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FINITE UNDECIDABILITY IN NIP FIELDS

BRIAN TYRRELL

Abstract. A field K in a ring language L is finitely undecidable if Cons(T ) is undecidable for every
nonempty finite T ⊆ Th(K ; L). We extend a construction of Ziegler and (among other results) use a
first-order classification of Anscombe and Jahnke to prove every NIP henselian nontrivially valued field
is finitely undecidable. We conclude (assuming the NIP Fields Conjecture) that every NIP field is finitely
undecidable. This work is drawn from the author’s PhD thesis [48, Chapter 3].

§1. Introduction. The author was motivated to consider this topic by the following
question:

Problem 1.1. Does there exist an infinite, finitely axiomatisable field?

This (still open) problem was posed explicitly by I. Kaplan at the 2016 Oberwol-
fach workshop on Definability and Decidability Problems in Number Theory [33, Q4],
though existed as folklore before. This relates closely to another elementary question:

Problem 1.2. Does there exist a finitely axiomatisable theory of fields which is
decidable and has an infinite model?

That is, this problem is to ascertain the existence of an infinite field F and a
collection of first-order sentences T in the language of rings Lr , such that T ⊆
Th(F ;Lr), T is finitely axiomatised, T models the field axioms, and there exists a
decision procedure to determine membership of Cons(T )—the set of Lr-sentences
φ such that T |= φ.

Answering Problem 1.2 in the negative (as the empirical evidence suggests might
indeed be the case) would answer Problem 1.1 in the negative too. This is the focus
of modern investigations. One approach to this was established by Ziegler [49],
and generalised further by Shlapentokh and Videla [43]. Ziegler’s idea was to take
a finitely axiomatised subtheory of a sufficiently saturated field with a powerful

model completeness property (he considered C, F̃p(t)—where “ F̃ ” denotes the
algebraic closure of a field F—R, and Qp) and prove it to be a subtheory of a field
interpreting arithmetic. By using a result of Tarski (see below), there is no nonempty
finitely axiomatised subtheory (“finite subtheory”) of ACF0, ACFp, RCF, or pCF that
is decidable. With this in mind we forward the following definition1:
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Definition 1.3. A theory T in a language L is finitely undecidable if every finitely
axiomatised L-subtheory of T is undecidable. (An L-structure is finitely undecidable
if its complete L-theory is.)

What infinite fields are finitely undecidable (implicitly: in Lr)? That is the
motivating question for this paper and its sequel. If there exists a field satisfying
Problem 1.1 or 1.2, this field is not finitely undecidable; we will show, however,
there is a considerably broad class of fields whose members have this undecidability
property.

In particular, most (if not all) infinite fields whose model theory in the language
of rings is well understood will be finitely undecidable, as we will argue. Following
this philosophy, we are motivated by a long-standing model theory conjecture:

Conjecture (Shelah’s NIP Fields Conjecture). Every infinite NIP field is either
separably closed, real closed, or admits a nontrivial henselian valuation.

In [47] we consider other classification-theoretic conjectures on field theories.
Here, we adapt Ziegler’s argument to SCFp,e (Section 3) and the complete theories
of certain henselian valued fields in the language Lval ; the language of rings with
an additional unary predicate for the valuation ring (Sections 4 and 5). Our main
result is:

Theorem (Corollary 4.10 + Theorem 5.3 + Theorem 5.8). Let (K, v) be an

• equicharacteristic 0, or
• mixed characteristic, or
• equicharacteristic p > 0 separably defectless Kaplansky

henselian nontrivially valued field. Then Th(K ;Lval ) is finitely undecidable.
Moreover, if Ov is Lr-definable, K is finitely undecidable as a field.

Thanks to some deeper results in classification theory, some immediate conse-
quences of this are:

Corollary 5.9. (1) If (K, v) is an NIP henselian nontrivially valued field,
Th(K ;Lval ) is finitely undecidable. Furthermore if Ov is Lr-definable in K,
then K is finitely undecidable as a field.

(2) Every infinite dp-finite field is finitely undecidable.
(3) Assuming the NIP Fields Conjecture, every infinite NIP field is finitely

undecidable.

We recall the notion of a dp-finite field L below (for a full, general discussion of
dp-rank, see [31, 45]). We work in a sufficiently saturated model of Th(L;Lr).

Definition 1.4. For n ∈ N>0, let I1, ... , In be a list of sequences, and A a set of
parameters. We say that the sequences I1, ... , In are mutually indiscernible over A if
for each 1 ≤ t ≤ n, the sequence It is indiscernible over A ∪ I�=t .

If p is a partial type over A, we say p is of dp-rank ≥ n if there exist a |= p and a list
of sequences I1, ... , In mutually indiscernible over A such that Ik is not indiscernible
over A ∪ {a} for 1 ≤ k ≤ n. (The dp-rank of a partial type is always ≥ 0.)

This definition does not in fact depend on the parameter set A, as evidenced by
Simon [45, Lemma 4.14].
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Definition 1.5. A field L is of finite dp-rank if for some m ∈ N, “x = x” has
dp-rank ≥ m but does not have dp-rank ≥ m + 1.

See Example 5.10 for “interesting” examples of Theorem (Corollary 4.10 +
Theorem 5.3 + Theorem 5.8) and Corollary 5.9 in action.

All of our undecidability results rely on a theorem of Tarksi, which we now state:
general references for this material are [15, 44, 46].

Theorem 1.6 (Tarski). Let L1, L2 be finite languages. The L2-theory T2 is
hereditarily undecidable if there exist a finitely axiomatised essentially undecidable
L1-theory T1 and modelsM1 |= T1,M2 |= T2 such thatM1 is interpretable inM2.

Proof. This is [15, pp. 87–89], using different (but equivalent) terminology.
Results such as this originate in [46, Sections I.3 and I.4]; cf.Theorems 6–8 ibid. �

We will use this as follows:

Lemma 1.7 [44, Proposition 11.2]. Let L be a finite language and a1, ... , an
constant symbols not in L. Let M be an L(a1, ... , an)-structure andM |L the reduct of
M to L. If Th(M ;L(a1, ... , an)) is hereditarily undecidable, so too is Th(M |L;L).

Corollary 1.8. Let K be a field of characteristic 0, and L a field of characteristic
p > 0 such that there exists t ∈ L transcendental over Fp. Let L be a finite expansion
of the language of rings. Suppose Z is L-definable with parameters in K and Fp[t]
is L-definable with parameters in L. Then Th(K ;L) and Th(L;L) are hereditarily
undecidable.

Proof. This is an application of Theorem 1.6 with L2 an expansion of L by
constant symbols, L1 = Lr , T1 = Q (Robinson arithmetic), andM1 = N. Notice N
is ∅-Lr-definable in Z (e.g., by Lagrange’s Four Square Theorem) hence interpretable
in Z. By [41, Sections 4a and 4b], N is interpretable in the Lr(t)-structure
Fp[t]. Thus, by assumption N is interpretable in K (with, say, parameters c =
{c1, ... , ck}) and N is interpretable in L (with, say, parameters d = {d1, ... , dl}).
By Theorem 1.6, Th(K ;L(c)) and Th(L;L(d )) are hereditarily undecidable. The
hereditary undecidability of Th(K ;L) and Th(L;L) follows from Lemma 1.7
exactly. �

Remark 1.9. Notational remark. By “K ≡L L” we denote that two L-structures
K,L are elementarily equivalent. If “K ≡ L” is written, the language is implicitlyLr .
In the case of valued fields, we will frequently write “(K, v) ≡ (L,w)” to denote an
Lval -elementary equivalence, where v,w are valuations on their respective fields.

§2. First exploration by Ziegler. Ziegler’s main result of [49] is the construction
of a field Kq satisfying the following theorem:

Theorem 2.1. Let L be the field C, F̃p(t), R, or Qp, and q 
= p prime. There exists
a field Kq ⊆ L such that:

(1) Z or Fp[t] is definable (with parameters) in Kq .
(2) If the intermediate field Kq ⊆ H ⊆ L is finite over Kq , either [H : Kq] = 1 or
q|[H : Kq].
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Proof. This is [49, Theorem, p. 270] with a specified A. Cf. Theorems 3.3 and 4.4,
and Section 5, of [43] (this paper, by Shlapentokh and Videla, generalises Ziegler’s
construction). �

Corollary 2.2 (Ziegler). Let p be prime. ACF0, ACFp, RCF, and pCF are finitely
undecidable.

Proof. [49, Corollary, p. 270]. Let T be a finite subtheory of L, which is one of

the fields C, F̃p(t), R, Qp. Let P be the set of primes distinct to p. For each q ∈ P,
use Theorem 2.1 to obtain a field Kq satisfying (1) and (2). Let U be a nonprincipal
ultrafilter on P, and let K be the ultraproduct

∏
q∈P Kq/U .

We claim that K is relatively algebraically closed in LU . Indeed, suppose f =
(fq) ∈ K[X ] has a root α = (αq) ∈ LU . In which case, {q : fq(αq) = 0} ∈ U , hence
{q : [Kq(αq) : Kq] ≤ deg(f)} ∈ U . Consequently, as q|[H : Kq] for all proper finite
extensions Kq ⊂ H ⊆ L, {q : [Kq(αq) : Kq] = 1} ∈ U . Hence α ∈ K as desired.

By the model theory of algebraically/real closed/p-adically closed fields,2 we
deduce K ≡ LU (≡ L by Łoś’ Theorem; specifically [6, Theorem 4.1.9]). Therefore
K |= T . As T is finitely axiomatised, by Łoś’ Theorem there must exist some q ∈ P
such thatKq |= T . Thus by Theorem 2.1 and Corollary 1.8, Th(Kq ;Lr) is hereditarily
undecidable, making T undecidable as required. �

One can see the key step in this corollary was using the following property inherent
to the considered fields L:

K relatively algebraically closed in L =⇒ K ≡ L. (�)

In Section 3 we will outline Ziegler’s construction of the field Kq , with a
minor discrepancy for L a separably closed field. In Section 4 we outline Ziegler’s
construction in the case L = Qp but again with minor changes, so his method
works for a general class of henselian valued fields. Later in the paper we will
discuss extending this construction to more difficult cases that avoid property (�).

§3. Separably closed fields. To save referring the reader to another text, we will
outline Ziegler’s construction in this subsection. To make this a more interesting
exercise we shall prove the theory of any separably closed field is finitely undecidable,
not considered by Ziegler in [49].

Let SCF denote the theory of separably closed fields, SCFp the theory of separably
closed fields of characteristic p, and SCFp,e the theory of separably closed fields of
characteristic p and degree of imperfection e. We shall assume for this section the
reader is familiar with [11]. As SCF0 = ACF0 and SCFp,0 = ACFp, we will not consider
the cases p = 0 or p > 0 & e = 0 (the case e = ∞ will be considered separately in
Corollary 3.8).

Let q 
= p be a prime number, L =
(
F̃p(t)(u1, ... , ue)

)s
where {u1, ... , ue} are

transcendental and algebraically independent over F̃p(t) (and “F s ‘’ denotes the

separable closure of a field F). Note L |= SCFp,e , as F̃p(t) is perfect. First we have:

2See [36, Sections 3.2 and 3.3] as a reference for the former two, and [39, Section 5] for the latter.
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Proposition 3.1. For each prime q 
= p, there exists a field Kq ⊆ L such that:

(1) Fp[t] is definable (with parameters) in Kq .
(2) If the intermediate field Kq ⊆ H ⊆ L is finite and separable over Kq , then

[H : Kq] = 1 or is divisible by q.

To prove this, we require a construction. Let F =
(
F̃p(t)(u1, ... , ue–1)

)s
⊆ L; we

construct a field Kq ⊆ L such that

F = {a ∈ Kq : ∀b ∈ K∗
q ([1 + b ∈ (Kq)q ∧ aq + b–1 ∈ (Kq)q] → b ∈ (Kq)q)},

Fp[t] = {r ∈ F : ∀r1 
= r2 ∈ F s.t. r1 + r2 = r, uqe – r1 or uqe – r2 ∈ (Kq)q}.

This will suffice to prove Proposition 3.1(1). We will take Kq to be the union of a
sequence

F (ue) = E0 ⊆ E1 ⊆ E2 ⊆ ···

within L of finite separable extensionsEi/F (ue). Obtaining Proposition 3.1(2) while
ensuring F and Fp[t] are definable in this way requires us to keep a tight rein on the
q-th roots in Kq . To that end, we will also carefully construct a sequence:

∅ = S0 ⊆ S1 ⊆ S2 ⊆ ···

of finite subsets Si ⊆ Ei , ultimately desiring Kq \ (Kq)q =
⋃
i Si . To ensure we do

not introduce an incompatibility betweenKq \ (Kq)q and F or Fp[t], we will ask the
following rule [49, p. 273] to be obeyed at each point of the sequence (Ei , Si):

There is a family of valuations {vs}s∈Si on Ei such that vs(F ) = 0 and

q � vs(s) for s ∈ Si . In addition, for all r1 
= r2 ∈ F with r1 + r2 ∈ Fp[t], (♣)

either ∀s ∈ Si , q|vs(uqe – r1), or ∀s ∈ Si , q|vs(uqe – r2).

We will reference the following two standard lemmas, taken directly from [49,
Section 3]:

Lemma 3.2 [49, Lemma 1]. Let (H1, v1) be a discretely valued field, H2/H1 a
finite extension, and q a prime such that q � [H2 : H1]. Then there is an extension of v1

toH2, which we denote v2, such that q � (v2H2 : v1H1).

Lemma 3.3 [49, Lemma 2]. Let (H, v) be a valued field and q a prime distinct
to char(Hv). For a ∈ H \ (H )q with q|v(a), there is an extension of valued fields
(H ( q

√
a), w)/(H, v) such that wH ( q

√
a) = vH .

We will also require the following fact:

Definition 3.4. Valuations v1, v2 on a field K are dependent if Ov1Ov2 � K .

Lemma 3.5. If v1, v2 are dependent discrete valuations on a field K, then v1 = v2

(by which we mean Ov1 = Ov2).

Proof. The valuation ring of a discrete valuation is maximal [13, Corollary 2.3.2],
hence Ov1 = Ov1Ov2 = Ov2 as desired. �

The construction begins with an enumeration a0, a1, a2, ... of the elements of
L separably algebraic over F (ue), each repeated countably infinitely many times.
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Suppose (Ei , Si) is already constructed—Ziegler considers now four cases, based
on the equivalence class of i mod 4. These correspond to guaranteeing Proposition
3.1(1) (Case 1), Proposition 3.1(2) (Case 2), the definition of F by ensuring there is
a “reason” b is excluded from (Kq)q (Case 3 + ♣), and the definition of Fp[t] (Case

4 + ♣); again, by ensuring there is a “reason” an is excluded.

Construction. (cf. [49, Section 3])
Case 1: i = 4n. If q|[Ei(an) : Ei ], then (Ei+1, Si+1) = (Ei , Si). Otherwise set

(Ei+1, Si+1) = (Ei(an), Si) and using Lemma 3.2 extend each valuation vs , s ∈ Si ,
from Ei to Ei+1 in a way preserving (♣).

Case 2: i = 4n + 1. Unless an ∈ Ei \ Si , set (Ei+1, Si+1) = (Ei , Si). Otherwise, if
for some vs , s ∈ Si , we have q � vs(an) then define (Ei+1, Si+1) = (Ei , Si ∪ {an}) and
set van := vs . This ensures (♣) holds for i + 1. If q|vs(an) for all s ∈ Si , then we take
(Ei+1, Si+1) = (Ei( q

√
an), Si)3 and extend every valuation according to Lemma 3.3.

Case 3: i = 4n + 2. Unless an ∈ Ei \ F , let (Ei+1, Si+1) = (Ei , Si). If an ∈ Ei \ F
let v be a discrete valuation on Ei , trivial on F, which is negative on an. If the
second condition in (♣) does not already hold for {v, {vs}s∈Si } in Ei , then there
exists r ∈ F such that q � v(uqe – r) and q|vs(uqe – r) for all s ∈ Si . By the strong
triangle inequality, there is at most one such r: indeed, for r 
= r′ ∈ F , v(uqe – r′) =
v(uqe – r + r – r′) = 0, as v(r – r′) = 0 and q � v(uqe – r). As L = (L)q , we may set
E = Ei(

q
√
uqe – r) and extend the valuations {v, {vs}s∈Si } sensibly as above. We

conclude the second condition of (♣) holds for (E, {v, {vs}s∈Si }).
If v is independent to vs for every s ∈ Si : let {v, vs1 , ... , vsk} be the distinct

valuations of {v, {vs}s∈Si }. By the Approximation Theorem [13, Theorem 2.4.1],
there exists b ∈ E such that v(b) is the smallest positive element in the value group
of v (hence q|v(1 + b), q|v(aqn + b–1)) and q|vsj (b), q|vsj (1 + b), q|vsj (a

q
n + b–1)

for 1 ≤ j ≤ k. As b, 1 + b, aqn + b–1 ∈ (L)q = L, we may define

(Ei+1, Si+1) =
(
E

(
q
√

1 + b, q
√
aqn + b–1

)
, Si ∪ {b}

)
.

Extending {vb = v, {vs}s∈Si } as above, we know (♣) holds as it did on E.
If v is dependent with vŝ for some ŝ ∈ Si : by Lemma 3.5 v = vŝ . Let {vs1 , ... , vsl }

be the distinct valuations of {v, {vs}s∈Si }, assuming WLOG v = vs1 . By the
Approximation Theorem [13, Theorem 2.4.1], there exists b ∈ E such that vs1(b)
is the smallest positive element in the value group of vs1 , and q|vsj (b), q|vsj (1 + b),
q|vsj (a

q
n + b–1) for 2 ≤ j ≤ l . As b, 1 + b, aqn + b–1 ∈ (L)q = L, we may define

(Ei+1, Si+1) =
(
E

(
q
√

1 + b, q
√
aqn + b–1

)
, Si ∪ {b}

)
.

Extending {vb = vs1 , {vs}s∈Si } as above, again (♣) holds on (Ei+1, Si+1). (This case
allows b ∈ Si without issue, by Lemma 3.5.)

Case 4: i = 4n + 3. Unless an ∈ F \ Fp[t] we set (Ei+1, Si+1) = (Ei , Si). Other-
wise, first observeB = {r ∈ F : ∃s ∈ Si s.t. q � vs(u

q
e – r)} is finite. Next, for r ∈ F ∗

there exists a discrete valuation vr on F (ue), trivial on F, for which vr(u
q
e – r) is the

smallest positive element of its valuation group (this follows as Xq – r ∈ F [X ] has
no multiple factors). For each such r, we choose an extension wr of vr to Ei , and

3NoteL = (L)q as L is separably closed and q �= p. In addition, we consider q
√
an ∈ Ei if an ∈ (Ei )q .
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by the construction of Ei/F , the set C = {r ∈ F ∗ : q|wr(uqe – r)} is finite. Choose
r1 ∈ F ∗ such that r1 
= an, 2r1 
= an, and r1, an – r1 
∈ C , and r1, an – r1 
∈ Fp[t]. Let
r2 = an – r1 and finally define

(Ei+1, Si+1) = (Ei , Si ∪ {uqe – r1, uqe – r2}).

One can prove {wr1 , wr2 , {vs}s∈Si } satisfies (♣) based on this construction. �
Lemma 3.6. SetKq =

⋃
i Ei . The above construction ensures we have the following

features of Kq , and the definitions of F and Fp[t] we intended:
(1) F ⊆ (Kq)q .
(2) Kq \ (Kq)q =

⋃
i Si .

(3) F = {a ∈ Kq : ∀b ∈ K∗
q [(1 + b ∈ (Kq)q ∧ aq + b–1 ∈ (Kq)q) → b ∈ (Kq)q]}.

(4) Fp[t]={r ∈ F :∀r1 
= r2 ∈ F (r1 + r2 = r)→(uqe – r1∈(Kq)q ∨ uqe – r2∈
(Kq)q)}.

Proof. We follow [49, Section 4] as much as possible.
(1) As F is separably closed, and q 
= p, F = (F )q .
(2) Let a ∈ (Kq)q . For all sufficiently large i, a ∈ (Ei)q ; hence q|v(a) for all

v trivial on F. Therefore by (♣) we have a 
∈ Si ; consequently a 
∈
⋃
i Si .

Conversely if a ∈ Kq \ (Kq)q , then for some n sufficiently large we have
a = an and a ∈ E4n+1. By Case 2 of the construction, a ∈ S4n+2. This proves
Kq \ (Kq)q =

⋃
i Si .

(3) Fix a ∈ F . Suppose for some nonzero b ∈ Kq that 1 + b, aq + b–1 ∈ (Kq)q .
Let i be so large that 1 + b, aq + b–1 ∈ (Ei)q . Let v be any valuation on Ei
that is trivial on F. If v(b) > 0, then v(b) =– v(aq + b–1) is divisible by q. If
v(b) < 0, then v(b) = v(1 + b) is divisible by q. Hence q|v(b) always. By (♣),
b 
∈ Si ; by (2) therefore b ∈ (Kq)q . Conversely, if a ∈ Kq \ F , we may choose
n sufficiently large such that a = an ∈ E4n+2. In Case 3 we make it such that in
S4n+3 there is a (nonzero) b with 1 + b, aq + b–1 ∈ (E4n+3)q . This concludes
the proof.

(4) Let r1 + r2 ∈ Fp[t], with r1 
= r2 ∈ F . If it is the case that uqe – r1, u
q
e – r2 
∈

(Kq)q , then for some sufficiently large i, they belong to Si . However this
contradicts (♣). If we suppose r ∈ F \ Fp[t], for some sufficiently large n it
is the case that an = r. Then by Case 4 there exists r1 
= r2 ∈ F , r1 + r2 = r,
such that uqe – r1, u

q
e – r2 ∈ S4n+4. By (2) this ensures uqe – r1, u

q
e – r2 
∈ (Kq)q ;

again a contradiction. �
Proof of Proposition 3.1. First, as F and Fp[t] are definable, N is interpretable

(with parameters) as an Lr-structure inKq . Next, note thatKq/F (ue) is a separable
extension, as by construction it is a union of finite separable extensions, and
Kq ⊆ F (ue)s . Let Kq ⊂ H ⊆ L be a finite separable extension. Then H = Kq(a)
for some a ∈ L by the Primitive Element Theorem. AsKq(a)/F (ue) is separable, for
some n sufficiently large we have a = an and

[E4n(an) : E4n] = [Kq(a) : Kq],

as we assume a 
∈ Kq . By construction, q|[E4n(a) : E4n]. �
Combining these fields in a nonprincipal ultraproduct, as will be done in the next

corollary, allows us to conclude the desired undecidability result.
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Corollary 3.7. Let p be a prime and e ∈ N>0. Then SCFp,e is finitely undecidable.

Proof. Let L =
(
F̃p(t)(u1, ... , ue)

)s
as before Proposition 3.1. Let P be the set

of primes distinct to p. For each q ∈ P, use Proposition 3.1 to obtain a field Kq
satisfying (1) and (2) ibid. Let U be a nonprincipal ultrafilter on P and let K be
the ultraproduct

∏
q∈P Kq/U . We claim that K is relatively separably closed in LU :

indeed, suppose f = (fq) ∈ K[X ] is separable and has a root α = (αq) ∈ LU . In
which case

{q : fq(x) ∈ Kq[X ] separable, and fq(αq) = 0} ∈ U ,
hence {q : Kq(αq)/Kq separable and [Kq(αq) : Kq] ≤ deg(f)} ∈ U .

By Proposition 3.1(2), {q : [Kq(αa) : Kq] = 1} ∈ U , and thus α ∈ K as desired.
Therefore K is a separably closed field of characteristic p. Recall {u1, ... , ue} is a

p-basis for L. As they are p-independent in L, and by construction u1, ... , ue ∈ Kq ,
they remain p-independent in Kq . Hence the degree of imperfection of Kq is at

least e, for each q. Moreover, by construction Kq/F̃p(t)(u1, ... , ue) is an algebraic
(separable) extension. As algebraic extensions do not increase the degree of
imperfection, the degree of imperfection of Kq is at most e. Thus by Łoś’ Theorem,
the degree of imperfection of K is exactly e. We conclude that K |= SCFp,e , and hence
K |= T for any finite subtheory T ⊆ SCFp,e .

Since T is finitely axiomatised, there exists some prime q such that Kq |= T .
By Lemma 3.6 and Corollary 1.8, Th(Kq ;Lr) is hereditarily undecidable, making T
undecidable as required. �

Corollary 3.8. Let p be prime. Then SCFp,∞ is finitely undecidable.

Proof. Let T be a finite subtheory of SCFp,∞, which we assume is axiomatised
by the axioms of a field of characteristic p, such that each separable polynomial
over the field has a root in the field, and for each n ∈ N>0 the statement “the degree
of imperfection is greater than n.” By the Compactness Theorem, there exists a
finite subset Δ of this axiomatisation such that Δ |= T . For some finite � sufficiently
large, SCFp,� |= Δ; hence T is a finite subtheory of SCFp,� . The result follows from
Corollary 3.7. �

Example 3.9. For all primes p > 0 and e ∈ N∪{∞}, the theory SCFp,e is known
to be decidable (see [11, pp. 146–153] for exposition). Therefore Corollaries 3.7
and 3.8 put a bound on further possible decidability results for these theories.

It is worth remarking that, modulo some conjectures, these results are in
connection with aspects of classification theory. It is a theorem of Macintyre [35]
that every infinite �-stable field is a model of ACFp for p = 0 or prime. From the
1970s we have the following conjecture:

Conjecture (Stable Fields). Every infinite stable field is separably closed.

This is known in some cases, such as for the aforementioned �-stable [35] or
superstable infinite fields [7], or for infinite stable fields of weight 1 [34] or finite
dp-rank [18], or most recently infinite large stable fields [30].
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Corollary 3.10. Assume the Stable Fields Conjecture. Then every infinite stable
field is finitely undecidable.

Let us use this connection to classification theory to motivate which fields to
consider next. Outside of stable theories, there are two orthogonal directions in
which to travel: one direction attempts to extend the theories of forking, dividing and
independence of types to more general contexts (e.g., [super]simple and [super]rosy),
while the other direction aims to understand theories with a modest notion of order
(e.g., o-minimal and NIP). The latter direction contains theories we are already
familiar with: RCF in the language of ordered rings is o-minimal, and pCF in
the language of valued fields is distal and dp-minimal (hence NIP). One might
wonder what other field theories could be present under this banner—and there is a
conjecture of Shelah that would answer this question:

Conjecture (Shelah/NIP Fields). Every infinite NIP field is either separably
closed, real closed, or admits a nontrivial henselian valuation.

Theorem 3.11. Assume the NIP Fields Conjecture. Then every infinite NIP field
is either real closed, separably closed, or admits a nontrivial henselian valuation
∅-definable in the language of rings.

Proof. (Here a valuation is definable if the valuation ring is a definable subset
of the field.) Lr-definability is [17, Proposition 6.2(2)], and the results cited in the
proof (from [21]) in fact conclude ∅-definability. �

Therefore a sensible goal would be to prove that every field with a nontrivial
∅-Lr-definable henselian valuation is finitely undecidable. Or more so, that every
henselian valued field is finitely undecidable in the language of valued fields Lval .

§4. Equicharacteristic 0 Henselian valued fields. The previous subsection did not
address the aspects of Ziegler’s construction relevant to Qp; these aspects will be
seen in this subsection. In this subsection we will consider a pair of valued fields
(R, vR), (Z, vZ), and an additional field F, under the following assumptions:

Assumption (⊗).

(1) R ⊆ F ⊆ Z, vR = vZ |R, and (Z, vZ) is a henselian immediate extension of
(R, vR).

(2) R (thence vRR and RvR) is countable, and if char(R) > 0 then R is
transcendental over its prime subfield.

(3) There are uncountably many elements of Z transcendental over R.
(4) F = Z ∩R(x)s , where R(x) is a purely transcendental, finite transcendence

degree extension of R.
(5) Let q > char(RvR) be prime; then Z = (Z)q · F ∗.

First we will give a concrete example of a pair of valued fields where these
assumptions are satisfied. Let k be a field and Γ an ordered abelian group.
Consider the multiplicative group of formal monomials {t� : � ∈ Γ}, where t0 = 1
and t�1 · t�2 = t�1+�2 . Define k[Γ] to be the set of formal series

∑
� a� t

� where a� ∈ k
and only finitely many a� are nonzero. Addition and multiplication are defined by
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�

a�t
� +

∑
�

b� t
� =

∑
�

(a� + b�)t� ,

(∑
�

a� t
�

)
·
(∑
�

b� t
�

)
=

∑
�

⎛⎝ ∑
�1+�2=�

a�1b�2

⎞⎠ t� .
These operations are confirmed to be well-defined, and k[Γ] an integral domain,

by [37, Section 2.4]. This domain comes with a natural valuation vΓ(
∑
� a� t

�) :=
min supp(

∑
� a� t

�). Define k(Γ) to be the fraction field of this valued domain.
Further define k((Γ)) as the set whose elements are formal series

∑
� a�t

� with
well-ordered support. By [37, Section 2.4], (k((Γ)), vΓ) is a well-defined immediate
henselian overfield of (k(Γ), vΓ).

Lemma 4.1. Let e ∈ N, k, and Γ be countable, and v be a henselian valuation
on k((Γ)) which factors through vΓ, i.e., there exists a valuation v′ on k such that4

v = v′ ◦ vΓ. There exists t1, ... , te ∈ k((Γ)) transcendental overk(Γ) and algebraically
independent such that the pair of valued fields (R, vR) = (k(Γ), v|k(Γ)), (Z, vZ) =
(k((Γ)), v), and F = k((Γ)) ∩

(
k(Γ)(t1, ... , te))

s
satisfy Assumption (⊗).

Proof. Properties (1) and (4) follow by definition. Property (2) follows by
construction, and as k(Γ) is countable (from its definition). Property (3) can
be seen by a cardinality argument (cf. [12, p. 82]): fixing � ∈ Γ>0, there is an
injection (N; 0,+, <) ↪→ (Γ; 0,+, <) given by n �→ n · �, and by definition |k((Γ))| ≥
|k|ℵ0 · 2ℵ0 = 2ℵ0 , while |k̃(Γ)| = ℵ0.

Property (5) requires more work: we adapt [49, Lemma 3]. Clearly (k((Γ)))q ·
F ∗ ⊆ k((Γ)); we are required to show that for all a ∈ k((Γ))∗, there exists b ∈ F ∗

such that ab–1 ∈ (k((Γ)))q . Choose b ∈ F ∗ such that vΓ(a – b) > vΓ(a); this can be
done by setting b ∈ k(Γ)∗ ⊆ F ∗ to be a sufficiently large finite truncation of a. Then
vΓ(ab–1 – 1) > vΓ(ab–1); hence ab–1 ≡ 1 mod mvΓ. By Hensel’s Lemma (regardless
of v, (k((Γ)), vΓ) is henselian), ab–1 is a q-th power in k((Γ)), as desired. �

Using Assumption (⊗), for q > p prime, we shall construct a field extension
F ⊆ Kq ⊆ Z such that Z or Fp[z] (where p = char(R) > 0 and z ∈ Z is transcen-
dental over Fp) is Lval -definable in Kq , and for some elements a ∈ Z algebraic over
Kq , q|[Kq(a) : Kq].

Remark 4.2. Notice that if Z is perfect, and for all a ∈ Z algebraic over Kq
we have either Kq(a) = Kq or q|[Kq(a) : Kq], then Kq is perfect: (Kq)p = Kq . This
will be a problem for Theorem 5.8, where we will consider finite subtheories T of
imperfect fields and prove Kq |= T . This problem will be resolved after Lemma 4.3.

By Assumption (⊗) there exists an element t ∈ Z transcendental over F. The field
Kq will be the union of a specific sequence of finite extensions of F (t) in Z:

R ⊆ F ⊂ F (t) = E0 ⊆ E1 ⊆ E2 ⊆ ··· ⊆ Z.

4By “ v′ ◦ vΓ” we mean the composition of places resv′ , resvΓ , which give rise to the valuations as
per usual (cf. [16, Construction 2.2.6]).
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As before, we will also construct a sequence ∅ = S0 ⊆ S1 ⊆ S2 ⊆ ··· of finite
subsets Si ⊆ Ei ∩ (Z)q , ultimately desiring a close relationship between Kq \ (F ∗ ·
(Kq)q), (Kq ∩ (Z)q) \ (Kq)q , and

⋃
i Si . We will desire F & Z (if char(R) = 0; Fp[z]

otherwise) to have the following definitions, similar to as before:

F = {a ∈ Kq : ∀b ∈ Kq ∩ (Z)q \ {0}, ([1 + b ∈ (Kq)
q ∧ aq + b–1 ∈ (Kq)

q ] → b ∈ (Kq)
q)},

Z (resp.Fp[z] = {u ∈ F : ∀u1 �= u2 ∈ F s.t. u1 + u2 = u, tq – u1 or tq – u2 ∈ (Kq)
q}.

Denote by “vZ |Ei ” the restriction of vZ to Ei ⊆ Z. To again ensure we do not
introduce an incompatibility between (Kq ∩ (Z)q) \ (Kq)q and F or Z (resp. Fp[z]),
the following rule will be enforced during the construction:

There is a family of discrete valuations {vs}s∈Si on Ei such that vs(F ) = 0

and q � vs(s) for s ∈ Si . In addition, for all u1 
= u2 ∈ F with u1 + u2 ∈ Z (♥)

(resp.Fp[z]), either ∀s ∈ Si , q|vs(tq – u1), or ∀s ∈ Si , q|vs(tq – u2).

We have the following lemma:

Lemma 4.3. Let u be a nontrivial discrete valuation on Ei , considered as a ( finite)
function field extension of F (t)/F . Then u and vZ |Ei are independent (in the sense of
Definition 3.4).

Proof. Assume u and vZ |Ei are dependent: by [13, Theorem 2.3.4] they induce
the same topology on Ei . Thus there exists a ∈ Ei such that a ·mu ⊆ mvZ |Ei
(= mvZ ∩ Ei). However, as R is a subset of the constant subfield of Ei (and thus
u(R) = 0, while vRR = vZZ), there exists f ∈ a ·mu with vZ(f) = vZ |Ei (f) < 0;
a contradiction. �

To use the same construction of Kq throughout the paper, yet have Kq a model
of a finite subtheory of either a perfect or imperfect field, we have the following
definition:

Definition 4.4. The set of pliant elements over a field will denote either the
separably algebraic or algebraic elements over the field, and be specified in Corollary
4.10/Theorem 5.3/Theorem 5.8.

Fix an enumeration a0, a1, ... of the elements of Z pliant over F (t), each repeated
countably infinitely many times. Suppose (Ei , Si) is already constructed—and
consider the following modified construction.

Modified Construction.

Case 1: i = 4n. As on page 6.
Case 2: i = 4n + 1. If an 
∈ Ei or an 
∈ (Z)q then set (Ei+1, Si+1) = (Ei , Si).

Otherwise proceed as on page 6.
Case 3: i = 4n + 2. Unless an ∈ Ei \ F , let (Ei+1, Si+1) = (Ei , Si). If an ∈ Ei \ F

let w be a discrete valuation on Ei(considered as a function field extension of
F (t)/F ), trivial on F, which is negative on an. By Lemma 4.3, w and vZ |Ei are
independent. Let us define a finite separable extensionE/Ei : if the second condition
of (♥) already holds for {w, {vs}s∈Si } in Ei , set E = Ei . Otherwise there exists
u ∈ F such that q � w(tq – u) and q|vs(tq – u) for all s ∈ Si . By the strong triangle
inequality, there is at most one such u.
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Under Assumption (⊗)(5) there exists d ∈ F ∗ such that d (tq – u) ∈ (Z)q . Thus
we may set E = Ei(

q
√
d (tq – u)) and extend the valuations {vs}s∈Si sensibly as

before (and let w′ be any extension to E of w). We conclude the second condition
of (♥) now holds for (E, {w′, {vs}s∈Si }).

If w′ is independent to vs for every s ∈ Si : let {w′, vs1 , ... , vsk} be the distinct
valuations of {w′, {vs}s∈Si }. By the Approximation Theorem [13, Theorem 2.4.1],
there exists b ∈ E such that w′(b) is the smallest positive element of its value group,
q|vsj (b) and vsj (b) < 0, – vsj (a

q
n ) for 1 ≤ j ≤ k. Notice q|w′(1 + b), q|w′(aqn +

b–1), and q|vs(aqn + b–1), q|vs(1 + b) for all s ∈ Si .
We also wish b, 1 + b, aqn + b–1 ∈ (Z)q . This can be achieved with further care

by using the Approximation Theorem and Hensel’s Lemma: by Lemma 4.3 and [13,
Corollary 2.3.2], vZ |E , w′, and vsj for 1 ≤ j ≤ k are pairwise independent. Let
d ∈ (E)q ⊆ (Z)q have vZ |E(d ) > 0. Using the Approximation Theorem, we choose
b ∈ E so that in addition vZ |E(b – d ) > vZ |E(d ). Then by Hensel’s Lemma, b ∈ E ∩
(Z)q , and since vZ |E((b + 1) – 1) = vZ |E(b) and vZ |E((b + a–q

n ) – a–q
n ) = vZ |E(b),

we have 1 + b, b + a–q
n ∈ E ∩ (Z)q . (Hence aqn + b–1 ∈ E ∩ (Z)q .) We define

(Ei+1, Si+1) = (E( q
√

1 + b, q
√
aqn + b–1), Si ∪ {b}).

Extending {vb = w′, {vs}s∈Si } as in Case 2, (♥) holds as it did on E.
Now assume w′ is dependent with vŝ for some ŝ ∈ Si : in which case, w′ = vŝ by

Lemma 3.5. Let {vs1 , ... , vsl } be the distinct valuations of {w′, {vs}s∈Si }, assuming
WLOG w′ = vs1 . By Lemma 4.3 and [13, Corollary 2.3.2], vZ |E , and vsj for 1 ≤
j ≤ l are pairwise independent. Let d ∈ (E)q ⊆ (Z)q have vZ |E(d ) > 0. Using the
Approximation Theorem, we choose b ∈ E so that vZ |E(b – d ) > vZ |E(d ), vs1(b) is
the smallest positive element of its value group, q|vsj (b) and vsj (b) < 0, – vsj (a

q
n )

for 2 ≤ j ≤ l . By Hensel’s Lemma, 1 + b, aqn + b–1 ∈ E ∩ (Z)q , and we may define

(Ei+1, Si+1) = (E( q
√

1 + b, q
√
aqn + b–1), Si ∪ {b}).

Extending {vb = w′, {vs}s∈Si } as in Case 2, (♥) holds on (Ei+1, Si+1). (Again this
case allows for b ∈ Si without issue, by Lemma 3.5.)

Case 4: i = 4n + 3. As on page 6. Recall this step extends {vs}s∈Si to {vs}s∈Si+1 =
{wr1 , wr2 , {vs}s∈Si }. The valuationswr1 , wr2 are independent to vZ |Ei by Lemma 4.3,
and (♥) is satisfied. �

Now we can show the following (cf. Lemma 3.6):

Lemma 4.5. SetKq =
⋃
i Ei . The above construction ensures we have the following

features of Kq under Assumption (⊗):
(1) (Kq ∩ (Z)q) \ (Kq)q =

⋃
i Si .

(2) F ∗ ·
(⋃
i Si

)
= Kq \ (F ∗ · (Kq)q).

(3) F ={a ∈ Kq :∀b ∈ Kq ∩ (Z)q \ {0} ([1 + b ∈ (Kq)q ∧ aq + b–1 ∈ (Kq)q]→
b ∈ (Kq)q)}.

(4) Z (resp. Fp[z]) = {u ∈ F : ∀u1 
= u2 ∈ F s.t. u1 + u2 = u, tq – u1 or tq – u2 ∈
F ∗ · (Kq)q}.

Proof. In [49, Section 4], but for exposition:
(1) Let a ∈ (Kq ∩ (Z)q) \ (Kq)q . For some n sufficiently large, an = a and
an ∈ E4n+1. Case 2 of the above construction assures an ∈ S4n+2, hence
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a ∈
⋃
i Si as desired. Conversely, by construction

⋃
i Si ⊆ Kq ∩ (Z)q , and

Si ∩ (Kq)q = ∅ for all i.
(2) Let a ∈ F ∗ · (Kq)q . For all i sufficiently large, a ∈ F ∗ · (Ei)q and hence
q|u(a) for all valuations u trivial on F. By design of (♥), a 
∈ F ∗ · Si , hence
F ∗ ·

(⋃
i Si

)
⊆ Kq \ (F ∗ · (Kq)q). Conversely, if a ∈ Kq \ (F ∗ · (Kq)q), then

by Assumption (⊗)(5) there exists b ∈ F ∗ with ab ∈ (Kq ∩ (Z)q) \ (Kq)q =⋃
i Si by (1).

(3) Let a ∈ F . Suppose for b ∈ Kq ∩ (Z)q \ {0}, we have 1 + b, aq + b–1 ∈
(Kq)q . Let i be sufficiently large such that 1 + b, aq + b–1 ∈ (Ei)q . Notice
that, for any valuation u on Ei trivial on F, q|u(b): indeed, if u(b) < 0 then
u(b) = u(1 + b), and if u(b) > 0 then u(b) = u(aq + b–1). By (♥) b 
∈ Si (for
all subsequent i too), hence as b ∈ Kq ∩ (Z)q , b ∈ (Kq)q by (1).

Conversely, if a ∈ Kq \ F , then for some n sufficiently large we may assume
an = a and a ∈ E4n+2. By Case 3 of the construction, there exists b ∈ S4n+3

such that 1 + b, aq + b–1 ∈ (E4n+3)q and b ∈ Kq ∩ (Z)q . Therefore by (1),

∃b ∈ Kq ∩ (Z)q \ {0}, (1 + b ∈ (Kq)q ∧ aq + b–1 ∈ (Kq)q ∧ b 
∈ (Kq)q),

as desired.
(4) Letu ∈ Z (resp.Fp[z]),u1 
= u2 ∈ F , andu1 + u2 = u. Assume for the purpose

of contradiction both tq – u1, t
q – u2 
∈ F ∗ · (Kq)q . By the argument in Case

4 there exist d1, d2 such that d1(tq – u1), d2(tq – u2) ∈ (Kq ∩ (Z)q) \ (Kq)q =⋃
i Si , by (1). We conclude for some sufficiently large i that tq – u1, t

q – u2 ∈
F ∗ · Si , contradicting (♥).

Conversely, if u ∈ F \ Z (resp. F \ Fp[z]), then for some n sufficiently
large we may assume an = u and an ∈ E4n+3. By Case 3 of the construction,
deliberately there exists u1 
= u2 ∈ F ∗ with u1 + u2 = u and tq – u1, t

q – u2 ∈
S4n+4 ⊆ F ∗ · S4n+4. Therefore by (2), tq – u1, t

q – u2 
∈ F ∗ · (Kq)q as required
for this argument. �

Let us return to the case (R, vR) = (k(Γ), v|k(Γ)), (Z, vZ) = (k((Γ)), v), F =
k((Γ)) ∩

(
k(Γ)(t1, ... , te))

s
. We have the following additional results:

Theorem 4.6 ((Ax–Kochen–Ershov) [3, 14]). Let (K, v), (L,w) be equicharac-
teristic 0 henselian valued fields. Then K ≡Lval L if and only if Kv ≡Lr Lw and
vK ≡Loag wL.

Consequently, (K, v) ≡ (Kv((vK)), vvK ), the field of Hahn series in vK over Kv.

Lemma 4.7. Let q > char(k) be prime and v a henselian valuation on k((Γ)) which
factors through vΓ, where k and Γ are countable, andKq as above. ThenKq ∩ (k((Γ)))q

is Lval -definable in (Kq,w), where w = v|Kq .

Proof. Recall from Lemma 4.1 that Assumption (⊗) is satisfied. It suffices to show
c ∈ Kq ∩ (k((Γ)))q if and only if there exists d ∈ Kq such that w(c – dq) > w(c).

Assume there exists d ∈ Kq such that w(c – dq) > w(c); then (as elements of
k((Γ))) we have v(c – dq) > v(c), hence v(1 – d

q

c ) > 0, and thus 1 ≡ dq

c mod mv .
By Hensel’s Lemma, there exists e ∈ k((Γ)) such that eq = dq

c ; we conclude c ∈
(k((Γ)))q .
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Conversely, let c ∈ Kq ∩ (k((Γ)))q and write c = d̂ q . Letd ∈ k(Γ) be a sufficiently
large finite truncation of d̂ ∈ k((Γ)) such that vΓ(d̂ – d ) > vΓ(d̂ ) (and note vΓ(d̂ ) =
vΓ(d )). Then

vΓ(d̂ q – dq) = vΓ(d̂ – d ) + vΓ(d̂ q–1 + d̂ q–2d + ··· + d̂d q–2 + dq–1)

≥ vΓ(d̂ – d ) + (q – 1)vΓ(d̂ ) > qvΓ(d̂ ) = vΓ(d̂ q), hence vΓ( d̂
q–dq

d̂ q
) > 0.

Consequently v( d̂
q–dq

d̂q
) > 0, i.e., v(d̂ q – dq) > v(d̂ q); equivalently v(c – dq) >

v(c) and hence w(c – dq) > w(c) as desired. �
Theorem 4.8. Let q > char(k) be prime, v a henselian valuation on k((Γ)) which

factors through vΓ, where k and Γ are countable, and Kq as above. Then:

(1) (Kq, vΓ|Kq ) is an immediate extension of (k(Γ), vΓ).
(2) (Kq, v|Kq ) is an immediate extension of (k(Γ), v).
(3) Z (resp. Fp[z]) is definable in Kq in the language {0, 1,+,×,Ov|Kq }.
(4) If a ∈ k((Γ)) \Kq is pliant over Kq , then q|[Kq(a) : Kq].

Proof. (1) and (2) follow from the fact that k(Γ) ⊆ Kq ⊆ k((Γ)). For (3), Z
(resp.Fp[z]) is Lval -definable in Kq as Kq ∩ (k((Γ)))q is Lval -definable in Kq by
Lemma 4.7, and this is sufficient to define Z (resp.Fp[z]) by Lemma 4.5. Finally
for (4), note for some n sufficiently large, we have a = an and [E4n(an) : E4n] =
[Kq(a) : Kq], as we assume a 
∈ Kq . By construction (Case 1), q|[E4n(a) : E4n] as
desired. �

Remark 4.9 [13, pp. 173–178] Let S be an infinite set of indices and U a
nonprincipal ultrafilter on S. For s ∈ S, let (Ks, vs) be a valued field. One may
take an ultraproduct

∏
s∈S(Ks, vs)/U of valued fields, and obtain a (valued) field

K =
∏
s∈S Ks/U with value group

∏
s∈S vsKs/U and residue field

∏
s∈S Ksvs/U ,

under the valuation
∏
vs defined by:∏

vs([(as)s∈S ]) = [(vs(as))s∈S ], with residue

res∏ vs : O∏
vs

→
∏
s∈S
Ksvs/U ; [(xs)] �→ [(resvs (xs))].

(Here as ∈ Ks for s ∈ S, and [·] represents the equivalence class of tuples moduloU .)

Corollary 4.10. Let (K, v) be an equicharacteristic 0 henselian nontrivially valued
field. Th(K ;Lval ) is finitely undecidable.

Moreover, if Ov is Lr-definable, then K is finitely undecidable as a field.

Proof. Writing k = Kv and Γ = vK , by Theorem 4.6 we have (K, v) ≡
(k((Γ)), vΓ). By the Downwards Löwenheim–Skolem Theorem we may also assume
k,Γ are countable. Set v′ (on k) to be the trivial valuation, in which case
v = v′ ◦ vΓ = vΓ. By Lemma 4.1, (R, vR)=(k(Γ), vΓ|k(Γ)), (Z, vZ)=(k((Γ)), vΓ),

F =k((Γ)) ∩ k̃(Γ) satisfy Assumption (⊗).
Let q be prime and consider (Kq,w = vΓ|Kq ) ⊆ (k((Γ)), vΓ) arising from the

Modified Construction, where now “pliant” means algebraic. In particular Kq is
an equicharacteristic 0 valued field with residue field k and value group Γ. We will
verify the henselianity axioms ϕ1, ... , ϕq–1 are satisfied, where ϕn is
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∀a0, ... , an–2

(∧
i

ai ∈ mv → ∃x [xn + xn–1 + an–2x
n–2 + ··· + a0 = 0]

)
.

Take l ≤ q – 1 and fix a0, ... , al–2 ∈ mw . Suppose X l + X l–1 + al–2X
l–2 + ··· +

a0 = 0 has no solution in Kq , and α ∈ k((Γ)) \Kq satisfies this equation. Then
Kq(α)/Kq is a finite proper extension. By Theorem 4.8, q|[Kq(α) : Kq], however
q > l and [Kq(α) : Kq] ≤ l ; a contradiction. We conclude that Kq |= ϕl for all
l ≤ q – 1; in particular for n ≥ 0 fixed, Kq |= ϕn for all primes q > n.

Let U be a nonprincipal ultrafilter on the set of primes, and let K be the
ultraproduct

∏
q Kq/U . By Remark 4.9 and Łoś’ Theorem, K is an equicharacteristic

0 henselian valued field with residue field (Lr-elementarily equivalent to) k, and value
group (Loag -elementarily equivalent to) Γ. Hence by Theorem 4.6, K ≡Lval k((Γ)).
Thus K |= T for any finite subtheory T ⊆ Th(k((Γ));Lval ), and hence for some
prime q, Kq |= T . By Theorem 4.8 and Corollary 1.8, Th(Kq ;Lval ) is hereditarily
undecidable, making T undecidable as required.

Finally, if Ov ⊆ K is Lr-definable by the formula 
(x, y) (where y = y1, ... , yn
denote parameter variables), then K |= ∃y1, ... , yn∀x (x ∈ O ↔ 
(x, y)) too. For
any finite subtheory S ⊆ Th(K ;Lr), by Łoś’ Theorem there exists a prime l such
thatKl |= S ∧ ∃y1, ... , yn∀x (x ∈ O ↔ 
(x, y)). By Theorem 4.8 and Corollary 1.8,
Th(Kl ;Lr) is hereditarily undecidable, making S undecidable as desired. �

§5. Henselian valued fields: further discourse. We may extend the results of
the previous section from equicharacteristic 0 henselian valued fields, to mixed
characteristic henselian valued fields, using the standard decomposition5 :

Let (K, v) be a valued field of mixed characteristic (0, p) with value group
Γ. Define Δ0 to be the minimal convex subgroup of Γ containing v(p), and
Δp to be the maximal convex subgroup of Γ not containing v(p). We will
consider the valuation(s) v0 : K → Γ/Δ0 (resp. vp : K → Γ/Δp) corresponding to
the coarsening(s) of v with respect to Δ0 (resp. Δp), and the induced valuation(s)
v̂0 : Kv0 → Δ0 (resp. v̂p : Kvp → Δp) with residue field(s) Kv. Also consider vp :
Kv0 → Δ0/Δp with residue fieldKvp; this arises as the coarsening of v0 with respect
to Δp (as Δp < Δ0 ≤ Γ). These fit together in the following way:

K Kv0 Kvp Kv

Γ/Δ0 Δ0/Δp Δp

resv0

v0

resvp

vp v̂p

resv̂p

K Kv0 Kv K Kvp Kv

Γ/Δ0 Δ0 Γ/Δp Δp

resv0

v0 v̂0

resv̂0 resvp

vp v̂p

resv̂p

5This is the terminology used by Anscombe and Jahnke [2]; in the literature it is also known as the
canonical decomposition.
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If Δ0 = vK then by the Compactness Theorem there is an elementary extension
(K, v) ≺ (K�, v�) containing an element c� such that n · v�(p) < v�(c�) <∞ for all
n ≥ 0. Hence the minimal convex subgroup of v�K� containing v�(p) does not
contain v�(c�), i.e., Δ0 < v

�K�. As (K, v) ≡ (K�, v�), for the purposes of proving
finite undecidability we may assume WLOG Δ0 < vK . Consider:

Lemma 5.1 [2, Lemma 6.5]. Let T be a theory of bivalued fields (K, v′, v) with v′

an equicharacteristic 0 henselian coarsening of v, and suppose that T entails complete
theories of valued fields (K, v′) and (Kv′, v). Then T is complete.

Corollary 5.2. Let (K, v) be a mixed characteristic henselian nontrivially valued
field, and v0 as above. There exists a nontrivial ordered abelian group Ω such that
(K, v0, v) ≡ (Kv0((Ω)), vΩ, v̂0 ◦ vΩ).

Proof. Define Ω = vK/Δ0. By Theorem 4.6, (K, v0) ≡ (Kv0((Ω)), vΩ). Since
v = v̂0 ◦ v0 in the standard decomposition of (K, v),

(Kv0, v̂0) (residue field of (K, v0) with the induced valuation)

= (Kv0, v̂0) (residue field of (Kv0((Ω)), vΩ) with the induced valuation).

By Lemma 5.1, we conclude (K, v0, v) ≡ (Kv0((Ω)), vΩ, v̂0 ◦ vΩ) as desired. �

Theorem 5.3. Let (K, v) be a mixed characteristic henselian nontrivially valued
field. Th(K ;Lval ) is finitely undecidable.

Moreover, if Ov is Lr-definable, then K is finitely undecidable as a field.

Proof. As finite undecidability is a property of Th(K ;Lval ), we may assume
WLOG (K, v0, v) = (Kv0((Ω)), vΩ, v̂0 ◦ vΩ) where Kv0 and Ω are countable, by
the Downwards Löwenheim–Skolem Theorem and Corollary 5.2. Let (Z, vZ) =
(Kv0((Ω)), v̂0 ◦ vΩ), (R, vR) = (Kv0(Ω), v̂0 ◦ vΩ) and F = Z ∩ R̃. By Lemma 4.1,
Assumption (⊗) is satisfied: for q > p prime, denote by Kq be the field given by the
Modified Construction—where now “pliant” means algebraic—with valuation
(v̂0 ◦ vΩ)|Kq = v̂0 ◦ vΩ|Kq . We have the following diagram of fields:

Kv0((Ω)) Kv0 Kv

Kq Kv0 Kv

Kv0(Ω) Kv0 Kv

resvΩ
resv̂0

resvΩ
resv̂0

resvΩ
resv̂0

Consider Kq as a multisorted structure:

Kq = (Kq, Kv0, Kv, Ω, Δ0, vK ; resvΩ|Kq , resv̂0 , res(v̂0◦vΩ)|Kq
; vΩ|Kq , v̂0, (v̂0 ◦ vΩ)|Kq ),
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which encompasses the diagram

Kq Kv0 Kv

Ω Δ0

vK

resvΩ|Kq

(v̂0◦vΩ)|Kq

vΩ|Kq

res(v̂0◦vΩ)|Kq

v̂0

resv̂0

Let U be a nonprincipal ultrafilter on the set of primes larger than p, and let K be
the ultraproduct

∏
q>p Kq/U . (We abuse notation to also denote the home sort of K

by K.) We have the following properties of K:

• K has valuation v0 =
∏
vΩ|Kq with residue field

∏
q>p Kv0/U = KvU0 and

value group
∏
q>p Ω/U = ΩU . (This is Remark 4.9.) Furthermore, (K, v0)

is a henselian valued field. Indeed, we claim for q > p prime the henselianity
axioms ϕ1, ... , ϕq–1 are satisfied in Kq :

Let l < q and fix a0, ... al–2 ∈ mvΩ|Kq . SupposeX l + X l–1 + al–2X
l–2 + ··· +

a0 = 0 has no solution in Kq—though there exists a solution α ∈ Khq , and
Khq ⊆ Kv0((Ω)) by the universal property of henselisations [13, Theorem 5.2.2].
Then Kq(α)/Kq is a finite proper extension. By Theorem 4.8, q|[Kq(α) : Kq];
however q > l and [Kq(α) : Kq ] ≤ l ; a contradiction.

Therefore, by Łoś’ Theorem (i.e., [6, Theorem 4.1.9]) (K, v0) is an
equicharacteristic 0 henselian valued field with v0K ≡Loag Ω andKv0 ≡Lr Kv0.
By Theorem 4.6 we conclude (K, v0) ≡ (Kv0((Ω)), vΩ).

• KvU0 has valuation v̂U0 =
∏
v̂0 with residue field vKU and value group ΔU

0
(Remark 4.9). By [6, Theorem 4.1.9], (KvU0 , v̂

U
0 ) ≡ (Kv0, v̂0).

• Hence K can be equipped with a valuation v1 := v̂U0 ◦ v0, and v0 is an
equicharacteristic 0 henselian coarsening of v1. K also has a valuation
v2 =

∏
(v̂0 ◦ vΩ)|Kq , and we claim Ov1 = Ov2 , so (K, v1) ≡ (K, v2). Indeed,

x = [(xq)] ∈ Ov1 ⇐⇒ [(xq)] ∈ res–1
v0

(Ov̂U0 )

⇐⇒ resv0([(xq)]) = [(resvΩ|Kq (xq))] ∈ Ov̂U0
⇐⇒ {q : resvΩ|Kq (xq) ∈ Ov̂0} ∈ U

⇐⇒ {q : xq ∈ O(v̂0◦vΩ)|Kq } ∈ U ⇐⇒ [(xq)] ∈ Ov2 .

Considering (K, v0, v1) as a bivalued field, by Lemma 5.1

(K, v0, v1) ≡ (Kv0((Ω)), vΩ, v̂0 ◦ vΩ) = (K, v0, v).

Taking a reduct of the language, (K, v2) ≡ (K, v1) ≡ (K, v). Therefore if T is a
finite subtheory of Th(K ;Lval ), (K, v2) |= T , and hence for some q sufficiently large,
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(Kq, v̂0 ◦ vΩ|Kq ) |= T . By Theorem 4.8 and Corollary 1.8, Th(Kq ;Lval ) is hereditarily
undecidable, making T undecidable as required.

Finally, if Ov ⊆ K is Lr-definable by the formula 
(x, y) (where y = y1, ... , yn
denote parameter variables), then K |= ∃y1, ... , yn∀x (x ∈ Ov2 ↔ 
(x, y)) too. For
any finite subtheory S ⊆ Th(K ;Lr), by Łoś’ Theorem there exists a prime l such
thatKl |= S ∧ ∃y1, ... , yn∀x (x ∈ O ↔ 
(x, y)). By Theorem 4.8 and Corollary 1.8,
Th(Kl ;Lr) is hereditarily undecidable, making S undecidable as desired. �

What remains is to handle the case of equicharacteristic p > 0 henselian
nontrivially valued fields. We will show this gap can be eliminated for certain fields of
this type (e.g., those fields also satisfying NIP, by using a nice algebraic classification
of such fields by Anscombe and Jahnke [2, Theorem 5.1]). We require the following
definitions:

Definition 5.4. A valued field (K, v) is said to be (separably) defectless if
whenever L/K is a finite (separable) extension, [L : K ] =

∑
w⊇v e(w/v)f(w/v),

where w ranges over all prolongations of v to L, e(w/v) = (wL : vK) is the
ramification degree and f(w/v) = [Lw : Kv] is the inertia degree of the valued
field extension (L,w)/(K, v).

Definition 5.5. A valued field (K, v) of residue characteristicp > 0 is Kaplansky6

if vK is p-divisible, and Kv is perfect and admits no proper separable algebraic
extensions of degree divisible by p.

Theorem 5.6 (Anscombe–Jahnke). Let (K, v) be a positive equicharacteristic NIP
henselian nontrivially valued field. Then (K, v) is separably defectless Kaplansky.

Proof. An immediate consequence of [2, Proposition 3.1]. �
A corollary to this, noted by Anscombe and Jahnke, is that by Delon [10,

Théorème 3.1] the Lval -theory of equicharacteristic p > 0 henselian separa-
bly defectless valued fields (K, v) of imperfection degree e, with residue field
Lr-elementarily equivalent to Kv and value group Loag -elementarily equivalent
to vK , is complete. (As we are concerned with finitely axiomatised subsets of
Th(K ;Lval ), we will assume WLOG e <∞.)

For a valued field (B, vB) to be separably defectless, it is sufficient for it to satisfy
the first-order Lval -statements7 (♦M ) for allM ≥ 1:

For all finite separable extensions D/B of degree ≤M, the equality

[D : B] =
∑
w⊇vB

e(w/vB)f(w/vB) (♦M)

holds, where w ranges over all prolongations of vB to D, e(w/vB) is

the ramification index and f(w/vB) is the inertia degree.

6Equivalently [2, Remark 2.2] (K, v) of residue characteristic p > 0 is Kaplansky if and only if vK is
p-divisible and Kv admits no finite proper extensions of degree divisible by p.

7The argument of [2, Lemma 2.4] confirms (♦M ) is a first-order Lval -statement (with “defectless”
replaced by “separably defectless,” and field extensions made separable where appropriate).
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Lemma 5.7. Fix M ∈ N>0 and q > MM prime. Assume (R, vR), (Z, vZ), and
F satisfy Assumption (⊗) and let Kq be the field resulting from the Modified

Construction. If Z is separably defectless Kaplansky, then Kq |= (♦M ).

Proof. LetD/Kq be a separable extension of degree ≤M . By taking the normal
closure may assume D/Kq is Galois and of degree d ≤MM . If D/Kq is proper,
by degree reasons Z ∩D = Kq . Indeed, if Z ⊃ D′ ⊃ Kq is a separable extension
of degree ≤MM , by the Primitive Element Theorem there exists α ∈ Z ∩Ksq such
thatD′ = Kq(α). By Theorem 4.8, if α 
∈ Kq then q|[Kq(α) : Kq]; however q > MM

and [Kq(α) : Kq] ≤MM . This is a contradiction; hence α ∈ Kq . Thus Z and D are
linearly disjoint over Kq . Consider the following tower of extensions:

ZD

Z

D

Kq

d

d

By the tower property [16, Lemma 2.5.3], D is linearly disjoint to Khq , a subfield
of Z by the universal property of henselisations. Thus w = vZ |Kq extends uniquely
to (D,w′), by, e.g., [4, Lemma 2.1]. As (Z, vZ) is henselian, vZ extends uniquely to
(ZD, v′Z), and restricts to (D,w′). AsZ/Kq is immediate, as the valuation extensions
are unique, and as Z is linearly disjoint from D over Kq ,

p�e(w′/w)f(w′/w) = [D : Kq] where � ≥ 0, by [13, Theorem 3.3.3],

= [ZD : Z] by [16, Corollary 2.5.2],

= e(v′Z/vZ)f(v′Z/vZ) as Z is separably defectless.

In addition, as Z is Kaplansky, p � e(v′Z/vZ), f(v′Z/vZ). Hence

[D : Kq] = e(w′/w)f(w′/w) =
∑
w′⊇w

e(w′/w)f(w′/w).

We conclude Kq |= (♦M ) as desired. �
We are ready to prove:

Theorem 5.8. Let (K, v) be an equicharacteristic p > 0 separably defectless
Kaplansky henselian nontrivially valued field. Th(K ;Lval ) is finitely undecidable.

Moreover, if Ov is Lr-definable, then K is finitely undecidable as a field.

Proof. Fix e ∈ N, the imperfection degree of K. Let k, Γ be countable models
of Th(Kv;Lr), Th(vK ;Loag). By definition k is perfect and Γ is p-divisible, and
thus k(Γ) and k((Γ)) are perfect. By Lemma 4.1 we may choose t1, ... , te ∈ k((Γ))
transcendental and algebraically independent over k(Γ) and consider the field
k(Γ)(t1, ... , te–1)—by [16, Lemma 2.7.2] its imperfection degree is exactly e – 1.
Finally, set F = k((Γ)) ∩ (k(Γ)(t1, ... , te–1))s . With (R, vR) = (k(Γ), vΓ), (Z, vZ) =
(k((Γ)), vΓ), Assumption (⊗) is satisfied by Lemma 4.1. Note the imperfection degree
of F is exactly e – 1, and (Z, vZ) is perfect separably defectless Kaplansky.

As there exists an element t ∈ k((Γ)) transcendental over F, by Theorem 4.8
there exists a field F (t) ⊆ Kq ⊆ k((Γ)) such that if w = vΓ|Kq , then Kqw = k,
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wKq = Γ, Fp[z] is Lval -definable in Kq where z ∈ k(Γ) is transcendental over Fp,
and if a ∈ k((Γ)) \Kq is pliant over Kq , then q|[Kq(a) : Kq].

If e > 0: “pliant” will refer to separably algebraic elements. By the construction
ofKq as a union of separable extensions of F (t),Kq/k(Γ)(t1, ... , te–1, t)
is separably algebraic and has degree of imperfection e by [16, Lemma
2.7.3].

If e = 0: “pliant” will refer to algebraic elements. As noted in Remark 4.2, Kq is
perfect.

In either case, Kq is an equicharacteristic p nontrivially valued field of imperfection
degree e, with residue field k and value group Γ. We will verify the henselianity axioms
ϕ1, ... , ϕq–1 are satisfied. Let l < q and fix a0, ... al–2 ∈ mw . Suppose X l + X l–1 +
al–2X

l–2 + ··· + a0 = 0 has no solution in Kq—however there exists a solution
α ∈ Khq , andKhq ⊆ k((Γ)) by the universal property of henselisations [13, Theorem
5.2.2]. Then Kq(α)/Kq is a finite proper extension; moreover, α is pliant over Kq
as Kq(α) ⊆ Khq ⊆ Ksq ⊆ K̃q . By Theorem 4.8, q|[Kq(α) : Kq]; however q > l and
[Kq(α) : Kq] ≤ l ; a contradiction.

Let Q be the set of primes q > p and U a nonprincipal ultrafilter on Q. Let K =∏
q∈Q Kq/U ; by Łoś’ Theorem, K is an equicharacteristic p henselian nontrivially

valued field, of imperfection degree e, and residue field Lr-elementarily equivalent
to Kv and value group Loag -elementarily equivalent to vK . Furthermore, K is
separably defectless. Indeed, given M ∈ N>0, Kq |= (♦M ) for all primes q > MM

by Lemma 5.7. Hence, by Łoś’ Theorem,K |= (♦M ) for allM ≥ 1. By [10, Théorème
3.1], K ≡Lval K .

Let T be a finite subtheory of Th(K ;Lval ). As K |= T , for some q ∈ Q we have
Kq |= T . By Theorem 4.8 and Corollary 1.8, Th(Kq ;Lval ) is hereditarily undecidable;
hence T is undecidable as required.

Finally, if Ov ⊆ K is Lr-definable by the formula 
(x, y) (where y = y1, ... , yn
denote parameter variables), then K |= ∃y1, ... , yn∀x (x ∈ O ↔ 
(x, y)) too. For
any finite subtheory S ⊆ Th(K ;Lr), by Łoś’ Theorem there exists a prime l such
thatKl |= S ∧ ∃y1, ... , yn∀x (x ∈ O ↔ 
(x, y)). By Theorem 4.8 and Corollary 1.8,
Th(Kl ;Lr) is hereditarily undecidable, making S undecidable as desired. �

Corollary 5.9. (1) If (K, v) is an NIP henselian nontrivially valued field,
Th(K ;Lval ) is finitely undecidable. Furthermore if Ov is Lr-definable in K,
then K is finitely undecidable as a field.

(2) Every infinite dp-finite field is finitely undecidable.
(3) Assuming the NIP Fields Conjecture, every infinite NIP field is finitely

undecidable.

Proof.

(1) If (K, v) is equicharacteristic 0 or mixed characteristic, this is a result of
Corollary 4.10/Theorem 5.3. If (K, v) is positive equicharacteristic then by
Anscombe–Jahnke it is separably defectless Kaplansky (Theorem 5.6); hence
its Lval -theory is finitely undecidable by Theorem 5.8.

(2) By the work of Johnson8 [27, Corollary 4.16], every infinite dp-finite field
K is either algebraically closed, real closed, or admits a non-trivial definable

8This paper is the conclusion of the series [23–26, 28, 29] by Johnson on dp-finite fields.
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henselian valuation. If K is algebraically or real closed, it is finitely undecidable
by [49, Corollary, p. 270]. Otherwise K has an Lr-definable valuation v. As K
is dp-finite, Th(K ;Lr) is NIP (following from [45, Observation 4.13]), and
hence Th(K ;Lval ) is NIP as the valuation is Lr-definable. Thus K is finitely
undecidable, from (1).

(3) Recall Theorem 3.11, where assuming the NIP Fields Conjecture one can
conclude every infinite NIP field K is either separably closed (hence finitely
undecidable by [49, Corollary, p. 270]/Corollaries 3.7 and 3.8), real closed
(hence finitely undecidable by [49, Corollary, p. 270]), or admits a nontrivial ∅-
Lr-definable henselian valuation. In this case, K is finitely undecidable by (1).�

Example 5.10. We present some finitely undecidable fields, and some open
questions, as a consequence of this work.

(1) Let (K, v) be any algebraic valued field extension of (Qp, vp) with non-
divisible value group. By [32, Lemma 3.6], the valuation is ∅-Lr-definable.
By Theorem 5.3, K is a finitely undecidable field.

(2) It is unknown if Fp((t)) is finitely undecidable. (Equally one can consider
the finite undecidability of Th(Fp((t));Lval ), as the valuation ring Fp[[t]]
is ∅-Lr-definable in Fp((t)) by, e.g., [32, Lemma 3.6].) More generally if
F/Fp is any algebraic extension, the finite undecidability of F ((t))—or of
Th(F ((t));Lval )—is an open question.

Recall the notion of t-henselianity: a field is t-henselian if it can be equipped with a
topology compatible with the field operations, behaving very much like the topology
arising from a nontrivial valuation, satisfying a “topological” Hensel’s Lemma. This
notion was introduced by Prestel and Ziegler [40], and the topology shown to be
Lr-definable in nonseparably closed fields in [38, p. 203]. Using saturation we may
equally state (as Anscombe and Jahnke [1, p. 872] do) that a field is t-henselian if it is
Lr-elementarily equivalent to a field L which admits a nontrivial henselian valuation,
i.e., has a subsetO ⊆ L that satisfies the definition of a nontrivial henselian valuation
ring. (Cf. the discussion in [40, Section 7] and [32, Section 3.4].) In some cases we can
use t-henselianity—a purely field-theoretic, Lr-elementary property—to conclude
finite undecidability of a field.

(3) Let K be a characteristic 0 t-henselian field with nonuniversal9 absolute
Galois group. From10 [20, Theorem 3.2.3], K is either real closed, separably
(= algebraically) closed, or henselian with respect to a nontrivial
∅-Lr-definable valuation. Thus K is finitely undecidable, by [49, Corollary,
p. 270] or Corollary 4.10 or Theorem 5.3.

(4) Let K be a positive characteristic NIP t-henselian field. If K is separably
closed, it is finitely undecidable by Corollary 3.7/3.8. Otherwise let L be a field
with nontrivial henselian valuation v such thatL ≡ K ; note L is not separably
closed and NIP as a field. By [21, Corollary 3.18], L admits a nontrivial
∅-Lr-definable henselian valuation. Hence K is finitely undecidable, by
Corollary 5.9(1).

9A profinite group G is universal if every finite group occurs as the image of a continuous morphism
from G.

10Cf. [21, Theorem 3.15] and the Remark loc. cit.
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Two concrete examples of fields from (3) and (4) are C((t)) and F̃p(( 1
p∞Z)),

respectively.

(5) Boissonneau [5] has recently extended the Anscombe–Jahnke results towards
n-dependent valued fields. The class of n-dependent theories was introduced
by Shelah in [42, Section 5(H)] (see [9] for further discussion), and is a proper
generalisation of NIP (which corresponds to 1-dependent). n-dependence in
groups and fields has been studied extensively by Hempel and Chernikov–
Hempel [8, 19].

If (K, v) is a positive characteristic n-dependent nontrivially valued field,
it is henselian (by [8, Theorem 3.1]) and separably defectless Kaplansky (by
[5, Lemma 3.10]). Thus Th(K ;Lval ) is finitely undecidable, by Theorem 5.8.
Furthermore, by [19, Proposition 8.4], K is either separably closed (hence
finitely undecidable, by Corollary 3.7/3.8) or admits an ∅-Lr-definable
nontrivial henselian valuation (separably defectless Kaplansky, by [5, Lemma
3.10]). We conclude from Theorem 5.8 if K is a positive characteristic n-
dependent t-henselian field, it is finitely undecidable.

One may ask: is every nontrivially henselian valued field, which is finitely undecidable
as an Lval -structure, finitely undecidable as a field? This cannot be concluded easily
from Corollary 4.10/Theorem 5.3/Theorem 5.8, as there exist henselian valued fields
which do not admit any nontrivial Lr-definable henselian valuation, such as the
Jahnke–Koenigsmann example [22, Example 6.2]. Anscombe and Jahnke discuss
“henselianity in the language of rings” further in [1].

Acknowledgements. The author extends his thanks to Professor Ehud Hrushovski,
Professor Jochen Koenigsmann, Professor Arno Fehm, Dr. Sylvy Anscombe, and
Dr. Konstantinos Kartas for many helpful conversations. Further thanks is due to
S. Anscombe for her excellent recommendations on presentation, organisation, and
abstraction.

REFERENCES

[1] S. Anscombe and F. Jahnke, Henselianity in the language of rings. Annals of Pure and Applied
Logic, vol. 169 (2018), no. 9, pp. 872–895.

[2] ———, Characterising NIP Henselian fields, 2022, To appear in J. Lond. Math. Soc.
[3] J. Ax and S. Kochen, Diophantine problems over local fields I. American Journal of Mathematics,

vol. 87 (1965), no. 3, pp. 605–630.
[4] A. Blaszczok and F.-V. Kuhlmann, On maximal immediate extensions of valued fields.

Mathematische Nachrichten, vol. 290 (2017), no. 1, pp. 7–18.
[5] B. Boissonneau, Artin–Schreier extensions and combinatorial complexity in Henselian valued fields,

preprint, 2022, arXiv:2108.12678.
[6] C. Chang and H. Keisler, Model Theory, third ed., Dover, New York, 2012.
[7] G. Cherlin and S. Shelah, Superstable fields and groups. Annals of Mathematical Logic, vol. 18

(1980), no. 3, pp. 227–270.
[8] A. Chernikov and N. Hempel, On n-dependent groups and fields II. Forum of Mathematics Sigma,

vol. 9 (2021), no. e38, pp. 1–51.
[9] A. Chernikov, D. Palacin, and K. Takeuchi, On n-dependence. Notre Dame Journal of Formal

Logic, vol. 60 (2019), no. 2, pp. 195–214.
[10] F. Delon, Quelques propriétés des Corps valués en théorie des modèles, Ph.D. thesis, Université
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