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1Department of Mathematics, University of Essex,
Colchester CO4 3SQ, UK (peteh@essex.ac.uk)

2Mathematical Institute, University of St Andrews,
North Haugh, St Andrews, Fife KY16 9SS, UK

(jmh@st-and.ac.uk; mitchell@cii.fc.ul.pt; nik@mcs.st-and.ac.uk)

(Received 17 October 2002)

Abstract The relative rank rank(S : A) of a subset A of a semigroup S is the minimum cardinality of
a set B such that 〈A ∪ B〉 = S. It follows from a result of Sierpiński that, if X is infinite, the relative
rank of a subset of the full transformation semigroup TX is either uncountable or at most 2. A similar
result holds for the semigroup BX of binary relations on X.

A subset S of TN is dominated (by U) if there exists a countable subset U of TN with the property
that for each σ in S there exists µ in U such that iσ � iµ for all i in N. It is shown that every dominated
subset of TN is of uncountable relative rank. As a consequence, the monoid of all contractions in TN

(mappings α with the property that |iα − jα| � |i − j| for all i and j) is of uncountable relative rank.
It is shown (among other results) that rank(BX : TX) = 1 and that rank(BX : IX) = 1 (where IX is

the symmetric inverse semigroup on X). By contrast, if SX is the symmetric group, rank(BX : SX) = 2.
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1. Introduction

For a semigroup S and a set A ⊆ S the relative rank of S modulo A is the minimum
cardinality of a set B such that A ∪ B generates S; we denote this by rank(S : A). We
also allow ourselves to call this the relative rank of A in S. In [8] the authors showed that
if we take S = TX , an infinite full transformation semigroup, then the relative rank of
S modulo A is 2 in the cases where A is either the full symmetric group or the set of all
idempotents of S. On the other hand, if A is itself a countable set and A ∪ B generates
TX , then B must be uncountable as TX is itself uncountable. This prompts the question
as to whether it is possible to find a subset A of TX which is of countable relative rank
greater than 2. Surprisingly, the answer is ‘no’. That conclusion can be deduced from
Proposition 1.1, first proved by Sierpiński in 1935 [10]. A simpler proof was immediately
furnished however by Banach [1]. Nonetheless, this result seems not to be widely known,
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as is evidenced by the fact that the often-quoted result of Evans [2], published in 1952,
that any countable semigroup can be embedded in a two-generator semigroup, follows
at once from Sierpiński’s result. For that reason, and in order to make the paper more
self-contained, we reproduce the short proof of Banach.

Throughout this paper, for a set X, TX denotes the full transformation semigroup
on X, IX denotes the inverse semigroup of all partial bijections on X, BX denotes the
semigroup of all binary relations on X, and mappings and relations are written on the
right. For standard definitions and more information see [7].

Proposition 1.1 (Sierpiński). Let X be an infinite set. Then any countable subset
S of TX is contained in a two-generated subsemigroup of TX .

Proof (Banach). Let the countably many members of S be θ1, θ2, . . . . Partition X

into a countable disjoint union of infinitely many sets X0, X1, . . . , Xn, . . . , all of the same
cardinality as X, and similarly partition X0 into X0,1, X0,2, . . . , X0,n, . . . , again all of the
same size as the parent set X.

Let β ∈ TX be any mapping that maps Xn bijectively onto Xn+1 for all n ∈ N ∪ {0}.
Our second mapping γ ∈ TX maps Xn bijectively onto X0,n for all n � 1. Although
we have yet to define γ on X0, we see that the mapping δn = βγβnγ is a well-defined
bijection of X onto X0,n. We may therefore complete the definition of γ by putting
xδnγ = xθn, (x ∈ X). Since θn = δnγ we obtain the factorization

θn = βγβnγ2 (n ∈ N),

‘et le théorème de M. Sierpiński est démontré’. �

Corollary 1.2. The relative rank of a subset S of TX , where X is infinite, is either
uncountable or at most 2.

Also, since every semigroup S embeds in TS1 , we immediately have the theorem of
Evans [2].

Corollary 1.3. Every countable semigroup is embeddable in a two-generated semi-
group.

Before continuing further we introduce the analogues of some standard properties of
maps in terms of relations. We call a relation α ∈ BX injective if for every distinct
pair x, y ∈ dom(α) we have xα ∩ yα = ∅. For β ∈ BX , if im(β) = X then we call the
relation surjective. As in [8], where the infinite contraction index is used as a means
of distinguishing permutations from maps which are not permutations, we require a
property of relations that distinguish maps from relations which are not maps. To this
end, for an arbitrary relation α ∈ BX , we define the infinite expansion index to be the
cardinality of the set

P (α) = {x ∈ dom(α) : |xα| = |X|},

and we denote this cardinal by p(α). It is easy to see that p(α) = 0 for any α ∈ TX .
Further properties of relations are discussed in § 3.

The analogue of Sierpiński’s result for countable subsets of the semigroup of all binary
relations can be proved using Banach’s argument.
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Proposition 1.4. Any countable subset S of the semigroup of all binary relations on
X is contained in a two-generated subsemigroup of BX .

Proof. The proof of this proposition is identical to the proof of Proposition 1.1. Note,
however, that, since θn ∈ BX , the definition

xδnγ = xθn (x ∈ X)

makes γ, in general, not a function. �

As in Corollary 1.2, we obtain the following.

Corollary 1.5. The relative rank of BX modulo any subset S is either uncountable
or at most 2.

It has also long been known that any countable group may be embedded in a two-
generated group [6]. In 1995 Fred Galvin explicitly proved the analogue of Sierpiński’s
result for groups when he showed in [3, Theorem 3.3] that every countable subset A

of the symmetric group SX on an infinite base set X is contained in a two-generated
subgroup of SX . If the two group generators are a and b, say, it follows immediately
that A is contained in the subsemigroup of SX generated by the three elements a, b and
a−1b−1. Galvin goes on, however, to prove that the containing subsemigroup can also be
taken to be two-generated as he shows how to ensure that the group generators a and b

can have any prescribed orders p and 2q, provided that p is at least 3 and q is at least 2
(see [3, Theorem 4.3]). The same paper contains the following result.

Proposition 1.6 (Theorem 5.8 in [3]). The relative rank of a subset S of SX ,
where X is infinite, is either uncountable or at most 1.

In view of Corollaries 1.2 and 1.5 it is natural to ask for necessary and sufficient
conditions for a subset S to be of countable relative rank in TX or BX . A sufficient
condition is supplied by the following proposition.

Proposition 1.7. Suppose that S is a subset of TX (respectively, BX) and that there
exist two disjoint subsets Y , Z of X each with the same cardinality as X and such that

(Q) for every bijection θ from Y to Z there exists α ∈ S such that the restriction
α�Y = θ.

Then rank(TX : S) � 2 (respectively, rank(BX : S) � 2).

Proof. Let SY,Z denote the set of all bijections from Y to Z.
Let S ⊆ TX be a set with the property (Q), and partition Y into Y1, Y2 and Z into

Z1, Z2 with |Y1| = |Y2| = |Z1| = |Z2| = |X|. Let α be any bijection from X to Y1 and
let β ∈ TX be any mapping such that for all x ∈ X the set {z ∈ Z1 : zβ = x} has
cardinality |X|. Let γ ∈ TX be arbitrary. Then there exists an injective mapping δ̄ from
Y1 to Z1 such that xδ̄ ∈ xα−1γβ−1. We may extend δ̄ to an element δ of SY,Z . From
the property (Q) we deduce that there exists ε ∈ S such that ε�Y = δ. It follows that
αεβ = αδβ = γ and so TX = 〈S, α, β〉.
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Let S ⊆ BX have the property (Q). Let α ∈ BX be an injective relation with P (α) = X

and im(α) = Y1. Let β be any partial mapping such that dom(β) = Z1 and for all y ∈ X

the set yβ−1 = {z ∈ Z1 : zβ = y} has cardinality |X|. The sets yβ−1 are disjoint, since
β is a partial mapping, and each yβ−1 can be indexed by the set X:

yβ−1 = {zx,y : x ∈ X}.

Thus Z1 = dom(β) can be indexed by X × X:

Z1 = {zx,y : x, y ∈ X, zx,yβ = y},

and zx,y = zx′,y′ if and only if x = x′ and y = y′.
Consider an arbitrary γ in BX . For each x in X denote xα by Dx, and let Ex =

{zx,y : y ∈ xγ}. Since |Dx| = |X| and |Ex| = |xγ| � |X|, there is a partial injection
δx : Dx → Ex. (If xγ = ∅, that is, if x /∈ im(γ), then δx is the empty mapping.) Since
the sets Dx (x ∈ X) and the sets Ex (x ∈ X) are disjoint, the mapping δ′ =

⋃
x∈X δx is

a partial injection from Y1 into Z1. Also, since |Y \dom(δ′)| = Z \ im(δ′)| = |X|, we may
extend δ′ to a bijection δ : Y → Z in such a way that (Y \ dom(δ′))δ ⊆ Z2. Now, as
before, let ε ∈ S be such that ε�Y = δ. Then, for each x in X we have that

xαε = xαδ = {zx,y : y ∈ xγ} ∪ FX ,

where FX ⊆ Z2. Hence xαεβ = {zx,y : y ∈ xγ}β = xγ. Thus γ = αεβ, and so BX =
〈S, α, β〉 as required. �

The next result shows that the property (Q) is not a necessary condition for the
countability of the relative rank.

Let N = {1, 2, . . . } taken in the natural order. A mapping α ∈ TN is order preserving
if it satisfies the condition that i � j implies iα � jα for all i, j ∈ N. The set of all
order-preserving mappings on N forms a subsemigroup ON of TN.

Proposition 1.8. The semigroup ON is of relative rank 1 in TN and does not have
the property (Q) of Proposition 1.7.

Proof. Given any two equicardinal subsets Y , Z of N, there is a unique order-
preserving bijection from Y onto Z, and so ON does not have the property (Q).

Since ON 	= TN, the relative rank of ON is at least 1. To show that it is exactly 1, let
γ ∈ TN, and let δ be any mapping such that for each n ∈ N the set {i ∈ N : iδ = n} is
infinite. For each k in N, select an element kε in (kγ)δ−1 in such a way that kε < (k+1)ε
for all k. Then ε ∈ ON, and εδ = γ. Thus 〈ON, δ〉 = TN. �

For a semigroup S, two elements x, y ∈ S are said to be J -related if S1xS1 = {uxv :
u, v ∈ S1} = S1yS1. It is easy to see that J is an equivalence relation. It is well known (see
[7]) that two elements α and β of TX are J -related if and only if |im(α)| = |im(β)|. Let J

denote the set of all elements of TX with image size equal to |X|. Since any factorization
of a member α ∈ J involves only members of J and since J has the same cardinality as
TX , it follows that the cardinality of the intersection with J of any subsemigroup S of
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TX of countable relative rank must be equal to the cardinality of TX . In other words,
|S ∩ J | = |TX |. In fact the following stronger statement holds.

Proposition 1.9. If S is a subset of TX of countable relative rank, and if U is any
subset of TX such that every injective restriction of an element of S∩J is also a restriction
of an element of U , then |U | = |TX |.

Proof. Suppose that A is a countable subset of TX such that 〈S ∪A〉 = TX . Take any
π ∈ SX . Then π = θ1θ2 · · · θn, where each θi lies in S ∪ A. Since π ∈ J it follows that
θi ∈ J and θi is injective on the set T = Xθ1 . . . θi−1 (where the product is taken to be
the identity mapping in the case i = 1). By assumption, there exists ξi in U such that
ξi�T = θi�T , and so π = θ1 · · · θi−1ξiθi+1 · · · θn. Replacing each θi in S by an element ξi

of U , we express π as a product of mappings from U ∪ A. Thus SX ⊆ 〈U ∪ A〉. Since A

is countable, and since |SX | = |TX | > ℵ0, it follows that |U | = |SX | = |TX |. �

Example 1.10. Let X be the disjoint union of two infinite countable sets Y and Z.
Let S be the subsemigroup

S = {α ∈ TX : α�Z= 1Z , Y α ⊆ Y, |Y α| is finite}

of TX , where 1Z denotes the partial identity map with domain Z. Then S ⊆ J and S is
uncountable. We shall show that S is of uncountable relative rank in TX by verifying that
there exists a set U , as in Proposition 1.9, that is countable. Now the kernel transversals
T of members of S each have the form Z ∪Y ′, where Y ′ is a finite subset of Y and so the
set of kernel transversals of members of S is countable. Moreover, for each such kernel
transversal T there are only countably many mappings α�T (α ∈ S). Hence there exists
a countable subset U of TX such that every injective restriction of an element of S is also
a restriction of an element of U . Therefore, S is of uncountable relative rank in TX by
Proposition 1.9.

The necessary condition on S of Proposition 1.9 is not, however, sufficient for a sub-
semigroup S of TX to be of countable relative rank. This will follow from Proposition 2.4
of the next section.

2. Dominated subsets

We define a partial order ‘�’ on the elements of TN so that for any α, β ∈ TN we write
α � β if iα � iβ for all i ∈ N. For subsets S, U ⊆ TN we write S ≺ U if for each
σ ∈ S there exists µ ∈ U such that σ � µ. The relation ‘≺’ is not a partial order. It is a
quasi-order, being reflexive and transitive, but, for example, if

S = {α ∈ TN : im(α) = 2N} and U = {α ∈ TN : im(α) = 2N + 1},

then S ≺ U and U ≺ S.
We say that a subset S of TN is dominated (by U) if there exists a countable set U ⊆ TN

such that S ≺ U . Given σ in S and a function µ such that σ � µ, we can always replace
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µ by µ′, defined inductively by

1µ′ = 1µ, (n + 1)µ′ = max{nµ′ + 1, (n + 1)µ}.

Thus we may assume that every function in the dominating set U is strictly monotonically
increasing. We remark that TN itself is not dominated.

Theorem 2.1. Let S1, S2, . . . be a countable collection of subsets of TN dominated by
the countable collection of sets U1, U2, . . . , respectively. Then 〈S1, S2, . . . 〉 ≺ 〈U1, U2, . . . 〉
and 〈S1, S2, . . . 〉 is dominated.

Proof. It is clear that S1 ∪S2 ∪· · · = S ≺ U = U1 ∪U2 ∪· · · . We show that 〈S〉 ≺ 〈U〉.
Let α = σ1σ2 · · ·σn ∈ 〈S〉 and let κj ∈ U be any function such that σj � κj for each j.
Then (iσ1)σ2 � (iσ1)κ2 � (iκ1)κ2 for all i ∈ N. Hence by induction iα = iσ1σ2 · · ·σn �
iκ1κ2 · · ·κn for all i ∈ N. It follows that 〈S〉 ≺ 〈U〉. Therefore, since 〈U〉 is countable,
〈S〉 is dominated. �

Corollary 2.2. Any dominated subset S of TN is of uncountable relative rank.

Proof. Let U be any countable subset of TN such that S ≺ U , and let V denote an
arbitrary countable subset of TN. Then it is clear that S ∪ V ≺ U ∪ V and hence by
Theorem 2.1 we have 〈S ∪ V 〉 ≺ 〈U ∪ V 〉, and 〈S ∪ V 〉 is dominated. Since TN is not
dominated, it follows that 〈S ∪ V 〉 	= TN for every countable V . �

Next, we introduce an equivalent characterization of dominated subsets.

Lemma 2.3. A subset S ⊆ TN is dominated if and only if there exists a function
κ ∈ TN such that for all σ ∈ S we have iσ � iκ for all but finitely many i ∈ N.

Proof. (⇐) As observed above, we may assume that κ is strictly increasing. We begin
by observing that for each α ∈ S there exists Mα ∈ N such that for any j � Mα we
have jα � Mακ. Indeed, there are only finitely many i ∈ N such that iα > iκ, and so we
may find the maximum such iα, which we denote by N . Since κ is monotonic increasing
there exists Mα such that Mακ � N , and it is easy to see that this Mα has the desired
properties. We define a countable set of functions K = {κi : i ∈ N} as follows:

nκi =

{
nκ n � i,

iκ n < i.

Then for arbitrary α ∈ S we have α � κMα
, and hence S ≺ K.

(⇒) Let {κi : i ∈ N} denote any set which dominates S. Define

nκ =
n∑

i=1

nκi.

Then for any σ ∈ S there exists κr such that nσ � nκr for all n ∈ N. Hence for n � r

we have

nκ =
n∑

i=1

nκi � nκr � nσ,

and hence κ has the required property. �
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We shall refer to a function with the properties of κ in the above proof as a dominating
function.

A mapping α ∈ TN is called a contraction if it satisfies the condition that |iα − jα| �
|i − j| for all i, j ∈ N. Equivalently, α is a contraction if it maps intervals to intervals.
Let C denote the semigroup of all contractions in TN. We now show that C satisfies
the condition of Proposition 1.9. To see this, let M = {1, 3, 5, 7, . . . }. We show that
there are |TN| injections from M into N which are restrictions of mappings in C ∩ J . Let
σ = (ε1, ε2, . . . ) be a sequence of 0s and 1s. Define ασ : M → N by

1ασ = 1, (2i + 1)ασ =

{
(2i − 1)ασ + 1 if εi = 0,

(2i − 1)ασ + 2 if εi = 1.

Clearly, there are 2|N| = |TN| mappings ασ. On the other hand, ασ = βσ �M , where
βσ ∈ C ∩ J is defined by

(2i − 1)βσ = (2i − 1)ασ, (2i)βσ = (2i − 1)ασ + 1.

Despite this we have the following proposition.

Proposition 2.4. The monoid C of all contractions in TN is of uncountable relative
rank.

Proof. By Corollary 2.2 and Lemma 2.3 it remains only to observe that C has a
dominating function κ where nκ = n2. This follows from the definition of a contraction,
since for any α ∈ C we have nα � 1α + (n − 1) � n2 for all sufficiently large n. �

As introduced above, the notion of a dominated subset S of TN is only with respect
to the natural well-ordering of N. However, we note that it is possible to show that the
property of being a dominated subset is maintained if we take another well-ordering of
N which is isomorphic to the natural ordering.

Theorem 2.5. If a subset S of TN is dominated with respect to the natural well-
ordering of N, then S is dominated with respect to every isomorphic well-ordering of N.

Proof. We assume that S is dominated by the set U = {κi : i ∈ N} with respect
to the standard ordering ‘�’ on the natural numbers. Let us take another well-ordering
‘�π’ determined by some permutation π of N in that the ordering ‘�π’ is given by

1π �π 2π �π · · · �π nπ �π · · · .

Define a function ε such that

nε = sup
�π

{
m : m � max

�
{nκi : i � n}

}
.

Then for any α ∈ S we have iα � iκr for all i ∈ N and for some r ∈ N. In particular,
rα � rκr and so for n � r we have

nα � nκr � max
�

{nκi : i � n}.

Hence nα �π nε. Thus ε is a dominating function for S. �
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Example 2.6. Let E ⊆ TN denote the set of all functions α in TN such that iα is
an even number, for every i ∈ N. This set is clearly not dominated in TN, since any
candidate κ for a dominating function fails to dominate 2κ ∈ E. We see, however, that E

is dominated with respect to a different (and non-isomorphic) well-ordering of N. Define
an order so that every even number lies below every odd number, and the natural order
is maintained within the set of all even and the set of all odd numbers. It is clear that
the function α ∈ TN, defined by nα = 1, dominates E with this well-ordering.

Remark 2.7. We note that, if the original ordering of N in Theorem 2.5 is not taken to
be the natural well-ordering (or a well-ordering isomorphic to the natural well-ordering),
then the result does not necessarily hold. To see this, we define a well-ordering on N such
that every even number lies above every odd number. This well-ordering is isomorphic
to the order in the previous example, but the set E is not dominated with respect to this
ordering.

3. Binary relations

We now consider some of the problems from above and from [8] in a more general setting.
Throughout the following, let X be an infinite set and let BX denote the semigroup of
all binary relations on X.

We note that the argument used to prove both Sierpiński’s result and its generalization
to the semigroup of all binary relations can equally well be used to prove the analogous
result for partial maps. For completeness, we state this result.

Proposition 3.1. Let Y be any infinite subset of X and let S denote the subsemigroup
consisting of all elements in TX which fix X \Y pointwise. Then any countable subset of
S is contained in a two-generated subsemigroup of S. In particular, the relative rank of
S modulo any subset is either uncountable or at most 2.

In the case that Y = ∅ we obtain Proposition 1.1, and in the case that |X \ Y | = 1 we
have the following corollary.

Corollary 3.2. Any countable subset of the partial transformation semigroup PX is
contained in a two-generated subsemigroup of PX . In particular, the relative rank of PX

modulo any subset is either uncountable or at most 2.

We now consider the relative rank of BX modulo some standard subsemigroups, sim-
ulating the results in [8]. We begin by finding the relative rank of BX modulo the set of
all injective mappings in TX .

Theorem 3.3. The relative rank of BX modulo TX ∩ IX is 1.

Proof. Partition X into three disjoint subsets Y , Z and W , with |Y | = |Z| = |W | =
|X|. Similarly, partition Y and Z into disjoint subsets Yx and Zx (x ∈ X), again with
|Yx| = |Zx| = |X|. Let ρ ∈ TX ∩ IX be any bijection from X to Y , and for all x ∈ X let
δx be any bijection from Zx to X. Define ∆ ∈ BX by

x∆ =

{
Yxρ−1 x ∈ Y,

xδy x ∈ Zy(y ∈ X).
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Let α ∈ BX be arbitrary. Let σ ∈ TX ∩ IX be any mapping which takes |xα| elements
of Yx injectively to xαδ−1

x (⊆ Zx) for all x ∈ dom(α) and which takes the remaining
elements of X to W injectively. For x ∈ dom(α),

xρ∆σ∆ = Yxσ∆ = (xαδ−1
x )∆ = xαδ−1

x δx = xα,

and for x 	∈ dom(α) we have xρ∆σ ⊆ W and so xρ∆σ∆ is undefined. We have shown
that α ∈ 〈TX ∩ IX , ∆〉 and so BX = 〈TX ∩ IX , ∆〉. �

Corollary 3.4. The relative rank of BX modulo TX or IX is 1.

Recall that a cardinal κ is singular if there exist sets Y and Zy for y ∈ Y such that
|Y | < κ and |Zy| < κ but ∣∣∣∣ ⋃

y∈Y

Zy

∣∣∣∣ = κ.

A cardinal is called regular if it is not singular. For more details about singular and
regular cardinals see [5] or [9].

Next we prove the main result in this section, which is a characterization of all subsets
U of BX such that 〈TX ∪ U〉 = BX , in the case where |X| is regular.

Theorem 3.5. Let |X| be a regular cardinal and let U ⊆ BX be arbitrary. Then
TX ∪ U generates BX if and only if U contains relations α and β satisfying

(i) there exists Y ⊆ P (α) such that |Y | = |X| and∣∣∣∣∣y0α \
⋃

y∈Y
y �=y0

yα

∣∣∣∣∣ = |X|,

for every y0 ∈ Y ;

(ii) dom(β) � X;

(iii) there exists Z ⊆ dom(β) such that |Z| = |X| and the sets zβ (z ∈ Z) are pairwise
disjoint.

Proof. (⇐) We prove the converse implication by showing that every element of BX

can be written as a product of elements of TX , α and β. In fact, we prove that every
relation γ ∈ BX has a factorization γ = ρασβπ, where ρ, σ, π ∈ TX .

To see this, let ρ be any bijection from X to Y . Partition Z into disjoint sets Zx

(x ∈ X) each of cardinality |X|. Let σ be any mapping which takes

y0α \
( ⋃

y∈Y \{y0}
yα

)
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to Zy0ρ−1 injectively for each y0 ∈ Y such that y0ρ
−1 ∈ dom(γ), and which takes every-

thing else to a fixed element x0 ∈ X \ dom(β). Finally, let π ∈ TX be any mapping such
that (Zxβ)π = xγ for every x ∈ dom(γ). Then for x ∈ dom(γ) we have

xρασβπ =

(
xρα \

⋃
y∈Y
y �=xρ

yα

)
σβπ = Zxβπ = xγ.

It is clear that xρασβπ is not defined for x 	∈ dom(γ).

(⇒) We prove the direct implication using the following two lemmas. Let S1 denote
the set of all relations that fail to satisfy at least one of (ii) and (iii), and let S2 denote
the set of all relations not satisfying (i).

Lemma 3.6. The set S1 is a proper subsemigroup of BX containing TX but not PX .

Proof. We see that TX ⊆ S1 since no element of TX satisfies (ii). Any proper partial
identity map satisfies both (ii) and (iii) and so PX is not contained in S1.

We show that S1 is a semigroup by demonstrating that

αβ /∈ S1 and β ∈ S1 ⇒ α /∈ S1.

So suppose that αβ satisfies (ii) and (iii), and that β fails to satisfy at least one of (ii)
and (iii). Let Z be such that Z ⊆ dom(αβ), |Z| = |X| and the sets zαβ(z ∈ Z) are
non-empty and disjoint. For each z in Z we may choose tz in zα such that tz ∈ dom(β).
The elements tz (z ∈ Z) are all distinct: if tz = tw(w, z ∈ Z, w 	= z), then tzβ ⊆ zαβ,
twβ ⊆ wαβ and so zαβ ∩ wαβ 	= ∅, a contradiction. Thus T = {tz : z ∈ Z} ⊆ dom(β),
and |T | = |Z| = |X|. Also, since tzβ ⊆ zαβ for all z, the sets tzβ are disjoint.

Thus β satisfies (iii), and so, by our assumptions, does not satisfy (ii). That is,
dom(β) = X. It now follows that α satisfies (iii), since there exists Z ⊆ dom(αβ) ⊆
dom(α) such that |Z| = |X|, and certainly the sets zα (z ∈ Z) are disjoint. Since
dom(αβ) � X and dom(β) = X, it follows that dom(α) � X, and so α /∈ S1. �

Lemma 3.7. If |X| is a regular cardinal, then S2 is a proper subsemigroup of BX

containing PX .

Proof. That PX ⊆ S2 is obvious since no mapping satisfies (i).
Suppose now that αβ satisfies (i). We show that either α or β satisfies (i). There exist

disjoint sets Zx ⊆ xαβ (x ∈ Y ) such that |Zx| = |X|. Let Yx = xα ∩ Zxβ−1, it is
easy to see that these sets are disjoint. If |X| of the sets Yx have cardinality |X| then α

satisfies (i). Otherwise, β satisfies (i). �

It follows from these two results that if U contains no element satisfying (i), then
〈TX ∪U〉 ⊆ S2 � BX , or if U contains no element satisfying (ii) and (iii), then 〈TX ∪U〉 ⊆
S1 � BX , and the result follows. �
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This proof does not explicitly rely on the fact that the maps we are considering are full
maps. We may easily modify this result so that it holds for partial maps as well. Here we
do not need a mapping β satisfying (ii) and (iii). Instead, in the (⇐) part of the proof
we can use a partial map ξ which maps

y0α \
⋃

y∈Y \{y0}
yα

onto y0ρ
−1γ and is otherwise undefined, to express an arbitrary γ in BX as ραξ. Thus

we have the following corollary.

Corollary 3.8. The relative rank of BX modulo PX is 1. Furthermore, if |X| is a
regular cardinal and U ⊆ BX is arbitrary, then PX ∪ U generates BX if and only if U

contains a relation which satisfies (i) in the previous theorem.

It follows from Proposition 1.7 that the relative rank of BX modulo both the symmetric
group SX or the set of idempotent relations BEX is less than or equal to 2. Indeed, if we
partition X into disjoint sets Y and Z, with |Y | = |Z|, then for any bijection β from Y

to Z the mapping α ∈ TX defined by

xα =

{
xβ x ∈ Y,

x x ∈ Z,

is an idempotent with α�Y = β. That rank(BX : SX) � 2 and rank(BX : BEX ∩ TX) � 2
also follows from Corollary 3.4 and [8, Theorem 3.3]. We show, in both cases, that these
bounds are sharp.

Theorem 3.9. The relative rank of BX modulo the symmetric group SX is 2.

Proof. Observe that BX is the union of the semigroups T1 = {α ∈ BX : dom(α) = X}
and T2 = {α ∈ BX : dom(α) � X} ∪ SX . Now, if 〈SX , µ〉 = U , then µ ∈ T1 or µ ∈ T2,
and so either U ⊆ T1 � BX or U ⊆ T2 � BX . Hence rank(BX : SX) > 1. �

A similar argument can be applied to the set of all full surjective mappings to give the
following corollary.

Corollary 3.10. The relative rank of BX modulo the set of all surjective mappings
in TX is 2.

We now consider the set BEX of all idempotent relations in BX . In order to prove that
the bound given above is sharp we require the following lemmas.

Lemma 3.11. If αβ ∈ SX and α2 = α, then α = 1X . Likewise, if β2 = β, then
β = 1X .

Proof. Suppose that there exist x, y in X such that x 	= y and (x, y) ∈ α. Since
αβ ∈ SX , there exist z, t ∈ X such that (y, z) ∈ α, (z, t) ∈ β. From (x, y) ∈ α and
(y, z) ∈ α we deduce that (x, z) ∈ α2 = α. But then t ∈ xαβ ∩ yαβ, a contradiction. To
prove the second half, observe that (β−1)2 = β−1 and β−1α−1 ∈ SX . �
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Lemma 3.12. For α, β ∈ BX , if αβα ∈ SX , then β ∈ SX .

Proof. Clearly, α is surjective, dom(α) = X and α �im(αβ) is a surjective map.
For each x ∈ im(αβ) there is exactly one element in xα, since αβα is a map.
Now, x ∈ dom(αβα) (= X) and so xα ∈ dom(βα) for all x ∈ im(αβ). Therefore,
X = im (α�im(αβ)) ⊆ dom(βα), which implies that X ⊆ dom(β). It follows that α is
injective, for if x 	= y, then t ∈ xα ∩ yα implies that tβα ⊆ xαβα ∩ yαβα, a contradic-
tion.

The same argument applied to α−1β−1α−1 yields that α−1 is injective, which is equiv-
alent to α being a partial mapping. Hence α ∈ SX , and from this it easily follows that
β ∈ SX , as required. �

We use these two lemmas to prove the following theorem.

Theorem 3.13. The relative rank of BX modulo the set of idempotent relations BEX

or modulo T EX(= BEX ∩ TX) is 2.

Proof. Suppose that 〈BEX , µ〉 = BX for some µ ∈ BX and let π ∈ SX . We may write
π = γ1γ2 · · · γn, where γi ∈ BEX ∪ {µ}. We proceed to show, by induction on n, that
γi ∈ {1X , µ} for each i. By Lemma 3.11 we may assume that γ1 = γn = µ. Hence in the
case that n = 1, or 2, our hypothesis is verified. For n > 2 we have γ2 · · · γn−1 ∈ SX by
Lemma 3.12, and by induction γ2, . . . , γn−1 ∈ {1X , µ}, as required. �

4. Inverse semigroups

We now consider many of the same questions for the symmetric inverse semigroup IX as
we have so far considered for the semigroup of binary relations and the full transformation
semigroup.

Remark 4.1. In this section, we shall consider a different definition of relative rank.
For a subset A of an inverse semigroup S we define the relative rank of S modulo A to be
the minimum cardinality of any set B ⊆ S such that the inverse subsemigroup generated
by A ∪ B equals S. The important point to note is that we may use the inverses of
elements of A ∪ B.

The first important question to answer is whether every countable inverse subsemi-
group is contained in a two-generated inverse subsemigroup of IX . We shall show that
this is, in fact, the case. Following from this, and more importantly for our purposes here,
we show that the relative rank of every inverse subsemigroup of IX is uncountable or at
most 2. A more interesting question is whether, or not, the relative rank of every inverse
subsemigroup of IX is uncountable or at most 1 (as is the case with groups).

Proposition 4.2. Any countable subset S of the symmetric inverse semigroup on X

is contained in a two-generated inverse subsemigroup of IX .

Proof. The proof is similar to the proof of Sierpiński’s result, the essential difference
being that here we are dealing with inverse subsemigroups and so allow ourselves to use
inverses of generators.
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Let the countably many members of S be α1, α2, . . . . Partition X into a countable
disjoint union of infinitely many sets X0, X1, . . . , Xn, . . . , all of the same cardinality
as X, and similarly partition X0 into X0,1, X0,2, . . . , X0,n, . . . , again all of the same size
as the set X.

Let β ∈ IX be any partial bijection that maps Xn bijectively onto Xn+1 for all n =
0, 1, 2, . . . . We have dom(β) = X and im(β) = X \ X0.

Our second partial bijection γ ∈ IX maps Xn bijectively onto X0,n for all n � 1.
We see that βγβn is a well-defined bijection from X onto Xn, and so δn = βγβnγ is a
well-defined bijection from X to X0,n.

So far, γ is defined on X \ X0 with its image lying in X0. We may therefore complete
the definition of γ by defining xδnγ = xαnβγβn ∈ Xn (n � 1) for all x ∈ X.

Since αn = δnγβ−nγ−1β−1, we obtain the factorization

αn = βγβnγ2β−nγ−1β−1 (n = 1, 2, . . . ),

and so S is contained in the inverse subsemigroup generated by β and γ. �

Again, using the same argument as Corollary 1.2, we obtain the following corollary.

Corollary 4.3. The relative rank of a subset S of IX , where X is infinite, is either
uncountable or at most 2.

A consequence of Proposition 4.2 is the well-known result that any countable inverse
semigroup can be embedded in a two-generated inverse semigroup, attributed in [4] to
C. J. Ash.

We now consider the relative rank of the symmetric inverse semigroup modulo some of
the standard inverse subsemigroups. We require the notion of the defect of a map α, which
is simply the cardinality of the complement of the image of the map: d(α) = |X \ im(α)|.

Lemma 4.4. If α, β ∈ IX , then d(αβ) = d(α) + d(β).

For details see [8, Lemma 2.1(i)].

Theorem 4.5. The relative rank of IX modulo SX is 1. Furthermore, for µ ∈ IX

the set SX ∪ {µ} generates IX (as an inverse semigroup) if and only if {d(µ), d(µ−1)} =
{0, |X|}.

Proof. (⇒) Let S1 = {α ∈ IX : d(α) < |X| and d(α−1) < |X|} and let S2 = I ∪ SX ,
where I = {α ∈ IX : d(α) > 0 and d(α−1) > 0}. It follows from Lemma 4.4 that both S1

and S2 are proper subsemigroups of IX . Now, if IX = 〈SX , µ〉, for some µ ∈ IX , then
µ 	∈ S1 and µ 	∈ S2. Since µ 	∈ S1, either d(µ) = |X| or d(µ−1) = |X|. Since µ 	∈ S2, in
the former case d(µ−1) = 0 and in the latter case d(µ) = 0, as required.

(⇐) Assume, without loss of generality, that d(µ) = |X| and dom(µ) = X. Let α ∈ IX

be arbitrary. Let π̄ = µ−1αµ. Then dom(π̄) ⊆ dom(µ−1) = im(µ), and so |X \dom(π̄)| �
|X \ im(µ)| = |X|. Also im(π̄) ⊆ im(µ), which implies |X \ im(π̄)| � |X \ im(µ)| = |X|.
We extend π̄ to π ∈ SX so that

(im(µ) \ dom(α)µ)π ⊆ X \ im(µ); (4.1)
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we can do this because |X \ im(µ)| = d(µ) = |X|. For x ∈ dom(α) we have

xµπµ−1 = xµπ̄µ−1 = xµµ−1αµµ−1 = xα.

On the other hand, if x /∈ dom(α), then xµ ∈ im(µ) \ dom(α)µ, so that (by (4.1)) xµπ ∈
X \ im(µ) and xµπµ−1 is undefined. Hence α = µπµ−1 ∈ 〈SX , µ〉. Thus IX = 〈SX , µ〉,
as required. �

Next, we determine the relative rank of IX modulo IEX the set of idempotents in IX .
First, we record the following well-known and easily verified fact.

Lemma 4.6. The set of idempotents in the symmetric inverse semigroup is the set of
all partial identity maps.

For details see [7, Theorem 5.1.5].

Theorem 4.7. The relative rank of IX modulo IEX is |IX |.

Proof. Let A be any subset of IX such that 〈IEX , A〉 = IX . Then by Lemma 4.6
every element of 〈IEX , A〉 is a restriction of an element of 〈A〉. Since every element of
SX is not the proper restriction of any element of IX , it follows that A must contain a
generating set for SX . Thus |A| � |SX | = |IX |. �

We conclude by stating the inverse semigroup analogue of [3, Theorem 5.8] (see Propo-
sition 1.6) as an open question. It seems likely that the answer to this question is yes.

Open problem. Is it true that the relative rank of a subset S of IX is either uncount-
able or at most 1?
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2. T. Evans, Embedding theorems for multiplicative systems and projective geometries,

Proc. Am. Math. Soc. 3 (1952), 614–620.
3. F. Galvin, Generating countable sets of permutations, J. Lond. Math. Soc. 51 (1995),

230–242.
4. T. E. Hall, Inverse and regular semigroups and amalgamation: a brief survey, in Proc.

Symp. Regular Semigroups, Northern Illinois University (1979), pp. 49–78.
5. P. R. Halmos, Naive set theory, Undergraduate Texts in Mathematics (Springer, 1974).
6. G. Higman, B. H. Neumann and H. Neumann, Embedding theorems for groups, J.

Lond. Math. Soc. 24 (1949), 247–254.
7. J. M. Howie, Fundamentals of semigroup theory, London Mathematical Society, vol. 12

(Oxford University Press, 1995).
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