding theorems in [1] and [3].

The proof of our main result is based on the criterion of embeddability into a
semidirect product of an orthodox semigroup by a group presented in [9]. An important
tool in the proof is that the orthogroup bivarieties are bilocal as is proved in [8].

In order to be self-contained, Section 1 summarizes these results together with
some notions from [10] and specializations of results in [4] needed in Section 2. At
the end of Section 1, we clear up the connection between the embeddability criterion
and bilocality.

1. Preliminaries

In this section we summarize the notions and results needed in the following section.
For undefined notions and notation the reader is referred to [2].

A completely regular semigroup which is orthodox is called an orthogroup. A
regular band (left regular band, right regular band) is a band satisfying the identity
abaca=abca (aba=ab, aba=ba). If an orthodox semigroup or an orthogroup has
a (left, right) regular band of idempotents then, for brevity, we will term them a (left,
right) regular orthodox semigroup or a (left, right) regular orthogroup, respectively.
Notice that the left (right) regular orthodox semigroups are also called in the literature
left (right) inverse semigroups and 8%-(££)-unipotent semigroups.

Given an orthodox semigroup S, its band of idempotents is denoted by Es or, if it
causes no confusion, simply by E. The identity element of a group is denoted by 1.

If 5 is an orthodox semigroup and 0 is a congruence on 5 then, as usual, we denote
its kernel {s € S: sO e for some e e E] by ker# and its trace 9\E by \x0. It is well
known that ker# is an orthodox subsemigroup in S. Obviously, we have E c ker#.
In particular, if 0 is a group congruence, then ker# = [s € 5: sO = 1}. If K is a
group variety then we denote by aK the least congruence 0 on 5 such that S/0 e K.
In particular, as usual, o is the least group congruence on S.

If 0: S - • T is a homomorphism then the congruence on S induced by (p is denoted
by=0.

Firstly we formulate the facts on left regular orthodox semigroups which are needed
in the paper.

The following characterization is from [11].

RESULT 1.1. The following two conditions are equivalent for a semigroup S.
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(i) S is a left regular orthodox semigroup.
(ii) Each &-class in S contains a unique idempotent.

By making use of the basic properties of orthodox semigroups ([2, VI. 1 and 2])
and specializing them to left regular orthodox semigroups, we obtain (i) and (ii) in the
following result.

RESULT 1.2. Let S be a left regular orthodox semigroup. Then
(i) y f l ^ is the identity relation on S,

(ii) for every a,b e S,we have a fib if and only if

(3a' e V(a))(3b' e V(fe))(Ve e E) aed = beb'

or, equivalently, if and only if

(Va' € V(a))(W e V(b))(Ve e E) aed = beb',

(iii) (n v y)

PROOF, (iii) It is obvious that (n v y)/fi is the least inverse semigroup congruence
on S//x. Since /x c <%, one can easily see that &//x is Green's ^"-relation on S//x.
Thus the equality to be proved follows by applying (i) to S/ix.

Now we recall some notions and results from [4].
The free semigroup with involution on an alphabet A will be denoted by A®. We

represent A® as the free semigroup on the alphabet A = A U A* where A D A* = 0
and a bijection *: A —> A*, a t-> a* (a e A) is given. The involution on A®, also
denoted by *, is the unique involution extending this bijection. However, we will
consider A9 as a usual semigroup (without a unary operation). In particular, the
congruences on A® will not be required to be compatible with the involution *. By
writing u(ax, a*,... ,an, a*) for a word u € A®, we mean that at most the elements
a\, ... ,an e A occur in u, either with or without *.

A bi-identity in the alphabet A is a pair of words u=v with u, v e A®. An ortho-
dox semigroup S satisfies a bi-identity u(au a*,..., an, a*)=v(au a\,... ,an, a*)
if, for every su...,sn e S and every s[ e V(si), ... , s'n e V(sn), we have
u(sus[,...,sn,s'n) = v(sus[, ...,sn,s'n) in S.

On classes of orthodox semigroups we consider the operations of forming direct
products, regular subsemigroups, homomorphic images and isomorphic images, and
denote them by P, Sr, H and / , respectively.

A bivariety of orthodox semigroups is a class of orthodox semigroups closed with
respect to P, Sr and H. In particular, the bivarieties of inverse semigroups and
those of orthogroups are just the varieties of inverse semigroups and of orthogroups,
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respectively. Therefore, in these cases, we will often speak simply about varieties, for
example group varieties and orthogroup varieties, and not about bivarieties.

For later use, we introduce notation for the following bivarieties:

O — orthodox semigroups
LROG — left regular orthogroups,
RROG — right regular orthogroups,

SG — semilattices of groups,
G — groups,

LRB — left regular bands,
RRB — right regular bands,

S — semilattices.

It is proved in [4] that the bivarieties of orthodox semigroups are just the classes
denned by bi-identities. Moreover, the notion of a bi-invariant congruence is intro-
duced, and a one-to-one correspondence is found between the bivarieties of orthodox
semigroups and the bi-invariant congruences on an infinite alphabet. Given a bivari-
ety V of orthodox semigroups and an alphabet A, the bi-invariant congruence on A®
corresponding to V is

/o(V, A) — {(«, v) G A® x A®: the bi-identity u=v is satisfied in V}.

When describing a property of the bivariety V, we will use p(V) to denote the bi-
invariant congruence corresponding to V on an infinite alphabet.

Note that if V is an inverse semigroup variety then the bi-invariant congruences
corresponding to V coincide with the respective fully invariant congruences. However,
with orthogroups this is not the case.

The notion of a bifree object is also defined and A®/p(V, A) turns out to be the
bifree object in V on A.

Now we reformulate the results of [4] concerning the bi-invarant congruences
p(\, A) of orthogroup varieties V in the special case of left regular orthogroup
varieties.

For any word u e A®, we introduce the following notation:

A {u) — the content of u, that is, the set of all elements in A such that a or a* occurs
in w,

0(M) — the longest initial segment v of u such that |A(v)| = |A(M)| — 1 (in
particular, if | A(u)\ = 1 then 0(w) is the empty word),

0(M) — the element a e A such that 0(u)a is an initial segment of u,
h(u) — the head of u, that is, the element of A occurring first in u from the left.

We need to iterate the operations 0 and 0 as follows: for 2 < k < |A(M)|, define

0*(H) = 0(0*- ' (H)) and o\u) = 0 (0*- ' (H)) .
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Dually to 0*(M), 0 («) and h(u), we define 1*(M), 1 (w) and the to// t(u), respectively.
Notice that if k = \A(u)\ then(f (M) = h(u) and 1 (M) = t(u).

If Q is any of A, h and ? then define the equivalence relation

{(«, w) € A® x A®: 0(«) = Q(v)}

and denote it by A, h and f, respectively. Moreover, put

A' = {(M, U) G A® x A®: |A(M)| = |A(u)| and |A(M) - A(u)| < 1}.

Given a congruence p on A®, we define two relations p0 and p\ as follows:

p0 = {(0(M), 0(I>)): M, u € A®, |A(K)|, \A(V)\ >2andupv]

and, dually, we define p\. Obviously, p c p0, p,.
We restate [4, Proposition 2.11].

RESULT 1.3. For any variety V oforthogroups, exactly one of the following condi-
tions holds:

(i) (P(V))O = A\
(ii) (p(V))0 = h n A',

(iii) (p(V))0 c A, /« w/»'cA case (p(V))0 w a bi-invariant congruence and
((/o(V))0)o = (p(V))0.

In case (iii), the variety of orthogroups corresponding to the bi-invariant congruence
(p(V))0 is denoted by Vo.

REMARK 1.4. If (p(V))0 c A then one can easily see that (p(V))0 c h is also
valid.

The following statement describes the bi-invariant congruence p(V) for the vari-
eties V with S c V c LROG and S c V c SG.

RESULT 1.5. Let V be a variety oforthogroups. Then
(i) S c V if and only ifp(V) c A,

(ii) S c V c LROG if and only ifp(V) c A and (p(V))i = A',
(iii) S C V C S G if and only if p(V) c A and (p(V))0 = (p(V))i = A'.

PROOF, (i) The 'if part is obvious; the 'only if part follows by [4, Proposition 2.14].
(ii) Firstly suppose that V c LROG. Since each left regular orthogroup satisfies the

bi-identity aa*bb*=aa*bb*aa*, we clearly have (p(V))i % t. The dual of Result 1.3
implies (p(V))i = A'. Conversely, if (p(V))i = A' then a bi-identity uab=vba
holds in V where u = u(a, a*, b, b*) and v = v(a, a*, b, b*). Hence, if a band E
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belongs to V and e, f e E then efu(e, e, f, f)ef = efv(e, e, f, f)fe in E which
implies that ef = efe. Thus E is left regular, completing the proof of the inclusion
V c LROG.

(iii) Since S = LRBnRRB, we have SG = LROGnRROG, and so the statement
is immediate from (ii) and its dual.

The solution of the word problem in [4, Proposition 2.13] reduces to the following.

RESULT 1.6. Let V be a variety of orthogroups with S c V c LROG, and let A
be a non-empty set. Then, for any u,v G A®, we have u p(V, A) v if and only if the
following conditions are satisfied;

(i) A(u) = A(v),
(ii) u p(\nG,A)v,
(iii) j/(p(V))0 = h n A' then h(u) = h(v),
(iv) if (p(V))0 c A then 0(w) = 0(v) and, in case \A(u)\ > 2, also

0(«) p(V0, A) 0(v).

REMARK 1.7. By Remark 1.4, conditions (iii) and (iv) can be substituted by the
following ones:

(iii)' if (p(V))0 c h then h(u) = h(v),
(iv)' if (p(V))0 c A and |A(«)| > 2, then 0(w) = 6(w) and 0(H) p(V0, A) 0(v).

REMARK 1.8. In particular, i fS c V c SG, then, by Result 1.5(iii), we have
u p(V, A) v if and only if conditions (i) and (ii) in Result 1.6 are satisfied.

We will need also [4, Lemma 2.10]:

RESULT 1.9. Let V be a variety of orthogroups with p(V), (p(V))0 c A, and let
A be a non-empty set. Then, for any u,ve A®, we have up(\, A) £% vp(\, A) in
Am/p(\, A) if and only if conditions (i) and (iv) in Result 1.6 are satisfied.

Now we recall the basic notions on graphs and semigroupoids needed later, and
formulate the main results in [8].

A graph X consists of a set of objects denoted by Obj(X) and, for every pair
/, y e Obj(X), a set of arrows from i to j which is denoted by X(i, j) and is called a
hom-set. The different hom-sets are supposed to be disjoint. If a G X(i, j) then we
also write that a (a) = /and<w(a) = j . The set of all arrows will be denoted by Arr(X).
The arrows a, b are called coterminal if a, b e X(i, j) for some /, j e Obj(X) and
are termed consecutive provided co(a) = a(b).

A graph with involution consists of a graph X and a mapping * assigning to any
arrow a € X(i, j) (i, j e Obj(X)) an arrow a* G X(j, i) such that (a*)* = a.
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By a subgraph of a graph X we mean a graph Y such that Obj(Y) c Obj(X) and
Y(i, j) c X(i, j) for every i, j e Obj(F). A subgraph of a graph X with involution
is denned to be a graph Y with involution which is a subgraph of the graph X and the
involution on Y is the restriction of the involution on X.

Notice that if B c Arr(X) for some graph X then we have

Obj(F) 2 {a(b), co(b): b e B] and Y(i, j) = B n X(i, j) (i, ; € Obj(y))

for every subgraph Y in X with Arr(Y) = B. The subgraph Y whose set of objects
is the smallest possible will be termed the subgraph of X determined by B. If X is a
graph with involution and B c Arr(X) then by the subgraph of X determined by B
we mean the subgraph of X whose underlying graph is determined by {b, b*: b e B}.

A semigroupoid is a graph C equipped with a composition which assigns to every
pair of consecutive arrows a e C(i, j), be C(j, k) an arrow ab e C(i, k) such that
the composition is associative, that is, for any arrows a e C{i, j), b € C(j, k) and
c e C(k, I), we have (ab)c = a(bc).

Observe that C(i, i), which, for brevity, will be denoted also by C(/), is either
empty or a semigroup for each i e Obj(C). For the sake of unicity, we will consider
the empty set also as a semigroup, and we term C(i) the local semigroup of C at /.

A semigroupoid with involution is a graph C with involution equipped with a
composition which makes C a semigroupoid and which possesses the property that
(ab)* = b*a* for every a e C(i, j), b e C(j, k) (i, j , k e Obj(C)).

In particular, a set A can be considered as a graph with one object whose unique
hom-set is A and, similarly, a semigroup S can be considered as a semigroupoid with
one object whose unique hom-set is S.

A semigroupoid C is called regular if, for every a 6 Arr(C), there is x € Arr(C)
with axa = a. In the same way as in the case of a semigroup, one can show that
if such an x exists then a' = xax has the property that aa'a = a and a'aa' = a'.
If the latter equalities hold for some a and a' then we say that a' is an inverse of
a. The set of inverses of an element a is denoted by V(a). An idempotent in a
semigroupoid C is an arrow satisfying e2 = e. Clearly, each idempotent belongs to
a local semigroup. A regular semigroupoid is termed orthodox if the product of two
idempotents is idempotent. Clearly, a regular semigroupoid is orthodox if and only if
each of its local semigroups is orthodox.

The notion of the product and coproduct (=disjoint union) of a family of graphs and
of a family of semigroupoids can be introduced. For the details the reader is referred
to [10] (cf. also [8]).

We say that a graph X is symmetric if X(j, i) ^ 0 provided X(i, j) ^ 0. Notice
that a graph with involution is always symmetric. A symmetric graph X is termed
connected if, for any different i, j 6 Obj(X), there exists a sequence of consecutive
arrows from / to j . It is well known that each symmetric graph is a coproduct of its
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connected components.
Let X, Y be two graphs. A graph function / : X —>• 7 consists of an object function

f: Obj(X) -*• Obj(7) and, for every /, ; e Obj(X), a horn-set function f: X(i, j) ->
Y(if,jf). IfC, Daresemigroupoidsthenbyamorphismofsemigroupoids<p:C —*• D
we mean a graph function^) such that a<f>-b<j) = (ab)</> for every pair a, bof consecutive
arrows in C. If the hom-set functions are injective then <\> is termed & faithful morphism.
If the object function is bijective and the hom-set functions are surjective then (j> is
said to be a quotient morphism. If the object and the hom-set functions are bijective
then <j> is called an isomorphism.

By a congruence y on a semigroupoid C we mean a family

y = {y(ijy. U eObj(C)}

of equivalence relations y(i, j) on C{i, j) such that, for every a e C(i, j), c,d e
C(j,k) and b e C{k, I) (i,j,k,l e Obj(C)), the relation cy(j,k)d implies
acy(i, k)ad and cby(j, l)db. For simplicity, we will often write y instead of y (/, j).
Note that / ( / , / ) , which we will denote also by y (i), is a congruence on the local semi-
group C(/). If a € CO, j) then the equivalence class containing a will be denoted by
ay(i, j) or, simply, by ay.

Given a congruence y on a semigroupoid C, we can define the quotient semigroup-
oid C/y as follows: Obj(C/y) = Obj(C), (C/y)(i, j) is the set of all y(i, y)-classes
of CO', j) and the composition rule is given by

ay • by = (ab)y a e C(i, j), b e CO", *).

Obviously, the congruence y on C determines a quotient morphism y" whose object
function is identical and whose hom-set functions assign the respective y -class to
each arrow. Conversely, if 0: C —»• D is a quotient morphism then the family of
equivalence relations on the hom-sets in C determined by the hom-set functions is a
congruence on C which we will denote by =^,. Moreover, <j> induces an isomorphism
r. C/ =^-> D such that <j>==\i.

Let X be a graph. A non-empty path in X is a sequence of consecutive arrows in
X. If p = e\e2 • • • en (n > 1) where a(et) = i and co{en) = j then we say that p is a
non-empty (/, y)-path. If p is a non-empty 0, j;)-path and q is a non-empty (y, &)-path
for some i, j,k € Obj(X) then their concatenation pq is a non-empty 0, &)-path.

Given any graph X, we will consider th&free semigroupoid with involution on X
and denote it by X®. It can be represented in the following way. Firstly let X be a
graph with involution defined as follows:

Obj(X) = Obj(X) and X(i, j) = X(i, j) U X*(i, j)
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where X(i, j) D X*(i, j) = 0, *:X(i, j) -> X*(j, i) is a bijection and *: X*(j, i) ->•
X(i, j) is its inverse for every /, j e Obj(X). Then

Obj(X®) = Obj(X), X®(/, j) = {p: pis a non-empty (i, y)-path in X},

the composition being given by concatenation, and the involution * on X being
extended to an involution of X® in the usual way: for every path p = exe2 • • • en in
X, we set p* = e*ne*n_x • • • e*. However, we will consider X® as a usual semigroupoid
(without a unary operation). In particular, the congruences on X® will not be required
to be compatible with the involution *.

Notice that any non-empty path p in X® spans a subgraph in the graph X with
involution. We will denote this subgraph by [p]. Namely, if p = eie2---en

(n > 1, ek e Arr(\X), 1 < k < n) then

Obj([p]) = {ct(eky. \<k<n}U {co(en)}

and

[p](i, j) = {eue*v..., eH, e*n) n X(/, j) (i, j e Obj([p])).

Clearly, a subgraph spanned by a path in X® is connected.
Let X be a graph and C an orthodox semigroupoid. A graph function &:X ^>- C

is termed matched if x-& and x*ft are mutual inverses in C for all x e Arr(X). The
uniquely determined extension of & to a morphism X® —> C will be denoted by #.

By an inverse operation on an orthodox semigroupoid C we mean a mapping
': Arr(C) —>• Arr(C) possessing the property that a! e V(a) for every a 6 Arr(C).
Obviously, an inverse operation ': Arr(C) —> Arr(C) determines a matched graph
function §: C -> C by defining the object function as the identity mapping and by
setting aft = a and a*$ = a! for every a € Arr(C).

Combining the ideas in [4, Section 1] and [10, Section 9 and Appendix B], the
notion of the bivariety of orthodox semigroupoids is introduced and studied in [8]. In
particular, an analogue of the bi-invariant congruence corresponding to a bivariety of
orthodox semigroups is obtained which we need later.

Roughly speaking, the analogue of the bi-invariant congruence is defined in the
following manner. Given a graph X and a bivariety "V of orthodox semigroupoids,
we consider the 'intersection' of all congruences Q on X® for which X®/Q e V and
X -> X®/Q, y i-> \>£ (y € Arr(X)) is a matched graph function. We denote this
congruence by Q(¥', X). It is also shown that X®/Q{Y, X) is the bifree object in Y
on the graph X.

To any bivariety V of orthodox semigroups, we can associate two bivarieties of
orthodox semigroupoids:

£V — the class of all orthodox semigroupoids whose local semigroups belong to
V;and
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g V — the bivariety of orthodox semigroupoids generated by V.

Note that i \ and g\ are, respectively, the greatest and the least bivarieties of
orthodox semigroupoids whose intersection with O is V.

A bivariety V of orthodox semigroups is termed bilocal if €V = g\ (or, equival-
ently, CV c g\).

The following result shows how one can obtain Q(g\, X) by means of a bi-invariant
congruence corresponding to V. Let X be any graph. Denote Arr(X) by A. Clearly,
there is a natural morphism r\ from X® to the free semigroup A® with involution
which maps all objects of X® to the single object of A® and which maps each path
in X® to the corresponding word in A®. For notational convenience, we will often
denote the word pr\ corresponding to the path p also by p. Obviously, r\ is a faithful
morphism which also respects the involution. As we have mentioned, A®/p(\, A) is
the bifree object in V on A. The composite morphism r]p(V, A)": X® —> A®/p(\, A)
determines a congruence on X® denoted by p(\, A)\X® which identifies only the
coterminal paths p, q for which (p, q) e p(V, A) in A®.

RESULT 1.10. Let X be a graph and V a bivariety of orthodox semigroups. We
have Q(g\, X) — p(\, Arr(X))|X®. Consequently, V is bilocal if and only if, for
every graph X, the inclusion p(V, Arr(X))|X® c Q(1\, X) holds.

The main result in [8] is the following.

RESULT 1.11. Each orthogwup variety is bilocal.

Finally, we recall the definition and the basic properties of the semidirect product
of an orthodox semigroup by a group, formulate the embeddability criterion presented
in [9] and relate it to bilocality.

Let 5 be an orthodox semigroup and G a group. Suppose that G acts on S by
automorphisms on the left, that is, for every g e G, an automorphism of S is given,
denoted by g: S —> S, s i-> gs, such that h(gs) = (hg)s holds for every g, h e G
and s e S. Briefly, we will say only that G acts on S. The semidirect product S * G
is defined on the underlying set S x G by the multiplication

(s, g)(s, g) = (s • gs, gg) (s, s e S, g,g e G ) .

The following properties of the semidirect product are straightforward.

RESULT 1.12. Let S be an orthodox semigroup and G a group acting on S.
(i) The semidirect product S * G is an orthodox semigroup with ES*G —

[(e, \):e e Es], and ES*G is isomorphic to Es.
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(ii) The second projection n2:S * G -*• G, (s, g) t-> g is a homomorphism of
S * G onto G with ker (=^2) = {(s, 1): s e S] which is isomorphic to S.

Turning to the embeddability criterion, we introduce first an auxiliary notion, and
then present the main construction in [9].

Let S, L be orthodox semigroups and H a group acting on L. Let 9 be a group
congruence on S. A homomorphism £: 5 —> L * H is called a homomorphism over 6
if =i*2 2 0. In particular, the attribute 'over cr' can be omitted since =^2 2 cr holds
for every homomorphism £.

Let V be a bivariety of orthodox semigroups, S an orthodox semigroup and 6 a
group congruence on S. For brevity, denote S/6 by G. Firstly we define a graph C as
follows:

Obj(C) = G, C(g,h) = {(g,s)€GxS: g-se = h] (g,heG).

One can equip C with the following multiplication: if (g, s) € C(g, h) and (/J, r) e
C(h, i) then (g, 5) o (h, t) = (g, st). Clearly, (g, st) € C(g, i) and this multiplication
is associative. Thus C = (C; o) constitutes a semigroupoid. It is easily checked
that C is an orthodox semigroupoid whose local semigroups are isomorphic to ker#.
Note that this semigroupoid is closely related to the derived semigroupoid of the
homomorphism 0": 5 -> G, (cf. [10]).

Consider the free semigroupoid C® with involution on the graph C and the faithful
morphism rj: C® —> A® where A = Arr(C). Let us choose and fix an inverse
operation' on S. This determines an inverse operation' on C by setting (g, s)' = (h, s')
provided (g, s) e C(g,h). Denote by § the matched graph function C -*• C
determined by this inverse operation. The unique extension #: C® -*• C of # to C®
is a quotient morphism. It thus determines a congruence =5 on the semigroupoid C®.
Denote the image of =5 under JJ, namely, {(/??], qr))\ (p, q) e =5}, by v. Consider
the congruence Ty on A® generated by p(V, A) U v.

REMARK 1.13. It is easily seen that Xy is obtained in the following way. For any
words x, y in A®, we have x ry y if and only if there exists a finite sequence of words
x = w0, wi, ...,wn = y such that, for any i (0 < / < «), the word u>,-+i is obtained
from wt by one of the following rules:

(51) w,+i p(V, A) w,,
(52) Wi = u a * v , w i + 1 = u a ' v f o r s o m e « , i ; e (A®)1 a n d n e i
(S2') ID, = ua'v, wi+l = «a*i; for some u, v e (A®)1 and a e A,
(53) u>, = uabv, wi+x = ucv for some u, v G (A®)1 and a, b, c e A withaob = c

inC,
(S3') Wi = ucv, wi+i — uabv for some u, v e (A®)1 and a, fc, c e A with a 06 = c

inC.
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Put Afy = A®/rv. Sincep(V, A) c rv , we have Kw e V. Define a homomorphism
*rv: S - • ATV * G over 0 by s/cv = ((1, S)TV, S 0 ) (5 € S). It is shown that Kx is,
up to isomorphism, independent of the choice of the inverse operation '. Moreover,
the homomorphism KV turns out to be universal among the homomorphisms of S over
9 into a semidirect product of a member in V by a group. Therefore we call it the
canonical homomorphism of S over 9 into a semidirect product of a member in V by
a group. If Ky is injective then we say that 5 is canonically embeddable over 9 into a
semidirect product of a member in V by a group.

The embeddability criterion in [9] is the following.

RESULT 1.14. Let V be a bivariety of orthodox semigroups, S an orthodox semi-
group and 9 a group congruence on S. Then S is embeddable over 9 into a semidirect
product of a member in V by a group if and only if S is canonically embeddable, or,
equivalently, if and only if the following condition is satisfied:

(1.1) s9t and (1, s) Ty (1, f) imply s = t for every s,t G S.

Let V be a bivariety of orthodox semigroups and K a group variety. The semidirect
product of V by K is the class

V * K = {S * G: S e V , G e K and G acts on 5}

and the Mal'cev product V o K of V by K (within the class of regular semigroups) is
the class consisting of all regular semigroups T which possess a congruence 9 such
that T/9 e K and kerfl e V. It is easily seen that, in fact, we have

VoK = {T eO: ker<jK e V}.

Result 1.12 implies that ISr(\ * K) c V o K. Hence we immediately infer the
following corollary by Result 1.14.

RESULT 1.15. Let V be a bivariety of orthodox semigroups and K a variety of
groups. Then we have V o K = ISr(V * K) provided (1.1) holds with 8 = CTK for
every S € O possessing the property that keroK € V.

We conclude this section by clearing up the connection between the embeddability
of S into a semidirect product of a member in V by a group and the bilocality of V.

Suppose that the orthodox semigroup S is embeddable over a group congruence 9
into a semidirect product of a member in a bivariety of orthodox semigroups V by a
group. Then ker 9 G V and C e i \ because the local semigroups in C are isomorphic
to ker#. This implies that Q{1\, C) C =% where & is the matched graph function
used in the definition of rv. On the other hand, the embeddability condition given in
Result 1.14 can be rewritten in the form rv|C® c =5. Here p(V, A) c rv and so, by
Result 1.10, we have o(g\, C) = p(\, A)\C® c rv|C®. Thus we obtain
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PROPOSITION 1.16. Let V be a bivariety of orthodox semigroups, S an orthodox
semigroup and 9 a group congruence on S. If S is embeddable over 9 into a semi-
direct product of a member in V by a group then the conditions ker# € V and
p(V, A)\C® c =5 necessarily hold. IfV is bilocal then the first condition implies the
second one.

Note that the second condition can be visualized in the following way: whenever
p, q are paths in the graph C which can be interpreted as 'substitutions' into the differ-
ent sides of a valid bi-identity in V, then the products of p and q in the semigroupoid
C are equal. By a 'substitution' here we mean that certain arrows a\,a2,... ,an are
substituted into the variables x\, x2,... ,xn of the bi-identity and a\, a'2,..., a'n into
x*, *2. • • •, x*, respectively, where ' is the inverse operation denning &.

2. The main result

This section is devoted to proving the following embeddability theorem:

THEOREM 2.1. Let V be a variety of regular orthogroups. If S is an orthodox
semigroup and 0 is a group congruence on it such that ker 9 e V then S is embeddable
over 9 into a semidirect product of a member in V by a group.

The following corollary can be easily deduced from this theorem by Results 1.14
and 1.15

COROLLARY 2.2. For every regular orthogroup variety V and group variety K, we
have\oK = ISr(\*K).

Observe that if V is an orthogroup variety with S 2 V then V is a variety of
rectangular groups. Each orthodox semigroup 5 having a group congruence 6 with
ker# a rectangular group is itself a rectangular group. In this case, 5 is a direct
product E x G of a rectangular band E and a group G, and 9 is determined by a
normal subgroup N in G as follows: (eu gi) 9 (e2, g2) if and only if g\ e Ng2. It is
well known that G can be embedded into a semidirect product M * (G/N) where M
belongs to the group variety generated by N. Such an embedding can be obviously
extended to an embedding of E x G into a semidirect product (£ x M) * (G/N)
which proves Theorem 2.1 in case S g V. Therefore, in the rest of the section, we
will suppose that S c V.

In order to prove Theorem 2.1, we can restrict ourselves to left regular orthogroup
varieties V. For, suppose that Theorem 2.1 holds for left regular orthogroup varieties
V. By Result 1.14, this implies that if 5 is an orthodox semigroup and 9 is a group
congruence on it with ker 9 e V then the canonical homomorphism icy is injective.

https://doi.org/10.1017/S1446788700038465 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038465


[14] Extensions of regular orthogroups by groups 41

Dually, we see that the same holds provided V is a right regular orthogroup variety.
Now let V be a regular orthogroup variety, 5 an orthodox semigroup and 0 a group
congruence on it such that kerfl e V. Since E c ker#, E is necessarily regular. It is
well known from [12] that, in this case, S possesses a left regular orthodox semigroup
congruence e0 and a right regular orthodox semigroup congruence €{ such that e0, £i c
y and c0

 n ei is identical. Thus we also have eo,€i CS , and S is a subdirect product of
So = S/e0 and Sx = S/ex. Moreover, 0, = 9/€t (i = 0, 1) is a group congruence on
5, such that S,/0, is isomorphic to S/0, and we have ker 00 e V n LROG = V<0) and
kerfli e V n RROG = V(1). Hence, by assumption, the canonical homomorphism
*:*',„ of 5, (J = 0, 1) is injective. Identifying S,/0, (/ = 0, 1) with S/0, we can define
an action of S/0 on K^m x K^\lt componentwise. The mapping

K: SO X S, -> (K%, x AT ,̂,) * (S/0),

where it\ and ^2 denote the first and the second projection, respectively, of a cartesian
product, is obviously an embedding over 6. Since K^0) x K^m € V, the reduction of
Theorem 2.1 to the case of left regular orthogroup varieties V is complete.

Thus our goal is to prove that/ty is injective provided S c V c LROG. Throughout
the section, we fix V, S and 6. Moreover, we define two further congruences on S:

So = fi D 8 and y0 — So v y.

We will need the following modification of Result 1.2(iii).

LEMMA 2.3. We have y0C\& = So.

PROOF. By Result 1.2(iii), we obtain that (80 v y) n Si c (n v y) n ^ = /x. On
the other hand, we have y0 H & c y c 0. Thus the inclusion ' c ' is verified. The
reverse inclusion is obvious since So c fi c ^".

The inverse operation' involved in the definition of Ty will be chosen in such a way
that So be compatible with it, that is, so that s Sot implies s' So t' for every s,teS.
Since 6 is a group congruence, an inverse operation possesses this property if and only
if /x is compatible with '. The next statement verifies that such an inverse operation
exists.

LEMMA 2.4. Let us fix an idempotent eL in each J£'-class L in E, and choose an
inverse s' of s for every s e S such that eL 3% s' provided s ££ eL. Then \i is compatible
with the inverse operation '.
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PROOF. It is well known that such an inverse s' exists. Assume that s,t e S with
s (At. Since fi v y is an inverse semigroup congruence on S, we clearly have s' (fi v
y) t'. Since /x c j£f, we have also s' £% t' by definition. Hence, by Result 1.2(iii), we
obtain that s' /A /', completing the proof.

From now on, we fix an inverse operation' with which 80 is compatible.
A crucial property of the relation 80 is the following:

LEMMA 2.5. The relation 6/S0 is a group congruence on S/8Q and,«/(p(V))0 c A,
then ker (G/80) e Vo.

PROOF. Since <50 c d, the first statement is clear. Notice that ker (0/80) = {s80: s e
ker 6}. We should show that ker (9/80) satisfies all the bi-identities u=v where («, v) e
(p(V, A))o and A is an infinite alphabet. Let (w, v) e (p(V, A))o where

u = u(aua*,...,an,a*n) and v = v(au a\,..., an,a*n).

Consider su s2,..., sn € ker# and sj' e V(si), ... , s'^ e ^(^n). We have to verify
that u(s) <50 v(s) whe re u(s) = u(slt s'{,..., s n , s'^) and v(s) = v(sit s'{,... , s n , s'^).
Since s\, s",..., sn, s^ € ker#, it is clear that they are ^-related. So it suffices to
prove that
(2.1) u(s) f

Since (u, v) € (p(V, A))o, we have (u, v) e p(V, A) such that u = uan+iu and
ii = uan+ii5 where A(M), A(V) C {a,, a2, ...,an, an+x} and an+1 ^ {au a2,..., an}.
Then Result 1.9 ensures that («an+1)p(V, A) & (van+i)p(\, A) in A®/p(V, A).
This implies that, for any e e E, we have H(S)C ^ v(5)e in S. Hence we see that
u(s_)e(u(s_))" @ v(s)e(v(s)Y for every (u(s))" e V(u(s)) and (v(s)T e V(v(s)).
Since these elements are idempotent, it follows by Result 1.1 that u(s)e(u(s))" =
v(s)e(v(i))". Thus (2.1) holds by Result 1.2(ii), which completes the proof.

Consider C, A, #, Ty and /cv defined as in Section 2 by means of 5, 6, ' and
V. For simplicity, we omit the indices 0 and V in TV and ACV. By Result 1.14 and
Remark 1.13, we should prove the following assertion.

PROPOSITION2.6. Whenever s,t e 5 with s61 and w0, wu • • • ,wn is a sequence
of words in A such that w0 = (1, s), wn = (1, t) and, for any i (0 < i < n), the word
wi+i is obtained from wt by one of the rules (S1)-(S3'), then s = t.

In order to reduce the number of cases to be handled, later we will introduce rules
containing (S2HS3').
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From now on, we will fix a sequence of words wo,wi,...,wn satisfying the
previous assumptions. One can easily see that the subgraph in the graph C with
involution determined by A(wt) (1 < i < n — 1) need not be connected. Therefore
we will assign a greater subgraph in C to each word w in A® which will turn out to
be connected for the words w0, wu ..., wn. If there exists / (0 < / < n) such that
wi+i is obtained from wt by means of rule (S3) or (S3') then we say that the triple
(a, b, c) e A x A x A occurs in the sequence w0, wu ..., wn. Denote the set of all
triples occurring in w0, w\,..., wn by £f. If we want to emphasize that rule (S3) or
(S3') is applied with some (a, b,c) e & then we will simply say that rule (S3)^ or
(S3')"^, respectively, is applied.

Given a subset B c A, we define (B) to be the subgraph in C obtained from B by
repeated application of &. More precisely, put C°(B) = [b, b'\ b € B) and, if k > 0,
then put

Ck(B) = Ck~\B) U [a, a', b, b': (3c e Ck~\B)) (a, b, c) € &\

U {c, c'\ (3a, b e Ck~l(B)) (a, b, c) e &}.

Define (B > to be the subgraph in C determined by the set of arrows {J'H°=0C
k(B). In

particular, if B — A(w) for some word w € A® then we will simply write (w) instead
of {A(w)). Furthermore, if D is a subgraph in C then by (£>) we mean (Arr(D)).
Note that if Obj(D) = {a(a), co(a): a e Arr(D)} then D is a subgraph in (£>).

The following lemma formulates several simple but important properties of this
construction.

LEMMA 2.7. Let B be a subset in A.
(i) If B is finite then (B) is a finite subgraph in C. In particular, (u) is finite for

every u e A®.
(ii) If B determines a connected subgraph in C then (B) is also connected.

PROOF. It is easily seen by induction that Ck(B) c C°(B) U & where 2? =
{a, a', b, b', c, c'\ (a, b, c) € ^ } . Thus we have

Arr((B)) c {a, a*: a e C°(B) U &}.

Since & is finite, statement (i) follows. Statement (ii) is clear because if B de-
termines a connected subgraph in C then C°(fi) also determines a connected sub-
graph, and each extension of a connected subgraph by edges c, c', c*, d* or
a, a', a*, a'*, b, b', b*, b'* appearing in the construction preserves connected-
ness.

Let w € A®. We say that w is connected if |.<4(u>)| = 1 or else 0(io) is connected
anda(0(u;)) e Obj((0(iy)». Since |A(0(w;))| < |A(u;)|, this recursive definition is
correct.
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Now we verify several lemmas on connected words.

LEMMA 2.8. Ifw e A® is connected then (w) is a finite connected subgraph in C.

PROOF. Lemma 2.7(i) implies that {w} is a finite subgraph in C. In order to show
that it is also connected, we proceed by induction on |A(tu)|. If |A(u>)| = 1 then the
assertion is obvious. Assume that the lemma is valid provided | A(it>)| < N (N > 1),
and let w e A® with |A(uOI = N. Then \A(0(w))\ < N, and so the induction
hypothesis ensures that (0(u;)) is connected. Since a(0(w)) e Obj((0(u;)>), the
subgraph in C determined by the set of arrows

B = Air«0(u,)» U [a, a'}, where a = ( f ^ ^ W \ G A>
[ (0(w)) otherwise,

is connected, so Lemma 2.7(ii) implies that {w} = (B) is also connected. The former
equality holds because A(w) = A(0(w)0(w)).

LEMMA 2.9. A word w = axa2 • • • aN (au a2,..., aN e A) in A® is connected if
and only ifa(aj) e Obj({aia2 • • -ay_i))/o/" every j (1 < j < N) provided A(a;) g
A{ala2---aj-\).

PROOF. Firstly suppose that w = axa2---aN e A® is connected and A(aj) 2

A{a{a2 • • • aj-\). ThenO*(uO = axa2 • • • aHX andO (w) = as forsome£. Applying the

definition of connectedness several times, we infer that a(aj) e Obj((<2!a2 • • • <z;-_i)).
Conversely, assume that the cword w = axa2 • • -aN e A® satisfies the condition in

the lemma. We show by induction on j that axa2 • • -aj (1 < j < N) is connected.
For j = \ the definition applies. Suppose that u = a\a2 • • • 0,-1 (j > 1) is connected.
If A(aj) % A(u) then 0(uo,) = u, 0(uaj) = a, and, by assumption, we have
a{aj) e Obj((«)). Thus the definition ensures that way is connected. If A(aj) c A(u)
then 0(uaj) = 0(M) and O(uoy) = 0(M). Since u is connected, 0(«) is connected and
a(0(u)) e Obj((0(«)}) by definition. This ensures that ua, is also connected.

From now on, we use U to denote an arbitrary subvariety in V containing S.

LEMMA 2.10. / / (p(U))0 c A, w € A® is connected and w e A® with wp(U, A)w
then w is also connected.

PROOF. We proceed by induction on |A(iy)|. First of all, recall that the assumption
S c U implies A{w) — A(w). Thus, if | A(w)\ = 1 then the assertion is clearly valid.
Suppose that the lemma holds provided |A(w)| < N (N > 1), and let w,lv e A®
satisfy the assumptions of the lemma with |A(iu)| = N. Since w is connected, 0(ID)
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is connected and a(0(w)) <= Obj((0(iy))). On the other hand, Result 1.6 implies
that 0(w) = O(io) and 0(w) p(U0, A) 0(w). Since \A(0(w))\ < N, the induction
hypothesis implies that 0(w) is connected and so, by definition, we obtain that w is
also connected.

The following rule generalizes all of (S2), (S2'), (S3)* and (S3')5":

(S4)* Wi = usv, wi+l — utv for some u, v € (A9)1 and coterminal paths s, t € C®
with (s) = {t).

LEMMA 2.11. Ifw e A® is connected andw is obtained from w by rule (S4)^ then
w is also connected.

PROOF. Since 5 and / are paths and a(s) = a(t), co(s) = (o(t), Lemma 2.9 implies
the lemma.

Now we introduce the property of words which is preserved by rules (SI) and
(S4)^, and so which will play a crucial role in proving Proposition 2.6.

Let g, h e G. We say that a word w e A9 is [g, h, Unconnected (with respect to
&) if the following conditions are satisfied:

(Wl) (w) is a connected graph and g, h e Obj((w));

(W2) (i) i f(p(U))ocAthen«(/r(u0)=*,
(ii) if (p(U))0 c A (and |A(u>)| > 1) then w is connected.

In particular, it is immediate by Lemma 2.9 that each (g, /i)-path is a [g, h, U]-
connected word.

LEMMA 2.12. Ifw e A® is [g, h, Unconnected and vu e A® is obtained from w by
one of the rules (SI) and (S4)"9" then w is also [g, h, Unconnected.

PROOF. Since S c U, we have A(w) = A(w) provided w is obtained from w
by rule (SI). Therefore (w) = (w). In the case of (S4)^ this equality follows by
definition. Thus w satisfies condition (Wl) because w does. If (/o(U))o c h then
h(w) = h(w) provided w is obtained from w either by rule (S1) or by rule (S4)^ such
that u is non-empty. Thus a(h(it))) = ct(h(W)) follows. In the remaining case this
equality holds by assumption. Therefore property (W2)(i) for w also implies it for w.
Property (W2)(ii) for w follows from that for w by means of Lemmas 2.10 and 2.11.

We will need later the following property of [g, h, U]-connected words.

LEMMA 2.13. //(p(U))0 c Aandw € A® is[g, h, Unconnected such that w = uv
with \A(u)\ > 1, then u is [g, a(h(v)), Unconnected.
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PROOF. The assumptions on U and w imply by definition that w is connected.
Then, by Lemma 2.9, u is also connected and a(h(v)) e («). This implies by
Lemma 2.8 that {«> is connected. Furthermore, the condition (p(U))0 c A implies
(/o(U))0 c h by Remark 1.4, and so g = a(h(w)) = a(h(u)). Thus we see that« is
[g, a(h(v)), U0]-connected.

The main idea in proving Proposition 2.6 is that we assign paths in (to,) to u>, for
every / (0 < i < n) such that these paths have the same label in the following sense.

Let p be a (g, /i)-path in C®. The label £(p) of p is defined to be s e 5 if
pft — (g,s) in C. Since V is bilocal by Result 1.11, we obtain the following
statement from Proposition 1.16.

LEMMA 2.14. If p, q are coterminal paths in C® such that p p(V', A)qthenl(p) =

Now we are able to give the rule which restricts (S4)^ but still generalizes (S2),
(S2'), (S3)-9' and (S3')"9". This rule will be frequently used later instead of treating
(S2MS3')^ separately.

(82-3)^ to, = usv, wi+i — utv for some u,ve (A®)1 and for some coterminal
paths s, t € C® with (s) = (t) and i(s) = l{t).

In the proof of Proposition 2.6 we will need a generalization of Lemma 2.14.
Let V c V and let e be a congruence on 5 such that e c Q and ker (6/e) e V.

For brevity, put S = S/e and 9 = 6/e. Clearly, 6 is a group congruence on S
such that S/0 is isomorphic to S/0. If e is compatible with the inverse operation ',
that is, s'et' provided set in S, then we can define an inverse operation ' on S by
(se)7 = (s')e. Notice that each inverse semigroup congruence is compatible with any
inverse operation and' is chosen to be compatible with So.

Let us construct C, A and & by means of S, 6 and ' as in Section 2. Moreover,
define the label £(p) of apathinC® bymeansof £ as before. Similarly to Lemma 2.14,
weobtain£(p) = l(q) provided p, q are coterminal paths in C® such that p p(\, A)q.
Consider the morphism </>: C® —>• C® extending the graph function

/:Obj(C) -»• Obj(C), (s6)

, h) -* C(gf, hf), (g, s) ^ (gf, se) and (g, s)* ̂  (gf, se)*,

for (g,s) e C(g,h). Since (sO) i-> (se)§ is an isomorphism of S/6 onto S/0,
the morphism <p is a quotient morphism, and the image of p(V, A)\Ce under <̂  is
p(V, i4)|C®. Thus we infer that I(p(/>) = i(q(j>) for every coterminal path p,q e C®
with /? p(V, A) q. Taking into consideration the definition of ' , we see that £(p<f>) =
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(£(p))e. Thus we have proved the following assertion. In connection with (ii), recall
Lemma 2.5.

LEMMA 2.15. (i) Let V c V D SG and let € be an inverse semigroup congruence
on S such that e c 0 and ker (0/e) e V. Then, for any coterminal paths p,q e C®
with p p(V, A) q, we have £(p) e t(q).

(ii) If ( /o (V)) o c A then, for any coterminal p a t h s p , q € C® vwf/i p p ( V 0 , A ) <7,

Now, consider the least inverse semigroup congruence y on S and put S = S/y.
Clearly, y c 0. Put also 0 = 0/y. Since ker6> e V, we see that ker0 e V n SG.
This implies that ker 6 is included in the kernel of the greatest idempotent separating
congruence JZ on S, and hence 0 D /I is an idempotent separating congruence on 5 with
ker (0 n /I) = ker 0. The latter equality implies that 0 n /I is an £-unitary congruence
on S. Denote by £ the congruence on 5 such that f /y = 0 njl. Then £ is an E-unitary
inverse semigroup congruence on S such that ker£ = ker# and tr£ = try = @E,
the least semilattice congruence on E. Furthermore, we clearly have I; c S . Thus
ker(0/£) e S. Applying Lemma 2.15(i) with V = S and e = f, we infer that
£(p) £ £((?) for any coterminal paths p,q e C® with [p] = [<?]. In particular, if p is a
loop then (l(p))£ is an element in the semilattice E/$E. This allows us to assign an
idempotent in E/@E to each pointed finite connected subgraph in C. If D is a finite
connected subgraph in C and g e Obj(D) then put e(D, g) = (£(p))£ where p is a
(g> g)-path in C e spanning D. By means of e(D, g), we will be able to compare the
finite connected subgraphs in C.

LEMMA 2.16. Let D, D be finite connected subgraphs in C, and suppose that D is
a subgraph in D.

(i) Ifg € Obj(D) then e(D, g) > e(D, g).
(ii) Ifg£Ob}(D)thene(D,g) = e((D),g).

(Hi) Ifg, h e Obj(D) then e(D, g) > e(D, g) if and only ife(D, h) > e{D, h).

PROOF, (i) Since D, D are finite, it suffices to verify the statement in the special
case when
(2.2) Arr(D) = Arr(D) U {a, a*} for some a e Arr(C).

The general statement follows by induction. Suppose that (2.2) holds and p is a
(g, g)-path spanning D. Since D is connected, we have p = qr where co(q) = a(a)
or (o{a). Thus p = qrqa°r, where a0 = aa* or a*a according to these possibil-
ities, is a (g,g)-path spanning D. Since (£(p))£ e E/@E, we have L{p)t,(p) =
mqr)2qa°r) = (e(qr))H(qaor)S l(qrqa°r) = l(p), and so e(D, g) =

= e(D, g) in
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(ii) Taking into consideration the definition of (D), in the same way as before,
we can restrict ourselves to the case when (2.2) holds such that one of the following
is valid:

(a) a = x o y for some x, y e Arr(D),
(b) x = a o y for some JC, y e Arr(D),
(c) x — y o a for some x, y e Arr(Z)),
(d) a = x' for some x e Arr(D).

We have a (g, g)-path spanning D of the form p = qxyr in case (a) and of the form
p = qxr in the other cases. Clearly,

P= •

qa(xy)*xyr in case (a),
qayx'xr in case (b),
qyax*xr in case (c),
qxaxr in case (d),

is ai(g, g)-path spanning D and l(p) = l(p). Thus e(D, g) =
e(D, g) which was to be proved.

(iii) By (i), we have e(D, g) > e(D, g) and e(D, h) > e(D, h). Moreover, the
statement is symmetric in g and h. Therefore it suffices to prove that if e(D, g) —
e(D, g) then e(D, h) = e(D, h). Let us choose (g, g)-paths p and p which span D
and D, respectively. By assumption, we have t(p) £ t(p). Furthermore, consider a
(h, g)-pathq anda(g, h)-pathr in D. Thenqpr andqpr are {h, /i)-paths spanning D
and D, respectively. Thus we have e(D, h) = {l(qpr))i; = (t(q))$(i(p))S(l(r))S =

)f = (l(qpr))^ = e(D, h). The proof is complete.

Statement (iii) makes it possible to disregard the object g in the definition of
e{D, g). Therefore, if D, D are subgraphs as in Lemma 2.16 then we will write
e(D) > e(D) or e(D) = e(D) to mean that e(D, g) > e(D, g) or e(D, g) = e(D, g)
for some/every g e Obj(D).

By analogy with the operations 0 and 0 defined in Section 1, we will introduce
operations on connected words in the following manner.

Let w be a connected word. Then Lemma 2.9 ensures that each initial segment u
of w is connected, and so, by Lemma 2.8, (u) is a finite connected subgraph in C.
Define 0(w) and 0(u>) as follows:

0(w) = W\ and 0(w) = a if w =

where a e A and e{{w{)) > e{{w\a)) = e({w}).

In particular, if e((h{w))) = e({w)) then we define 0(tu) to be empty and 0(io) to be
h(w). It is obvious that 0(u>) = 0*(iu) and 0(w) = 0 (in) for some k.
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We will iterate the operations 0 and 0 in the same way as 0 and 0: if k > 2 and 0*"1 (w)
is non-empty then we define

0*(u;) = 0(0*-V)) and 0 (w) = Q(ff-l(w)).

In order to be able to control how a path corresponding to a [g, h, U] -connected
word behaves itself modulo p(U n G, A), we will assign a path ww to a [g, h, U]-
connected word w in such a way that we connect the edges in w by means of a
fixed family (n) of paths. Let D be a finite connected subgraph in C. Let us choose
an e e Obj(D) and an (e, g)-path ng in D for every g e Obj(D). The family
(n) = [ng: g e Obj(D)} is called a cone of paths in D. Put

a(n) = ntan* for every a e D(i, j), (i, j e Obj(D)).

Notice that (a*)M = (a(n))*, and so it causes no confusion to write a*n). Now let
w = w{a\,a\,..., ak, a*k) be a word in A9 such that a\, a2, •.., ak e Arr(D). The
(e, £)-path u;((ai)(n), (ai)*n)).. •, (ak)(n), (ak)*n)) will be denoted by ww.

We intend to prove that, in a certain sense, the label of (w,)(n) for every word wt

in Proposition 2.6 is independent of the choice of the cone of paths (n). Firstly we
consider pw for a path p.

LEMMA 2.17. If p is a (g, h)-path in C® then p p(G, A) n*pMnhfor every cone of
paths (n) in a finite connected subgraph D in C containing [p].

PROOF. Let p — axa2 •••aN where ik, jk € Obj(D) and ak e A(ik, jk) for every
k (1 <k<N). Since p is a(g,/z)-path, we have g = iuj\ =ii,J2 = '3, • • •, JN-\ =IN,
jN = h. Thus

• • • {niflaNn*N)nh

• aN-X{n*NniN)aN{nlnh)

p(G,A)ala2---aN = p.

The proof is complete.

Denote by e a congruence on S such that e c 0 and ker (0/e) e U n SG. Since
ker (0/e) is a full inverse subsemigroup in S/e, we see that / c e. In particular, if
U = V then € = y satisfies the above requirements and if O(V))0 c A and U = Vo

then Yo does.
Let p, D and (n) be as in the previous lemma. If (m) is another cone of paths in D

then, clearly, we have m*p(m)mh p(G, A) n*pMnh. Moreover, if q and r are (g, h)-
paths spanning D such that q p(U n G, .4) m*gpim)mh and r p(U D G, A) n*p{n)nh

https://doi.org/10.1017/S1446788700038465 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038465


50 Mdria B. Szendrei [23]

then A(q) = A(r), and so q p(U nSG, A) r follows by Remark 1.8. Hence, applying
Lemma 2.15(i) with V = U n SG, we infer that £(q) e £{r).

Generalizing this property, we will call a [g, h, U]-connected word w € A® a
[g, h, U, e]-prepath if £{p) € £{q) holds whenever D is a finite connected subgraph
in C containing (to), (w) and (n) are cones of paths in D, and p, q are (g, /j)-paths
spanning D such that p p(U D G, A) m*W(m)mh and q p(U D G, A) n*W(n)nh.

As we have seen, an easy consequence of Lemma 2.17 is the following.

LEMMA 2.18. Let ebea congruence on S such that e c 9 andker (d/e) eUnSG.
Then each (g, h)-path in C® is a [g, h, U, e]-prepath.

Now we prove that the property of being a [g, h, V, y]-prepath is preserved by
rules (SI) and (S2-3)*\

LEMMA 2.19. Let w,wbe [g, h, \]-connected words in A® such that w is obtained
from w by one of the rules (SI) and (S2-3)5". Ifw is a [g, h, V, y]-prepath then w is
also a [g, h, V, y]-prepath.

PROOF. Recall firstly that w is [g, h, V]-connected by Lemma 2.12, and we have
(w) = (w). Let D be a finite connected subgraph in C containing (w) and let
(m) and (n) be two cones of paths in D. Suppose that p,q,~p,~q are (g,h)-
paths spanning D such that p p(V D G, A) m*w(m)mh, q p(\ n G, A) n*w(n)nh,
~p p(\ n G, A) m*gwim)mh and q p(V n G, A) n*wwnh. Then we have £(p) y t{q)
since w is a [g, h, V, y]-prepath. We should verify that t(p) y l(q). Obviously, it
suffices to show that £(p) y £(p) since, similarly, l(q) y t(q) also holds, whence the
relation to be proved follows.

Assume firstly that w is obtained from w by rule (SI). Since p and p span
D, we have A(p) = AQj). Moreover, since w p(V n G, A) To and p(V D G, .A)
is a bi-invariant congruence, we obtain that u;(m) p(V D G, A)w^m). This implies
by assumption that pp(V n G, A) p. Thus we have pp(V D SG, A) p~ by Re-
mark 1.8 and, by applying Lemma 2.15(i) with V = V D SG and e = y, we
infer that £(p) y IQ)). If w is obtained from w by (82-3)^ then, by Lemma 2.17,
we have pp(\ n G, A)m*w(m)mhp(G, A)(m*u(m)mj)s(m*V(m)mh) and, similarly,
pp(V fl G, A) (wj*M(m)m,)f (mJU(m)mA) provided s, t are (/, y)-paths. Hence,
if r is a (g, h)-path spanning D, we obtain in the same way as before that
Z(P) Y £(rr* (m*M(m)m,) s (m*v(m)mh)) and £(p) y £(rr* (w*M(m)m,) / (m*v(m)mh)).
However, since £(s) — £{t), we see that the right hand sides of these relations
are equal, and so £(p)y£(p) which was to be proved.

We will need the analogue of this lemma for 0M(w) and 0M(u7) (Af > 1). Observe
that if w is obtained from w by rule (82-3)^ then e({us)) = e((ut)), and so the
following possibilities occur:
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(PI) 0M(w) = 0*(M) = 0 M
 *

 M
) ( )

(P2) 0M(K;) = us0, 0M(w) = ut0 and s0Q (w), t00 (w) are initial segments of
s and t, respectively, (sQ or ?0 may be empty,)

(P3) 0M(w) = usv0, 0M(w) = utv0, 0M(w) = QM(w) and v0Q
M\w) is an initial

segment of v.
In particular, if w is obtained from w by rules (S2) or (S2') then (P2) is of the form

(P2)(i) 0M(w) = 0M(w) = u, 0M(w) = a*, QM(w) = a'; and
(P2)(i') 0M(w) = 0M(w) = u, 0M(w) = a', QM(w) = a*,

respectively. If w is obtained from w by rules (S3)^ and (S3')^, respectively, then
the following possibilities occur:

(P2)(ii) 0M(w) = QM(w) = u, 0M(w) = a,QM(w) = c,
(P2)(iii) 0M(w) = ua, QM(w) = u, 0M\w) = b, 0M(tF) = c; and

M = c, QM(w) = a,
(P2)(iii') 0M(w) = u, 0M(w) = ua, QM(w) = c, QM(w) = b,

respectively. Within (P2)(iii), we distinguish two subcases denoted by indices 1 and
2 according to e((u}) > e({ua)) or e({u)) = e((ua)). In the former case, we have
0(ua) = u and O(ua) = a.

Notice that, in cases (PI) and (P3), we have (0M(w)} = (0M(w)).

LEMMA 2.20. Let w, w be [g, h, \]-connected words in A® such that w is obtained
from w by one of the rules (SlhiSy)*. Assume that (p(V))0 c A. IfOM(w) is a
[g, a(0 (w)), Vo, yo\-prepathfor every M such that 0M(w) is non-empty then 0M(w)
is a [g, a(0 (w)), Vo, y^-prepathfor every M such that 0M(w) is non-empty.

PROOF. ByLemma2.13,0w(w)isa[g,Q!(0 (w)), V0]-connected word and 0M(w)
isa[g,a(0 (uJ)), V0]-connected word. If w is obtained from w by rule (SI) or by rule
(S2-3)^ such that 0M(w) and 0M(w) are of the form (P3) then 0M(uJ) is obtained from
0M(w) by rule (SI) or (S2-3)-y, respectively, with Vo instead of V. Furthermore, we
have 0 (w) = 0 (W). Therefore the argument in the previous lemma with Vo and y0

instead of V and y, respectively, proves the assertion. If 0M(w) and 0M (w) are of the
form (PI), (P2)(i), (i'), (ii) or (ii') then 0M(w) = 0M(uJ), a(6M(w)) = a(6M(w)), and
so the assertion is straightforward. Similarly, in case (P2)(iii)1, we have 0M+l(w) =
u = 0M(uJ) and a(0 (w)) = a(0 (w)), and so the assertion immediately follows
from the assumption.

Consider now the case (P2)(iii)2. By assumption, ua is a [g, j , Vo, yo]-prepath
where a e C(i, j). Since ua is [g, j , Vo]-connected, we see by Lemma 2.13 that u
is [g, i, V0]-connected. Let D be a finite connected subgraph in C containing (u),
let (/n), (n) be two cones of paths in D and let p, q be (g, i)-paths spanning D such
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that p p(V0 n G, A) m*U(m)nij and q p(V0 H G, A) «*M(n)n,. Consider the subgraph
D in C obtained from D by joining the edges a and a*. Clearly, D is connected,
and therefore (D) is also connected. Moreover, since e((u}) = e((ua)), we have
e(D) = e(D), and this implies by Lemma 2.16(ii) that e(D) = e({D)). Notice that

pa p(V0 n G, A) m*guim)mia p(G, A) m*gu(m)mjam*mj = m*g(ua)(m)mj

and, similarly, qa p(V0 D G, A) n*(ua)(n)nj. Thus, since ua is a [g, y, Vo, yb]-
prepath, we have £(rr*pa) yo£(rr*qa) for every (g, /)-path r spanning (D). Hence
£(rr*paa*) yo£(rr*qaa*) follows. However, we have e([r]) — e([p\) = e([pa]) <
e([a]). Thus £{rr*paa*) y £(p) and l(rr*qaa*) y £(q). Since y c y0, we obtain that

As far as the case (P2)(iii') is concerned, the argument is similar. Let D be
a finite subgraph in C containing {ua}, let (m), («) be two cones of paths in D
and let p, q be (g, y')-paths spanning D such that p p(V0 D G, A) m*(ua)(m)mj
and <7 p(V0 D G, A) n*(ua)Mrij. Now we have pa* p(V0 D G, A) /n*M(m)/n, and
<7«* p(V0 fl G, A) «*«(„)«,- where /7a*, <jra* are (g, i)-paths spanning D. Since
M is a [g, /, Vo, yo]-prepath by assumption, we see that £(pa*)yo£(qa*). Hence
£(pa*a) y0 £(qa*a) follows, whence we conclude that £(p) y0 £(q).

Let us call a [g, h, V, y]-prepath w an almost [g, h, V, y; Vo, yo]-path if 0 (iu)
is a [g, a(0 (w)), Vo, yo]-prepath for every M (M > 1) provided (p(V))0 £ A and
0M(it>) is non-empty. It is immediate from the definition that if (p(V))0 ^ A, w is
an almost [g, h, V, y; Vo, yo]-path and 0M(w) is non-empty, then 0M(w) is an almost
[g, c*(0%)), Vo, y0; Vo, yo]-path.

Combining Lemmas 2.12, 2.19 and 2.20, we get the following assertion.

LEMMA 2.21. Let w,w e A® be such that w is obtained from w by one of the rules
( S l ) - ^ ' ) ^ . If w is an almost [g, h, V, y; Vo, yo]-path, then w is also an almost
[g,h,V,y\\0,y0]-path.

Since each (g, /z)-path is an almost [g,h,\,y; Vo, yo]-path by Lemma 2.18, we
can immediately deduce the following lemma.

LEMMA 2.22. Each word U>Q, W\, ..., wn in Proposition 2.6 is an almost
[1, g, V, y; Vo, yo]-path with g = s9 = t9.

Now we are able to define the paths which we intend to assign to the almost
[g, h, V, y; Vo, yo]-paths. In fact, we give our definition for any [g, h, Unconnected
word.
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Let us choose and fix a cone of paths in any finite connected subgraph in C. Let
w be a [g, h, Unconnected word in A® and p a path in C®. We say that p is a
[g, h, \]]-extension ofw if

(El) p is a (g, A)-path which spans (w),
(E2) /? p(U fl G, A) n*win)nh for the cone of paths (n) fixed in (w),
(E3) (i) if (p(U))0 c h then A(p) = h(w),

(ii) if (/o(U))0 c A and 0(w) is non-empty then p — poO(w)q, where pQ is
a [g, a(0(u>)), U0]-extension of 0(w).

Let us recall that Lemma 2.13 ensures that 0(u>) is a [g, a(0(w)), U0]-connected
word. Furthermore, we have |/4(0(iw))| < |A(io)|, and so the definition is correct.

The set of all [g, h, U]-extensions of a [g, h, U]-connected word w will be denoted
by w[g, h, U].

In the following lemmas we sum up several properties of the sets w[g, h, V]. Firstly
we prove that if p is a (g, /i)-path and q e p[g, h, V] then l{p) = £{q). In order to
be able to proceed by induction, we verify a slightly more general statement.

LEMMA 2.23. Let U be either the variety V or the variety Vo provided (p (V))o c A.
Denote by e the equality relation and 80, respectively. Ifqe p[g, h, U] where p is a
{g,h)-paththenl{p)€t(q).

PROOF. Since q p(U n G, A) p by Lemma 2.17, we can apply Lemma 2.15(i) with
the variety UnSG and the congruence e vy, and we can deduce that i(pr*r) (e V y)£ (q)
for every (g, h)-path r spanning (p). However, since

(2.3)

by Lemma 2.16(ii), we obtain that

(2.4) l(p) (€ V y) t{q).

If (p(V))0 2 ^ men U is necessarily V and q e p[g, h,\]. Taking into account
Lemma 2.17, we see by Result 1.6 and Remark 1.7 that q p(V, A) pr*r. Hence
l(q) = l{pr*r) by Lemma 2.14. Again utilizing (2.3) and the fact that 5 is a left
regular orthodox semigroup, we obtain that l{q) = £(p).

Now assume that (p(V))0 c A. If 0(p) is empty then we have e([p]) = e([h(p)])
and h(p) = h(q). Thus l(q) @ L(h(q)) = t{h{p)) 3> l(p). By Result 1.2(i)
and Lemma 2.3, respectively, this relation together with (2.4) implies (.(p)el(q).
In particular, if |A(p)| = 1 then this is the case since A{p) = A{h{p)) implies

We proceed by induction on | A (p) |. Suppose that the statement of the lemma holds
for every path/? with |A(p)| < N (N > 1), and consider a path p with | A (p)\ = N. It
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remains to consider only the case when 0(p) is non-empty. Then 0(p) is a (g, &)-path,
k = a(Q(p)) andJJo = Vo. So the induction hypothesis ensures that £(q0) So t(0(p))
provided q0 € 0(p)[g, k, Vo]. This relation impjes l(qoO(p)) 8O £(0(pJ0(p)). Since
q is of the form qoO(p)qi for some q0 e 0(p)[g, k, V0] and we have e([p]) —
e([Wp)0(p)]), e([q]) = e([qoO(p)]), therefore we see that £(p) & €(0(p)0(p)) and
£(q) £% l(qoO(p)). Hence we obtain l(p)&t(q) because So c 01. Again applying
Result 1.2(i) and Lemma 2.3, we obtain from (2.4) and the previous relation that
l{p) e £(q). The proof is complete.

LEMMA 2.24. Each [g, h, Unconnected word has a[g,h, U]-extension.

PROOF. Let w be a [g, h, U]-connected word, r a (g, /i)-path spanning (w), (n)
the cone of paths fixed in (w) and p0 e 0(w)[g, a(0(w)), Uo], if exists, provided
(/o(U))0 c A and 0(w) is non-empty. Denote the (g, /i)-path rr*n*w(n)nh by x, and
consider the (g, /i)-path

(2.5) p =
A (u;)(A(u;))*JC if either (p(U))0 c A and (p(U))0 2 A,

or (p(U))0 c A and 0(u>) is empty,
PoO(w)(poO(w))*x if (p(U))0 c A and 0(w) is non-empty.

The path p possesses the properties (El) and (E2) by definition. If (p(U))0 g A
or 0(ui) is empty then p satisfies (E3)(i) also by definition. In the opposite case,
Result 1.3 and Remark 1.4 ensure that p(U0) c h. Therefore, if p0 exists, then it
fulfils (E3)(i), and so h{p) = h(p0) = h(0(w)) = h(w). So p satisfies (E3)(i) also in
this case. Thus we have proved the existence of a path in w[g, h, U] provided either
(p(U))o 2 A, or (p(U))0 c A and 0(w) is empty. In particular, this is the case if
|i4(io)| = 1, for, in this case, A(w) = A{h(w)), and so e((w)) = e((h(w))) follows.

We proceed by induction on |A(w)|. Suppose that every [g, h, U]-connected word
iywith|/4(u))| < N (N > l)hasa[g, h, U]-extension. Letiobea[g, h, U]-connected
word with | A (w) | = N. It remains to be proved that u! [g, h, U] is non-empty provided
(p(U))0 9 A and 0(u>) is non-empty. Since |A(0(it>))| < V̂, the induction hypothesis
implies that apo e 0(w)[g, a(0(w)), U0] exists. The above argument verifies that
p e w[g, h, U], and so the proof is complete.

LEMMA 2.25. Let M be either the variety V or the variety Vo provided (p(V))0 c A.
Denote by e the equality relation and So, respectively. Ifw,w€ A® are [g, h, U]-
connected words with wp(U, A)w and p e w[g,h,U], q e w[g,h,U] then
t,(p) € l(q). In particular, we have £(p) = l(q)for every p,q G w[g, h, V].
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PROOF. Since S c U, the assumption w p(V, A)w implies A(w) — A(w), and
hence (ID) = (w). Thus the assumptions on p and q imply that [p] = [q] = (w) and
p /o(UnG, A) n*w(n)nh, q p(UflG, A) n*wMnh where (n) is the cone of paths fixed
in {w). Since p(UnG, A) is bi-invariant, we obtain that w(n) p(UDG, A) wM whence
we see that p p(\J r\G, A)q. Therefore we have p p(U n SG, A) q by Remark 1.8.
Since e V y c 9 and ker (0/(e v y)) e U n SG, it follows by Lemma 2.15(i) that

(2.6) £(p) (€ v y) £fo).

Notice by Result 1.3 that if (p(V))0 g A then necessarily U = V. So, as we have
seen formerly, p p(V n G, A) q holds. If, moreover, (p(V))0 c /z then, by definition,
we have also /i(p) = h(w) = /i(TZJ) = /i(<7)- Thus Result 1.6 and Remark 1.7 imply
that p p(V, A) q, and so Lemma 2.14 ensures that l(p) = l(q).

Now assume that (p(V))0 c A. By Result 1.2(i) and Lemma 2.3, it suffices to
prove that £(p) £% t{q) since (2.6) is already verified. Taking into consideration the
remark after the definition of 0(w) and 0(w), the relation w p(U, A) w implies

(2.7) 0(u;) = 0(uJ) and 0(io) p(V0, A) 0(w)

by Result 1.6 since Uo = Vo. Moreover, we have h(w) = h(w) by Remark 1.4.
Therefore, if 0(io) is empty then 0(uJ) is also empty, and this is the case if and only if
e({w)) = e([h(w)]). Then it follows by Lemma 2.16(ii) that e([p]) = e([h(p)]) =
e([q])- Furthermore, by definition, we have h(p) = h(w) = h(q). Thus we obtain

£(pp*) = t(h(w)(h(w)ypp*) & i{h{w){h{w)Tqq*) St l{qq*)

whence t(p) £% l{q) follows. In particular, this is the case if jA(iu)| = 1, for
A(w) = A(h(w)) implies e({w)) = e([h(w)]).

The remaining case is treated by induction. Suppose that the assertion of the
lemma holds for U, e, g, h, w, w, p, q satisfying the assumptions of the lemma and
the condition that |A(io)| < N (N > 1). Let U, e, g, h, w,Tv, p, q be as in the
lemma, and assume that |A(IM)| = N. As we have seen, we need consider only
the case when (p(V))0 c A and 0(u>) is non-empty. By definition, we have
/J_J= p0Q(w)r and q = qQ0(w)s where p0 e 0(w)[g, a(0(w)), V0] and qo e
0(w)[g,a(0(w)), V0]. Since |A(0(u>))| < N, (2.7) shows that the induction hy-
pothesis can be applied. We infer t(po)Soi-(qo), and so (,(p00(w)) 80 (.(q00(w))
follows. However, we have e([p]) = e((p)) = e((0(u>)0(uJ))) = e((poO(w))) =
^([poO(iy)]) by definition and Lemma 2.16(ii). Therefore we see that (.(p)&t(pp*) —
l(p00(w)r(p00(w)ry)^(po0(w)(po0{w)y)@e(po0(.w)). Similarly, we have also
l(q) St (̂<7oO(ID")). Hence we obtain i(p) SZ l(q), for ^ c J . The proof is
complete.
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For later use, we formulate a consequence of the previous lemma.

LEMMA 2.26. Assume that (p(V))0 c A. Let u,v e A® be [g, h, \]-connected
and [g, i, \]-connected words, respectively, such that 0(M) = 0(u) and 0(M) = 0(v).
Then i(p) & t(q)for every p e u[g, h, V] and q e v[g, i, V].

PROOF. For brevity, denote 0(«) = O(u) by w and 0(«) = 0(v) by a. Put £ = a(a).
By Lemma 2.13, u> is [g, k, V0]-connected, and, by definition, we have p = poapi
and q = qoaqi where pQ, q0 € w[g, k, Vo]. Lemma 2.25 implies that t{po) Sol(qo).
Thus t(poa)8ol(qoa) follows. Since e({u)) = e((wa)) = e([poa]) = e([qoa]) =
e((v)), we infer that l(p) 0Z i(pp*) & f.(poa(poay) & i(poa) and, similarly,

t{qoa). Hence we obtain that l(p) ^ £(q) since ô c ^ .

Before proving that the equality £(p) = £(q) holds provided w, w e A® are almost
[g, A, V, y; Vo, yo]-P

aths such that w is obtained from u> by one of the rules (S2>-
(S3')^ and p e w[g, h, V], q e w[g, h, V], we verify an auxiliary lemma.

LEMMA 2.27. Assume that (p(V))0 ^ A. IfueA® is an almost[g, i, Vo, yb; Vo, /o]-
pathands e C®(/, y) thenus is an almost [g, j , Vo, Yo\ Vo, yo]-path and £(p) Sol(zs)
for every p e us[g, j , Vo] and z e u[g, i, Vo].

PROOF. Recall first that the sets us[g, j , Vo] and u[g, i, Vo] are non-empty by
Lemma 2.24. By Lemma 2.25, it suffices to prove the statement for some p and z.
In order to show that us is an almost [g, j , Vo, yo', Vo, ]/0]-path, it is enough to verify
that us0 is a [g, h, Vo, yo]-prepath for every initial segment s0 e C®(/, h) of s. For,
u is supposed to be an almost [g, i, Vo, yo; Vo, yo]-path, and 0M(w.y) is either of the
form 0*(M) or of the form MO*(S) for some k (k > 1). Let D be a finite connected
subgraph in C containing {us0}, (m) a cone of paths in D and (n) a cone of paths in (M).
Furthermore, let q be a (g, /i)-path spanning D and r a ( g , j)-path spanning (u) such
that ? p(\0 nG, A) m*(Hso)(m)W* and r p(V0 n G, A) /I*M(B)/I,-. Since i0 e C®(/, A),
Lemma 2.17 implies qs£ /o(VonG,i4) /M*M(m)w,. Considering any (i, /)-pathv span-
ning D, we obtain that ryy* also spans D and ryy* p(\0 n G, A) n*«(n)/i,. Since « is
a [g, /, Vo, yo]-prepath by assumption, we infer that f-iqs^) y0 i(ryy*). However, we
havee([s0]) > e([q]) = e([y]),theTefoTei(.qs;s0)yi(q)sndl(ryy*s0)yi(rs0s*yy*s0)
y£(rs0). Since y c y0, we obtain that £(q) y0 i(rs0). Since (m) is an arbitrary cone
of paths in D, we have verified on the one hand, that us0 is a [g, h, Vo, yb]-prepath.
On the other hand, if we choose s0 = s, D = (us), (m) and (n) to be the cones
of paths fixed in (us) and («), respectively, and q = p, r = z, then we obtain that
f-(p) Yo Uzs) for every p € us[g, j , Vo] and z e u[g, i, Vo].

By Lemma 2.3, it remains to prove that l(p) $ £(zs) for some p € us[g, j , Vo]
and z e u[g, i, Vo]. We proceed by induction on \A(s)\. If \A(s)\ = 0 then we can
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choose p = z, and the relation £(p)S0£(zs) is obviously valid. Suppose that the
relation £(p) So £(zs) holds for some p € us[g, j , Vo] and z e u[g, i, Vo] provided
\A(s)\ < N (N > 0), and consider u and s with \A(s)\ = N which fulfil the
assumptions of the lemma.

If e((us)) = e((u}) then we have 0(us) = 0(M) and 0(us) = 0(M). Thus e([p]) =
e([zs]) = e([z]) follows, and so

£(p) 3t £(pp*) @ £(y0(u)(y0(u))*) $t £(zz*) & £(zs{zs)*) &Z £(zs)

where v e 0(u)[g, C*(0(M)), VO] provided 0(w) is non-empty and y is empty otherwise.
If e({us)) < e({u)) then 0(«s) = «s0 (̂ o niay be empty) and s00(us) is an initial

segment of s. Assume that s0 e C®(/, ft) provided it is non-empty, and put h = i if
.so is empty. Since |A(so)| < N, the induction hypothesis implies that t(po) S0£(zs0)
is valid for some p0 € uso[g, h, Vo] and z e u[g, i, Vo]. Since So is a congruence,
we infer l(p0Wus))80l(zs00(us)). However, e([p00(us)]) = e((us}) = e([p]) =
e([zi]) = e([zs00(us)]) by Lemma 2.16(ii). So, on the one hand, we obtain for p
defined by means of p0 as in (2.5) that £(p) & l(p00(us)). On the other hand, we
see that £(zs) @ l(zs00(us)). Since So c ^ , we infer l{p) 2% £(zs), completing the
proof.

LEMMA 2.28. Let \i be either the variety V or the variety Vo provided (p(V))0 c A.
Denote by € the equality relation and So, respectively. Let w,w€ A® be almost
[g, h, U, e v y; Uo, yo]-paths such that w is obtained from w by one of the rules
(S2HS3')5 ' . Then we have £{p)e£(q) for every p € w[g,h,V]andq eW[g,h,V].

PROOF. By Lemma 2.25, it suffices to show that £(p)e £(q) for some p e w[g, h,U]
and q e w[g,h,U]. Clearly, we have {w} = (w). Letjas choose a (g, h)-path
r spanning {w), and suppose by Lemma 2.24 that p0 G 0(w)[g, ar(0(u>)), U0] and
q0 G 0(uJ)[g, a(6(w)), Uo] provided (p(U))0 c A and 0(w) and 0(uJ) are non-empty.
Later we will choose p0 and q0 in an appropriate way. Denote the cone of paths fixed
in (w) by (n). By means of w, p0 and w, q0, respectively, let us define p and q as in
(2.5). By Result 1.2(i) and Lemma 2.3, we should verify that £{p) ((e V / ) V\St) £{q).

Firstly we show that £(p) (evy) £{q). Since w is obtained from w by rule (S2-3)^,
by definition, we have w{n) = u(n)sMvM anduJ(n) = U(n)twvw. Here, by Lemma 2.17,
we have s(n) p ( G , A) ntsn* and t(n) p(G, A) nttn* provided s,t € C®(/, j). Thus

we see from the definition of p and q that pp(G, A) PsQ and q p(G, A) PtQ for
some paths P e C®(g, /), Q e C®(;, A) with [/>] = [Psg] , [^] = [PtQl Thus
p p(SG, A) PsQ and q p(SG, A) PtQ where p(SG, A) c p(UnSG, A). Applying
Lemma 2.15(i) with the variety U n SG and the congruence e v y, we deduce that
€(p) (e v )/) ^(Psg) and £(q) (e V y) £{PtQ). Since €(5) = £(?), it immediately
follows that £(p) (e v y) £(q).
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Turning to the proof of £(p) 3% £(q), observe that e([p]) = e([r]) = e([q]) and
e([p]) = «([pbO(u>)]), e([q]) = e([qoO(w)]), respectively, provided (p(U))0 c A
and 0(u;), 0(uJ) are non-empty. So we have £(p) & t(rr*) 0$ £(q) if (p(U))0 % h,
and
(2.8) £(p) 0? £(h(w)(h(w))*rr*), £(q) 0£ £(h(w)(h(w))*rr*),

respectively, if either (p(U))0 c /zand(p(U))0 g A,or(p(U))0 c AandO(iu), 0(w)
are empty, and
(2.9)

respectively, if (p(U))o Q A and 0(w), 0(w) are non-empty. Hence it is obvious
that £(p) 0% £(q) in the cases when (p(U))0 2 h, and when u is non-empty and
either (p(U))0 C h and (p(U))0 % A or (p(U))0 c A and both 0(«;) and 0(w) are
empty. In connection with the latter case, let us notice that 0(w) is empty if and only
if 0(uJ) is empty. For, both 0(u>) and 0(uJ) are empty by definition if and only if
*([*(«)]) = e({w)).

Now assume that u is empty. If (p(U))0 c ^ and (p(U))0 2 A then we have
U = V, and Result 1.6 and Remark 1.7 ensure that h(w)(h(w))*rr* p(V, A) i^Vr*.
Hence it follows by Lemma 2.14 that l{h{w){h{w))*rr*) = i(ss*rr*). Similarly, we
see that l(h(w)(h(w))*rr*) = l(tt*rr*). Since t{ss*) @ £(s) = l(t) & lift*) and
E is left regular, we obtain that £(ss*) = £{tt*). This implies t{ss*rr*) = l(tt*rr*)
whence we infer by (2.8) that £(p) M l{q). If (p(U))0 c A and 0(w) is empty
then e([h(s)]) = e((w)). Thus, by Lemma 2.16(i) and (ii), we obtain that e({w}) =

=e([h(s)]),andso

(2.10) t{p) 01 l(h(s)(h(s))*) Si t(h(s)) & l(s).

If e([h{t)]) = e([t]) also holds then the equality e([s]) = e([t]) implies e((w)) =
^([^(01), and so O(uJ) is also empty. Similarly to (2.10), we have £(q) £% t(t) whence
l(p) & Z(q) follows. In the opposite case, we have O(uJ) = 0(/) and O(uJ) = 0(0
whereJKO is non-empty. Then, by (2.9), we see that t(q) 0V, £(qoO(t)) where
q0 e O(t)[g, a(0(t)), Uo]. HereUo = V0 and 0(0 is a path, and so Lemma 2.23 implies
£(qo)8o£(Q(t)). Hence we infer £(qoO(t))8o €(0(00(0) Si £(t). Since $, c St we
see that £{q) & £{t), whence, again, €(/?) & £(q) follows. The case when 0(w) is
non-empty and O(uJ) is empty is treated similarly.

In particular, if min(|j4(u;)|, |A(uJ)|) = 1 then either A(w) = A(h{w)) or A(w) =
A (h (TO)) which implies in case (p (U))o c A that 0(u>) or 0(w), respectively, is empty.
Thus the argument in the previous paragraphs shows that the statement in the lemma
is valid in this case.

We proceed by induction on min(|A(iw)|, |J4(UJ)|). Let us suppose that the lemma
holds provided min(|A(u;)|, |A(uJ)|) < N (N > 1), and consider words w,ID with
min(|yl(u;)|, | A(w)\) = N which satisfy the requirements in the lemma. It remains to

https://doi.org/10.1017/S1446788700038465 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038465


[32] Extensions of regular orthogroups by groups 59

handle the case when (p(U))0 c A and both O(io) and 0(uJ) are non-empty. Then we
clearly have Uo = Vo. Moreover, 0(it») is an almost [g, a(0(u>)), V0, YQ\ VO, )/0]-path
and 0(uJ) is an almost [g, a(0(uJ)), Vo, y0; Vo, yo]-path. We distinguish several cases
according to the forms of 0(w) and 0(u>) listed in (P1MP3).

(PI) We can choose p0 and q0 to be equal, and so l(p) & t(q) is straightforward
from (2.9).

(P2) By symmetry, it suffices to consider only the cases when w is obtained from
w by rules (S2) and (83)^, that is, we should consider only the subcases (i), (ii) and
(iii). Since 0(uJ) = u, u is an almost [g, i, Vo, Yo\ Vo, yo]-path where i = a(0(uJ)).
Put

{ a* in subcase (l), , \ a

, . , .... , ..... and t = {
ab in subcases (n) and (m), [ c I

in subcase (i),
m subcases (n) and (in),

respectively. Applying Lemma 2.27, we see that if p e us[g, co(s), Vo], q e
ut[g, co(t), Vo] and z € u[g, i, Vo] then

(2.11) l(p)80e(zs) and l(q) ^ l{zt).

Since 0(us) = 0(w), O(us) = 0(w) and 0(ut) = 0(w), O(ut) = 0 (w) in all subcases,
Lemma 2.26 ensures that £(p) & t(p) and l(q) $ l(q), respectively. Thus (2.11)
implies that l(p) SZ l(zs) and l(q) @ £(zt). However, we have l(s) = lit), and
so l(p) 2% l(q) immediately follows.

(P3) Now 0(uJ) is obtained from 0(iu) by one of the rules (S2)-(S3')5\ and we
have min(|y4(0(u;))|, |A(0(uT))l)- Therefore, the induction hypothesis ensures that
i(Po)8o£(qo) for every p0 € Q(w)[gJ, Vo] and q^ e 0(w)[g,i,\0] where / =
a(0(iy)) = a(0(wT)). This implies l(p<fi(w)) 80 l(qo(i(w)) and so, by (2.9), we have
l(p) 3% l(q). The proof is complete.

PROOF OF PROPOSITION 2,6. By Lemma 2.22, the words w0, wu ..., wn in Pro-
position 2.6 are almost [1, g, V, y; Vo, yo]-paths where g = sO = tO. Obviously, we
have e(w0) = €((l,s)) = s and l(wn) = £((1, t)) = t. On the other hand, there
exists pi € to,[l, g, V] for i = 0 , 1 , . . . , n by Lemma 2.24. According to whether
io/+i is obtained from wt by rule (SI) or by one of the rules (S2)-(S3')'T, the equal-
ity l(pi) = l(Pt+i) follows from Lemmas 2.25 and 2.28, respectively. Since w0

and wn are edges, Lemma 2.23 implies £(w0) — £(po) and l(wn) = £(pn). Thus
s = £(w0) = t(po) = £{p{) — • • • = £(pn) = £(wn) = t, proving Proposition 2.6
and, consequently, Theorem 2.1.
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