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Abstract
Experiments have shown that the ion energy obtained by laser–ion acceleration can be optimized by choosing either the

appropriate pulse duration or the appropriate target thickness. We demonstrate that this behavior can be described either

by the target normal sheath acceleration model of Schreiber et al. or by the radiation pressure acceleration model of

Bulanov and coworkers. The starting point of our considerations is that the essential property of a laser system for ion

acceleration is its pulse energy and not its intensity. Maybe surprisingly we show that higher ion energies can be reached

with reduced intensities.
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1. Introduction

Laser-driven ion acceleration has created enormous interest

over the last few years[1, 2]. The rapid development of

laser technology to intensities well beyond 1020 W cm−2

has enabled the generation of multi-MeV ion beams with

exceptional characteristics[3]. Visions of reaching electron

energies in the TeV[4] and even the PeV regime[5] have

been published. While the ion beams in most experiments

have exhibited extremely broad energy distributions, ad-

vanced target designs have been applied to achieve narrow

energy distributions of protons and heavier ions[6–9]. The

early, rapid developments have engendered much specula-

tion about the use of laser-driven ions for fast ignition[10–12]

and medical applications[13–17]. Laser-generated protons

have already been successfully applied for time-resolved

studies of the generation of electric and magnetic fields in the

laser–plasma interaction on a ps timescale[18–20]. Moreover,

the table-top generation of neutrons is discussed as a possible

application and has been demonstrated in early and recent

experiments[21–25].

The observation of ions emitted in laser–plasma interac-

tions can first be traced to experiments employing high-

intensity laser pulses with durations of a few ns to some

hundreds of ps[26]. With the invention of chirped pulse
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amplification (CPA)[27], laser pulses with intensities well in

excess of 1018 W cm−2 and fs durations were realized. The

new era of relativistic laser–plasma interactions had begun,

where the quiver velocity of electrons in the electromagnetic

field of the laser approaches the speed of light. Moreover,

the v × B-term of the Lorentz force becomes dominant and

pushes the electrons into the direction of laser propagation.

The generation of relativistic electrons was the fundamental

requisite for the acceleration of ions to high energy[28].

Foils of several tens of micrometer thickness which were

irradiated by relativistically intense laser pulses were found

to emit protons with energies of up to 60 MeV from the non-

irradiated surface[29]. This behavior could be described by

the target normal sheath acceleration (TNSA)[30] which has

proved to be the dominant mechanism in most experiments

performed until recent times. In recent years, competing

mechanisms for ion acceleration have been introduced and

discussed, the most prominent example being the radiation

pressure acceleration (RPA)[31–40] or light-sail regime[41–44]

which utilizes highly intense laser pulses with high contrast.

Not too differently from the original ideas on the forces due

to radiation[45–50], it seems feasible to accelerate the central

part of an ultra-thin, nm scale foil to high energies according

to the simple equation of motion[51].

Although a number of high-power, PW-class laser systems

have been built around the world, the early record energy

of 60 MeV[29] has improved little. Supported by analytical

models, we demonstrate that this is due to the optimization
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problem that is encountered in both TNSA and RPA. We

show that the key quantity of a laser system is its energy

content in a single laser pulse. The laser energy simply

is converted with a certain efficiency into a number and

energy of ions and it is not the intensity that is most

important as often intuitively assumed. This statement holds

for both TNSA and RPA. As we will show, TNSA can be

optimized by varying, even increasing, the duration of the

laser pulse (i.e., decreasing intensity) and RPA by choosing

an optimized target thickness. Although reduction of the

pulse duration for a laser system of given energy means

an increase in power and intensity, this also reduces the

acceleration time so that inertial ions cannot reach the same

final energy.

2. Target normal sheath acceleration

TNSA of ions has been extensively investigated over the last

decade. In fact, until now it has proved to be the most

effective method for ion acceleration when highly intense

laser pulses are focused onto foils with thicknesses of several

micrometers. TNSA relies on the efficient conversion of

laser energy into hot, relativistic electrons. These electrons

propagate through the target and set up fields at the target

boundaries where they exit into vacuum. The electric field

is created between the expelled electrons and the surface

charge that they induce on the target. Since the electric

field strength is of the same relative strength as the laser

electric field amplitude (TV/m) which generates the hot

electrons, most of the electrons return back into the target.

Hence an electron cloud (sheath) is formed. Ions at the

rear surface can be accelerated by the sheath fields to

multi-MeV energies in only several tens of femtoseconds.

Impurities such as hydrocarbon and water are present under

most experimental conditions at the solid surface. Due

to their higher charge-to-mass ratio, it is the protons from

these contaminants that are most readily accelerated to

high energies. However, by removing the contaminants by

different means, the acceleration of heavier ions can also

be optimized[52–55]. Due to strong spatial and temporal

variations in the acceleration fields, the observed ions usually

exhibit broad energy distributions extending from zero to a

certain maximum cut-off energy. Reduction of this energy

spread is a major challenge and some success has been

achieved by micro-machining the targets in order to allow

ions to be accelerated only in regions where the field is large

and roughly uniform[6, 7], and by the use of mass-limited

targets with an appropriate ion mixture[8, 56].

A large number of experimental results on laser-driven ion

acceleration are now available[7, 29, 57–70], which can be used

for a comparison with theoretical predictions. TNSA has

been extensively studied numerically using particle-in-cell

(PIC) simulations[71–75]. Several analytical models have also

been developed which predict the dependence of the max-

imum ion energy on laser and target parameters[57, 76–82].

Substantial advance of the field is reported in a number of

review papers available today[1, 2, 83]. In particular, the ion

energy should be dependent on the laser irradiance, focal

spot size and laser pulse duration.

2.1. Nonrelativistic TNSA

The original Schreiber model[57] is a nonrelativistic version

of TNSA and calculates the energy gain of ions in an

electrostatic field determined by the transfer of laser energy

to the expanding surface by the divergent beam of hot

electrons. This model has two main advantages. (i) Without

choosing a distribution function for the laser-accelerated

electrons, the potential that they set up depends only on

the absorbed laser power ηPL into those electrons and

the transverse size of the electron cloud Rs . (ii) Due to

the consideration of the transverse dimension Rs of the

electron cloud when it exits the rear of the target, the

resultant potential stays finite which is in contrast to most 1D

models, where for infinite acceleration times the ion energies

diverge[84]. Although the description of the potential appears

to be based on ad hoc assumptions, the model is in excellent

agreement (within a factor of 1.5 or so) with experiments

performed in a wide range of parameters covering foil

thicknesses from one to hundreds of micrometers, laser pulse

energies in the sub-joule to kilojoule level, pulse durations

from 50 to 5000 fs and ion species covering a major part

of the periodic table ranging from protons to tungsten ions.

The electric field at the rear side of the target is set up by

fast electrons produced by the laser heating at the front side

of the target. It should be noted that in general the targets

are much thicker than the skin depth or hole-boring depth

so that the laser does not interact with the rear of the target.

Let us consider that the laser produces Ne electrons with an

average energy Ee in a bunch of length L = cτL , where τL
is the laser pulse duration and the electrons are assumed to

propagate with the speed of light c. On their way through the

target, the electrons spread over a circular region with radius

Rs . When exiting into vacuum a positive surface charge

Qe is induced at the rear side of the target which yields a

returning force ∝ Qe/(π R2
s ). Electrons run up the potential

and eventually reverse their path at a distance zu above the

surface of the foil and re-enter the foil. In an equilibrium

situation 2Nezu/L electrons are permanently outside the foil.

To achieve global charge neutrality we identify this number

with the number of positive surface charges Q. The potential

of the corresponding charge density is

Φ(r, z) = Qe
4πε0π R2

s

∫ Rs

0

∫ 2π

0

r ′dr ′dφ′√
r2 + z2 + r ′2 − 2rr ′ cos φ′

.

(1)
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In the following we will concentrate on the center of the

acceleration region that is responsible for the most energetic

ions, i.e., r = 0. In that case the integration of Equation (1)

reads

−e(Φ(0, z)−Φ(0, 0))

≡ −eΦ(ξ) = E∞
(

1+ ξ −
√

1+ ξ2

)
≡ E∞s(ξ) (2)

with

E∞ = Qe2

2πε0 Rs
(3)

and ξ = z/Rs . For short distances ξ � 1 one has −eΦ ∼=
E∞ξ , which yields for the turning point zu = Ee Rs/E∞.

The total number of electrons is related to the laser energy

EL by Ne Ee = ηEL where η is the efficiency by which the

laser energy is converted into electron energy. The electrons

are provided for the duration of the laser pulse τL . With

Q = 2Nezu/(cτL) ∝ PL (the power of the laser pulse) we

obtain the potential barrier

E∞ = 2mec2

√
ηPL

PRe
. (4)

We note that Equation (4) is independent of Ee be-

cause E∞ ∝ Q ∝ Nezu = (ηEL/Ee) · (Ee Rs/E∞) =
(ηEL Rs/E∞). The essential point is that laser energy is

mainly converted into a large number of energetic electrons

(fast enough to traverse the target) which in turn build up a

dense electron sheath exhibiting extraordinary strong electric

fields. It is thus not decisive what average energies Ee are

gained by the laser. This is in contrast to the model proposed

by Bulanov et al.[85] where ions are mainly accelerated by

the longitudinal laser electric fields in a bored channel which

acts as a waveguide with conducting walls. The potential of

Equation (2) can be used to calculate the energy Ei (ξ) an

ion with charge qi gains between ξ = 0 (the surface) and ξ :

Ei (ξ) = −qi eΦ(ξ). (5)

The equation of motion yields

τL = Rs

∫ ξm

0

dξ

vi (ξ)
= Rs

∫ sm

0

dξ/ds
vi (s)

ds. (6)

Now, nonrelativistically one has

vi (s) = vi,∞
√

s (7)

with vi,∞ =
√

2Ei,∞/mi = c
√

2εi,∞. Since

dξ

ds
= 1+ (1− s)2

2(1− s)2
, (8)

one obtains

τL = τ0

∫ sm

0

1+ (1− s)2

2(1− s)2
√

s
ds = τ0

[
X +

∫ X

0

dx
(1− x2)2

]
≡ τ0 FN R(X) (9)

with τ0 = Rs/vi,∞ and X = √
sm = (Ei,m/Ei,∞)1/2.

Finally, the integration yields

FN R(X) = X + X
2(1− X2)

+ 1

4
ln

(
1+ X
1− X

)
(10)

with X = (εi,m/εi,∞)1/2, where εi,m = Ei,m/(mi c2) is

the normalized maximum ion energy and εi,∞ defines the

normalized energy an ion could gain from the potential of

the sheath if it were maintained stationary, and is given

by εi,∞(τL) = qi 2mec2
√

ηEL/(τL PRe)/(mi c2) = 1.1 ×
10−3 (qi/Ai )

√
ηEL/(τL PRe). Here, τL and EL are the

laser pulse duration and energy respectively, qi is the ion

charge state, Ai is the nucleon number of the target, PRe =
mec3/re = 8.71 GW is the relativistic power unit (re =
classical electron radius, me = electron mass) and η is the

absorption efficiency into hot electrons. Following Refs. [86,

87], this efficiency is evaluated as η = 1.2 × 10−15 I 3/4
L ,

where IL is in units of W cm−2, up to a maximum η = 0.5.

This scaling has been validated for a laser wavelength of

λL ∼ 1 μm and pulse durations of several hundreds of

femtoseconds. We mention that a similar model has been

developed by Bulanov et al.[15] who considered a conducting

prolate ellipsoid which had been charged up by Q positive

charges. The corresponding potential is given by Landau

and Lifshitz[88]. However, there exists a major difference

from our model: since it is assumed by the ellipsoid model

that the surface is conducting, all transverse forces at z = 0

have to vanish, which can only be fulfilled by a specific

distribution of the Q charges at the surface. However, that

can be in contradiction to the laser-driven charge distribution

of hot electrons which might be very different from any

‘conducting’ equilibrium.

One major result of the model presented is that for a

given laser energy EL , the shortest laser pulses and thus

highest intensities are not necessarily optimal for TNSA.

An important point is that the normalized maximum energy

εi,∞ an ion can gain depends on the pulse duration τL which

has a strong consequence on the maximal ion energy Ei,m .

This can be seen in Figure 1(a) where experimental proton

energies Ei,m (Ref. [57]) are plotted for a constant laser

energy EL = 0.7 J as a function of the laser pulse duration

τL , showing explicitly that there exists an optimal duration

τ
opt
L . This behavior has been verified on other laser systems

as well[89] and can be understood by the following argu-

ment. The highest intensity (i.e., shortest pulse) produces the

largest acceleration field, but only for a short time. On the

other hand, a somewhat smaller field that is sustained over

a longer duration of the laser pulse can result in higher ion
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(a) (b)

Figure 1. (a) Experimental data from Schreiber et al.[57] and the prediction of the nonrelativistic TNSA model. (b) Optimal pulse duration for the specific

example of Rs = 1 μm, η = 1, Ai /qi = 2 for the nonrelativistic consideration (Equation (12), dashed) and the relativistic consideration (Equation (29),

solid). The ultra-relativistic limit is given by the dash-dotted line. For larger Rs the curves are globally shifted to respective larger optimal pulse durations.

energies. The acceleration is therefore optimized for some

intermediate τ
opt
L . The solid curve in Figure 1(a) has been

obtained from Equation (9) (for details, see Ref. [57]) and

is in agreement with the experimental data, thus being able

to describe an optimizing procedure. From Equation (9),

for fixed laser energy and source radius, one can find the

optimum using the condition dEi,m/dτL |τ opt
L
= 0. For the

nonrelativistic solution, Equation (10), this leads to

(
τL

τ0

)opt

= Xopt

3

(
1+ 1

(1− X2
opt)

2

)
, (11)

where Xopt is evaluated at τL = τ
opt
L . Insertion of

Equations (11) in (10) yields the solution Xopt
∼= 0.81 with

the corresponding value for (τL/τ0)
opt ∼= 2.55. On inserting

the nonrelativistic characteristic time τ0, one obtains for the

optimum pulse duration

τ
opt
L (EL) = 195

(
Rs

c

)4/3 (
Ai

qi

)2/3 (
PRe

ηEL

)1/3

. (12)

Figure 1(b) shows the optimum pulse duration as a function

of the laser energy for Ai/qi = 2, Rs = 1 μm and η = 1. The

dashed line is the nonrelativistic solution of Equation (12).

The maximum ion energy then becomes

(ε
opt
i,m)TNSA = 1.3

qi

Ai

√
ηEL

τ
opt
L PRi

, (13)

where PRi = (m p/me)PRe = (1836)2 PRe = 29.3 PW is

the relativistic power unit for a proton. From Equation (9) it

follows that for a given laser system τ0 should be minimized

in order to obtain the largest maximum ion energy Ei,m . This

is realized for the smallest possible source size Rs = rL ,

where rL is the radius of the beam spot. Therefore, it is

convenient to use targets with thickness d much smaller than

the radius of the focal spot, which is usually of the order of

some micrometers.

2.2. Relativistic TNSA

The relativistic equation of motion is

dpi

dt
= qi eE = −qi e

dΦ

dz
(14)

with

−qi eΦ(ξ) = Ei,∞
(

1+ ξ −
√

1+ ξ2

)
≡ Ei,∞s(ξ), (15)

where ξ = z/Rs and Ei,∞ = qi 2mec2
√

ηPL/PRe, as before.

The resulting two coupled first-order differential equations

γ 3
i

dβi

dt∗
= εi,∞

(
1− ξ√

1+ ξ2

)
(16)

and

dξ

dt∗
= βi (17)

have to be solved simultaneously with t∗ = t/t0,R = ct/Rs
and εi,∞ = Ei,∞/(mi c2). The initial condition is t∗ = 0,

ξ = 0 and βi = 0. The ion energy is given by εi = γi − 1

with εi = Ei/(mi c2). A first integration of Equation (16)

yields ∫ βi

0

γ 3
i βi dβi = εi,∞

∫ ξ

0

ds
dξ ′

dξ ′ (18)

or

γi − 1 = εi = εi,∞s(ξ). (19)
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Now, instead of Equation (7) one has

vi (s) = c
√

1− (1+ εi,∞s)−2 (20)

and thus

τL

τ0,R
=

∫ sm

0

1+ (1− s)2

2(1− s)2
√

1− (1+ εi,∞s)−2
ds (21)

with τ0,R = Rs/c and sm = Ei,m/Ei,∞ = εi,m/εi,∞ = X2.

It is immediately seen from Equation (21) that deviations

from nonrelativistic TNSA occur for εi,∞sm = εi,m �
1 (compare Equation (9)).The essential difference is that

nonrelativistically the final ion velocity vi,∞ might become

arbitrarily large, but special relativity limits it to the speed of

light. We note that Equation (21) can be written as

τL

τ0
= √

2εi,∞
∫ sm

0

1+ (1− s)2

2(1− s)2
√

1− (1+ εi,∞s)−2
ds

≡ FR(X; εi,∞). (22)

As a relativistic first-order correction to Equation (22) one

obtains

τL

τ0
=

∫ X

0

1+ (1− x2)2

(1− x2)2
dx

− εi,∞
4

∫ X

0

x2(1+ (1− x2)2)

(1− x2)2
dx

= X + X
2(1− X2)

+ 1

4
ln

1+ X
1− X

− εi,∞
4

(
X3

3
+ X

2(1− X2)
− 1

4
ln

1+ X
1− X

)
. (23)

Unfortunately the simple scaling of Equation (9) is lost

since now in FR the additional parameter εi,∞ accounts for

relativistic effects. Using the value of Xopt
∼= 0.8 of the

nonrelativistic TNSA expression as a first-order solution we

obtain a condition for the optimized pulse duration in the

case of relativistic TNSA:(
τL

τ0

)opt

= 2.5− 0.18ε
opt
i,∞ (24)

or
c
√

a
Rs

(τ
opt
L )3/4 = 2.5− 0.18a

(τ
opt
L )1/2

(25)

with a = 1.1 × 10−3(qi/Ai )
√

ηEL/PRe. An analytic

solution of Equation (25) reads

a = 2.5

α2
+

(
α1

α2

)2
[

1−
√

1+ 5α2

α2
1

]
(26)

with α1 = c(τ opt
L )3/4/Rs and α2 = 0.18/(τ

opt
L )1/2. The

nonrelativistic TNSA-limit Equation (11) is obtained

for α2 → 0:

a ∼= 25

8α2
1

− 125

16α4
1

α2 = 3.1R2
s

c2(τ
opt
L )3/2

⎛
⎝1− 0.45

(
Rs

cτ opt
L

)2
⎞
⎠ .

(27)

Again, the nonrelativistic optimal ion energy (ε
opt
i,m)TNSA is

obtained by Equation (13). The term within the bracket is

the relativistic correction. A few things are worthy of note.

(1) The correction due to relativistic ion motion becomes

larger with decreasing optimal pulse duration, that is for

larger laser energy EL . This can be expected. However,

(2) the correction decreases the value of a; in other words,

the optimum pulse duration τ
opt
L is reduced even when the

laser energy EL remains constant. This in turn means that the

optimum ion energy becomes larger if relativistic corrections

are taken into account. (3) The correction increases with

increasing Rs . Nonrelativistically τ
opt
L increases with R4/3

s
(see Equation (12)), but relativistically this increase is less

strong.

Writing Equation (21) as

τL

τ0,R
=

∫ sm

0

H(s; εi,∞)ds (28)

and optimizing Equation (28) by the condition dεi,m/

dτL |τ opt
L
= 0 yields

1

τ0,R
= dsm

dτL
H(sm; εi,∞)+

∫ sm

0

∂

∂τL
H(s, εi,∞)ds. (29)

It follows that

dsm

dτL
= dεi,m

dτL

1

εi,∞
− εi,m

ε2
i,∞

dεi,∞
dτL

= sm

2τL
(30)

and

∂ H
∂τL

= 1

4τL

1+ (1− s)2

(1− s)2

× εi,∞s
(1+ εi,∞s)3(1− (1+ εi,∞s)−2)3/2

. (31)

One therefore has the condition

4
τ

opt
L

τ0,R
= sopt

m (1+ (1− sopt
m )2)

(1− sopt
m )2

√
1− (1+ ε

opt
i,∞sopt

m )−2

+
∫ sopt

m

0

1+ (1− s)2

(1− s)2

× ε
opt
i,∞s

(1+ ε
opt
i,∞s)3(1− (1+ ε

opt
i,∞s)−2)3/2

ds

= 4

∫ sopt
m

0

1+ (1− s)2

2(1− s)2(1− (1+ ε
opt
i,∞s)−2)1/2

ds, (32)
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where sopt
m = ε

opt
i,m/ε

opt
i,∞ and ε

opt
i,∞ = 1.1 × 10−3(qi/Ai )√

ηEL/(τ
opt
L PRe). A numerical solution yields sopt

m with

ε
opt
i,∞ as a parameter. By inserting these solutions into

Equation (29) one obtains the required τ
opt
L /τ0,R (solid line

in Figure 1(b)) and ε
opt
i,m .

In the highly relativistic regime, the ion velocity ap-

proaches the speed of light for approximately all the acceler-

ation time, which according to Equation (6) leads to

τL

τ0,R
= ξm (33)

or

εi,m = 1.1× 10−3(qi/Ai )

√
ηEL

mec2

Rs

re
G(ξm) (34)

with

G(ξm) =
(

1+ ξm −
√

1+ ξ2
m

)/√
ξm . (35)

The function G(ξm) has a rather broad maximum at ξm =
τ

opt
L c/Rs = 1. Whereas in the nonrelativistic regime the op-

timum pulse duration decreases with increasing laser energy

EL , see Equation (12), it becomes a constant, τ
opt
L = Rs/c,

for relativistic ion energies (dash-dotted line in Figure 1(b)).

On inserting the value for G one obtains from Equation (34)

the optimal ion energy

(ε
opt
i,m)TNSA = 0.64× 10−3(qi/Ai )

√
ηEL

mec2

Rs

re
. (36)

We conclude this section with two remarks. (i) The ion

energy Ei,m is a unique function of EL and τL , i.e., for

constant laser energy a function of τL only. Thus, Ei,m might

show a maximum with respect to τL or not. However, if there

exists a maximum it is unique, i.e., there is a single-valued

Eopt
i,m = Ei,m(τ

opt
L ) only. (ii) We propose a simple equation

for the whole range,

εi,m = 1.3 · εi,∞

(
1+ τL

τ ∗
−

√
1+

(τL

τ ∗
)2

)
, (37)

with

τ ∗ = Rs/c√
1− 1

(1+εi,∞)2

. (38)

It might be that a better approximation is obtained if in the

last equation εi,∞ is replaced by εi,m . Bulanov et al.[85]

have performed detailed PIC studies of the generation of

high energy ions in overcritical targets. For strong focusing

conditions (Rs ∼= 0.75 μm), they obtained for PL = 1 PW

and a pulse duration of τL = 30 fs (i.e., a laser energy of

EL = 30 J) a proton energy of 1.3 GeV. With εi,∞ = 0.37

and τ ∗ = 3.6 fs we obtain from Equation (37) Ei,m =
430 MeV.

3. Radiation pressure acceleration

At the intensities available with present high-intensity lasers,

it seems natural to consider RPA as a means of accelerating

objects to high energy. RPA offers the most promising

approach for the acceleration of plasma bunches with near-

solid, or at least overcritical, density to relativistic velocities.

The principle of RPA is the same as was proposed to

use continuous wave lasers to drive interstellar vehicles to

relativistic velocities[31, 50]. According to Simmons et al.[31],

a body with rest mass comparable to the applied laser energy

can be accelerated close to the speed of light. For a 5 nm thin

carbon foil and a focal spot diameter of 2 μm, this would

require only 5 J of energy. Unfortunately, the picture is not

quite as simple due to the immense intensity of the applied

laser. In Section 2, we have highlighted the importance of

a high rate of absorption of laser energy into hot electrons

for TNSA. For hole-boring or RPA to work efficiently, this

heating must be suppressed, which may be achieved by the

use of high-contrast systems with circular polarization[34].

In this way the ponderomotive force that acts on the plasma

electrons is only composed of a secular term which can

effectively expel the electrons from the focal region and push

them into the target. The space charge separation in the

focal region is then maintained over the duration of the laser

pulse, or even longer when the reflection front starts to move.

During this time, electrons stay cold, i.e., they do not gain a

large longitudinal momentum spread, so they stay bound to

this initial depletion zone.

The acceleration of an object with mass M = mi ni dπr2
L

by the radiation pressure, where ni is the ion particle density,

is described by Refs. [31, 34, 35]

d(γβ)

dt
= 1

t0

1− β

1+ β
, (39)

where t0 = Mc2/(2R PL) and R denotes the reflectivity with

which the laser is reflected. For a constant laser power PL ,

a solution of Equation (39) in terms of the actual time t is

not of much interest because of the retardation effect. More

relevant is a solution in terms of the retarded time tret = t −∫ t
0 β(t ′)dt ′ (Refs. [31, 34]). Thus, Equation (39) becomes

dβ

dtret
= 1

t0

1− β

γ
, (40)

with the solution for the normalized ion energy

εRPA
i,m = γ − 1 = 1

2

(
1+ ζ + 1

1+ ζ

)
− 1, (41)
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where ζ = tret/t0 = 2REL/(Mc2), since the light pulse

is terminated at the retarded time tret = τL . We note that

the interaction between the light and the plasma sheet may

continue even when the laser has finished radiating: for

relativistic velocities of the sheet the light pulse accompanies

the bunch for interaction times t = tint much longer than the

pulse duration

tint = τL

(
1+ ζ

2
+ ζ 2

6

)
. (42)

The essential point for the RPA mechanism is the assumption

that the whole target of mass M is accelerated cooperatively

as a charge-neutral plasma bunch. The physical mechanism

behind this process is the following. Due to their small mass

the electrons are accelerated by light pressure and then due to

Coulomb forces drag the ions behind them (hence the name

light-sail[43, 90]). Thus, one has to avoid the light pressure on

the electrons exceeding the restoring forces due to the charge

separation.

On inspecting Equation (41) it is readily seen that the ion

energy ERPA
i,m increases with ζ and thus with decreasing target

mass M , or with thinner target foils. However, a lower limit

will be reached if the number of ions becomes so small that

they cannot any longer retain the electrons by their Coulomb

forces. One estimates the energy E∞ to separate an electron

from a sheet of ion charge density qi ni = ne to be E∞ =
nedrLe2/(4ε0) (Ref. [57]). This estimate can also be derived

from the ‘capacitor’ model for charge separation[37, 38, 91]

assuming an effective cut-off of the induced electric field

for distances larger than the lateral extension of the sheet.

This assumption is equivalent to the demand to maintain the

balance between charge separation and radiation pressure

at least over a laser period[81, 92]. Evidently, the charge

separating energy increases with the areal density ni d while

the radiation pressure decreases like (ni d)−1, advocating

once more the use of ultra-thin targets. The ion energy can be

derived from Equation (41) in the nonrelativistic case Ei,m ∝
ζ 2 ∝ 1/M2 ∝ 1/d2. For a completely ionized carbon target

with a thickness of 1 μg cm−2 one obtains E∞ ∼= 10 MeV.

On the other hand, this estimate shows that there exists a

lower limit on the electron mass Me that can be accelerated

by radiation pressure and which remains bound to the ions.

The latter demand is essential for ion acceleration since it is

the electrons that pull the ions behind them. If Me becomes

too small, the resulting fast electrons with energies Ee =
mec2γ ∼= mec2τL/(2t0) = (me/Me)EL = EL/Ne (note that

at large electron energies the efficiency approaches 100%,

i.e., all the laser energy is converted into the kinetic energy

of Ne electrons) can surmount the potential barrier built up

by the charge separation field (note that Me = menedr2
L ).

Thus, the minimum ion mass that prohibits charge separation

and that can be accelerated as a charge-neutral plasma bunch

Figure 2. Maximum proton and carbon ion energies for varying thicknesses

of nm-thin DLC foils reported in Henig et al.[51]. The solid curve represents

the prediction for RPA, Equation (41), using the parameters Ai /qi = 2,

EL = 0.7 J, rL = 1.8 μm, R = 1, ρDLC = 2.7 g cm−3. The optimum

mass/thickness is indicated by the transition of the solid to a dashed curve.

becomes

Mmin = Ai

qi

√
4ε0 ELrL

e2
mu (43)

with the atomic mass unit mu and Ai the mass number of

the target. For a carbon target with Ai/qi = 2, EL = 1 J

and rL = 3 μm one obtains Mmin = 2.2 × 10−16 kg,

corresponding to an optimum thickness of 4 nm. This is

in strong contrast to a TNSA model of Andreev et al.[93]

who predicted an optimum thickness of about 100 nm. In

Refs. [51, 94] the maximum ion energy has been investigated

as a function of the target mass M . As expected, the ion

energy increases with 1/M , but for masses close to Mmin the

energy starts to drop rather strongly with further decreasing

target masses, thus confirming the estimate of Equation (43)

quantitatively. Figure 2 reproduces the experimental results

of Ref. [51] for the carbon energies obtained from nm-thin

diamond-like carbon (DLC) foils. The solid curve has been

obtained from Equation (41). Although the curve drops off

faster towards thicker targets (due to the increasing domi-

nation of expansion), evidently there exists an optimal foil

thickness, i.e., target mass. The estimate of Equation (43) is

indicated where the solid line breaks into the dashed line. An

estimate of the optimal and thus minimum foil thickness by

Chen et al.[95] is in essence the same as that of Equation (43).

In a very recent theory of laser ion acceleration from thin

foils[96] the dimensionless parameter

ξ = ned

ncλa0
(44)

has been introduced, which for small laser strength a0 and

thus ξ � 1 prohibits charge separation, i.e., allows collective

ion acceleration induced by electrons riding ahead of the

ions. Here, nc is the critical electron density. It is easy

to show that Equation (44) can also be written as ξ =
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M/Mmin with Mmin of Equation (43). Thus, the condition

ξ � 1 for an appropriate ion acceleration is equivalent to

demanding M � Mmin. Identifying Mmin with the optimal

target mass Mopt for RPA and inserting Equations (43) into

(41) one obtains (ε
opt
i,m)RPA, which can be compared with

the equivalent expression for the case of optimal TNSA.

In Figure 3 ε
opt
i,m has been plotted for either TNSA or RPA

versus the laser energy EL . The curves hold for Rs = rL =
1 μm (solid lines) and Rs = rL = 10 μm (dashed lines),

Ai/qi = 2 and η = R = 1. For a typical high-intensity

laser with a wavelength of λL = 1 μm, a beam spot radius

of 1 μm is close to the diffraction-limited minimum sized

beam spot. The corresponding data in Figure 3 thus represent

optimum ion energies also within this context. The extension

of available laser energies up to 10 kJ might be optimistic

but we note that in a recent paper by Tajima et al.[5] on

electron acceleration up to PeV even GJ laser energies have

been discussed. A laser with EL = 1 GJ could accelerate

by radiation pressure a carbon foil of optimal thickness of

300 μm with C ions in it up to energies of 60 TeV/ion

(γ = 5 × 103, which is close to the heavy-ion energies

of CERN’s Large Hadron Collider[97]). However, we also

note that for a pulse duration of 1 ps[5], the interaction

distance according to Equation (42) would become 5 km.

The reflected radiation has a vanishingly small frequency

and at the end of the acceleration process nearly all the

laser pulse energy is converted into kinetic energy of the

ions, EL ∼= (γ − 1)Moptc2, see also Equation (45). It

would not be easy to stop such an ion bunch. Its energy

content is large enough to heat up and finally melt 15 tons

of lead. For comparison, the 7.7 TeV protons stored in

the LHC have an energy content of 0.6 GJ[98]. An elegant

solution of such a ‘beam-dump’ problem has recently been

proposed by Wu et al.[99], relying on the deceleration of

energetic and dense particle bunches by collective electronic

interactions in an underdense plasma, promising a compact

and non-radioactive dump. However, two remarks might be

made. (i) The main contribution to the energy loss of ultra-

relativistic heavy ions is electron–positron pair creation and

not electronic stopping (‘Bethe–Bloch’)[97]. According to

the description of Ref. [97] we obtain for the case discussed

– 60 TeV carbon ions in lead – an electronic energy loss of

0.07 TeV m−1 and one by pair production of 0.3 TeV m−1.

Energy losses due to bremsstrahlung can be neglected since

the small impact parameters necessary to generate hard

photon quanta lead unavoidably to a fragmentation of the

projectile[97]. We thus estimate for the example mentioned

above a stopping length of about 570 m. In contrast, a

beam-dump length of several meters only is sufficient to

break up the projectile by nuclear inelastic interactions,

yielding a cascade of secondary particles with individual

energies much less than the primary one[100]. It is mainly

the electromagnetic component of the cascade that finally

converts the energy into heat. (ii) The essential point

Figure 3. Optimum ion energies predicted by the models for TNSA,

Equations (29)–(32) (black), and RPA, Equations (41)–(43) (red). The

parameters are Ai /qi = 2, R = η = 1, rL = Rs = 1 μm (solid) and rL =
Rs = 10 μm (dashed). Some selected experimental results are represented

by blue squares (Bin et al.[112], Henig et al.[51], Mackinnon et al.[108], Zeil

et al.[113], Ogura et al.[68], Jong Kim et al.[114], Green et al.[115], Jung

et al.[116]) and theoretical results obtained from PIC simulations are marked

by green circles (Pukhov[71], Wang et al.[117], Qiao et al.[40], Sgattoni

et al.[118], Yan et al.[75], Esirkepov et al.[35]). For details, see text.

is not to stop the bunch within a moderate distance and

thus heat the absorber but to dissipate its enormous energy

concentration without any further problem. The situation for

a laser-generated ion bunch is quite different from that of the

LHC where the particles are more or less homogeneously

distributed around the 27 km long circumference of the

storage ring: C ions within a bunch length of 300 μm

compared with 5 × 1014 protons stored within 27 km. The

corresponding pulse length of 90 μs is long enough to allow

kicker magnets to sweep the beam across the absorber.

It is readily seen that except for a minor factor over the

whole range of laser energies both optimized theories yield

the same maximum ion energies. It is therefore more a

question of practicability what kind of optimization one

chooses, τ
opt
L or Mopt. There might exist technical limits: it is

certainly very difficult to obtain pulse durations shorter than

say 1 fs. According to Equation (29) this would correspond

to an upper limit of EL = 3 × 104 J, which in essence

does not pose a strong limit. On the other hand, in the case

of RPA a lower limit of Mopt is reached for a monolayer

of atoms. Assuming a carbon foil as the target (the most

popular choice) one obtains a lower limit of Mopt = 1.4 ×
10−18 kg, or from Equation (41) a lower limit of EL =
1.3× 10−4 J, which also does not have a practical influence.

We emphasize that the optimizing procedure developed in

this paper only works since the TNSA theory of Schreiber

et al.[57] does not depend on the target thickness (at least to

first order) and the RPA theory of Refs. [35, 101, 102] does

not depend on the pulse duration.

In addition, experimental results are plotted in Figure 3

demonstrating that in most cases experiments are rather far
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away from being optimal. Multi-J laser systems especially

suffer from having too long a pulse duration. We also note

that normalized ion energies εi,m � 1 or Ei,m � 1 GeV/u,

i.e., relativistic energies, are obtained for laser energies EL �
100 J only and so far have only been obtained in PIC

simulations. Finally, we note that the efficiency of RPA can

be written as

ηRPA ≡ Ei,m

EL
= Rζ

1+ ζ
, (45)

i.e., in the relativistic regime with γ � 1 or with Equa-

tion (41) ζ � 1 one obtains that for R = 1, 100% of the

laser energy is converted into ion energy.

Of course, if the transverse light intensity changes, differ-

ent parts of the sail will be accelerated differently changing

an initially plane sail to a convex one. The equation of

motion of Equation (39) changes to

d(γ �β)

dt
= 2R PL

Mc2

1− β

1+ β
�n, (46)

where both PL = PL(y, z; t) and the unit vector �n =
�n(y, z; t) of the sail’s surface normal depend on the trans-

verse coordinates (y, z) and time t . Thus, a solution of

Equation (46) has to account for a transverse expansion of

the sail. An approximate solution of this self-consistent

problem to obtain both the final velocity β and the shape

of the sail, allowing for bowing while simultaneously sub-

mitting it to the condition of constant mass, has been given

in Ref. [103]. The essential point is that instabilities like

those of the Rayleigh–Taylor type lead to strong deviations

from a uniform plasma front, forming cusps at an early stage

of acceleration[104], resulting in emission of beamlets[105].

To avoid such instabilities Chen et al.[95] have proposed

to use thin target foils shaped initially in the transverse

direction to match the laser intensity profile. PIC simulations

by Wilks et al.[106] performed as far back as in 1992

clearly demonstrated such instabilities for light intensities

relevant to the light-sail regime. However, we remark

that the ion energy differs for every beamlet. At a later

stage the ‘plasma foil’ breaks into high-density clumps with

diffuse lower density clouds between them[104], which due

to its reduced mass may even accelerate ions to higher

energies than the original foil[103]. A similar result has been

obtained quite recently, demonstrating by PIC simulations

that ‘a relatively stable ion clump forms near the laser axis

which is efficiently accelerated’[75]. A detailed study of

Rayleigh–Taylor instabilities which yield filamentation and

their optimization with respect to maximum ion energies has

been published recently[85, 107].

4. Discussion

We are very much aware that analytic descriptions of the

complex laser-assisted acceleration process of ions are ham-

pered in many aspects. In contrast, PIC simulations describe

in much more detail the complex processes described here.

However, we also believe that an analytic description of the

multi-parameter behavior of the process and its interdepen-

dences can give a more general overlook of the strategy to

obtain the required outcomes such as, e.g., maximum ion en-

ergies. At the same time we remark that also PIC simulations

which in essence are based on a mean field theory may rather

severely suppress microscopic interactions. We also recog-

nize a significant overshoot of PIC simulations, promising

ion beams of great quality not verified by experiment hith-

erto. We cite a very recent paper: ‘as pointed out recently

in a number of papers circular polarized laser pulses can

accelerate ions very efficiently and produce sharply peaked

spectra’[75]. This hope results from PIC simulations only and

still awaits experimental verification. In the following we

will touch on some problems not considered in the analytic

description. First, there is the question of the longitudinal

and transverse extension of the laser beam. It has been

assumed that the laser power is constant during its pulse

duration, but even the use of a super-Gauss representation of

the time dependence would merely change the conclusions.

This might be rather different for the transverse extent which

for a mono-mode laser system is Gaussian. In the case of

TNSA this effect yields an electron sheet with transversely

changing field strength which accelerates ions to different

energies. Such broad spectra are not very favorable for

specific applications. A similar problem arises in the case

of RPA. The solution Equation (41) assumes that the light

pressure is in essence transversely constant. RPA for a

transverse Gaussian light beam has been investigated in

detail by Bulanov et al.[92, 103] with PIC simulations showing

in particular the buckling of an initially flat foil. Although

the RPA process itself seems to remain stable, a rather broad

ion spectrum results in this case also.

We note that such high energies as predicted by the

analytical models have not been observed yet even though

comparable laser conditions have been applied, for example

by Mackinnon et al.[108]. Proton energies of up to 25 MeV

have been obtained in the TNSA regime with micrometer

thick targets. The discrepancy may be attributed to an

absorption of laser energy into electrons much below 100%,

especially when considering the high temporal contrast em-

ployed. The results could also be an indication that the

electrons spread transversely over a size larger than Rs ∼= rL ,

even though the target thickness d was smaller than rL in

those experiments.

Hence, the studies presented here are encouraging in

view of future applications that rely on high-repetition-rate

laser systems. For example, for medical applications such

as ion tumor therapy energies exceeding 100 MeV/u are

envisioned. This energy range should be attainable even

with sub-100 J laser systems, while relativistic energies

can be achieved with energies slightly above 100 J. In
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order to increase the ion energy even further, i.e., above

the multi-GeV level, kJ systems such as envisioned for

the Extreme Light Infrastructure will be necessary. It

may also become necessary to consider novel methods not

discussed here. For example, once the ions move with the

speed of light, staged acceleration possibly implementing

plasma wake acceleration as used presently to accelerate

electrons may provide a more effective means to reach higher

energies[109–111]. In any case, even with lower output ion

energies as compared with conventional accelerators, laser-

accelerated ion bunches are still desirable, due to their bunch

densities which may be close to solid density. Even with

the low repetition rate of most high-power laser systems,

the high number of reactions per unit volume that would

be achievable with solid density bunches is perfectly suited

for the exploration of the field of nonlinear nuclear physics,

such as the production of exotic nuclei by fission–fusion

reactions. Another important feature is the possible short

ion bunch duration paired with the synchronism to other

laser-driven radiation sources to allow for time- and space-

resolved studies in pump–probe schemes.

5. Summary

Starting from experimental results, we have shown that

current theories of laser–ion acceleration can and should

be optimized in order to achieve maximum ion energies.

Not all theories include such a possibility, but the TNSA

theory of Schreiber et al.[57] can be optimized with respect

to laser pulse duration and the RPA theory of Bulanov

et al.[35, 101, 102] with respect to target thickness. It turns

out that both the optimized TNSA and RPA theories yield

approximately the same maximum ion energies over the

range of laser energies 0.1 J < EL < 10 kJ. It is thus a

matter of convenience whether one adjusts the optimal pulse

duration or the optimal target thickness. For both theories,

the decisive laser parameter is neither the power nor the

intensity but solely the laser energy. Relativistic ion energies,

i.e., energies beyond 1 GeV/u, can be obtained for systems

with EL > 100 J, where in addition a diffraction-limited

small spot size has to be achieved.
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20. T. Sokollik, M. Schnürer, S. Ter-Avetisyan, P. V. Nickles, E.
Risse, M. Kalashnikov, W. Sandner, G. Priebe, M. Amin, T.
Toncian, O. Willi, and A. A. Andreev, Appl. Phys. Lett. 92,
091503 (2008).

21. P. A. Norreys, A. P. Fews, F. N. Beg, A. R. Bell, A. E. Dangor,
P. Lee, M. B. Nelson, H. Schmidt, M. Tatarakis, and M. D.
Cable, Plasma Phys. Control. Fusion 40, 175 (1998).
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S. Ter-Avetisyan, M. Schnürer, T. Sokollik, and P. V. Nickles,
Phys. Plasmas 13, 122705 (2006).

57. J. Schreiber, F. Bell, F. Grüner, U. Schramm, M. Geissler,
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