Can. J. Math., Vol. XXXVIII, No. 1, 1986, pp. 232-256

FRAME FIELDS ON MANIFOLDS
TZE BENG NG

1. Introduction. Consider the following stable secondary cohomology
operations associated with the relations in the mod 2 Steenrod alge-
bra: A

$4:S¢(S°Sq") = 0;
$5:(S¢°Sq )(S¢’Sq') + Sq'(S¢Sq’) = 0
such that

S¢*¢, = Sq'es = 0.

Let s be a stable tertiary cohomology operation associated with the
above relation. We assume that (¢,, ¢s) and y5 are chosen to be spin trivial
in the sense of Theorem 3.7 of [14].

Let ¢y9, ¢, be the stable Adams basic secondary cohomology
operations associated with the relations:

$0.0:5¢'Sg' = 0 and
<1>|‘1:quSq2 + Sq3Sql =0

respectively.

Let n be a positive integer with n = 7 mod 8 = 15. Suppose that M is a
closed, connected and smooth manifold of dimension » which is
3-connected mod 2 and satisfies the condition wy(M) = 0, where w;,(M)
is the ith-mod 2 Stiefel-Whitney class of the tangent bundle of M. Let the
mod 2 semi-Kervaire characteristic be defined by

X2(M) = > dimZZ(Hi(M)) mod 2.
2

i<n

All cohomology will be ordinary singular cohomology with Z, coefficients
unless otherwise specified. Let

8:HX—,Z,) »> H*'(—, 2)
be the Bockstein operator associated with the exact sequence
0—-2Z—-272Z—-17Z,—0.

We shall prove the following theorems:
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THEOREM 1.1. Suppose
Indet" *(ys, M) = SH" (M) and
SPH'((M; Z) = S¢H""(M).

@) If n = 15 mod 16 = 15, then Span(M) = 7.
(ii) Suppose n = 7 mod 16 > 7. Then span(M) = 7 if and only if

0 € ¢4(w,_o(M)) and 0 € Ys(w,_o(M)).
THEOREM 1.2. Suppose

Indet” (s, M) = S¢H" (M) and

S¢H"" (M) = Sq’Sq'H"~S(M).

(1) If n = 15 mod 16 > 15, span(M) = 8.
(ii) If n = 7T mod 16 > 7, span(M) = 8 if and only if w, (M) = 0,
0 € ¢y(w, o(M)), 0 € Ys(w,_o(M)) and x,(M) = 0.

We have the following immediate corollaries.

CoRrOLLARY 1.3. Suppose n = 15 mod 16.
(1) If M is 4-connected mod 2 and

S¢H"(M; Z) = S¢H"” (M),

then span(M) = 7.
(i1) If M is 5-connected mod 2 and n > 15, then span(M) = 8.

COROLLARY 1.4. If M is 5-connected mod 2 and n = 7 mod 16 with
n > 7, then

(a) Span(M) = 7

(b) Span(M) = 8 if and only if w, (M) = 0 and x,(M) = 0.

Throughout the rest of the paper M is assumed to be 3-connected
mod 2.

2. The modified Postnikov tower. We shall consider the problem of
finding a k-field as a lifting problem. Let BSO,(8) be the classifying
space of orientable n-plane bundles £ satisfying

Wz(f) = wy(é) = 0
where w;(£) is the i-th mod 2 Stiefel-Whitney class of the bundle £. Let
g:M — BSO,(8)

classify an n-plane bundle  over M. Then the problem of finding
k-linearly independent sections of m is equivalent to lifting g to
BSO,_,(8). Hence we shall consider a Postnikov tower for the fibration

Vi = B3O, i (8) > BSO,(8),
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and inspect the obstructions to lifting g to BSOn_ «(8). Following [3] we
shall consider the n-MPT for 7 for k = 7 or 8. The computation is done in
[8]. We list the results in the following tables:

TABLE 1

The n-Postnikov tower for w:BL/S\‘O,,_7<8) - B§0,,<8>.

k-invariant Dimension Defining relation
Stage 1 Kl n—=6 w, 7
k% n—>5 Wy—5
k§ n—3 W,—3
Stage 2 ki n—>5 quk} =0
k3 n—4 S¢’ky + Sg’kl = 0
k3 n—3 Sq*kt =0
k3 n—73 S¢Sq'ky + Sq'k} =0
k3 n—-2 Sg*ki =0
k3 n S¢*ki =0
Stage 3 k% n—4 quk% =0
K n—3 SqZSg‘k% + si‘k% =0
K n—3 Sq¢'k3 + SqPks + Sq'ki =0
ki n xSq4k§ + quSq“k% =0
Stage 4 Kt n—3 Sq*ki + Sq'k3 = 0
TABLE 2

The n-MPT for m:BSO, _¢(8) — BSO,(8).

k-invariant Dimension Defining relation

Stage 1 k' n—17 K = W, _q
Stage 2 k? n—>5 SqZSq'kl =0

k3 n—3 Sq*sq'k' =0

K3 n—2 Sq*Sq*k} = 0

k5 n (ng + wg)k,l =0

(n > 15)

Stage 3 il n— 4 S¢*kt =0

K n—3 (SPSgHk} + S¢'k3 =0

k3 n (S¢*SqHkT + xSq*k3 = 0
Stage 4 K n—3 Sq*k3 + Sq'k3 = 0

By the connectivity condition on M we only need to consider for the
case of lifting g to BSO,_7(8), w,_5(n), w,_sm), ki(m), k>(n), ki),
k?(*q) and ki(n) whenever these are defined.

According to [14, Proposition 4.2] we have the following technical
result:

ProrosITION 2.1. Let w, _q be the (An — 9)-th mod 2 universal Stiefel
Whitney class considered as in H"~°(BSO,_1(8) ). Then
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(2) (0,0) € (¢4 d5)(w,_g) C H' *(BSO,_(8))
@ H""4(BSO,_(8)).
(b) 0 € dy(w,_o) C H' 4BSO,_(8)).

The proof is entirely analogous to that of Theorem 4.2 of [14]. We shall
not present it here.
According to [14] ¢, ; is spin trivial and so we have

ProvrosiTioN 2.2. (E. Thomas)
0 € ¢10w,7) C H'"*(BSO, +(8)).

Let the n-MPT for w:BSOn_k<8> - BSOn<8> for k = 7 or 8 be
indicated by the following diagram:

BSO,_i(8)
43//(1\/ "‘
4{ ‘p/z )/Pl

Ey »F5 »E|
By the connectivity condmon on M, there is no obstruction to lifting any
map from M into E; to BSO _1{8).

Recall the definition of a generating class in [13]. Then we have the
following Proposition due to E. Thomas. The proof is identical to that of
Proposition 4.1 in the case £ = 7 and to Proposition 4.5 in the case k = 8
in [14].

;B§0vn<8>

ProposiTION 2.3. (za) The class wy—9 in H"~ 9(BSO (8)) is a generating
class for the pair (ki, 0) in H"™ 5(E) ® H" YE,), relative to the pair
(¢4’ ¢5)

(b) The class p;*w,,_q is a generating class for k?, relative to the opera-
tion Ys.

Similarly we have

ProrosiTION 2.4. For m: BSO —7{8) — BSO (84) the class w,_-
in H'™ 7(BSO (8)) is a generating class for k2 in H" °(E)).

Now by inspection of the k-invariants for the n-MPT for 7 and the
connectivity condition on M, together with Proposition 2.1, 2.2, 2.3, 2.4
and the generating class theorem of Thomas [13] we have

THeoreM 2.5. (The case k = 7.) Let ) be an orientable n-plane bundle
over M satisfying

wy(m) = 0, 8w, _4(n) = 0, w,_s(n) = 0.
Suppose
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Indet" %, , M) = STH" (M),
Indet” 45, M) = Indet" “(k], M) and
SEH' (M; Z) = S¢°H"~(M).

Then
(i) (0, 0) € (K7, k3)(n) if and only if

0 € ¢y(w,—o(m) and 0 € ¢ (W, 4(n))
(ii) 0 € ki(n) if and only if

0 € ¢y(w,—g(m) ), 0 € ¢ ,(w,_9(m))

0 € kim) and 0 € Ys(w,_o(n)).

THEOREM 2.6. (The case k = 8.) Let 1 be an orientable n-plane bundle
over M satisfying wy(n) = w,_4(n) = 0. Suppose

Indet" *(ys, M) = Indet" “(k3, M).
If either wg(n) = Vo(M), the 8th Wu class of M, and
SEH' (M) = S¢Sq'H" " 3(M) or S¢H (M) = 0,

then

()0 e kl(”’l) if and only if 0 € ¢y(w,_o(n))
(i) 0 € k](ﬂ) if and only if

0 € 4w, —o(m)). 0 € kii(m) and 0 € ds(w, _s(m) ).
3. The top dimensional secondary obstructions. Let { be a choice of

stable cohomology operation of Hughes-Thomas type associated with the
following relation in UA:

$6:84'Sq" > + Sg(Sq" T Sq) + Sq'(Sq"Sq’
+ S¢" " 's¢"y = 0
such that
SG'(b,—4) U b,_4 € te(b,—s)

where b, _, is the fundamental class of the space Y, _, over K, _, with

classifying map (Sq2 Sq Nop—a-
Then the following is proved in [8].

THEOREM 3.1. Consider the n-MPT for the fibration
m:BSO,_,(8) — BSO,(8).

Let v be the pull back of the universal orientable n-plane bundle over
BSO, (8. Using this bundle induce bundles over E,, E, by p, and p, o p,
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respectively. Denote the Thom class of the resulting bundles by U(E,) and
U(E,) respectively. Suppose k = 7. Then

U(E) - kg & $(U(EY).
Let n be an orientable n-plane bundle over M satisfying
wym) = w,—s(m) = 0, dw,_4(m) = 0.
Then by Theorem 3.1 together with the fact that
Indet*(T(n) ) = ¥ Indet"(M, k2)

(where ¢ is the Thom isomorphism and 7'(n) the Thom space of 7), we
have

THEOREM 3.2. 0 € ké(n) if and only if 0 € §(U(n) ) where U(n) is the
Thom class of n.

3.3. Consider now the case k = 8. Then Theorem 5.10 of [8] applies
to give the existence of a secondary cohomology operation, {g (stable if
n = 15(16) and non-stable if n = 7(16) ) associated with the relation

$:5¢°Sq" T + Sq*(Sq" 'S4’
+ SAST T3SG + SqTSE S
+ Sq'(S¢"'Sq" + S¢" S48 + S¢S’
+ 84" 7S¢ = 0
satisfying
d,_g U Sq’d, g + Sqg°d,_3 U Sg’d,_4 € {y(d,_y).

where d, ¢ is the fundamental class of an universal example for (n — 8)

dimensional class x satisfying S¢*x = 0. Then for the n-MPT for 7 for the
case k = 8, we have

(34 UE) - (ki + wg - w,_g) € G(U(EY)).
Since
Sq' (U(E)) - (wg - w,—g)) = U(E)) - (wg - w,_¢)
by (3.4) and the connectivity condition on M we have

THEOREM 3.5. (The case k = 8.) Let m be an orientable n-plane bundle
over M satisfying

wy(m) = w,_4(n) = 0.
If wy(M) = 0 then 0 € ki(n) if and only if 0 € {(U(n) ).
Of course if wg(n) # Vg(M) then
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(Sq* + we(n))H" ¥ (M) = H'(M)
and so trivially 0 € kﬁ(n).

4. The top dimensional tertiary obstructions.

4.1. Let ¢,, ¢,, be the basic stable Adams secondary cohomology
operations associated with the relation:

$0,:5¢'Sq" + (S¢°Sq")Sq* + S4*Sq' = 0 and
¢2’2:Sq4Sq4 + Sq6Sq2 + Sq7Sq] =0
respectively.
Then Lemma 4.7, 4.17 of [8] says there exist stable secondary co-

homology operations {;, {;, 7, and 7, associated with the following
relations (denoted by the same symbols)

({84 (Sq"° + Sq"77Sq") = 0
4:S4%(Sq" 0 + Sq"77Sq") + Sq*(Sq"T°Sq’Sq' + Sq"'Sq)

+ (S4°Sq")(Sq"~"'S¢*Sq") = 0
(42) m:(Sq*SNSq" °SgSq' + Sq" ¥ sq)

+ SP(Sq" T 'S¢*Sq) = 0
(STSq VST T STST + Sq'T'Sq’Sq")
+ 54"(Sq"7'S#Sq) + (S4'Sq’Sq’

. + Sg)Sq" " SSqh) = 0
satisfying
4.3)  Q(SESEHE, + xSq't; + Sgny + Sg'm, = 0

such that on b _4 the fundamental class of Y, ; over K, ; with
k-mvarlal}t (Sq qu) ln—7>

Sq*b,_, U b,_, + (Sq¢"'Sq* + Sq"°Sq°

+ Sq""'9sq")b, _, + Sqn_6¢1,1(bn—7)

+ S¢S 0(b,—7) € $3(b,—7);
@4 ‘qu”‘%o,o(b,,_ﬂ & ti(by_;

(Sq"~* + 54"~ °Sg"¢, \(b,—7) € my(b,_5) and
Sq"‘7542¢1 1(by—7) € my(b,_7)

Let Dk be the universal example space for k-dimensional mod 2
cohomology class x satisfying Sg'x = qux = Sq x =0, ¢pg(x) = 0and
¢, (x) = 0. Let d; be the fundamental class of D. Let {|, {3 be the
relations obtained from {;, {; of (4.2) respectively by replacing
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SPSq ¢ + S4" 7S¢y and Sg*(Sq" " + Sq"7'Sq")
by

(S4°S¢")Sq"~7 + S¢*(Sq"~"Sq") and

(S4*'Sq")Sq" 7 + Sq*(Sq"~7Sq")

respectively. Then there exist stable secondary cohomology operations
associated with {|, {5 also denoted by the same symbols such that

(4.5) Z:] C §1,?3 c { and
Q:(quSq“)fl + xSq4?3 + Sq2nl + Sq3112 = 0.
Then Theorem 4.19 of [8] gives us

THEOREM 4.6. There exist stable tertiary cohomology operations, @ and §
associated with the relations (4.3) and (4.5) respectively such that

d,_7 U ($y9(d,_7) + SPg(d, 7)) € Qd,_-)
QcQ and 0 € Q(d,_y).

Let v, € H4(B§‘On<8) ) = Z, be a generator. Then by the admissible
class theorem of [8], and Theorem 4.6 we have

THEOREM 4.7. (1) (The case k = 7.)
U(E,) - (ki + (py 0 p)*W,—7 " Sq'vy) € UU(Ey).
(2) (The case k = 8.)
U(E,) - k3 € QU(Ey).
This is Theorem 5.8 of [8].
5. The case of sectioning orientable bundle 7 over M with w,(n) #
wy(M). The n-MPT for the fibration
7:B Spin,,_, — B Spin,,

is similar to that given by Table 1 or Table 2 depending on whether k = 7
or 8. We will retain the same notation. Note that for k = 7, ké and kj will
be defined by

(S¢* + wpk} = 0 and (xSq* + wy W3 + SESGKT = 0
respectively and for &k = 8§, kﬁ and k% will be defined by

(S¢® + wg Hk! =0 and

(xSq* + w, k3 + S¢*Sq*k3 = 0.
Thus if wy(n) # wy(M), for k = 7,
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(0, p) € Indet” _4"’( (k3, ki), M)
where p € H"(M) is a generator. Also for k = 8,
0, p) € Indet" *"( (K3, k3), M).

This means that once we have a lifting of an n-plane bundle 5 satisfying
wy(n) #* wy(M) to E, we can ignore the top dimensional tertiary
obstruction.

5.1. Note that the analogue of Theorem 2.5 for an orientable n-plane
bundle n over M satisfying w, _s(n) = 0 and dw, _¢(n) = 0 holds. The
proof is exactly the same. Hence we have by the above remarks and
the analogue of Theorem 2.5:

THEOREM 5.1. Suppose 1 is an orientable n-plane bundle over M satisfying
wa(n) #* wy(M). Suppose

Indet" 4(ys, M) = Indet" “(ki, M),
S¢H" (M; Z) = S¢°H" (M) and
Indet" %(¢, ;, M) = S¢H""%(M).
Then n has T-linearly independent cross sections if and only if
8w, o) = 0, w,_s(m) = 0,0 € b0, _g(m) ),
0 € ¢1(w,—7(n)) and 0 € Ys(w, _g() ).

5.2. Similarly the analogue of Theorem 2.6 holds for an orientable
n-plane bundle satisfying w,_(n) = 0. Therefore by the discussion at the
beginning of this section and the analogue of Theorem 2.6 we have
the following existence theorem.

THEOREM. Suppose
wa(n) # wy(M), S¢H (M) = 0,
Indet” " *(ys, M) = Indet" *(k3, M) and
wg(n) # Va(M),

the 8-th Wu class of M. Then m has 8 linearly independent cross-sections if
and only if

W) = 0, b4, _s(m) = 0 and 0 & ys(w,_o(m)).
6. Indeterminacy of . In addition to all the cohomology operations we

have used so far we need to consider the following stable secondary
cohomology operations associated with the following relations
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I\:(S4*S¢")Sq" + xS4'Sq* = 0
0,:SE (S Se) + xS¢*Sq* = 0
Iy:xSq'(Sq'Sq") + Sa°'(Sq' + xSq') = 0
I5:84°(S4°Sq') = 0

By virtue of the last section we shall now assume for an orientable
n-plane bundle n over M that wy(n) = w,(M) = 0. According to Atiyah
[2], the S-dual of T'(n) is the Thom space of the stable bundlea = —n — 7
where 7 is the tangent bundle of M. Primary piece of

Indet™ ~%(k3, k3) = {0} X S¢’H" (M)

(6.1)

for the case k = 7.
nn—4,3 13 * n—1
Indet (ky, k1) = (Ih, oF D" 7,
where
D7 — {x € H"‘7(M; Z):qux = 0}

and ¢7, is the stable secondary cohomology operation of degree 3 defined
on integral class and associated with the relation

S¢Sq* = 0.
Now by inspection, if wy(n) = wy(M),
(6.2) Indet*(Q, Tn) = I,D* (Tn) + T,H*" '(Tn)
+ L,H?%(Tn) + TH*5(Tn)
where D*"~7 c H*""(Tn) is defined by
D7 = {x € H*" (Tn):S¢’x = 0}.
Notice that
I,0*" " (Ty) c T,H*(T).

Apply the S-duality pairing and by Maunder [6], we have for any
x € H" (Ty)

(Tyx, U(=n = 1))
= (x, xBLU(— — 1))
= (x, S@po, U(=m — 7))

where U(—n — 7) is the Thom class of —n — 7.
This is because

xI; = 5434’0,2 + ¢,
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Since wy(—m — 1) = 0 and M is 3-connected mod 2, « = —n — 7Tis
classified by a map

g:M — BS0,(8),
for some large N. Then
92(U(BSON(8))) = 0,

where y(B.§'0N<8> ) is the Thom class of the universal N-plane bundle
over BSOy(8). Now let

v, € HYBSOW(8)) =~ Z,
be a generator. Then
$0,U(BSOy(8) ) = U(BSON(8) ) - 7.
Now for any bundle £ over M classified by a map
h:M — BSO,(8).
Define »,(§) to be h*(v,). Hence we have by the above remarks,
(63)  (Dyx, U(—n = 1)) = (x, SPU(=n — 1) - vy@)) )
= (x* Ua) - S¢v,(a) )
=0 if S¢’v,(a) = 0.

Similarly since

x(Ts) = Sq'¢,, o S¢'
is trivial on integral classes, for any x € H™" _S(Tn), I's(x) = 0 modulo
zero indeterminacy because

(Tsx, U@) ) = (x, xIsU(@) ) = (x, Sq'¢, ,(Sq'U(e))
=0 Vx € H" (Ty).
Now the S-dual of I, xI5;, is associated with the relation
(6.4)  (Sq°Sq")Sq* + (Sq' + xSq')(Sq’Sq") = .
Therefore on U(«w),
x(T3) = STSTdo, + S¢S0
Thus for any x € H*" °(Ty)
(T3(x), U@ ) = (x, SSPy,U(a) )
= (x, U(a) - 5¢°Sg’v,(a) )
=0

since Sq'v, = 0 in H(BSOy(8) ).
Hence we have the following
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THEOREM 6.5. Suppose wy(n) = wy(M). Then
Indet™(Q, Ty) = T,(H*" (Tn))
and is trivial if Sq3v4(a) = 0.
Similarly we have
THEOREM 6.6. Suppose wy(M) = 0. Then
Indet”(Q, M X M) = 0LH" /(M X M) and
Indet?(Q, M X M) = 0
if Sgry((=7) X (—=1)) = 0 or if Sg'vy(—7) = 0.
7. The case when the top dimensional tertiary obstruction has non-trivial

indeterminacy. Let n be an orientable n-plane bundle over M. Suppose
that

Indet" *(ys, M) = SH" (M) and wy(m) = wy(M).
7.1. The case k = 7. If
Indet" (k3, M) # 0,
since the primary piece of Indet” (ki, M) is trivial, we see that
(0,0) € (k3 k)m) if 0 € kjm).
Thus we have
THEOREM. Suppose
Indet" %, ,, M) = SCH"~ (M),
SPH' (M; Z) = S¢H" /(M) and
Indet" (k3, M) # 0.
Then n has 7 linearly independent sections if and only if
dw, _7(m) = 0, w,_s(n) = 0,
0 € ¢y(w,—o(m)), 0 € ¢ (W, 7)),
$e(UMm)) = 0.and 0 € Ys(w,_o(n)).

This follows from a theorem similar to 2.5 where the condition
wy(n) = 0 is dropped.

7.2. The case k = 8. Suppose w4(n2 = 0.
If Indet"(k3, M) # 0, (0, 0) € (k3, k3)(n) if 0 € kj(n). Then similar
to the case k = 7, we have
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THEOREM. Suppose either

W8(7’) = Vg(M) and quHn_7(M) — qusqunfé%(M)

or
SPH (M) = 0.

If Indet”(kg, M) # 0, then m admits 8 linearly independent sections if and

only if

w,—7(n) = 0,0 € 4w, _o(n) ),
0 € UM and 0 € Ys(w,—o(m)).
8. The case when the top dimensional tertiary obstruction has trivial
indeterminacy. Let 1) be an orientable n-plane bundle over M with
wy(m) = wy(M) = 0.
8.1. The case k = 7. Recall from Section 6 that
Indet"(kj, M) = I,D" 7.

By S-duality ;D" 7 = 0 modulo zero indeterminacy if 0 € xI'\(U(—1))
or if

SPvy(—1) € SPH(M).

Theorem 2.5, Theorem 4.7 (1), 6.5 and the admissible class theorem of [8],
give the following:

THEOREM. Suppose
SPH""'(M; Z) = S¢H"™ (M),
SPy(—m) + vy(—7)) = 0,
Indet" (k3, M) = 0,
SgH""S(M) = Indet" %(¢, , M) and
Indet” 4(ys, M) = Indet" *(k3, M).

Then m admits 7 linearly independent cross sections if and only if

Sw,_2(n) = 0, w,_s(m) = 0,0 € py(w,_o(n)),
0 € ¢ 1w, ), SUM)) = 0,0 € yYs(w, _o(n)) and
UMm) = 0.

8.2. The case k = 8. As for the case k = 7, we have a similar theorem
for the existence of 8 linearly independent cross sections of 7.
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THEOREM. Suppose

S¢0i(—m) + v(—1) = 0,
Indet"(k3, M) = 0 and
Indet" 45, M) = Indet” *(k3, M).

Suppose either
wy(m) = Vy(M) and S¢°H" (M) = S¢’Sq'H" " *(M) or
SeH (M) = 0.

Then w admits 8 linearly independent cross sections if and only if
w,—7(n) = 0,0 € ¢y(w,—o(m) ), 0 € LU()),
0 € Ys(w,_o(m)) and YU(m)) = 0.

This is a consequence of Theorem 2.6, Theorem 3.5, Theorem 4.7 (2),
6.5, and the admissible class theorem of [8] applied to 6.5 and the fact
that

Indet*’ (@, Tn) = Indet*(2, Tn) = 0.

9. Evaluation on Thom complex of the tangent bundle of M. We now
specialise to the case when 7 is the tangent bundle over M. We shall be
considering the stable cohomology operation {, and the secondary
operation {g and the tertiary cohomology operation 2.

Suppose M’ is a closed, connected and smooth manifold of dimension ¢
and ¢ is odd. Let

g M X M — T(r)

be the map that collapses the complement of a tubular neighbourhood of
the diagonal in M’ X M’ to a point. Let U = g*(U(7) ), where U(r) is the
Thom class of the tangent bundle of M’. Then we have the decomposition
of Milnor and Wu:

(O Umod2= 2 Zaf@®@pl_,+ 2 2B ®af

2i<q k 2i<q k

where af € H'(M'), B_, € H'(M) and of U B, = 8, n €
H9(M) is a generator and Bkj is the Kronecker function. Then we have

LEMMA 9.2. ([15, Section 4] ). Let

A=2 af @B, € HI(M X M)
2i<q

be as given by 9.1. Then
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(1) Umod 2 = A4 + t*A, where
tH*(M' X M) — H¥M X M)
is the homomorphism induced by the map that interchanges the factors.
(i) A U t*4 = x,(M)p ® p.

Then according to Mahowald and Randall ([12]), we have the
following

THEOREM 9.3. Suppose M’ is a spin manifold of dimension n = 7 mod 8
with n > 7. Let A be as given by Lemma 9.2. Then

() S¢" 34 = Sq"3S¢A = (S¢" 73S + Sq"T'Sgh)4 = 0.

(ii) §¢ is defined on A and so on t*A. In particular {(U(7) ) = 0 modulo
zero indeterminacy.

Since n is congruent to 7 mod 8, and M’ is a spin manifold it follows
from Wu’s formula, 6.6 of [8], that w, ;(M’) = 0. Thus

S¢" T U(T)) = S¢" (A + 1*4) = S¢" A + *Sq" 4 = 0.
But S¢" A4 is of bidegree (n — 1, n — 2) and so
Sq¢" 34 = 0.
Similarly, it is shown that
Sq' 3844 = 0.
Now
S 7S¢ = S¢(Sq"IS) + Sq¢'(S¢"S¢)  and
SPSq " = Sq" 'S4
Therefore since M’ is a spin manifold, by Wu’s duality,
(S¢"38q> + Sq"'sgha = o.

This proves (i). Therefore {; is defined on 4 and so on t*4. The last
assertion is proved in [12, Section 2].

Now we return to our manifold M. Recall that M is 3-connected mod 2.
For the rest of this section we shall assume that w(M) = 0. Recall that {g
is a stable cohomology operation if n = 15 (16) > 15 and is non-stable
if n = 7 (16) = 23. We shall exploit the technique of Mahowald [5]
to evaluate {3(U(r)). Note that IndetZ"(g‘g, T(t)) 1is trivial since
wg(M) = Va(M), the 8-th Wu class of M.

Let 4 € H"(M X M) be the class given by the decomposition (9.1).
Suppose w, (M) = 0. Then

S¢" (4 + 1*4) = 0.
But it can be shown that Sq"'7A is of bidegree (n — 7, n). Hence
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Sq""'4 = 0.
Since
S¢Sq + Sq"7Sq = S¢S TS + S¢S 8Sg
+ 8q'Sq" 7S¢,
(Sq"3Sqg + Sq"7SqHA = 0.
Hence we have

ProPosITION 9.4. Suppose w, (M) = 0. Then
(i) S¢"'4 =0, )
(i) g is defined on A, hence on'T1*A.

THEOREM 9.5. Suppose w,_(M) = 0. Then {3 is defined on U(r) and
modulo zero indeterminacy,

0 if n = 15 mod 16.
$(U(n) = {Xz(M)' U(r) -1 ifn = 7 mod 16.

To prove 9.5 we shall exploit the technique of Mahowald.
Let p:P — K,, be the universal example space for {3 on n-dimensional
mod 2 cohomology classes. Consider 4 € H"(M X M) as a map

A:M X M — K,

Then 9.4 says that 4 has a lifting 4:M X M — P to P. Let{ € H*(P) be
a representative for {5. Note that A4 o 7 is a lifting of t*4 represented by
Aot

Now P is a H-space and so we have a multiplication map

m:P X P— P.

Then the maph = mo (4, A o t)is alifting of A + t*A4 regarded as a map
mo (4, A o t). Let { € H*(P) be a representative for {s. Then if {j is
stable

m*¢=10®{+{®1 and

m¥¢ =10+ {®1+p* ), p*,
if {3 is non-stable. Thus

h*¢ = A*¢ + t*A¢ forn = 15 mod 16

But m*:H* (M X M) — H*(M X M) is the identity homomorphism.
Therefore

h*¢ = 0if n = 15 mod 16.
Similarly if » = 7 mod 16,
h*¢ = A*¢ + t*A* + A U *4 = x,(M)(n ® p).
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Let U:T(r) — K, represent the Thom class of the tangent bundle of M
reduced mod 2. Let

U:T(t) > P

be any lifting of U to P. Then f = U o gis a lifting of 4 + r*A. Since g* is
a monomorphism in dimension 2n, {4(U(r) ) vanishes if and only if

g*a(U(1) = f*(§) = 0.
Since f and 4 are both liftings of g*(U(r) mod 2), there is a map
M X M — QC,
where
C = Ky7 X Ky 3 X Ky X Ky,

unique up to homotopy such that f and m o (i o I, h) are homotopic,
where i:QC — P is the inclusion of the fibre. We can identify /
with the quadruple (q, b, ¢, d) where a, b, ¢, d represent some classes in
H" 8 M X M), H" %M X M), H" (M X M) and H"" (M X M)
respectively.

The class i o [ is invariant under 7 since both f and h are obviously
invariant under ¢. Thus the homotopy class [/] + [/ o ¢] lies in the image of
the homomorphism,

[M X M,K,_,] —>[M X M, QC).
Le., there exists x € H" (M X M) such that
(9.6) [I] +[lot] =(Sq" 'x,
Sq'"7'Sq’*x, (S¢' 7S¢ + S¢S Sq)x,
(Sq"'Sq" + Sq" 384 + ST S¢° + S¢"TSq"yx)
= (84" 'x, S¢" 7 "S4*x, 0, 0).

By the connectivity condition on M we may assume that ¢ and d are trivial.
Therefore, since Sg*H*" %M X M) = 0,

¥ = ¥ + SgPa + Sq'b

Sq¢a if n = 15(16)
on = o A=
Xo (M ® p + Sqg'a if n = 7(16)

From (9.6) we have that
(98) a+ r*a € S¢" TH'\(M X M).

Note that Sg® is trivial on any class in H'(M) @ H*" 87{(M) with
bidegree (i, 2n — 8 — i) different from (n — 8, n) and (n, n — 8). We shall
show that nga = 0. This would prove 9.5. For this we need the
following.
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LEMMA 9.9. Let M’ be an orientable closed, connected and smooth
manifold of dimension n = 7 mod 8. Suppose w,(M’") = 0. Let

pH" ¥ M X M) - H'{(M) @ H'(M)
be the projection corresponding to the Kiinneth formula. Then
Sq'TH" \(M’ X M) c Ker P.
The proof is easy. Let
a®pB e H (M X M).

Then by the Cartan formula and Wu-duality we see that Sq"_7(a ® pB)
does not have any non-trivial element with bidegree (n — 8, n) and
(n,n — 8).

Therefore, since

a+ r*a € S¢" TH" (M X M),

by 9.9 a is symmetric in the classes with bidegree (n» — 8, n) and
(n, n — 8). Therefore Sq®a = 0. And this completes the proof of 9.5.

Following 6.9 of [8] we can derive the following.

THEOREM 9.10. Let A € H"(M X M) be as given by the decomposition of
9.1. Suppose wy(M) = 0. Then

() S¢' 78S = Sq"°S¢Sq'A = Sq"7Sq'4 = Sq" %4 = 0;

S NSPSG'A = 0; (Sq"9S¢2Sg + Sq"'SqH4 = 0;

(ii) Suppose 0 € ¢y(w,_o(M)). Then Q is defined on A. Hence Q is
defined on t*A. In particular QU(7)) = 0 modulo zero indeterminacy.

(iii) Suppose w, (M) = 0and 0 € ¢p4(w,,_o(M) ), then Q is defined on A
and UU(t)) = 0.

Proof. The proof of (i) is similar to that of 6.9 in [8). If n = 7 + 8s, then
for any x € H T%(M), y € H* (M),

Sq4S—3Sq2Sq1x — Sq4s—lsqlx’
Sg¥ 1y = S¢% 7384y if s is odd, and
Sq¥T3848Sq'x = S¢¥ T3Sy = 0if 5 is even.

Now it can be shown that

¢ VsfSq'a = § (Sq* TSP Sq el 4y © SqF BG4

+ Sg¥TISq'k \ © S¢MTSPBE_ L)
Thus by the above remark
S¢S Sq'a = 0.
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The other cases are similar.
Part (iii) follows from (ii) and naturally since & C Q and that w, (M)
= 0 implies that

S 4 = S¢" 4= 0.

Part (ii) is harder. First we check that {; is defined and trivial on 4. It
can be shown thatif n = 7 + 8s, then

Sq' A = w, _o(M) ®

k —_ -
+ ; (0‘1+4s)2 ® S‘14S 3B§s+6

+ 2 (54" a1 ® 5S¢ Bl
+ Sg% 4,17 ® Sq¥ BG4 5)
+ % (Sq4sa§s+3 ® Sq4s_2B§s+4

4s—1 k 4s—1 pk
+ Sq7 a3 @ Sq ’ Blis+a)-
¢, can be chosen in such a way that

§U) = ¢(Sq"°U(D)).
Hence
(UM = L(g*U(1) = ¢4(Sq" (4 + 1*4))
= (ST TPA) + t*(¢4(Sq"°A)).

Since M is 3-connected mod 2 and w,(M) = 0, by a Cartan formula for ¢,
and the above proceeding,

(9.11)  4(5¢" °4) = ¢4(w,_o(M)) ® p
+ % (“§s+1)2 ® ¢‘4(SCI4S_3B{4(S+6)

+ ; {04(Sq™ e, 1) © S T Bl 4

+ S‘I4s0‘§s+2 ® ¢4(Sq* Bl is) )

+ Ekl {4(Sq™ el ) ® Sq*72B%, 4

+ gl 13 ® 04(Sq* By 40 )
modulo Indet” (¢, M X M).
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But by S-duality

xby(U(—=7)) = S¢'¢, ,(U(—=7)) = 0.

Therefore ¢, which is defined on H" “HM) is trivial on H"'~4(M) modulo
zero indeterminacy. It follows from (9.11) that

64(Sq"°A) = Py, _o(M)) ® p.
Thus
0 € ¢y(w,_o(M)) = 0 € ¢,(Sq" °A).

Hence 0 € {;(4). Thus Q is defined on 4, hence on t*A4.

Let P, = P, — K, be the universal example tower of space for the
operation §. Let U be the Thom class of T reduced mod 2 and represented
by a map

U:T(r) = K,

Let U be lifting of U to P, such that U also has a lifting U to P,. Let
m;:Pp X P — P, and
my:Py, X Py, — Py

be the multiplication maps. Let 4 € H"(M X M) be represented by a
map

A:M X M=K,

also denoted by the same symbol. If 0 € ¢4(w, _o(M)), @ is defined on 4.
Let A be a lifting of 4 to P, and A a lifting of 4 to P,. Then

h=mlo(Z,Zot)
is a lifting of U o g to P, and
h_:mzo(j,jot)

is a lifting of 4 to P,. Let f = U o g. Then fis also a lifting of U o g to
P.
Since f and h are both liftings of U o g there is a map

M X M — QC,,
where
Cp = Ky X Kyyg X Kyy3 X Kyyg X Ky
such that f and h; = m, o (i; o /, h) are homotopic where
i;:Q2C, — P,

is the inclusion of the fibre.
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Consider the following fibre square.

P, P,
QC,— L . P,
We can represent / as a vector (y, z, ¢, d, 0), where
y,z € H" (M X M), ¢ € H" M X M) and
d e H" (M X M).

The class i, o / is invariant under ¢ since both f and A are obviously
invariant under ¢. Thus the homotopy class [/] + [/ o ] lies in the image of
the homomorphism

M X M, K,_] > [M X M,QC|].
Note that since both f and A lift to P,, / must lift to G, with a lifting
I'M X M — G,.
There is a class § € H" (M X M) such that
[+ [lot] = (Sq" % + Sq"78q'0,
(S¢"°Sq’Sq + Sq"*Sq,
Sq"1s4*Sq'0,
(5S¢ °SgSq + Sq"7S4*Sq"e, 0).
It can be easily checked that
Sq"CH' M X M) =0
and (Sq"784'0, (S¢"°S4Sq" + Sq"¥S¢H0) is of the form
((5¢'a) ® p + p ® (Sq¢'ay’,
(Sq" 'S + S¢S Sq)a @
+p® (Sq* 'S + S¢* TS Sqh),

where a € H* \(M).
Since

H" (M X M)~ H" (M) ® H'(M) ® H'(M) @ H' (M)
we can write

y=y0u+pdy”
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where ', y” € H"~'(M). Therefore
yr 1y =0 +y)@p+u®(y +y")

Since I} is defined on y, T} is defined on y" and y”. Therefore modulo zero
indeterminacy

0y +y") = T + D).
Now
I (Sq'a)* = I'(Sq*Sq'a) = T\(S¢°Sq" ™).
But by S-duality pairing,
((SgSg" 'a), U(—7) ) = (S¢Sq* ™ 'a, x[yU(—1) )
= (S¢* ', SPWU(—=1) - Sgvy(—7)) )
= (S¢" o, U(=1SFSgv, (=) ).

But S¢*Sq’v,(—7) = 0. Thus I}(Sq'a)* = 0. Hence I\(y’ + y”) = 0 and
SO

o = F]()’”)o
Thus
Ly®p+p®y)=5L0)®p+pdIL(y) =0

Similarly we can show that I')(z) = 0. The proof of Theorem 6.5 shows
that I3(c) = 0, I\(d) = 0. Hence

Ni(y) + Tz) + Iie) + Ts@) = 0.

Now % = myo (i, o, h)is a lifting of m, o (i; o , h) ~ f. Let w be a
representative for the operation 2. Then

h*w = h*w + T*itw.
Now
*itw € Ty(y) + Tyz) + Ty(c) + Ti(d) = 0.

Therefore

h*w = h*w = A*w + *A*w = 0.

Now f = u o gis a lifting of
f~myo(iolh).

Since the primary piece of the indeterminacy of Q is trivial,
F*w = h*w = 0.

That is
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g*ﬁ*w = 0.
Since g* is injective,
U*w = 0.
Thus Q(U(7) ) = 0 modulo zero indeterminacy.
10. Vector fields on manifolds. We shall now prove Theorem 1.1 and

Theorem 1.2.
Suppose wy(M) = 0. Recall that then

Indet"(kj, M) = T\D""’
for the case k = 7.

10.1. Proof of Theorem 1.1. Indet"_4(x[/5, M) = Indet”_4(k3, M) im-
plies that

Indet" %9, ,, M) = S¢H"~%(M).
Furthermore if n = 7 mod 8,

w,_ (M) =0, w,_s(M) = 0.
In particular if n = 15 mod 16,

w, (M) = w,_o(M) = 0.

If Indet"(ki, M) # 0, the hypothesis of Theorem 7.1 is satisfied. Thus it
follows from 7.1 and 9.3 (ii) that Span(M) = 7 if and only if

0 € dy(wy_o(M)), 0 € ) 1(w,_(M)) and
0 € Ys(w,_o(M)).

Thus by the above remark if » = 15 mod 16, Span(M) = 7. If
n =7+ 16s with n > 7, then w,_,(M) = V3, where Vg, € H¥(M) is
the 8s-th Wu class of M. It is easily seen that

Sq' Ve = S¢°Vy, = 0.
Therefore by a Cartan formula for ¢, |,
¢1,1(Wn,—7(M)) = ‘Zbl,l(Vss) s Vg + Vg ¢1,1(Vz;s) =0
modulo indeterminacy of ¢, ;. Thus
0 € ¢y ,(w,_+(M)).
This proves the assertion in (ii) when » = 7 mod 16 and
Indet” (k3, M) # 0.

The case when Indet”(ki, M) = 0 follows from 8.1, 9.3 and 9.10. This
completes the proof.
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Notice, if Sq3v4( —1) € S¢H (M), in applying 8.1 we only require
that

Indet" 4y, M) = Indet" *(k3, M)
for the case k = 7. We have actually proved a stronger result.
THEOREM 10.2. (The case k = 7.) Suppose
wy(M) = 0,
Sqvy(—1) € STH(M),
Indet" %5, M) = Indet" *(k3, M) and
SEH" |(M; Z) = SH"™(M).

Then:
(1) If n = 15 mod 16, span(M) = 7;
(ii) If n = 7T mod 16 > 7, span(M) = 7 if and only if

0 € ¢u(w,_o(M)) and 0 € Ys(w,_o(M)).

The proof of 1.2 is similar to that of 1.1, using Theorem 8.2, 9.5 and
9.10. We have in fact a stronger result:

TueoreM 10.3. (The case k = 8). Suppose
wy(M) = 0,
Sqgv(—1) € SCH(M),
SeH" (M) = S¢Sq'H" " 3(M) and
Indet" *(ys, M) = Indet" *(k3, M).

(1) If n = 15 mod 16 with n > 15, then span(M) = 8;
(i1) If n = 7 mod 16 > 7, then span(M) = 8 if and only if

W AM) = 0,0 € dy(w,_o(M)),
0 € Ys(w,_o(M)) and x(M) = 0.

11. Application. It is well known that Span(SgSH) = 3. Let us
consider

M=8%xoplt%* s=z1k=z=o0,

where QP’ is the quaternionic projective space of real dimension 4;.
Then

Indet” *(ys, M) = 0,
H8(S+k)(M) — Hg(s+k)+1(M) — O,
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H' (M) = HTO72(M) = 0 and
X2(M) = 0.
By 1.2 we have the following immediate result.
THEOREM 11.1.

Span(S> ™8 x QP'™*) = g fors = 1,k = 0.
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